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Abstract
Background Over the past 20 years, the Contour Method (CM) has been extensively implemented to evaluate residual stress 
at the macro scale, especially in products where material processing is involved. Despite this, insufficient attention has been 
devoted to addressing the problems of input data filtering and residual stress uncertainties quantification.
Objective The present research aims to tackle this fundamental issue by combining Gaussian Process Regression (GPR) with 
the CM. Thanks to its stochastic nature, GPR associates a Gaussian distribution with every subset of data, thus holding the 
potential to model the inherent uncertainty of the input data set and to link it to the measurements and the surface roughness.
Methods The conventional and unrobust spline smoothing process is effectively replaced by the GPR which is capable of 
providing uncertainties over the fitting. Indeed, the GPR stochastically and automatically identifies the fitting parameter, thus 
making the experimental data post-processing  practically unaffected by the user’s experience. Moreover, the final residual 
stress uncertainty is efficiently evaluated through an optimised Monte Carlo Finite Element simulation, by appropriately 
perturbing the input dataset according to the GPR predictions.
Results The simulation is globally optimised exploiting numerical techniques, such as LU-factorisation, and developing 
an on-line convergence criterion. In order to show the capability of the presented approach, a Friction Stir Welded plate is 
considered as a case study. For this problem, it was shown how residual stress and its uncertainty can be accurately evaluated 
in approximately 15 minutes using a low-budget personal computer.
Conclusions The method developed herein overcomes the key limitation of the standard spline smoothing approach and 
this provides a robust and optimised computational framework for routinely evaluating the residual stress and its associated 
uncertainty. The implications are very significant as the evaluation accuracy of the CM is now taken to a higher level.

Keywords Contour Method · Gaussian Process Regression · Uncertainty Quantification · Friction Stir Welding · 
Aluminium Alloy

Introduction

The Contour Method (CM) is a destructive evaluation tech-
nique for assessing residual stress (RS) at the macro scale. 
Essentially, the CM entails sectioning a specimen that is 
meant to contain residual stress. As a result of the sectioning 
operation, two new surfaces are created, which are naturally 
subjected to an elastic stress relaxation phenomenon. This 
relaxation triggers a deformation over the cut surfaces, and 
the correspondent out-of-plane displacement is experimen-
tally measured. Eventually, these measurements are used as 
an input to numerical models to back-calculate the RS over 
the cut surface, which was present prior to the sectioning 
operation [1].
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Over the years, the CM has found a number of appli-
cations into a variety of problems where the evaluation 
of RS was sought. For instance, the CM was applied to 
investigate RS: due to different manufacturing processes 
[2–4]; due to surface treatments [5, 6]; in axisymmetrical 
components [7–9]; in welded materials [10–14].

Due to the relatively young age of the CM, however, lit-
tle research has been devoted to the problem of uncertain-
ties arising throughout the RS evaluation process. Correct 
evaluation of errors and uncertainties is of fundamental 
importance to both appreciate the goodness of the evalu-
ated RS and to achieve a superior degree of reliability 
of structures then employed during the design process. 
Modern advanced structural design approaches require this 
additional information to provide a probabilistic assess-
ment of structural integrity. These approaches have turned 
out to be of vital importance to design lightweight and 
high performance components, by providing an appraisal 
of the survival likelihood under operating conditions, 
instead of using overabundant safety factors [15].

At present, the problem of uncertainty related to the 
numerical manipulation of the experimentally measured 
displacement data has been only preliminary addressed by 
Olson et al. [16]. The authors of [16] accounted for two 
crucial sources of error: (i) the uncertainty in the experi-
mentally acquired displacement data; (ii) the uncertainty 
arising as a result of the displacement data interpolation 
and smoothing. These uncertainties propagate throughout 
the operational steps of the CM and eventually influence 
the results in terms of RS. Specifically, the source of error 
(i) can be separated as the sum of two contributions: the 
material surface roughness and the intrinsic measurement 
error of the used measuring machine (usually a Coordinate 
Measuring Machine (CMM)), and thus being of stochastic 
nature. As such, this error can be quantified using a Monte 
Carlo approach, for a certain number of trials (numerical 
calculations), by adding a normally distributed random 
noise to the measured data. The error induced by (i) is 
then given by the standard deviation of RS from the Monte 
Carlo simulations. Regarding the source of error labelled 
as (ii), the state-of-the-art of the CM recommends to use 
tensor product surfaces, e.g. bivariate splines, to fit the 
out-of-plane displacement data for smoothing and interpo-
lation purposes [16–18]. Some identification strategies of 
the bivariate splines are proposed by the literature, based 
upon a trade-off between appropriately capturing the gra-
dients of the measured out-of-plane deformation and fil-
tering out the noise already expected in the experimental 
measurement. It is evident how the process is massively 
influenced by the operator’s experience when selecting the 
fitting parameters involved, i.e. the degree of the tensor 
product surface and the number of nodes of the interpola-
tion grid.

For this reason, a robust evaluation of the error due to 
the interpolation process becomes unrealistic in the present 
state-of-the-art. Assuming that the interpolation process was 
sufficiently accurate, possibly owing to the user’s experience 
in the use of the CM, Olson et al. proposed to assess the 
model error by retrieving the standard deviation of the RS 
computed by the CM for different values of the spline fitting 
parameters [16]. Finally, the total error due to the contribu-
tion of errors (i) & (ii) was essentially computed by taking 
their quadrature. Indeed, the method was applied on a set 
of five Al alloy samples. More recently, this approach has 
been successfully applied also to an aluminium T-section, 
a stainless steel dissimilar plate, a titanium electron beam 
welded plate, stainless steel and a nickel based alloy forged 
specimen [19].

