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Abstract—This paper investigates the efficacy of a wired-OR
compressive readout architecture for neural recording, which
enables simultaneous data compression of action potential signals
for high channel count electrode arrays. We consider a range
of wiring configurations to assess the trade-offs between com-
pression ratio and various task-specific signal fidelity metrics.
We consider the fidelity in threshold crossing detection, spike
assignment, and waveform estimation, and find that for an event
SNR of 7-10 the readout captures at least 80% of the spike
waveforms at ∼150x data compression.

Index Terms—A/D conversion, brain-machine interfaces, com-
pression algorithm, neural interfaces.

I. INTRODUCTION

The current trend in brain-machine interfaces is to record
from an increasing number of neurons. State-of-the-art sytem
examples include Neuropixel [1], Argo [2] and Neuralink [3],
[4]. Despite these advances, the number of channels that can be
simultaneously recorded within the power and area constraints
of an implantable device is still limited to a few thousand. A
compromise for larger channel counts is to use an on-chip
switch matrix or multiplexer [2], [5]. However, this precludes
simultaneous recording and hence limits the capabilities of the
end application. Performing lossy data compression as close as
possible to the the physical interface is a promising approach
to address this issue.

For lossy compression, it is crucial to identify the signal’s
salient information versus unnecessary data samples. Tradi-
tionally, after bandpass filtering and channel noise estimation,
spikes are detected using a negative threshold (see Fig. 1(a)).
Depending on the application, the spikes can be sorted to
separate individual neurons and study their interactions. In
sensory and motor applications, it has been shown that the
spike waveforms can be reduced to threshold crossings (binary
spike trains, see Fig. 1(b)) [3], [6]–[8]. In contrast, the spike
waveform shape (see Fig. 1(c)) is essential for applications
that require cell type identification [9]–[12]. Regardless of
the application, most of the information about extracellular
activities are captured in the spike waveforms, which are hence

This project was supported in part by Stanford’s Wu Tsai Neurosciences
Institute. P. Y. was supported by a Stanford Bio-X SIGF fellowship.

sufficient and desirable for complete information extraction
[13].

Given the significance of the spike events, one idea for
data compression is to detect the spike times and only record
samples in their vicinity (thus eliminating baseline samples
between spikes). From a hardware perspective, a key issue
with this approach lies in finding the proper threshold and
managing the data movement with limited resources in a dense
array. These issues are seen in [14], which uses analog memory
cells and additional computation to find the thresholds. Our
previous work [15] sidesteps this issue using a wired-OR
analog-to-digital converter (ADC) array. In this architecture,
samples are discarded based on a wired-OR competition
between the pixels and no thresholding is needed. While we
have shown that this technique works well for retinal cell
identification (∼40x compression while missing less than 5%
of cells), we wish to assess its suitability for a broader range
of applications. Thus, the purpose of this paper is to analyze
the wired-OR architecture with a range of commonly used
neural signal processing methods to understand the trade-offs
between performance and compression ratio. Additionally, we
explore generalizations of the wired-OR architecture toward
application-specific reconfigurability.

Section II reviews the wired-OR architecture and discusses
different wiring schemes to expand its configuration space.
Next, Section III summarizes our simulation results. The
experiments are based on large-scale, high-density ex vivo
primate retina recordings, which exhibit a range of event
signal-to-noise ratio (SNR) values. This enables a translation
of the results to any neural system as long as the event SNR
is known. We assess a range of use cases (threshold crossing
detection, spike assignment, waveform estimation) and find
that the wired-OR topology captures at least 80% of the spike
waveforms at ∼150x data compression.

Fig. 1 Neural signal waveforms.
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Fig. 2 Wired-OR readout concept. (a) Conversion of voltage to pulse position
and collision-free readout of one pixel. (b) Multiple pixels with collision-free pulse
timing. (c) Collision between two pixels. (d) Likely outcomes across different
waveform levels.

II. READOUT ARCHITECTURE

A. Wired-OR readout concept

In the wired-OR readout architecture [15], each pixel con-
ditions and samples the input as commonly done in neural
interfaces. The sampled voltage is then converted into a pulse
position, which is achieved by comparing it to a globally-
distributed ramp step signal (see Fig. 2(a)). In the most
basic implementation, the pulses from pixels in the same row
or column are combined onto single wires using wired-OR
circuitry. In essence, signal compression occurs by having
the pixels compete for these limited wire resources. If only
a single pixel produces a pulse at a given time step (i.e., it
is the only channel with a quantized voltage corresponding
to the time step, see Fig. 2(b)), then the pixel location
and its A/D conversion result (ramp counter state) can be
uniquely recovered. On the other hand, if multiple pulses from
different pixels occur at the same time step (i.e., the quantized
voltages on two or more channels are equal) multiple rows
and/or columns are activated (collision case in Fig. 2(c))
and the conversion results cannot be recovered (samples are
discarded). As discussed in [15], this compression approach is
effective for neural signals due to their long-tailed probability
distribution. Voltage samples associated with spikes tend to
be unique and are typically retained while baseline samples
falling within a certain voltage range tend to be discarded
(see Fig. 2(d)). This architecture is scalable to a large number
of channels (≫ 1, 000), enabling the next generation of neural
interfaces [15].

