

Delft University of Technology

EdgeNets
Edge Varying Graph Neural Networks
Isufi, Elvin; Gama, Fernando ; Ribeiro, Alejandro

DOI
10.1109/TPAMI.2021.3111054
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Pattern Analysis and Machine Intelligence

Citation (APA)
Isufi, E., Gama, F., & Ribeiro, A. (2022). EdgeNets: Edge Varying Graph Neural Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7457-7473. Article 9536420.
https://doi.org/10.1109/TPAMI.2021.3111054

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TPAMI.2021.3111054
https://doi.org/10.1109/TPAMI.2021.3111054

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

EdgeNets: Edge Varying Graph Neural Networks
Elvin Isufi , Fernando Gama , and Alejandro Ribeiro

Abstract—Driven by the outstanding performance of neural networks in the structured euclidean domain, recent years have seen a

surge of interest in developing neural networks for graphs and data supported on graphs. The graph is leveraged at each layer of the

neural network as a parameterization to capture detail at the node level with a reduced number of parameters and computational

complexity. Following this rationale, this paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs)

through the concept of EdgeNet. An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the

information of different neighbors. By extrapolating this strategy tomore iterations between neighboring nodes, the EdgeNet learns

edge- and neighbor-dependent weights to capture local detail. This is a general linear and local operation that a node can perform and

encompasses under one formulation all existing graph convolutional neural networks (GCNNs) aswell as graph attention networks

(GATs). In writing different GNN architectureswith a common language, EdgeNets highlight specific architecture advantages and

limitations, while providing guidelines to improve their capacity without compromising their local implementation. For instance, we show

that GCNNs have a parameter sharing structure that induces permutation equivariance. This can be an advantage or a limitation,

depending on the application. In caseswhere it is a limitation, we propose hybrid approaches and provide insights to develop several

other solutions that promote parameter sharing without enforcing permutation equivariance. Another interesting conclusion is the

unification of GCNNs andGATs—approaches that have been so far perceived as separate. In particular, we show that GATs are GCNNs

on a graph that is learned from the features. This particularization opens the doors to develop alternative attentionmechanisms for

improving discriminatory power.

Index Terms—Edge varying, graph neural networks, graph signal processing, graph filters, learning on graphs

Ç

1 INTRODUCTION

DATA generated by networks is increasingly common.
Examples include user preferences in recommendation

systems, writer proclivities in blog networks [2], or properties
of assembled molecular compounds [3]. Different from data
encountered in the structured temporal or spatial domains,
network data lives in high-dimensional irregular spaces. This
fact makes difficult to extend tools that exploit the regularity
of time and space, leading to a rising interest in novel techni-
ques for dealing with network data [4]. Since graphs are the
prominent mathematical tool to model individual node prop-
erties—product ratings, writer bias, or molecule properties—
alongwith node dependencies—user similarities, blog hyper-
links, or molecular bonds— the interest in network data has
translated into a concomitant increase in the interest in tools
for processing graphs and data supported on graphs [5].

Several recent works have proposed graph neural net-
works (GNNs) as a means of translating to graphs the suc-
cess convolutional and recurrent neural networks have
attained at learning on time and space [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22].

GNNs are first concretized in [6], [7] by means of recursive
neighboring label aggregations combined with pointwise
nonlinearities. The convolutional GNN counterpart appears
in [8] where graph convolutions are defined as pointwise
operators in the Laplacian’s spectrum. To avoid the cost
and numerical instability of spectral decompositions, [9]
approximates this spectral convolution with a Chebyshev
polynomial on the Laplacian matrix. Parallel to these efforts,
the field of graph signal processing has developed notions
of graph convolutional filters as polynomials on a matrix
representation of a graph [23], [24], [25], [26], [27], [28], [29].
This has led to GNNs described as architectures that simply
replace time convolutions with graph convolutions [10],
[11]. A third approach to define GNNs is to focus on the
locality of convolutions by replacing the adjacency of points
in time with the adjacency of neighbors in a graph; some-
thing that can be accomplished by mixing nodes’ features
with their neighbor’s features [12], [13].

Despite their different motivations, spectral GNNs [8],
[9], polynomial GNNs [10], [11], and local GNNs [12],
[13] can all be seen to be equivalent to each other (Sec-
tion 4). In particular, they all share the reuse of parame-
ters across all neighborhoods of a graph as well as
indifference towards the values of different neighbors
–see also [30]. This is an important limitation that is
tackled, e.g., by the graph attention networks (GAT) of
[18], [19], [20], [21], [22] through the use of attention
mechanisms [31], [32]. In this paper, we leverage edge
varying graph filter [33] to provide a generic framework
for the design of GNNs that can afford flexibility to use
different parameters at different nodes as well as differ-
ent weighing to different neighbors of a node (Section 3).
Edge varying filters are linear finite order recursions that

� Elvin Isufi is with the Intelligent Systems Department, Delft University of
Technology, 2628 CD, Delft, The Netherlands. E-mail: e.isufi-1@tudelft.nl.

� Fernando Gama is with the Department of Electrical and Computer Engi-
neering, Rice University, Houston, TX 77005USA. E-mail: fgama@rice.edu.

� Alejandro Ribeiro is with the Department of Electrical & Systems Engi-
neering, University of Pennsylvania, Philadelphia, PA 19104 USA.
E-mail: aribeiro@seas.upenn.edu.

Manuscript received 12 Mar. 2020; revised 16 June 2021; accepted 2 Sept. 2021.
Date of publication 13 Sept. 2021; date of current version 3 Oct. 2022.
(Corresponding author: Elvin Isufi.)
Recommended for acceptance by H. Kjellstrom.
Digital Object Identifier no. 10.1109/TPAMI.2021.3111054

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022 7457

0162-8828 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1919-260X
https://orcid.org/0000-0002-1919-260X
https://orcid.org/0000-0002-1919-260X
https://orcid.org/0000-0002-1919-260X
https://orcid.org/0000-0002-1919-260X
https://orcid.org/0000-0001-6117-8193
https://orcid.org/0000-0001-6117-8193
https://orcid.org/0000-0001-6117-8193
https://orcid.org/0000-0001-6117-8193
https://orcid.org/0000-0001-6117-8193
https://orcid.org/0000-0003-4230-9906
https://orcid.org/0000-0003-4230-9906
https://orcid.org/0000-0003-4230-9906
https://orcid.org/0000-0003-4230-9906
https://orcid.org/0000-0003-4230-9906
mailto:e.isufi-1@tudelft.nl
mailto:fgama@rice.edu
mailto:aribeiro@seas.upenn.edu

allow individual nodes to introduce weights that are specific
to the node, specific to each neighbor, and specific to the
recursion index. In this way, the edge varying recursion rep-
resents a general linear operation that a node can implement
locally. I.e., a general operation that relies on information
exchanges onlywith neighbor nodes (Section 2).

In alternative to the EdgeNet, graph network [34] is a
popular framework for generalizing GNNs. Graph network
consist of general update and aggregation functions over
nodal, edge, and entire graph features. This unification is
slightly more general than the message passing neural net-
work [35] and considers updates to be principally affected
by information exchange only with the one-hop neighbors.
While providing relevant insights on the local detail of
order-one filter GNNs such as [12], [18], this strategy does
not put emphasis on the role of the filter within the GNN or
how the parameters of such filter are allocated to the differ-
ent multi-hop neighbours [9], [10]. Instead, the EdgeNet
framework focuses only on nodal feature aggregations to
highlight the role of multi-hop exchanges within a layer and
to put emphasis on how different solutions operate from a
node perspective. At the same time, the EdgeNet frame-
work allows for a filter spectral analysis [36], which pro-
vides a better understanding of the type of filters that
conform the learned filter bank. This spectral perspective of
GNNs will shed light, for instance, of the advantages of
ARMA filters [29] in learning sharper responses with less
parameters than finite impulse response graph filters [24],
[25], [28].