As outlined before, the Olson et  al. state-of-the-art 
approach to uncertainty quantification may be effective in 
some cases. Nevertheless, it would seem to lack robustness, 
thus highly affected by user’s experience and confidence. 
Earlier research proposed a more sophisticated identifica-
tion strategy of the fitting parameters [20]. Still, it appeared 
deterministic and influenced by user’s experience and ability.

An advanced and powerful solution to tackle the central 
issue of the uncertainty quantification involved in the CM is 
through Gaussian Processes (GPs) [21]. GPs have recently 
gained popularity in the machine learning community in 
regression and classification tasks. Specifically, GPR is a 
probabilistic supervised learning technique that calculates 
uncertainties over predictions by assuming that the training 
data are jointly Gaussian [22]. This GPR can also account 
for the inherent uncertainty of the input dataset. Only in 
recent years, GPR has been applied to tackle engineering 
problems, demonstrating its effectiveness to model random 
phenomena pertinent to this field. For instance, the engi-
neering research community applied GPR to predict the 
water inflow into tunnels [23], the maximum vertical dis-
placement of a bridge subjected to uncertain load conditions 
[24], the mechanical response of marine structures [25], pile 
load bearing capacity [26], blast-induced ground vibration 
[27], and in control theory [28]. The application of GPR in 
solid mechanics is still extremely scarce, but its potential is 
incredibly attractive, particularly if applied to uncertainty 
determination problems or material response behaviour.

In this manuscript, a GPR-based approach is developed 
to address the outstanding issue related to the uncertainty 
quantification of RS when employing the CM. Dedicated 
optimisation tools are used to minimise the influence of 
user’s confidence on the numerical processing of the input 
displacement data [29], and to devise a robust and accurate 
calculation framework. Firstly, GPR is applied to fit the out-
of-plane displacement of each half-plate obtained from the 
CMM measurement after the material cut, and to quantify 
the uncertainty of the fitting predictions. Following, each 
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half-plate is independently analysed, thus deliberately differ-
ing from the traditional CM procedure; effects of this choice 
will be discussed. In this respect, each fitted displacement is 
used as a boundary condition in a separate numerical simu-
lation to carry out the RS evaluation of the correspondent 
half-plate. In particular, a Monte Carlo approach is pursued 
to numerically perturb the boundary condition (prescribed 
displacement) according to the GPR-estimated uncertainty. 
This allowed for the appraisal of the uncertainty associated 
with the local perturbation. Eventually, the results of the 
Monte Carlo trials are statistically post-processed to obtain 
both the expected value of RS and its associated uncertainty. 
Alongside, an optimised open-source computational frame-
work is set up to reduce the computation effort required to 
run the Monte Carlo simulations. In order to demonstrate the 
effectiveness of the presented methodology, a friction stir 
welded (FSW) aluminium plate is considered as a case study. 
Eventually, the performance of the proposed method is criti-
cally discussed, and the major improvements with respect to 
the previously used evaluation framework are highlighted.

Experimental Procedure

Practical Implementation of the Contour Method

One of the prerequisites for a correct evaluation of RS is 
the limited invasiveness of the cutting process, which may 
itself introduce additional RS within the probed sample. To 
help achieve this ideal condition, wire electrical discharge 
machines (WEDM) are strongly recommended as cutting 
tools [30], due to the shallow affected layer generated [31]. 
As far as the surface displacement measurement is con-
cerned, high-resolution CMM with contact probing system, 
have been identified as the preferred equipment to measure 
the out-of-plane displacement relaxation. The experimental 
data obtained from CMM is then processed to serve as an 
input to the FEM simulation that follows. Differently from 
other works seen in the literature, in the present work the 
data analysis of experimental measurements was performed 
using GPR (see "Gaussian Process Regression in the Pre-
sent Study").

Case Study: Friction Stir Welded Al Alloy

RS is well-known to affect any type of welded structure, 
mainly due  to large heat gradients involved during the man-
ufacturing process. For this reason, in the last decades a 
considerable amount of effort has been put by manufacturers 
and researchers to mitigate this issue, primarily by reducing 
the amount of heat involved. Solid-state welding methods 
serve this purpose since the joining process occurs below 
the melting point of the material involved [32]. One of the 
most consolidated solid-state welding techniques is FSW, 
which allows abutting edges of workpieces, usually plates, 
to be joined by the mechanical action of a non-consumable 
rotating pin [33]. Despite the lower temperatures involved 
with respect to more conventional fusion welding processes, 
FSW is still affected by RS, although less severely. For this 
reason, researchers have been investigating its presence by 
using several experimental techniques, amongst which the 
CM. For instance, the CM was used to determine RS in a 
2 mm thick, dissimilar aluminium-copper FSW butt-weld 
[34]. With regard to aluminium joints, the CM was used 
to examine RS in a 4 mm thick AA6061T6 FSW butt-weld 
[35] and in 4 mm thick AA2024-T3 FSW butt-weld [36]. 
Additionally, the CM was exploited to analyse RS in a 25.4 
mm thick dissimilar FSW butt-weld, made of AA7050-T451 
and AA2024-T351 [37].

In the present case study, the FSW technique was 
employed to butt-weld a AA6082-T6 4 mm thick plate. 
The experimental results shown here were obtained and 
presented in a previous publication of the same authors, in 
which the goal was the comparison of different solid state 
welding techniques [38].