B. Generalization of wired-OR configurations

The previous subsection reviewed the basic wire-OR readout
concept with a single wire in each row and column. However,
other configurations are possible, including multiple inter-
leaved wires per row/column as well as diagonals. Diagonal
wiring has been explored previously for particle tracking in
high-energy physics [16] and we wish to assess its merits for
our readout scheme.

Fig. 3 Collision case for different wiring scheme (a) Action potential of two
electrodes. (b) Previously proposed wired-OR. (c) Diagonal wiring. (d) Interleaving
wiring.

To investigate further, consider a collision case in which two
pixels record the same voltage levels simultaneously (see Fig.
3(a)). Through the wired-OR logic, the pixels are projected
onto the row and column index of the data matrix (see Fig.
3(b)) and different wiring configurations can be abstracted
as different projections. For the shown case, the address of
channels is not uniquely decodable, and results in a collision
and losing the corresponding spike samples. One way to
decode this case is by adding a diagonal projection through
extra wiring (see Fig. 3(c)). In a N col×N row array (32×16 in
this work), collisions that trigger the correlated channels are
denoted in np. When Max(np) ≤ 2, the triggered channels
are uniquely decodable with one set of added diagonal wiring.
A right diagonal projection can be added as another projection
(the number of projections/wiring is denoted by Op). For
Op = 4, when Max(np) ≤ 4, the triggered channels are
uniquely decodable. While there are more uniquely decodable
cases when Max(np) > 4, this would require more complex
decoding logic and it is not considered here. This solution
effectively disentangles two or more channels recording the
same voltage levels. When multiple samples are recorded
simultaneously, a prefix code is needed to also record the
number of samples. Huffman coding, which is commonly used
for lossless data compression is an option for the prefix code
encoding. Effectively, the data rate is:

Rp = [Huffman Code +
∑
Op

log2(N p)× αd,p]× f s (1)

where N p denotes the dimension of the corresponding projec-
tion, and ”Huffman Code” being the average bits of Huffman
prefix code (bounded by log2(Op)). The resulting data rate
depends on the average rate of decodable channels per sample
(αd,p) and sampling frequency (f s). For comparison, the data
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Fig. 4 Neural signal processing pipeline for our simulation study.

rate for W interleaved wires (see Fig. 3(d), where W = 2) is
[16]:

RW = [log2(N row/W ) + log2(N col)]αd,Wf s (2)

For B-bit ADC resolution, the corresponding compression
ratio is:

CR =
N col ×N row ×B × f s

R
(3)

Knowing the estimated average rate of decodable channels
per sample in a neural dataset, one can calculate the out-
put data rate of wired-OR with (1) and its corresponding
compression ratio with (3), guiding a configuration choice
with higher compression ratio. For example comparing the
cases of Op = 4 and W = 4, Op × αd,p ≈ αd,W. Then,
CRO=4
CRW=4

≈ [log2(N row/4)+log2(Ncol)]×αd,W
HuffmanCode+log2(Np)×Op×αd,p

≈ 1.3, given the
array used in the primate retina dataset. This matches our
simulation results in Section III, showing the compression
ratio of diagonal wiring achieves 1.3x higher compression
ratio than the 4-interleaving wires configuration with similar
performance. The trade-offs between compression ratio and
signal fidelity is further evaluated through simulations in the
next section.

III. SIMULATION RESULTS

To evaluate the performance of the wired-OR readout archi-
tecture, we use 512-channel data recorded in ex vivo experi-
ments with primate retina. The readout scheme discussed in
Section II is emulated by re-processing the recorded raw data
in software. We then take the wired-OR compressed data and
apply neural signal processing steps such as spike detection,
waveform estimation, and spike classification. To show the
efficacy of wired-OR compression for a retinal prosthesis
application, we also applied automated spike sorting and cell-
type classification using KiloSort [17]. Our analysis pipeline
is shown in Fig.4.

A. Spike detection and alignment

The most commonly used spike detection method for im-
plantable neural signal processors is thresholding. Conversely,
the wired-OR scheme discards baseline samples that cannot

Fig. 5 Spike capturing performance for (a) different datasets (b) different numbers
of diagonal wires (c) different ADC resolutions.