In its most general form, the edge varying GNNs allo-
cate different parameters to the different edges, which is
of the order of the number of nodes and edges of the
graph. While allocating different parameters over the
edges can help exploiting the graph structure better for
the learning task at hand, edge-specific parameters sacri-
fice the inductive capabilities across different graphs. To
reduce the complexity of this parameterization, we can
regularize EdgeNets in different ways by imposing
restrictions on the freedom to choose different parame-
ters at different nodes. We explain that existing GNN
architectures are particular cases of EdgeNets associated
with different parameter restrictions. In turn, this shows
how these solutions sacrifice the degrees of freedom to
gain in parameter sharing and inductive capabilities. We
further utilize the insight of edge varying recursions to
propose novel GNN architectures. In consequence, the
novel contributions of this paper are:

(i) We define EdgeNets, which parameterize the linear
operation of neural networks through a bank of edge
varying recursions. EdgeNets are a generic frame-
work to design GNN architectures (Section 3).

(ii) We show the approaches in [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17] (among others) are EdgeNets
where all nodes share the parameters. We extend the
representing power of these networks by adding
some level of variability in weighing different nodes
and different edges of a node (Section 4).

(iii) Replacing finite length polynomials by rational func-
tions provides an alternative parameterization of con-
volutional GNNs in terms of autoregressive moving

average (ARMA) convolutional graph filters [29].
These ARMA GNNs generalize rational functions
based on Cayley polynomials [14] (Section 4.3).

(iv) We show that GATs can be understood as GNNswith
convolutional graph filters where a graph is learned
ad hoc in each layer to represent the required abstrac-
tion between nodes. The weights of this graph choose
neighbors whose values should most influence the
computations at a particular node. This reinterpreta-
tion allows for the proposal of more generic GATs
with higher expressive power (Section 5).

The this paper has the following structure. Section 2 reviews
edge varying recursions on graphs and Section 3 introduces
edge varying GNNs. To ease exposition, the GNN are
grouped into two categories: Convolutional in Section 4 and
attentional in Section 5. Within each category, we follow the
same rationale. First, we discuss the state-of-the-art solu-
tions as a particular case of the EdgeNet framework. Then,
we discuss their architectural advantages and limitations.
Finally, we leverage the EdgeNet viewpoint to propose new
solutions that address some of these limitations and high-
light the corresponding tradeoffs. Section 6 evaluates these
solutions with numerical results and Section 7 concludes
the paper.

2 EDGE VARYING LINEAR GRAPH FILTERS

Consider a weighted graph Gwith vertex set V ¼ f1; . . . ; Ng,
edge set E � V � V composed of jEj ¼ M ordered pairs ði; jÞ,
and weight function W : E ! R. For each node i, define the
neighborhood N i ¼ fj : ðj; iÞ 2 Eg as the set of nodes con-
nected to i and let Ni :¼ jN ij denote the number of elements
(neighbors) in this set. Associated with G is a graph shift
operator matrix S 2 RN�N whose sparsity pattern matches
that of the edge set, i.e., entry Sij 6¼ 0when ðj; iÞ 2 E or when
i ¼ j. Supported on the vertex set are graph signals x ¼
½x1; . . . ; xN �T 2 RN in which component xi is associated with
node i 2 V.

The adjacency of points in time signals or the adjacency of
points in images codifies a sparse and local relationship
between signal components. This sparsity and locality are lev-
eraged by time or space filters. Similarly, S captures the spar-
sity and locality of the relationship between components of a
signal x supported on G. It is then natural to take the shift
operator as the basis for defining filters for graph signals.
In this spirit, let FFð0Þ be an N �N diagonal matrix and
FFð1Þ; . . . ;FFðKÞ be a collection of K matrices sharing the spar-
sity pattern of IN þ S. Consider then the sequence of signals
zðkÞ as

zðkÞ ¼
Yk
k0¼0

FFðk0Þx ¼ FFðk:0Þx; for k ¼ 0; . . . ;K; (1)

where the product matrix FFðk:0Þ :¼
Qk

k0¼0 FF
ðk0Þ ¼ FFðkÞ . . .FFð0Þ

is defined for future reference. Signal zðkÞ can be computed

using the recursion

zðkÞ ¼ FFðkÞzðk�1Þ; for k ¼ 0; . . . ; K; (2)

with initialization zð�1Þ ¼ x. This recursive expression implies

signal zðkÞ is produced from zðk�1Þ using operations that are

7458 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

local in the graph. Indeed, since FFðkÞ shares the sparsity pat-

tern of S, node i computes its component z
ðkÞ
i as

z
ðkÞ
i ¼

X
j2N i[i

F
ðkÞ
ij z

ðk�1Þ
j : (3)

Particularizing (3) to k ¼ 0, it follows each node i builds

the ith entry of zð0Þ as a scaled version of its signal x by the
diagonal matrix FFð0Þ, i.e., z

ð0Þ
i ¼ F

ð0Þ
ii xi. Particularizing to

k ¼ 1, (3) yields the components of zð1Þ depend on the val-

ues of the signal x at most at neighboring nodes. Particu-

larizing to k ¼ 2, (3) shows the components of zð2Þ depend

only on the values of signal zð1Þ at neighboring nodes

which, in turn, depend only on the values of x at their

neighbors. Thus, the components of zð2Þ are a function of

the values of x at most at the respective two-hop neigh-
bors. Repeating this argument iteratively, z

ðkÞ
i represents

an aggregation of information at node i coming from its

k-hop neighborhood —see Fig. 1.

The collection of signals zðkÞ behaves like a sequence of
scaled shift operations except that instead of shifting the sig-
nal in time, the signal is diffused through the graph (the signal
values are shifted between neighboring nodes). Leveraging
this interpretation, the graph filter output u is defined as
the sum

u ¼
XK
k¼0

zðkÞ ¼
XK
k¼0

FFðk:0Þ x: (4)

A filter output in time is a sum of scaled and shifted copies
of the input signal. That (4) behaves as a filter follows from
interpreting FFðk:0Þ as a scaled shift, which holds because of
its locality. Each shift FFðk:0Þ is a recursive composition of
individual shifts FFðkÞ. These individual shifts represent dif-
ferent operators that respect the structure of G while
reweighing individual edges differently when needed.

For future reference, define the filter matrix AðSÞ so (4)
rewrites as u ¼ AðSÞx. For this to hold, the filter matrix
must be

AðSÞ ¼
XK
k¼0

FFðk:0Þ ¼
XK
k¼0

 Yk
k0¼0

FFðk0Þ

!
: (5)

Following [33], AðSÞ is a Kth order edge varying graph fil-
ter. Each matrix FFðkÞ contains at most M þN nonzero ele-
ments corresponding to the nonzero entries of IN þ S; thus,
the total number of parameters defining filter AðSÞ in (5) is
KðM þNÞ þN . For short filters, this is smaller than the N2

components of an arbitrary linear transform. Likewise, in
computing zðkÞ ¼ FFðkÞzðk�1Þ as per (2) incurs a computa-
tional complexity of order OðM þNÞ. This further results in
an overall computational complexity of order O

�
KðM þ

NÞ
�
for obtaining the filter output u in (4). This reduced

number of parameters and computational cost is leveraged
next to define graph neural network (GNN) architectures
with a controlled number of parameters and computational
complexity matched to the graph sparsity.