Figure  1 shows the characteristics of the FSW butt-
welded joint studied here such as, the dimensions of the 
analysed plate, the position of the advancing & retreating 
sides, and the welding direction. The advancing and retreat-
ing sides are the locations where the rotation speed of the pin 
and the welding feed speed sum and subtract, respectively. 
The chemical composition of the parent Al alloy is sum-
marised in Table 1.

A CDM Rovella  650© WEDM was used to section the 
FSW plate along its cross section. The reference position of 

Fig. 1  The FSW plate analysed 
in the present work (dimensions 
in mm). According to the CM 
procedure the plate was cut in 
half in correspondence of the 
WEDM cut surface S, which is 
indicated in blue
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the cut surface is shown in Fig. 1. The cut was performed 
using a wire of 0.25 mm diameter. The core of the WEDM 
wire was composed of CuZn36, whereas its external surface 
was brass-coated. The cut provided two half-plates, namely 
F1 and F2 (Fig. 1) of equal length and two correspondent cut 
surfaces, S1 and S2 . Low-roughness of the cut surfaces was 
ensured by selecting a WEDM cutting speed of 5 mm/min.

The obtained surfaces S1 and S2 , exhibited the expected 
out-of-plane deformation promoted by this stress relaxation, 
and its measurement was carried out by means of a Hexagon 
Global  S© CMM equipped with a 1 mm diameter ruby spher-
ical probe. Two identical raster-scan patterns were defined 
over both S1 and S2 , which consisted of a regular grid whose 
nodal spacing was 0.75 × 0.25 mm. Following the defined 
raster-scan pattern, the CMM probed the cut surfaces S1 and 
S2 giving the displacement maps shown in Fig. 2(a) and (b). 
In Fig. 2, the couple (xi, yi) refers to the coordinates of the 
grid node where the displacement value z1(xi, yi) and z2(xi, yi) 
were sampled. The index h assumes either 1 or 2 to refer to 
the half-plate F1 or F2, respectively. Therefore, zh will indi-
cate the i-th displacement map, z1 or z2 . Accordingly, Sh will 
denote one of the two cut surfaces, S1 or S2.

Computational Procedure

Definition of the Finite Element Model

Aiming at performing the CM evaluation of RS in the FSW 
plate, a three-dimensional FE model was realised, Fig. 3. 
The dimensions and geometry of the model were chosen to 
comply with those of the obtained half-plates (Fig. 1). The 
3D domain was then discretised with 70200 tetrahedral ele-
ments opportunely distributed over the domain, using Gmsh 
[39]. In this instance, �m indicates the mesh node lying on Sh , 

whose coordinates are (xm, ym) . Additional boundary condi-
tions were prescribed on the corners of the cut surface for 
restraining rigid body motions but avoiding a structurally 
indeterminate model. Since for the present problem a purely 
elastic relaxation is hypothesised, the material was assumed 
as homogeneous and linear elastic. Therefore, E = 70000 
MPa and � = 0.3 were adopted respectively as Young’s 
modulus and Poisson’s ratio.

The current application of the CM differed from its stand-
ard protocol [1] as the half-plates F1 and F2 were indepen-
dently analysed. If the standard CM procedure had been 
pursued, the displacement maps would have been aligned, 
interpolated over a common grid (even using GPR) and 
averaged. This would have provided a single displacement 
map that would have eventually been transferred into a FE 
model. Conversely, the method devised herein may over-
come the possible arbitrariness of the averaging operation, 
provided that the presence of shear residual stress is negligi-
ble. Indeed, the method would compensate for the mismatch 
in terms of stress that the cut could have been induced since, 
in principle, each half-plate had shared the same RS state 
before the cut occurred.

For the sake of clarity, the following explanation of the 
used procedure will refer to a single half-plate. Nevertheless, 
in this case study the procedure is replicated identically to 
the counterpart.

Gaussian Process Regression in the Present Study

As far as zh(xi, yi) is concerned, the GPR starts by defin-
ing the following dataset Dh = {(�i, zh(�i)), i ∈ {1, ...,�

�
}} , 

where zh(�i) are the noisy observation (experimental meas-
urements) of an unknown function fh ∶ ℝ

2
→ ℝ , sampled at 

�i = (xi, yi) . Specifically, zh is modelled as follows:

Table 1  Chemical composition 
of the commercial AA6082-T6 
(wt%)

Si Mg Mn Fe Cu Ti Al

AA6082-T6 1.00 0.65 0.50 0.20 0.03 0.02 Balance

Fig. 2  Maps zh of the out-of-
plane displacement elastic 
relaxation of the FSW half-
plates. (a) h = 1 (2) h = 2

1308 Experimental Mechanics (2022) 62:1305–1317



where N(⋅ ∣ 0, �2
n
) is the Gaussian distribution with zero 

mean and variance �2
n
 . Provided the dataset D, the GPR aims 

to build a probabilistic model that predicts fh at a new input 
�m , i.e mesh nodes laying on Sh . The standard assumption 
made by GPR is that fh is a trajectory generated by a Gauss-
ian Process (GP) with mean M(�) and kernel K(�, ��):

This choice allows one to inject prior information in the 
learning process coming from, e.g., mechanistic models, by 
selecting a particular functional form for M and K (in case 
of no prior knowledge available it is common practice to 
simply select M(�) = 0∀ � ∈ ℝ

2 [21]). Note that the above 
assumption is not limiting, as most of the kernels used in 
practice are universal approximators: the space of functions 
that can be represented with a GP with a universal kernel 
is dense with respect to the space of continuous functions. 
Therefore, this confers GPR the ability to approximate arbi-
trarily well any continuous function over a compact set [40].