Fig. 6 Waveform recording performance for (a) different datasets (b) different
numbers of diagonal wires (c) different ADC resolutions.

be uniquely decoded by construction. The recorded wired-
OR samples can be analyzed for spike alignment and further
single-channel analysis to separate the spikes. We adopt the
simplest spike detection and alignment based on the wired-
OR readout strategy. For any given channel, when uniquely
decodable samples are recorded, we search for the minimum-
value sample in the window of the next 30 samples (this
number is empirically chosen) to align the spikes. We then
analyze the percentage of spikes captured by comparing it to
raw, full-bandwidth dataset with the knowledge of spike times
detected using KiloSort. The results are shown in Fig. 5, which
shows the percentage of spikes captured for each identified
neuron in KiloSort. The event SNR is approximated by [1]:

SNR =
V spike peak amplitude

V σ, channel

Here, the spike peak amplitude is found from the electrode
with the largest negative peak, and the noise is the median
absolute deviation when no action potential is seen on the
channel. The percentage of spikes captured shows a consistent
correlation to the event SNR across recorded datasets collected
in the span of 4 years (see Fig. 5(a)), which makes the
performance metrics analyzed here translatable given the SNR.
The performance of different wiring schemes is shown in
Fig. 5(b), where “Diag Left” refers to wired-OR plus one
extra set of diagonal wires as shown in Fig. 3(c), and “Diag
L+R” extends this to two directions of diagonal wiring. Since
adding diagonal wiring improves the capability of wired-
OR architecture to decode cases when multiple channels are
triggered, more spikes can be captured.

The percentage of spikes captured for an SNR range of 3-
12 given different ramp signal resolutions is shown in Fig.
5(c). Increasing ramp signal resolution is shown to improve
performance because the finer the voltage levels, the less
chance of multiple channels falling into the same quantization
voltage levels. For SNR in the range of 7-10, at least 80%
of the spikes are captured for all configurations of wired-
OR. For a typical neural recording system design such as

Fig. 7 Pareto frontier of wired-OR performance for (a) average fraction of spikes
captured vs. compression ratio (b) average NMSE vs. compression ratio with differ-
ent wiring schemes (c) average NMSE vs. compression ratio for all configurations
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Fig. 8 Single channel analysis. (a) Spike waveform extracted through KiloSort. (b) K-means estimated templates from raw recorded spikes. (c-e) PCA analysis of
clustered raw spikes with number of components is set to 3. (f) Detected and aligned spikes from compressed data. (g) K-means estimated templates from detected
spikes of compressed data. (h-j) PCA analysis of clustered compressed spikes.

the Neuropixels probe, where the SNR is around 8 [1], over
90% of spikes are predicted to be captured by adding diagonal
wiring.

B. Spike waveform estimation

To analyze the performance of wired-OR in recording the
waveform of action potentials, we studied the normalized
mean square error in the spike waveforms for each cell-
electrode pair compared to that from the uncompressed dataset.
As before, the wired-OR performance shows a strong correla-
tion to the event SNR, as shown in Fig. 6(a). Additional wiring
and higher ADC resolution reduce the NMSE (see Fig. 6(b-
c)). And as one would expect, the improvement in performance
comes at the cost of compression ratio. As shown in Fig. 7(a-
b), for both diagonal and interleaved wiring, increasing the
number of wires lowers the average NMSE across the entire
dataset, as well as captures more spikes, but also decreases
the achievable compression ratio. Previously proposed wired-
OR and interleaving wiring scheme results are demonstrated in
blue, and diagonal wring results are shown in warm colors. As
expected, diagonal wiring results surpass the previous Pareto
frontier. Comparing the configuration of diagonal wiring in
both directions (4Proj) to 4 interleaved wires, fewer wires
and higher compression are possible while further lowering
the average NMSE. The trade-off between performance and
compression ratio for all studied configurations is summarized
in Fig. 7(c).

C. Spike classification

After the spike events are extracted and aligned, a common
procedure in neural signal processing is to reduce the high

Fig. 9 Receptive field mosaic for OFF parasol cells from several wired-OR
configurations.

dimensionality of the recorded neural data. We applied K-
means clustering and principal component analysis (PCA)
to demonstrate the effect of separability among recorded
neurons after compression. An example of electrode 71 is
demonstrated with the knowledge of spike waveform extracted
from uncompressed dataset shown in Fig. 8(a). We compare
compressed data shown in Fig. 8(f-j) to raw data processed in
the same way shown in Fig.8(b-e). With simple spike detection
and clustering algorithm, relatively large amplitude spikes that
are recorded at the soma of neurons can be clearly separated
from waveforms recorded from the axon or artifact signals.
Over 99% of spikes of the cell with ID# 101 (demonstrated as
an example) are captured and correctly matched to its cluster.
This shows that although the compression is lossy, wired-OR
captures spikes without thresholding and still retains sufficient
information to sort different recorded units. Different from
previously proposed architectures [2], [14], no computation
for the threshold is needed.

D. Spike sorting and cell-type classification.

To assess the performance of diagonal wiring in cell-
receptive-field mapping application in retinal prostheses, we
also passed the compressed data through state-of-the-art spike
sorting and cell-type classification using KiloSort. The re-
covered receptive field mosaic of the collection of cells of
one type (OFF parasol) is illustrated in Fig. 9. For the same
percentage of cells recovered, diagonal wiring achieves higher
compression than interleaved wiring.

IV. CONCLUSION

We conducted a simulation study of the data compressive
wired-OR readout architecture using a range of neural signal
processing methods. We considered various different wire
configurations and found that diagonal wiring is more effective
than interleaved wiring. For a typical event SNR of 7-10, the
wired-OR readout captures at least 80% of the spikes at ∼150x
compression, while maintaining sufficient waveform fidelity
for spike sorting.
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