Remark 1. The presence of the edge ðj; iÞ in graph G is inter-
preted here as signal components xj and xi being related
by the given structure in the data. The shift operator entry
Sij is a measure of the expected similarity. Larger entries
indicate linked signal components are more related to
each other. Therefore, the definition of the shift operator
S makes it a valid stand-in for any graph representation
matrix. Forthcoming discussions are valid whether S is
an adjacency or a Laplacian matrix in any of their various
normalized and unnormalized forms. We use S to keep
discussions generic.

3 EDGE VARYING GRAPH NEURAL NETWORKS

Edge varying graph filters are the basis for defining GNN
architectures through composition with pointwise nonlinear
functions. Formally, consider a set of L layers indexed by l ¼
1; . . . ; L and let AlðSÞ ¼

PK
k¼0 FF

ðk:0Þ
l be the graph filter used

at layer l. A GNN is defined by the recursive expression

xl ¼ s
�
AlðSÞ xl�1

�
¼ s

 XK
k¼0

FF
ðk:0Þ
l xl�1

!
; (6)

Fig. 1. Edge varying graph filters. Each edge varying matrix FFðkÞ acts as a different shift operator that locally combines the graph signal. (Top-left)
The colored discs are centered at five reference nodes and their coverage shows the amount of local information needed to compute zð1Þ ¼ FFð1:0Þx at
these nodes. The coverage of the discs in the other graphs shows the signal information needed by the reference nodes to produce the successive
outputs. (Bottom) Schematic illustration of the edge varying filter output of orderK ¼ 3.

ISUFI ETAL.: EDGENETS: EDGE VARYING GRAPH NEURAL NETWORKS 7459

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

where we convene that x0 ¼ x is the input to the GNN and
xL is its output. To augment the representation power of
GNNs, it is customary to add multiple node features per
layer. We do this by defining matrices Xl ¼ ½x1l ; . . . ; x

Fl
l � 2

RN�Fl in which each column xfl represents a different graph
signal at layer l. These so-called features are cascaded
through layers where they are processed with edge varying
graph filters and composed with pointwise nonlinearities
according to

Xl ¼ s

 XK
k¼0

FF
ðk:0Þ
l Xl�1Alk

!
; (7)

where Alk 2 RFl�1�Fl is a parameter matrix that affords flexi-
bility to process different features with different filter
parameters. It is ready to see that (7) represents a bank of
edge varying graph filters Afg

l ðSÞ applied to a set of Fl�1

input features xgl�1 to produce a set of Fl output features x
f
l .

Indeed, if we let afglk ¼ ½Alk�fg denote the ðf; gÞth entry of Alk,
(7) produces a total of Fl�1Fl intermediate features of the
form1

ufg
l ¼ Afg

l ðSÞ xgl�1 ¼
XK
k¼0

afglk FF
fg;ðk:0Þ
l xgl�1; (8)

for g ¼ 1; . . . ; Fl�1 and f ¼ 1; . . . ; Fl. The features ufg
l are

then aggregated across all g and passed through a pointwise
nonlinearity to produce the output features of layer l as

xfl ¼ s

 XFl�1

g¼1

ufg
l

!
: (9)

At layer l ¼ 1 the input feature is a graph signal x10 ¼ x. This
feature is passed through F1 filters to produce F1 higher-
level features as per (8). The latter are then processed by a
pointwise nonlinearity [cf. (9)] to produce F1 output fea-
tures xf1 . The subsequent layers l > 1 start with Fl�1 input
features xgl�1 that are passed through the filter bank Afg

l ðSÞ
[cf. (8)] to produce the higher-level features ufg

l . These are
aggregated across all g ¼ 1; . . . ; Fl�1 and passed through a
nonlinearity to produce the layer’s output features xfl [cf.
(9)]. In the last layer l ¼ L, we consider without loss of gen-
erality the number of output features is FL ¼ 1. This single
feature x1L ¼ xL is the output of the edge varying GNN or,
for short, EdgeNet. Remark the EdgeNet aggregates at each
layer information form neighbors that are up to K hops
away [cf. (7)]. This increases its flexibility to process inter-
mediate features and generalizes the masking aggregation
rule in [37], which can be seen as an EdgeNet of order
K ¼ 1.

The EdgeNet output is a function of the input signal x
and the collection of filter banks Afg

l [cf. (5)]. Group the fil-
ters in the filter tensor AðSÞ ¼ fAfg

l ðSÞglfg so that to define
the GNN output as the mapping

CC
�
x;AðSÞ

�
:¼ xL with AðSÞ ¼

n
Afg

l ðSÞ
o
lfg
: (10)

The filter parameters are trained to minimize a loss over a
training set of input-output pairs T ¼ fðx; yÞg. This loss
measures the difference between the EdgeNet output xL
and the true value y averaged over the examples ðx; yÞ 2 T .

As it follows from (5), the number of parameters in each
filter is KðM þNÞ þN . This gets scaled by the number of
filters per layer Fl�1Fl and the number of layers L. To pro-
vide an order bound on the number of parameters defining
the EdgeNet set the maximum feature number F ¼ maxlFl

and observe the number of parameters per layer is of order
ðKðM þNÞ þNÞF 2 þ F 2. Likewise, the computational
complexity at each layer is of order O

�
KðM þNÞF 2

�
. This

number of parameters and computational complexity are
expected to be smaller than the corresponding numbers of a
fully connected neural network. This is a consequence of
exploiting the sparse nature of edge varying filters [cf. (4)
and (5)]. A GNN can be then considered as an architecture
that exploits the graph structure to reduce the number of
parameters of a fully connected neural network. The implicit
hypothesis is those signal components associated with dif-
ferent nodes are processed together in accordance with the
nodes’ proximity in the graph.

We will show different existing GNN architectures are
particular cases of (8)–(9) using different subclasses of edge
varying graph filters (Section 4) and the same is true for
graph attention networks (Section 5). Establishing these
relationships allows the proposal of natural architectural
generalizations that increase the descriptive power of
GNNs while still retaining manageable complexity.

Remark 2. The key property of the EdgeNet is to allocate
trainable prarameters for each edge in each shift. While
this formulation improves the expressive power of a
GNN, it affects its inductive capability over graphs (i.e.,
the ability to generalize to new unseen graphs) [38]. In
the full form (7), the EdgeNet does not have inductive
capabilities for graphs but only for graph signals. That is,
it cannot be applied to test cases where new unseen
graphs are present but can only be applied to test cases
where new unseen graph signals are present for a fixed
graph support. We shall see in the next section that graph
convolutional neural networks sacrifice instead the
degrees of freedom to gain inductive capabilities also for
graphs.

Remark 3. In the proposed EdgeNet, we considered graphs
with single edge features, i.e., each edge is described by a
single scalar. However, even when the graph has multiple
edge features, say E, the EdgeNet extends readily to this
scenario. This can be obtained by seeing the multi-edge
featured graph as the union of E graphs Ge ¼ ðV; EeÞ with
identical node set V and respective shift operator matrix
Se. For fFFeðkÞg being the collection of the edge varying
parameter matrices [cf. (1)] relative to the shift operator
Se, the lth layer output Xl [cf. (7)] becomes

Xl ¼ s
XE
e¼1

XK
k¼0

FF
eðk:0Þ
l Xl�1A

e
lk

 !
: (11)

1. Throughout the paper, we will denote any graph filter by Afg
l ðSÞ

to indicate that it is a matrix depending on the graph shift operator S.
When this filter contains additional parameters rather than those on the
edges (i.e., FF

fg;ðk:0Þ
l), we will indicate them with scalars afglk [cf. (8)]. For

consistency, when expressing the bank of filters in a single recursion
[cf. (7)], we will group parameters afglk into the matrixAlk.