Although various kernels are available in the literature 
[21], in this paper, because of its universality and wide use 
[40], the squared exponential kernel was considered:

where C and l are the so-called hyperparameters. In particu-
lar, C represents how much the function fh can span. By 
contrast, given two generic samples zh(�i) and zh(�j) , l is the 
length scale that quantifies how much the correlation 
between these samples decreases as their relative distance √

(�i − �j)
⊤(�i − �j) increases. For the sake of convenience, 

the hyperparameters are collected in the vector � =
[
C l

]⊤ , 
namely the vector of the hyperparameters.

(1)
zh(�i) = fh(�i) + �, � ∼ N(⋅ ∣ 0, �2

n
), �i ∈ ℝ

n, zh(�i) ∈ ℝ,

(2)fh ∼ GP(M(�),K(�, ��)).

(3)K(�i, �j) = C exp

[

−

(�i − �j)
⊤
(�i − �j)

l2

]

.

The computational implementation of GPR was performed 
using the Python module scikit-learn [29]. Upon incorporating 
the additive noise �n = 1 µm for the input dataset, the opti-
mised hyperparameters for f1 and f2 were identified according 
to the computational algorithm Algorithm 1. Alongside, the 
hyperparameters for both f1 and f2 are given in Table 2.

It should be noted that �n quantifies the noise embedded 
in the experimental measurements. This assumption aimed to 
estimate the uncertainty due to the CMM resolution and the 
surface roughness of the cut surface. A potential strategy to 
estimate this value more accurately would be the roughness 
measurements of a WEDM cut on a stress-free component, 
which is directly linked with the WEDM process parameters. 
Conversely, the CMM uncertainty is provided by the manu-
facturer. Through the newly proposed approach the user has 
the capability to promptly set different values of �n when this 
parameter in not known to evaluate its impact on the evaluated 
RS field. Nevertheless, this is out of the scope of the present 
paper.

As common in the literature [21], the identification of the 
hyperparameter was carried out automatically by maximising 
the logarithm of the likelihood p(�h|�, �):

where �h is the vector containing all the output data zh(�i) , � 
is the identity matrix, and � is the covariance matrix defined 
as:

Once the hyperparameters were computed, the prior mean 
and the kernel function were determined. Therefore, it was 
possible to make predictions at a new input �m . In GPR this 

(4)
log p(�h|�, �) = −

1

2
�⊤
h
(� + 𝜎2

n
�)−1�h −

1

2
log |� + 𝜎2

n
�| −

n

2
log 2𝜋

(5)� =

⎡
⎢
⎢
⎢
⎣

K(�1, �1) K(�1, �2) … K(�1, ��)

K(�2, �1) K(�2, �2) … K(�2, ��)

⋮ ⋮ ⋱ ⋮

K(�
�
, �1) K(�

�
, �2) … K(�

�
, �

�
)

⎤
⎥
⎥
⎥
⎦

Fig. 3  Exemplification of the FE model used for both the half-plates 
F1 and F2. The discretisation was performed using tetrahedral ele-
ments. The interpolated displacement (not to scale) is indicated in 
purple and it was applied on the cut surface S as a boundary condi-
tion. The additional boundary conditions prescribed on the corners of 
the cut surface are used to suppress rigid body motions. Note that the 
mesh is not representative of that employed in the present analysis

Table 2  Hyperparameters for 
f
1
 and f

2

C∗ l∗

[mm2] [mm]

f
1

0.0134 8.07
f
2

0.0193 8.68
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is obtained by computing the conditional distribution of the 
prior GP with the observed data. In particular, in the case of 
GPR it is possible to use the closure property of Gaussian 
random variables with respect to conditional distributions 
and obtain that the posterior distribution of fh(�m) is still 
Gaussian and with mean and variance respectively given by:

Note that the computation of equations (6) and (7) only 
requires matrix operations and the overall complexity is 
cubic in the size of the dataset (due to the need to compute 
the inverse of a matrix of size � × � ). It is interesting to 
note that equation (7) models the uncertainty regarding the 
prediction at �m and allows one to readily obtain confidence 
intervals on the predictions of the model.

Computation of Residual Stress

Exploiting the hyperparameters in Table 2, the displacement map 
was forecasted at every mesh node �m belonging to the cut surface 
of the related half-plate. The predicted value of displacement at 
�m will be denoted by um . This prediction is characterised by its 
expected value �[um] and its uncertainty 

√
� [um] , i.e. the stand-

ard deviation. According to equations (6)–(7), these quantities are 
given by �[um] = Mp(�m) and 

√
� [um] =

�
Kp(�m, �m) . 

Hence, the displacement boundary condition of the FE model 
shown in Fig. 3 was prescribed by imposing �[um] at the related 
mesh node �m along the z-direction.