7460 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

I.e., the outputs of each filter are aggregated also over the
edge-feature dimension. The number of parameters and
computational complexity get scaled byE. TheGNNarchi-
tectures discussed in the remainder of thismanuscript, as a
special case of the EdgeNet, are readily extendable to the
multi-edge feature scenario by replacing (7) with (11).
The approach in [39] is the particular case for (11) with
K¼1 and the parameter matrix reduced to a scalar.

4 GRAPH CONVOLUTIONAL NEURAL NETWORKS

Graph convolutional neural networks (GCNNs) have shown
great success to learning representations for graph data with
prominent variants introduced in [9], [10], [11], [12]. All these
variants be written as GNN architectures in which the edge
varying component in (7) is fixed and given by powers of the
shift operator matrixFF

ðk:0Þ
l ¼ Sk

Xl ¼ s

 XK
k¼0

SkXl�1Alk

!
: (12)

By comparing (8) with (12), it follows this particular restric-
tion yields a tensor AðSÞwith filters of the form

Afg
l ðSÞ ¼

XK
k¼0

afglk S
k; (13)

for some order K and scalar parameters afgl0 ; . . . ; a
fg
lK . Our

focus in this section is to discuss variations on (13). To sim-
plify the discussion, we omit the layer and feature indices
and for the remainder of this section write

AðSÞ ¼
XK
k¼0

akS
k: (14)

The filters in (14) are of the form in (5) with FFð0Þ ¼ a0IN and
FFðk:0Þ ¼ akS

k for k � 1. By particularizing G to the line graph,
(14) represents a linear time-invariant filter described by a
regular convolution. This justifies using the qualifier convo-
lutional for an architecture with filters of the form (14).

The appeal of the graph convolutional filters in (14) is
that they reduce the number of parameters from the KðM þ
NÞ þN of the edge varying filters in (5) to just K þ 1; yield-
ing also a computational complexity of orderOðKMÞ. While
we can reduce the number of parameters in several ways,
the formulation in (14) is of note because it endows the
resulting GNN with equivariance to permutations of
the labels of the graph. We state this property formally in
the following proposition.

Proposition 1. Let x be a graph signal defined on the vertices of a
graph G ¼ ðV; EÞ with shift operator S. Consider also the out-
put of a GCNN CCðx;AðSÞÞ [cf. (10)] with input x and tensor
AðSÞ ¼

�
AðSÞ

�
composed of filters of the form in (14). Then,

for a permutation matrix P, it holds that

PTCCðx;AðSÞÞ ¼ CCðPTx;AðPTSPÞÞ:

That is, the GCNN output operating on the graph G with input
x is a permuted version of the GCNN output operating on the
permuted graph G0 ¼ ðV0; E0Þ with permuted shift operator
S0 ¼ PTSP and permuted input signal x0 ¼ PTx.

Proof. See Appendix A,2 available in the online supple-
mental material. tu
Proposition 1 establishes the output of a GCNN is indepen-

dent of node labeling. This is important not just because graph
signals are independent of labeling —therefore, so should be
their processing—but because it explains howGCNNs exploit
the internal signal symmetries. If two parts of the graph are
topologically identical and the nodes support identical signal
values, a GCNNyields identical outputs [40], [41], [42].

It must be emphasized that permutation equivariance is
of use only inasmuch as this is a desirable property of the
considered task. Permutation equivariance holds in, e.g.,
recommendation systems but does not hold in, e.g., commu-
nity classification. In the graph in Fig. 2, we expect agents 3,
5, 8, and 12 to be interchangeable from the perspective of
predicting product ratings from the ratings of other nodes.
But from the perspective of community classification, we
expect 3 and 5 or 8 and 12 to be interchangeable, but 3 and 5
are not interchangeable with 8 and 12.

When equivariance is not a property of the task, GCNNs
are not expected to do well. GCNNs will suffer in any prob-
lem in which local detail around a node is important. This is
because the filter in (14) forces all nodes to weigh the infor-
mation of all k-hop neighbors with the same parameter ak
irrespectively of the relative importance of different nodes
and different edges. To avoid this limitation, we can use a
GNN that relies on the edge varying filters (5) in which
each node i learns a different parameter F

ðkÞ
ij for each neigh-

bor j. These two cases are analogous to CNNs processing
time signals with conventional convolutional filters as
opposed to a neural network that operates with arbitrarily
time varying filters (i.e., filters whose coefficients change in
time). The appealing intermediate solution is to use filters
with controlled edge variability to mix the advantage of a per-
mutation equivariant parameterization (Proposition 1) with
the processing of local detail. We introduce architectures
that construct different versions of filters with controlled
edge variability in Sections 4.1, 4.2, and 4.3.

Remark 4. Along with the above-referred works, also the
works in [15], [16], [17] and [13] use versions of the convo-
lutional filter in (14). In specific, [15], [16], [17] consider

Fig. 2. Permutation equivariance of machine learning on graphs. Many
tasks in machine learning on graphs are equivariant to permutations (cf.
Proposition 1) but not all are. E.g., we expect agents 3, 5, 8, and 12 to be
interchangeable from the perspective of predicting product ratings from
the ratings of other nodes. But from the perspective of community classi-
fication we expect 3 and 5 or 8 and 12 to be interchangeable, but 3 and 5
are not interchangeable with 8 and 12.

2. Which can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3111054.

ISUFI ETAL.: EDGENETS: EDGE VARYING GRAPH NEURAL NETWORKS 7461

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3111054

single shifts on the graph with shift operator a learnable
weight matrix, a Gaussian kernel, and a random-walk,
respectively. The work in [13] adopts multi-layer percep-
trons along the feature dimension at each node, before
exchanging information with their neighbors. This is
equivalent to (12) with the first layers having order K ¼ 0
(depending on the depth of the MLP), followed by a final
layer of orderK ¼ 1.

4.1 GNNs With Controlled Edge Variability

To build a GNN that fits between a permutation equivariant
GCNN [cf. (14)] and a full edge varying GNN [cf. (5)], we
use different filter parameters in different parts of the
graph. Formally, let B ¼ fB1; . . . ;BBg be a partition of the
node set into B blocks with block Bi havingBi nodes. Define
the tall matrix CB 2 f0; 1gN�B such that ½CB�ij ¼ 1 if node i
belongs to block Bj and 0 otherwise. Let also a

ðkÞ
B 2 RB be a

vector of block parameters of filter order k. Block varying
graph filters are then defined as

AðSÞ ¼
XK
k¼0

diag CBa
ðkÞ
B

� �
Sk: (15)

Filters in (15) use parameters ½aðkÞB �i for all nodes i 2 Bi.
Block varying filters belong to the family of node varying

graph filters [28] and are of the form in (5) with

FFðk:0Þ ¼ diagðCBa
ðkÞ
B ÞSk: (16)

Substituting (16) into (5) generates block varying GNNs
[43]. Block varying GNNs have BðK þ 1ÞF 2 parameters per
layer and a computational complexity of order OðKF 2MÞ.

Alternatively, we can consider what we call hybrid filters
that are defined as linear combinations of convolutional fil-
ters and edge varying filters that operate in a subset of
nodes —see Fig. 3. Formally, let I � V denote an important
subset of I ¼ jIj nodes and define the shift matrices FF

ðkÞ
I

such that the diagonal matrix FF
ð0Þ
I has entries ½FFð0Þ

I �ii 6¼ 0 for
all i 2 I and ½FFðkÞ

I �ij ¼ 0 for all i =2 I or ði; jÞ =2 E and k � 1.
That is, the parameter matrices FF

ðkÞ
I may contain nonzero

elements only at rows i that belong to set I and with the
node j being a neighbor of i. We define hybrid filters as
those of the form

AðSÞ ¼
XK
k¼0

�Yk
k0¼0

FF
ðk0Þ
I þ akS

k

	
: (17)

Substituting (17) in (5) generates hybrid GNNs. In essence,
nodes i 2 I learn edge dependent parameters which may

also be different at different nodes, while nodes i =2 I learn
global parameters.

Hybrid filters are defined by a number of parameters that
depends on the total neighbors of all nodes in the impor-
tance set I . Define then MI ¼

P
i2I Ni and observe FF

ð0Þ
I has

I nonzero entries since it is a diagonal matrix, while FF
ðkÞ
I for

k � 1 have respectively MI nonzero values. We then have
KMI þ I parameters in the edge varying filters and K þ 1
parameters in the convolutional filters. We therefore have a
total of ðI þKMI þK þ 1ÞF 2 parameters per layer in a
hybrid GNN. The implementation cost of a hybrid GNN
layer is of order OðKF 2ðM þNÞÞ since both terms in (17)
respect the graph sparsity.

Block GNNs depend on the choice of blocks B and hybrid
GNNs on the choice of the importance set I . We explore the
use of different heuristics based on centrality and clustering
measures in Section 6 where we will see that the choice of B
and I is in general problem specific.

4.2 Spectral Graph Convolutional Neural Networks

The convolutional operation of the graph filter in (14) can be
represented in the spectral domain. To do so, consider the
input-output relationship u ¼ AðSÞx along with the eigen-
vector decomposition of the shift operator S ¼ VLLV�1. Pro-
jecting the input and output signals in the eigenvector space
of S creates the so-called graph Fourier transforms ~x :¼
V�1x and ~u :¼ V�1u [44] which allow us to write

~u :¼
�XK

k¼0

akLL
k

	
~x: (18)

Eq. (18) reveals convolutional graph filters are pointwise in
the spectral domain, due to the diagonal nature of the eigen-
value matrix LL. We can, therefore, define the filter’s spectral
response a : R ! R as the function

að�Þ ¼
XK
k¼0

ak�
k; (19)

which is a single-variable polynomial characterizing the
graph filter AðSÞ. If we allow for filters of order K ¼ N � 1,
there is always a set of parameters ak such that að�iÞ ¼ ~ai for
any set of spectral response ~ai [25]. Thus, training over the
set of spectral parameters að�1Þ; . . . ; að�NÞ is equivalent to
training over the space of (nodal) parameters a0; . . . ; aN�1.
GCNNs were first introduced in [8] using the spectral repre-
sentation of graph filters in (19).

By using edge varying graph filters [cf. (5)], we can pro-
pose an alternative parameterization of the space of filters
of order N which we will see may have some advantages.
To explain this better let J be the index set defining the
zero entries of Sþ IN and let CJ 2 f0; 1gjJ j�N2

be a binary
selection matrix whose rows are those of IN2 indexed by J .
Let also B be a basis matrix that spans the null space of

CJ vecðV�1 	VÞ; (20)

where vecð
Þ is the column-wise vectorization operator and
00	00 is the Khatri-Rao product [45]. Then, the following prop-
osition from [33] quantifies the spectral response of a partic-
ular class of the edge varying graph filter in (5).

Fig. 3. Hybrid edge varying filter [cf. (17)]. The nodes in set I ¼ f2; 7g
are highlighted. Nodes 2 and 7 have edge varying parameters associ-
ated with their incident edges. All nodes, including 2 and 7, also use the
global parameter ak as in a regular convolutional graph filter.

7462 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

Proposition 2. Consider the subclass of the edge varying graph
filters in (5) where the parameter matrices

FFð0Þ þFFð1Þ� and

FFðkÞ for all k ¼ 2; . . . ; K are restricted to the ones that share
the eigenvectors with S, i.e.,

FFð0Þ þFFð1Þ� ¼ VLLð1ÞV�1 and

FFðkÞ ¼ VLLðkÞV�1 for all k ¼ 2; . . . ; K. The spectral response
of this subclass of edge varying filter has the form

aðLLÞ ¼
XK
k¼1

�Yk
k0¼1

LLðk0Þ
	

¼
XK
k¼1

Yk
k0¼1

diag Bmmðk0Þ
� �

; (21)

where B is an N � b basis kernel matrix that spans the null
space of (20) and mmðkÞ is a b� 1 vector containing the expan-
sion parameters of LLðkÞ into B.

Proof. See Appendix B, available in the online supplemen-
tal material. tu

Proposition 2 provides a subclass of the edge varying
graph filters where, instead of learning KðM þNÞ þN
parameters, they learn the Kb entries mmð1Þ; . . . ;mmðKÞ in (21).
These filters build the output features as a pointwise multi-
plication between the filter spectral response aðLLÞ and the
input spectral transform ~x ¼ V�1x, i.e., u ¼ VaðLLÞ~x ¼
VaðLLÞV�1x. Following then the analogies with conventional
signal processing, (21) represents the spectral response of a
convolutional edge varying graph filter. Spectral GCNNs
are a particular case of (21) with order K ¼ 1 and kernel B
independent from the graph (e.g., a spline kernel). Besides
generalizing [8], a graph-dependent kernel allows to imple-
ment (21) in the vertex domain through an edge varying fil-
ter of the form (5); hence, having a complexity of order
OðKðM þNÞÞ in contrast to OðN2Þ required for the graph-
independent kernels. The edge varying implementation
captures also local detail up to a region of radius K from a
node; yet, having a spectral interpretation. Nevertheless,
both the graph-dependent GNN [cf. (21)] and the graph-
independent GNN [8] are more of theoretical interest since
they require the eigendecomposition of the shift operator S.
This aspect inadvertently implies a cubic complexity in the
number of nodes and an accurate learning process will suf-
fer from numerical instabilities since it requires an order
K � N ; hence, high order matrix powers Sk.

4.3 ARMA Graph Convolutional Neural Networks

We can increase the descriptive power of the filter in (14) by
growing its order K, which allows learning filters with a
more discriminative polynomial frequency response [cf.
(19)]. However, this also increases the parameters and
computational cost. Most importantly, it introduces numeri-
cal issues associated with high order matrix powers Sk, ulti-
mately, leading to poor interpolatory and extrapolatory
performance [46]. These challenges can be overcame by con-
sidering graph filters with a rational spectral response, since
rational functions have better interpolatory and extrapola-
tory properties than polynomials [46], [47], [48]. Rational
functions can also achieve more complicated responses
with lower degrees in both numerator and denominator,
thus, having less learnable parameters. Autoregressive
moving average (ARMA) graph filters [29] serve for such
purpose and implement rational functions of the form

AðSÞ ¼
�
Iþ

XP
p¼1

apS
p

	�1�XQ
q¼0

bqS
q

	
:¼ P�1ðSÞQðSÞ;

(22)

where we have defined PðSÞ :¼ Iþ
PP

p¼1 apS
p and QðSÞ :¼PQ

q¼0 bqS
q. The ARMA filter in (22) is defined by P denomi-

nator parameters a ¼ ½a1; . . . ; aP �> and Qþ 1 numerator
parameters b ¼ ½b0; . . . ; bQ�>. The input-output relationship
u ¼ AðSÞx of the ARMA filter can be represented in the
spectral domain as [cf. (18)]

~u ¼

Iþ

XP
p¼1

apLL
p

!�1 XQ
q¼0

bqLL
q

!
~x: (23)

It follows that ARMA filters are also pointwise operators in
the spectral domain characterized by the rational spectral
response function

að�Þ ¼
 XQ

q¼0

bq�
q

! ,
1þ

XP
p¼1

ap�
p

!
: (24)

In particular, it follows the space of ARMA filters defined
by (22) is equivalent to the space of spectral ARMA filters
defined by (24) which is equivalent to the space of spectral
filters in (19) and, in turn, equivalent to the graph convolu-
tional filters in (14). That they are equivalent does not mean
they have the same properties. We expect ARMA filters pro-
duce useful spectral responses with less parameters than
the convolutional filters in (14) or the spectral filters in (19).