The FE simulation was conducted exploiting the open source 
FE platform FEniCS [41, 42]. The distinctive code structure of 
the FEniCS solver allowed for the access and manipulation of 
the linear FE system of equations, according to the Direct Stiff-
ness Method (or displacement based method):

where � is the model stiffness matrix, � is the unknown 
nodal displacement vector and � is the known force vector. 
The expansion of equation (8) leads to:

(6)
Mp(�m) = M(�m) + �(�m, �) [�(�, �) + �2

n
�]−1(� −M(�))

(7)
Kp(�m, �m) = K(�m, �m) − �(�m, �) [�(�, �) − �2

n
�]−1 �(�, �m)

(8)�� = �

(9)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k11 k12 k13 k14 … k1s k1r … k1N
k21 k22 k23 k24 … k2s k2r … k2N
k31 k32 k33 k34 … k3s k3r … k3N
k41 k42 k43 k44 … k4s k4r … k4N
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

ks1 ks2 ks3 ks4 … kss ksr … ksN
kr1 kr2 kr3 kr4 … krs krr … krN
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

kN1 kN2 kN3 kN4 … kNs kNr … kNN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1
u2
u3
u4
⋮

us
ur
⋮

uN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1
b2
b3
b4
⋮

bs
0

⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the i-th row of the system is associated to a specific 
degree of freedom (DOF) of each node of the model, in total 
N. Note that the following explanation still holds regardless 
of the order of the rows in equation (9). For the sake of clar-
ity, the DOFs of the problem are sorted as shown in equa-
tion (9), i.e. the non-zero bi ∀ i = 1, 2,… , s at those DOFs 
where a displacement boundary condition was imposed. Con-
versely, the null entries bi ∀ i = r,… ,N correspond to the 
unconstrained DOFs. After the application of the boundary 
conditions, i.e. the displacement boundary condition and the 
additional boundary conditions to prevent rigid body motions 
(Fig. 3), equation (9) is conveniently transformed as:

The N × N matrix on the left-hand side of equation (10) is the 
modified stiffness matrix, and it is named as �′ . The right-
hand side of this equation consists of the modified load vector, 
which is labelled as �′ . Herein, load is intended in its broad 
sense as it embodies the knowledge of the imposed nodal dis-
placements �[um] . For the particular problem presented here, 
the first three rows of equation (10) are associated to the con-
strained DOFs by the nodal boundary conditions employed to 
cancel rigid body motions, i.e. ui = 0∀ i = 1, 2, 3 . The rows 
from 4 to s are related to the z-DOFs of the mesh nodes �m 
belonging to the cut surface Sh . Therefore, the corresponding 
equations give ui = �[ui] ∀ i = 4,… , s.

The numerical rearrangement just outlined enabled all 
the known quantities involved in the model to be gath-
ered in a single vector, i.e. that on the right-hand side of 
equation (10). Such a unique characteristic of the system 
in equation (10) permitted a random disturbance vector to 
be introduced on the right-hand side of equation (10), thus 
perturbing the imposed boundary conditions:

(10)
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⎢
⎣
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⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 … 1 0 … 0

kr1 kr2 kr3 kr4 … krs krr … krN
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The non-zero entries of the disturbance vector are given by 
a Gaussian random noise having variance equal to � [um] , 
over the prediction �[um] . By defining �p as the disturbance 
vector, equation (11) is contracted as follows:

The system in equation (12) was repeatedly solved for both 
the half-plates F1 and F2 as in a standard Monte Carlo 
simulation. Aiming at optimising the overall computational 
process of the simulation, the LU-factorisation of �′ was 
computed only once and then employed for the computation 
of the nodal displacements in each simulation of the Monte 
Carlo approach. Subsequently, through equation (8) the nodal 
reactions were computed. Lastly, the RS was evaluated.

The total number of simulations � was arbitrarily set to 
1000. Each i-th simulation provided the full-field RS over 
the correspondent cut surface S1 and S2 , namely �(i)

zz,1
(x, y) 

and �(i)

zz,2
(x, y) . Following, �(i)

zz,1
(x, y) and �(i)

zz,2
(x, y) were col-

lated in the set R(i)
(x, y) (the dependence on the coordinates 

is omitted for each �(i)

zz,k
 to lighten the notation, whereas it is 

kept for R(x, y) to explicitly indicate the dependence of R(i) 
on the spatial coordinates):

Before the WEDM cut occurred, the cut surfaces S1 and S2 
had been the counterpart of each other and, in principle, had 
shared exactly the same RS state. Hereafter, the cut surface 
will be univocally indicated as S. Furthermore, the related 
RS state of S at the i-th iteration will be denoted by �(i)

zz
(x, y) 

and its associated uncertainty by U(i)
zz
(x, y) . According to the 

set of results R(i)
(x, y) (equation (13)), the expected RS stress 

(mean) �(i)
zz
(x, y) and U(i)

zz
(x, y) were computed by means of:

where the operators �[⋅] and � [⋅] act as pointwise with 
respect to each mesh node (xm, ym) ∈ S . As common in the 
FE post-processing, �(i)

zz
 and U(i)

zz
 were interpolated among 

the mesh nodes to obtain their full-field maps over S. Such 
an interpolation, was performed after the application of �[⋅] 
and � [⋅] (equations (14)–(15)). These computations, led to 
the final result:

Given that U(i)
zz
(x, y) is the standard deviation of the expected 

value of RS, it represents a confidence interval of approxi-
mately 68%.

The number of trials for the Monte Carlo simulation was 
set to 1000. However, the convergence of the simulation 

(12)��� = �� + �p

(13)R(i)
(x, y) = {�

(1)

zz,1
, �

(1)

zz,2
, �

(2)

zz,1
, �

(2)

zz,2
,… , �

(i)

zz,1
, �

(i)

zz,2
}

(14)�(i)
zz
(x, y) = �[R(i)

(x, y)]

(15)U(i)
zz
(x, y) =

√
� [R(i)(x, y)]

(16)�(i)
zz
(x, y) ± U(i)

zz
(x, y)

was periodically monitored through the following residual 
indicator:

where �(j)
zz (x, y) is the expected value in equation (14) calcu-

lated at the j-th iteration, and ‖ ⋅ ‖1 is the 1-norm pointwisely 
computed with respect to each mesh node (xm, ym) ∈ S:

Therefore, equation (17) gives:

In this regard, the convergence could be considered as 
reached when �i is less than a threshold value �th oppor-
tunely selected.

The developed computational framework is briefly illus-
trated in Algorithm 2. Additionally, Algorithm 2 allows for 
certain flexibility in computing RS. In this instance, if the 
uncertainty quantification were of marginal interest for the 
users, they would perform the GPR on the input displace-
ment data, impose �p = � and run Algorithm 2 once. In 
this case, the convergence check would not be required. 
Alternatively, the user would perform GPR only to smooth 
the experimental dataset disregarding the uncertainty 
quantification and pursue the traditional CM procedure.

It is important to mention that the computation of the 
standard deviation as in equation (15) may overestimate the 
uncertainty compared to the standard CM procedure, in par-
ticular instances. Moreover, probed samples containing rel-
evant amount of shear residual stress may induce an out-of-
plane displacements mismatch between the two cut surfaces. 
In the present study, the residual shear stress is thought to 
play a negligible role, although not fully confirmed, so a first 
estimate of the sample repeatability error was sought. This 
uncertainty could be reduced if more samples of the same 
plate were available. Unfortunately, in the present work this 
aspect could not be verified, given the limited number of 
data (only two cut surfaces). Therefore, a reliable estimate 
of the error due to the analysis of multiple samples, i.e. the 
repeatability error [19, 43], could not be accomplished. In 
this instance, the overestimation of the uncertainty provided 
by equation (15) could be seen as a means to compensate for: 
i) the averaging uncertainty that is often underestimated or 
neglected when pursuing the standard CM procedure; ii) the 
mismatch in terms of RS that may arise over the cut surface of 
each half-plate as a result of the WEDM cut. Nevertheless, the 
authors’ aim is to propose an alternative approach that is suf-
ficiently flexible to be applied under different circumstances.

(17)�i =
‖�(i−1)

zz
(x, y) − �(i)

zz
(x, y)‖1

‖�
(i−1)
zz (x, y)‖1

(18)‖�(j)
zz
(x, y)‖1 =

�

m∈S

��(j)
zz
(xm, ym)�

(19)�i =

∑
m∈S

��(i−1)
zz

(xm, ym) − �(i)
zz
(xm, ym)�

∑
m∈S

��
(i−1)
zz (xm, ym)�
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Results and Discussion

Figure 4 shows the GPR predictions of the measured out-
of-plane displacement (z1 and z2 in Fig. 2). In this figure, 
the z-axis reports the predicted value of the displacement, 
namely �[um] , in correspondence of each mesh node (xm, ym) 
belonging to the cut surface Sh . The colour bar indicates the 
uncertainty of the prediction �[um] , namely 

√
� [um] . Glob-

ally, the GPR-estimated uncertainty reaches values around 
1.30 µm. However, at x = 0 and x = 168 mm for both S1 and 
S2 , higher values of uncertainty can be noticed. This devia-
tion from the general trend of 

√
� [um] could be attributed to 

a lack of data at the surface perimeter. Thus, the GPR was 
able to fit the edge-data but resulting in a higher level of 
uncertainty, as high as 2.2 µm.

Referring to a plane section of the data set shown in 
Fig. 4(a), taken at ym = 2 , Fig. 5 aims to show more exactly 
the effectiveness of the GPR. In particular, the red dots 
refer to the measured experimental data of z1 (Fig. 2(a)), 
while the black dots represent the predicted value �[um] . 
The error bars are the correspondent standard deviations 
of each mesh point, i.e. ±

√
� [um] . From the comparison 

reported in Fig. 5 it is evident that the GPR successfully 
fitted the data on the mesh nodes. Besides, the GPR thor-
oughly reproduced the data trend and filtered out the high 
frequency noise that affected the experimental measurement, 
while at the same time accounting for such a noise through 
the point-by-point estimate. Furthermore, it is interesting 
to note that the prescription of �n = 1 µm as the noise level 
allowed for the automatic detection of the outliers, i.e. the 
points resulted in being outside the error bars. These points 
were not meaningful for the regression task, and without 
GPR they should have been manually removed before the 
CM evaluation process.

The FE Monte Carlo simulation provided the set of results 
R(�)

(x, y) (equation (13)). The expected value of the RS esti-
mator �(�)

zz
(x, y) and its associated uncertainty U(�)

zz
(x, y) were 

given by equations (14) and (15), respectively. Hereafter, 
the superscripted (�) will be dropped to lighten the nota-
tion. The contour of �zz(x, y) and Uzz(x, y) are depicted in 
Fig. 6(a)–(b). Although the discussion of the evaluated RS 
distribution was already presented in a previous manuscript 
[38], it is worth commenting that the FSW process gave rise 
to a higher tensile RS within the weld affected region.

To help visualise the stress distribution within the plate 
cross-section and appreciate the relevant gradients, three 
horizontal lines scans (L) were defined over the cut surface 
S (Fig. 6(a)). Specifically, L = T  , L = M and L = B refer to 
the top, middle-thickness and bottom line, located at y = 4 
mm, y = 2 mm, y = 0 mm, respectively. Accordingly, �zz(L) 
indicates the expected value of the RS extracted along the 
path L. These paths allowed the “M-like” shape RS distribu-
tion to be unveiled, see Fig. 6(c). The figure illustrates the 
comparison between �zz(L).