As it follows from (22), we need to compute the inverse
matrix P�1ðSÞ to get the ARMA output. The latter incurs a
cubic complexity, which unless the graph is of limited dimen-
sions is computationally unaffordable. When the graph is
large, we need an iterative method that exploits the sparsity
of the graph to approximate the inverse with a reduced cost
[29], [48]. Due to its faster convergence, we consider a parallel
structure that consists of first transforming the polynomial
ratio in (18) in its partial fraction decomposition form and
subsequently using the Jacobi method to approximate
inverse. While also other Krylov approaches are possible, the
parallel Jacobi method offers a better tradeoff between
computational complexity and convergence rate.

Partial Fraction Decomposition of ARMA Filters. The par-
tial fraction decomposition of the rational function að�Þ in
(24) provides an equivalent representation of ARMA filters.
Let gg ¼ ½g1; . . . ; gP �> be a set of poles, bb ¼ ½b1; . . . ;bP �> a
corresponding set of residuals and aa ¼ ½a0; . . . ;aK �> be a set
of direct terms; we can then rewrite (24) as

að�Þ ¼
XP
p¼1

bp

�� gp

þ
XK
k¼0

ak�
k; (25)

where aa, bb, and gg are computed from a and b. A graph filter
whose spectral response is as in (25) is one in which the
spectral variable � is replaced by the shift operator variable
S. It follows that if aa, bb, and gg are chosen to make (25) and
(24) equivalent, the filter in (22) is, in turn, equivalent to

ISUFI ETAL.: EDGENETS: EDGE VARYING GRAPH NEURAL NETWORKS 7463

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

AðSÞ ¼
XP
p¼1

bp

S� gpI

!�1

þ
XK
k¼0

akS
k: (26)

The equivalence of (22) and (26) means that instead of train-
ing a and b in (22) we can train aa, bb, and gg in (26).

Jacobi Implementation of Single-Pole Filters. To circum-
vent the matrix inverses in (26), we first consider each sin-
gle-pole filter in (26) separately and implement the input-
output relationship

up ¼ bp

�
S� gpI

��1

x: (27)

Expression (27) is equivalent to the linear equation ðS�
gpIÞup ¼ bpx, which we can solve iteratively through a
Jacobi recursion. This requires us to separate ðS� gpIÞ into
diagonal and off-diagonal components. We, therefore, begin
by defining the diagonal degree matrix D ¼ diagðSÞ so that
the shift operator can be written as

S ¼ Dþ
�
S�D

�
:¼ diagðSÞ þ

�
S� diagðSÞ

�
: (28)

With this definition, we write ðS� gpINÞ ¼ ðD� gpINÞ þ
ðS�D

�
, which is a decomposition on diagonal terms ðD�

gpINÞ and off-diagonal terms ðS�D
�
. The Jacobi iteration k

for (27) is given by the recursive expression

upk ¼ �

D� gpIN

!�1 "
bpx�

S�D

!
upðk�1Þ

#
; (29)

initialized with up0 ¼ x. We can unroll this iteration to write
an explicit relationship between upk and x. To do that, we
define the parameterized shift operator

RðgpÞ ¼ �

D� gpIN

!�1
S�D

!
; (30)

and use it to write theKth iterate of the Jacobi recursion as

upK ¼ bp

XK�1

k¼0

RkðgpÞx þ RKðgpÞx: (31)

For a convergent Jacobi recursion, signal upK in (31) con-
verges to the output up of the single-pole filter in (27). Trun-
cating (31) at a finite K yields an approximation in which
single-pole filters are written as polynomials on the shift
operator RðgpÞ. I.e., a single-pole filter is approximated as a
convolutional filter of order K [cf. (14)] in which the shift
operator of the graph S is replaced by the shift operator
RðgpÞ defined in (30). This convolutional filter uses parame-
ters bp for k ¼ 0; . . . ; K � 1 and 1 for k ¼ K.

Jacobi ARMA Filters and Jacobi ARMA GNNs. Assuming
we use Jacobi iterations to approximate all single-pole filters
in (26) and that we truncate all of these iterations at K, we
can write ARMA filters as

AðSÞ ¼
XP
p¼1

HK

�
RðgpÞ

�
þ
XK
k¼0

akS
k; (32)

where HKðRðgpÞÞ is a K order Jacobi approximation of the
ARMA filter, which, as per (31) is given by

HK

�
RðgpÞ

�
¼ bp

XK�1

k¼0

RkðgpÞ þ RKðgpÞ: (33)

A Jacobi ARMA filter of order ðP;KÞ is defined by (32) and
(33), see Fig. 4. The order P represents the number of poles in
the filter and the orderK the number of Jacobi iterations we
consider appropriate to properly approximate individual
single-pole filters. Notice the number of taps K in the filterPK

k¼0 akS
k need not be the same as the number of Jacobi itera-

tions used in (33). But we use the same to avoid complicating
notation.

For sufficiently large K (32)–(33), (26), and (22) are all
equivalent expressions of ARMA filters of orders ðP;QÞ. We
could train parameters using either of these equivalent
expressions but we advocate for the use (32)–(33) as no
inversions are necessary except for the elementary inversion
of the diagonal matrix ðD� gpIÞ. It is interesting to note that
in this latter form ARMA filters are reminiscent of the con-
volutional filters in (14) but the similarity is superficial. In
(14), we train K þ 1 parameters ak that multiply shift opera-
tor powers Sk. In (32)–(33) we also train K þ 1 parameters
of this form in the filter

PK
k¼0 akS

k but this is in addition to
the parameters bp and gp of each of the single-pole filter
approximations HKðRðgpÞÞ. These single-pole filters are
themselves reminiscent of the convolutional filters in (14)
but the similarity is again superficial. Instead of parameters
ak that multiply shift operator powers Sk, the filters in (33)
train a parameters gp which represents a constant that is
subtracted from the diagonal entries of the shift operators S.
The fact this is equivalent to an ARMA filter suggests (32)–
(33) may help designing more discriminative filters. We cor-
roborate in Section 6 that GNNs using (32)–(33) outperform
GNNs that utilize filters (14).

Fig. 4. Jacobi autoregressive moving average filter. The input signal x is
processed by a parallel bank of filters. One of this filters is a convolutional
filter of the form in (14) operating w.r.t. the shift operator S (highlighted in
red). The remaining filters operate w.r.t. scaled shift operators [cf. (30)]
(highlighted in blue). All filter outputs are summed together to yield the
overall Jacobi ARMA output.

7464 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

AnARMAGNNhas ð2P þK þ 1ÞF 2 parameters per layer
and a computational complexity of orderO

�
F 2P ðMK þNÞ

�
.

This decomposes as OðPNÞ to invert the diagonal matrices
ðD� gpINÞ; OðPMÞ to scale the nonzeros of ðS�DÞ by the
inverse diagonal; OðPKMÞ to obtain the outputs of Jacobi
ARMAfilters (32) of orderK.

ARMA GNNs as EdgeNets. ARMA GNNs (ARMANets)
are another subclass of the EdgeNet. To see this, consider
that each shift operator RðgpÞ in (30) shares the support
with IN þ S. Hence, we can express the graph filter in (32)
as the union of P þ 1 edge varying graph filters. The first P
of these filters have parameters matrices of the form

FFðk:0Þ
p ¼ bpR

kðgpÞ; k ¼ 0; . . . ; K � 1

RKðgpÞ; k ¼ K

(
;

while the last filter captures the direct-term with edge vary-
ing parameter matrices FFðk:0Þ ¼ akS

K [cf. Section 4]. The
union of these edge varying filter has the expression

AðSÞ ¼
XK
k¼0

�XP
p¼1

FFðk:0Þ
p þFFðk:0Þ

	
x; (34)

which by grouping further the terms of the same order k
leads to a single edge varying graph filter of the form in (5).