Fig. 4  GPR prediction of the 
measured out-of-plane measure-
ment fh over the mesh nodes of 
Sh . (a) h = 1 , half-plate F1. (b) 
h = 2 , half-plate F2. The colour 
bar displays the values of the 
uncertainty of the interpolation 
over the predicted values
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Such a characteristic distribution of RS is aligned with 
earlier findings [35, 36], and matched the author’s previ-
ously reported results [38], despite the different interpolation 
methodology adopted.

As far as the propagated uncertainty is concerned, 
Fig. 6(b) shows that Uzz(x, y) is less than 16 MPa over most of 
the cut surface, apart from localised areas near the perimeter 
of S. Most likely, these exceptions are due to edge cutting 
artefacts which are known to considerably affect measure-
ments in thin parts [6]. Lastly, a considerably high uncer-
tainty was encountered at the top-left corner of S. Within 
this restricted area, Uzz(x, y) is about 47 MPa. This could 
be interpreted as being a result of a lack of data within this 
localised area. In particular, GPR extrapolates the displace-
ment data at the perimeter of the cut surface, especially at 
corners, more than it would do over its interior, where a large 
amount of data is present. Consequently, GPR predicts dis-
placements with higher uncertainty in such regions, giving 
rise to higher uncertainty in terms of stress as well. Despite 
this, the presented approach provided reliable results.

The uncertainty data were also extracted along the same 
line scans L and displayed in Fig. 7(a)–(c) along with the 
expected value of the RS. In this figure the colour-filled 
bands stand for the interval �zz(L) ± Uzz(L) , thus represent-
ing a confidence interval of about 68%.

From a structural integrity viewpoint, much attention 
should be devoted to the weld region. In particular, the line 
scan �zz(M) revealed that �zz(x, y) is characterised by com-
parable peak values at the advancing and retreating sides; 
around 110 MPa. The developed strategy enabled the RS 
evaluation, i.e. �zz(x, y) , to be strengthened with a measure 
of uncertainty. Specifically, Uzz(x, y) was estimated to be 20 
MPa at both advancing and retreating sides. Thus, at such 
regions it is possible to assert that the RS is 110 ± 20 MPa, 
with a confidence level of 68%.

From a computational perspective, the proposed evalu-
ation approach appears to outperform spline interpolation 
commonly adopted in the CM. In particular, the GPR allows 
the optimal fitting parameters to be automatically identified. 
Furthermore, the GPR enables the user to effectively take 
into account measurement uncertainties and the influence of 
the roughness due to the WEDM cut. These features makes 
the devised GPR-supported approach way faster and less 
unwieldy in comparison with the consolidated spline-based 
one. With particular regard to the CM uncertainty quantifica-
tion, the GPR-supported approach presented herein seems 
to introduce several advantages over that discussed in [16]. 
For instance, the uncertainty due to the CMM measurement 
and interpolation were assumed as separated contributions in 
[16]. Therefore, the assessment of their correspondent errors 
required two independent sets of simulations which were 
eventually combined after. By contrast, the GPR combined 

Fig. 5  Plane section of the 3D map of �[um] (Fig.  4(a)) taken at 
ym = 2 and experimental data extracted at y = 2 . The black dots rep-
resent the GPR prediction

Fig. 6  Result of the RS evaluation. (a) Contour of the residual stress 
estimator �zz(x, y) . (b) Contour of the uncertainty Uzz(x, y) of the 
residual stress estimator. (c) RS extracted along the line scans in (a), 
respectively located at the top ( L = T  ), middle ( L = M ) and bottom 
( L = B ) of the cut surface. The shaded gray region indicates the posi-
tion of the weld. The locations of the advancing and retreating sides 
are also specified
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both these uncertainties before the FE simulation, and there-
fore a single set of Monte Carlo FE simulation was necessary 
to quantify the uncertainties, allowing for a considerable 
reduction of the computational cost.

Moreover, the definition of the model error in [16] 
implies that several combinations of fitting parameters need 
to be surveyed to find those more suitable for the specific 
case study. Specifically, the users should choose, based upon 
their experience, the most appropriate degree of the spline 
as well as the most suitable number of spline nodes (four 
parameters in total) to perform the interpolation of the meas-
ured data. Conversely, the GPR overcomes this main limita-
tion by reducing the number of parameters involved in the 
fitting process (C and l, see Table 2) and determining them 
optimally and automatically via probabilistic modelling (see 
"Gaussian Process Regression in the Present Study"). There-
fore, the probabilistic nature of the GPR makes the entire 
evaluation more robust against the user’s experience and 
confidence as far as the data analysis is concerned.

An additional shortcoming, linked with the use of spline-
interpolation, is the numerical instability produced when 
attempting to fit the data in the proximity of the contour 
of the surface [6]. This instability is dramatically reduced 
when the GPR is employed since the GPR is less prone to 
overfitting and numerical instabilities due to its probabil-
istic nature [21]. For this reason, it was possible to extract 
the data very close to the upper and lower edge of S (line 
scans in Fig. 6(a)). Although the interpolation near the sur-
face contour is always affected by the scarce experimen-
tal data available in these regions, the GPR approach can 

effectively quantify its uncertainty, given that GPR provides 
the uncertainty of the interpolation, i.e. 

√
� [um], differently 

from spline fitting.
The entire simulation was carried out on a PC equipped 

with an  Intel®  Core™ i7-7500U CPU (@ 2.70 GHz) and 8 
GB RAM. The simulation lasted approximately 2 and a half 
hours for 1000 iterations, whereas each of them took about 
8 seconds. The aforementioned LU-factorisation (Compu-
tational Procedure) of the modified FE stiffness matrix �′ 
(equation (12)) led to a substantial reduction of the compu-
tational time for each Monte Carlo trial. Preparatory tests 
showed that if the LU-factorisation had not been adopted, 
the solution of each trial would have lasted 50 times longer.