ARMANet provides an alternative parameterization of
the EdgeNet that is different from that of the other polyno-
mial convolutional filters in (14). In particular, ARMANets
promote to use multiple polynomial filters of smaller order
(i.e., the number of Jacobi iterations) with shared parame-
ters between them. Each of the filters HKðRðgpÞÞ depends
on two parameters bp and gp. We believe this parameter
sharing among the different orders and the different nodes
is the success behind the improved performance of the
ARMA GNN compared with the single polynomial filters in
(14). Given also the hybrid solutions developed in Sec-
tion 4.1 for the polynomial filters, a direction that may attain
further improvements is that of ARMA GNN architectures
with controlled edge variability.

ARMANet generalizes the architecture in [14] where
instead of restricting the polynomials in (22) to Cayley poly-
nomials, it allows the use of general polynomials. Iterative
approaches to implement an ARMA graph filter [29], [49]
have been recently used to develop GNNs that resemble
this recursion [50], [51]. However, both [50], [51] do not
implement an ARMA layer like (23) does. Instead, their
propagation rule can be either seen as that used in graph
recurrent neural networks [52, Eq. (5)] but with a constant
input or conceptually similar to that used in iterative sparse
coding [53].

5 GRAPH CONVOLUTIONAL ATTENTION

NETWORKS

Graph convolutional neural networks parameterize the
EdgeNet by using a fixed underlying shift operator S and
learning only the filter parameters. However, this shift
operator may often be estimated from data disjointly from
the GNN task, or its specific weights may be unknown. In
these instances, we can use the graph attention mechanism

[18] to parameterize the EdgeNet in a way that we learn
both the shift operator weights and the convolutional filter
parameters for the task at hand. We propose the graph
convolutional attention network (GCAT), which utilizes
the filters as in (12) but they are convolutional in a layer-
specific matrix FFl ¼ FF that may be different from the shift
operator S

Xl ¼ s

 XK
k¼0

FFkXl�1Ak

!
: (35)

Note Ak ¼ Alk and FF ¼ FFl are layer-dependent but we omit
the layer index to simplify notation. Since matrix FF shares
the sparsity pattern of S, (35) defines a GNN as per (7).
Matrix FF is learned from the features Xl�1 passed from layer
l� 1 following the attention mechanism [18]. Specifically,
we consider a trainable matrix B 2 RFl�1�Fl and vector e 2
R2Fl , and compute the edge scores

aij ¼ s

e>

"

Xl�1B

�
i
;

Xl�1B

�
j

#>!
; (36)

for all edges ði; jÞ 2 E. In (36), we start with the vector of fea-
tures Xl�1 andmix them as per the parameters in B. This pro-
duces a collection of graph signalsXl�1B inwhich each node i
has Fl features that correspond to the ith row ½Xl�1B�i of the
productmatrixXl�1B. The features at node i are concatenated
with the features of node j and the resulting vector of 2Fl

components is multiplied by vector e. This product produces
the score aij after passing through the nonlinearity sð
Þ. Note
that B ¼ Bl, e ¼ el are global parameters for all scores aij ¼
alij and depend on the layer index l. As is the case of Ak and
FF in (35), we omitted this index for simplicity.

The score aij could be used directly as an entry for the
matrix FF but to encourage attention sparsity we pass aij

through a local soft maximum operator

Fij ¼ exp
�
aij

� X
j02N i[i

exp
�
aij0
�!�1

: (37)

The soft maximum assigns edge weights Fij close to 1 to the
largest of the edge scores aij and weights Fij close to 0 to
the rest. See also Fig. 5a.

In Section 2, we introduced arbitrary edge varying
graph filters [cf. (5)] which we leveraged in Section 3 to
build edge varying GNNs [cf. (6) - (7)]. In Section 4, we
pointed out that edge varying graph filters left too many
degrees of freedom in the learning parametrization; a
problem that we could overcome with the use of graph
convolutional filters [cf. (14)]. The latter suffer from the
opposite problem as they may excessively constrict the
GNN. GATs provide a solution of intermediate complex-
ity. Indeed, the filters in (35) allow us to build a GNN with
convolutional graph filters where the shift operator FF is
learned ad hoc in each layer to represent the required
abstraction between nodes. The edges of this shift operator
try to choose neighbors whose values should most influ-
ence the computations at a particular node. This is as in
any arbitrary edge varying graph filter but the novelty of
GATs is to reduce the number of learnable parameters by
tying edge values to matrix B and vector e —observe that

ISUFI ETAL.: EDGENETS: EDGE VARYING GRAPH NEURAL NETWORKS 7465

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

in (36) e is the same for all edges. Thus, the computation of
scores aij depends on the Fl�1 � Fl parameters in B and
the 2Fl parameters in e. This is of order no more than F 2 if
we make F ¼ maxlFl. It follows that for the GAT in (35)
the number of learnable parameters is at most F 2 þ 2F þ
F 2ðK þ 1Þ, which depends on design choices and is inde-
pendent of the number of edges. We point out that since FF
respects the graph sparsity, the computational complexity
of implementing (35) and its parameterization is of order
OðF ðNF þKMÞÞ.

5.1 Edge Varying GAT Networks

The idea of using attention mechanisms to estimate entries
of a shift operator FF can be extended to estimate entries
FFðk:0Þ of an edge varying graph filter. To be specific, we pro-
pose to implement a generic GNN as defined by recursion
(7) which we repeat here for ease of reference

Xl ¼ s

 XK
k¼0

FFðk:0ÞXl�1Ak

!
: (38)

Further recall each edge varying filter parameter matrix
FFðk:0Þ is itself defined recursively as [cf. (5)]

FFðk:0Þ ¼ FFðkÞ FFðk�1:0Þ ¼
Yk
k0¼0

FFðk0Þ: (39)

We propose to generalize (36) so that we compute a differ-
ent matrix FFðkÞ for each filter order k. Consider then matri-
ces Bk and vectors ek to compute the edge scores

a
ðkÞ
ij ¼ s

eTk

"

Xl�1Bk

�
i
;

Xl�1Bk

�
j

#>!
; (40)

for all edges ði; jÞ 2 E. As in (36), we could use a
ðkÞ
ij as edge

weights in FFðkÞ, but to promote attention sparsity we send
a
ðkÞ
ij through a soft maximum function to yield edge scores

F
ðkÞ
ij ¼ exp

a
ðkÞ
ij

! X
j02N i[i

exp

a
ðkÞ
ij0

!!�1

: (41)

Each of the edge varying matrices FFðkÞ for k ¼ 1; . . . ;K is
parameterized by the tuple of transform parameters ðBk; ekÞ.
Put simply, we are using a different GATmechanism for each
edge varying matrix FFðkÞ. These learned matrices are then
used to build an edge varying filter to process the features Xl

passed from the previous layer – see Fig. 5b. The edge varying
GAT filter employs K þ 1 transform matrices Bk of dimen-
sions Fl � Fl�1, K þ 1 vectors ek of dimensions 2Fl, and K þ
1 matrices Ak of dimensions Fl � Fl�1. Hence, the total num-
ber of parameters for the edge varying GAT filter is at most
ðK þ 1Þð2F 2 þ 2F Þ. The computational complexity of the
edge varyingGAT is of orderOðKFðNF þMÞÞ.