Although the total number of simulations was set to 1000, 
the convergence indicator �i (equation (17)) suggests that 
the simulation could have been interrupted approximately 
after 100 trials, i.e. after about 15 minutes. In this instance, 
�i exhibited a drop of two orders of magnitude from the first 
trial to the hundredth, whereas �i decreased only about one 
order of magnitude until the thousandth trial (Fig. 8(a)). 
Practically, this denotes a rapid convergence of the RS esti-
mator �(i)

zz
(x, y) . In order to further optimise the computa-

tional cost, a convergence control can be easily implemented 
on-line, i.e. during the Monte Carlo simulation. To this end, 
it suffices to define a convergence criterion for �i , such as 
�i ≤ �th , where �th is a threshold. For instance, the conver-
gence can be rationally considered to be achieved when �i 
has decreased by two orders of magnitude. Therefore, for 
the particular case of the present study, �th can be reasonably 
fixed to 0.1 (the red horizontal line in Fig. 8(a)).

Fig. 7  RS, �zz(L) and uncer-
tainty distribution Uzz(L) 
extracted along the L line scan. 
(a) L = T  (b) L = M (c) L = B . 
With regard to the line scan L, 
the colour-filled bands graphi-
cally represent �zz(L) ± Uzz(L) , 
i.e. a confidence interval of 
68%. The shaded gray region 
represents the position of the 
weld. Additionally, the locations 
of the advancing and retreating 
sides are indicated
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Aiming to display the rapid convergence of the RS estima-
tor of (equation (14), �(i)

zz
(x, y) extracted at L = M , i.e. �(i)

zz
(M) , 

was stored at the iterations i = 1, 10, 50, 100, 500, 1000 
and eventually plotted on the same graph, (Fig. 8(b)). As 
it can be seen, after the hundredth simulation the fluctua-
tions become negligible, making the RS profiles overlap-
ping. Henceforth, the convergence of the RS estimator can 
be assumed as attained.

Conclusions

A comprehensive methodology to tackle the uncertainty 
quantification of RS when utilising the CM has been devel-
oped and illustrated in the present paper. Using GPR, it was 
possible to circumvent the lack of robustness implied by the 
well-established spline-based interpolation and smoothing 
strategy of the experimental data of the CMM out-of-plane 
displacements. Specifically, the GPR was adopted given that 
the optimal fitting parameters can be stochastically and auto-
matically determined. Therefore, this approach allowed for 
the minimisation of user’s intervention which is inevitably 
reflected in the lack of uniqueness of the fitting process. 
Besides providing the data fitting, the GPR estimated the 
uncertainty that arose as a consequence of this procedure. 
Furthermore, the resulting uncertainty also embedded the 
sources of uncertainties associated with the intrinsic CMM 
measurement error, and the cut surface roughness inherited 
from the WEDM cut.

Given that the GPR condensed these sources of uncer-
tainty along with the smoothed dataset, the latter was 
appropriately perturbed and fed into a single Monte Carlo 
FE simulation to estimate the associated uncertainty as 
concerned the RS. An efficient strategy to compute the 
Monte Carlo simulation was developed by exploiting the 
LU-factorisation of the modified FE stiffness matrix. In 
particular, this matrix was computed only once and then 
employed for the solution of each Monte Carlo iteration. 

Finally, a convergence criterion was developed to stop 
the simulation when a satisfactory result was achieved. If 
this criterion is implemented on-line, then the evaluation 
of uncertainties becomes rapid and accurate, sufficiently 
rapid to be routinely employed.

Aiming to assess the performance and the effectiveness 
of this method, a 4 mm thick AA6082-T6 FSW was con-
sidered as a case study. The simulation provided the RS 
field along with the associated uncertainty quantification, 
thus providing additional information and also giving and 
appraisal of the reliability of the results. For this particular 
case study the method revealed, with a confidence level of 
68%, that the RS in the FSW joint reached magnitudes as 
high as 110 ± 20 MPa. The entire simulation can be per-
formed, by implementing the proposed convergence cri-
terion, within approximately 15 minutes with a standard 
low-budget personal computer.

Finally, it is important to note that the developed 
method has deviated from the standard CM procedure. In 
particular, the displacement input data from two surfaces 
from the same cut were not averaged before performing the 
Monte Carlo FE simulation. Therefore, two full-field RS 
maps were provided and eventually post-processed at the 
end of each trial. Additional errors could affect this strat-
egy due to possible shear stress present over the cut sur-
face, usually reduced by the averaging process. However, 
this effect was thought to be negligible in the analysed 
case-study. Without averaging the input data, the presented 
post-processing may, in turn, lead to an overestimation 
of the uncertainty. Nonetheless, the arbitrariness of the 
averaging operation envisaged by the standard protocol 
induces errors as well that are not accounted for.

The authors believe that the proposed strategy may rep-
resent a practical methodology that can help CM-users to 
routinely evaluate RS along with its associated uncertainty.

Funding Open access funding provided by Università degli Studi di 
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for conducting this study.

Fig. 8  (a) Convergence 
indicator, �i , against the 
Monte Carlo trials, i. The 
red line indicates the conver-
gence threshold �th = 0.1 . (b) 
Qualitative Convergence graph. 
The RS �(i)

zz
(M) was stored 

at the following iterations 
i = 1, 10, 50, 100, 500, 1000
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