Remark 5. Graph attention networks first appeared in [18].
In this paper, (36) and (37) are proposed as an attention
mechanism for the signals of neighboring nodes and
GNN layers are of the form Xl ¼ sðFFlXl�1AlÞ. The latter is
a particular case of either (35) or (38) in which only the
term k ¼ 1 is not null. Our observation in this section is
that this is equivalent to computing a different graph rep-
resented by the shift operator FF. This allows for the gen-
eralization to filters of arbitrary order K [cf. (35)] and to
edge varying graph filters of arbitrary order [cf. (38)]. The
approaches presented in this paper can likewise be
extended with the multi-head attention mechanism pro-
posed in [18] to improve the network capacity.

Fig. 5. Higher-order graph attention filters. (a) Graph convolutional attention filter. The input features Xl�1 are shifted by the same edge varying shift
operator FFðB; eÞ and weighted by different parameter matrices Ak. The edge varying parameters in all FFðB; eÞ are parameterized by the same matrix
B and vector e following the attention mechanism. (b) Edge varying GAT filter. The input features Xl�1 are shifted by different edge varying shift oper-
ators FFðkÞðBk; ekÞ and weighted by different parameter matrices Ak. The edge varying parameters in the different FFðkÞðBk; ekÞ are parameterized by a
different matrix Bk and vector ek following the attention mechanism.

7466 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

5.2 Discussions

Reducing Model Complexity. As defined in (36) and (40)
the attention mechanisms are separate from filtering. To
reduce the number of parameters, we can equate the atten-
tion matrices B or Bk with the filtering matrices Ak. For the
GCAT in (35), the original proposal in [18] is to make B ¼
A1 so that (36) reduces to

aij ¼ s

eT

"

Xl�1A1

�
i
;

Xl�1A1

�
j

#>!
: (42)

For the edge varying GATs in (38), it is natural to equate
Bk ¼ Ak in which case (40) reduces to

a
ðkÞ
ij ¼ s

eTk

"

Xl�1Ak

�
i
;

Xl�1Ak

�
j

#>!
: (43)

The choice in (43) removes ðK þ 1ÞF 2 parameters.

Accounting for Differences in Edge Weights in the Origi-
nal Shift Operator. The major benefit of the GAT mecha-
nism is to build a GNN without requiring full knowledge of
S. This is beneficial as it yields a GNN robust to uncertain-
ties in the edge weights. This benefit becomes a drawback
when S is well estimated as it renders weights sij equivalent
regardless of their relative values. One possible solution to
this latter drawback is to use a weighted soft maximum
operator so that the entries of FFðkÞ are chosen as

F
ðkÞ
ij ¼ exp

sija

ðkÞ
ij

! X
j02N i[i

exp

sij0a

ðkÞ
ij0

!!�1

: (44)

Alternatively, we can resort to the use of a hybrid GAT in
which we combine a GAT filter of the form in (38) with a
regular convolutional filter of the form in (12)

Xl ¼ s

 XK
k¼0

SkXl�1Ak þFFðk:0ÞXl�1A
0
k

!
: (45)

This is the GAT version of the hybrid GNN we proposed in
(17). The filters in (45) account for both, the GAT learned
shifts FFðkÞ and the original shift S.

6 NUMERICAL RESULTS

This section corroborates the capacity of the different models
with numerical results on synthetic and real-world graph
signal classification problems. Given the different hyper-

parameters for the models and the trade-offs (e.g., complex-

ity, number of parameters, radius of local information), we

aim to provide insights on which methods exploit better the

graph prior for learning purposes rather than achieving the

best performance. In the sequel, we provide a summary of

the different architectures, while in the upcoming four sec-

tion analyze in detail each experiment. Section 6.5 provides

some general observations. The code used for these simula-

tions can be found at http://github.com/alelab-upenn/

graph-neural-networks.
Summary of the Architectures. A summary of the differ-

ent architectures discussed in this paper is provided in
Table 1.

� Fully connected stands in for the standard multi-layer
perceptron neural network that uses no graph prior.

� The edge varying stand in for the EdgeNet in the full
form in (7), which allocates different parameters per
edge and shift and has the most degrees of freedom.

� The graph convolutional neural network in (12) has
instead shared parameters among all nodes, edges,
and shifts.

� The node varying [cf. (15)] and the hybrid edge vary-
ing [cf. (17)] are the intermediate solutions between
the full-form EdgeNet and the GCNN. Both rely on
selecting a set of important nodes and allocate differ-
ent parameters to them. The hybrid edge varying
allocates also different parameters to the edges of
these important nodes. To the remaining nodes
shared parameters as in the GCNN are used.

� The spectral edge varying GNN is the subclass of the
full-form EdgeNet in which filters share the eigen-
vectors with the shift operator [cf. Proposition 2],
while the spectral kernel GCNN is the equivalent
representation of the GCNN in the spectral domain.

� ARMANet is the GCNN that we propsoed in Sec-
tion 4.3. Contrarily to the polynomial GCNN form [cf.

TABLE 1
Properties of Different Graph Neural Network Architectures

Architecture Expression Order parameters	 Oð
Þ Order of complexity	;		 Oð
Þ
Fully connected n/a N2F 2 N2F 2

Edge varying Eq. (7) KðM þNÞF 2 KF 2ðM þNÞ
GCNN [9], [10], [11], [12] Eq. (12) KF 2 KF 2M
Node varying [43] Eq. (15) BKF 2 KF 2M
Hybrid edge varying Eq. (17) ðjI j þKMI ÞF 2 KF 2ðM þNÞ
Spec. edge varying GNN		 Eq. (21) KbF 2 KF 2ðM þNÞ
Spec. Kernel GCNN		 [8] Eq. (21) forK ¼ 1 bF 2 N2F 2

ARMANet Eq. (22)-(33) ðP þKÞF 2 F 2P ðMK þNÞ
GCAT Eq. (35) RF 2K RðNF 2 þKFMÞ
GAT [18] Eq. (35) forK ¼ 1 RF 2 RðNF 2 þ FMÞ
Edge varying GAT Eq. (38) RKF 2 RKðNF 2 þMF Þ

The parameters and complexity are considered per layer. Architectures in bold are proposed in this work. Legend:N- number nodes;M- number of edges; F - max-
imum number of features;K- recursion order; b - dimension of the Kernel in (21); B - number of blocks in (15); I - the set of important nodes in (15) and (17);MI
- total neighbors for the nodes in I ; P - parallel J-ARMANet branches; R - parallel attention branches; 	Self-loops are not considered. 		The eigendecomposition
cost OðN3Þ is computed once.

ISUFI ETAL.: EDGENETS: EDGE VARYING GRAPH NEURAL NETWORKS 7467

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

http://github.com/alelab-upenn/graph-neural-networks
http://github.com/alelab-upenn/graph-neural-networks

(12)], it has a filter with a rational spectral response
rather than polynomial.

� The graph convolutional attention network and its
variants are the architectures we developed in Sec-
tion 5. The GCAT generalises the popular GAT [18]
to a convolutional filter of higher order such that it
can account for multi-hop neighbor information in
each layer. The edge varying GAT [cf. (38)] is an alter-
native to the GCAT that uses edge varying filters
together with attention instead of convolutional fil-
ters. Lastly, we also discussed two variants of the
GCAT and edge varying GAT in Section 5.2 but sev-
eral others developed under the EdgeNet framework.

From all these architectures, we do not evaluate the fully-
connected, the spectral kernel GCNN [8], and the spectral
edge varying GCNN (21) since their computational cost is
higher than linear. We also leave to interested readers the
extensions discussed in Section 5.2. For the remaining solu-
tions, we trained all of them using ADAMwith the standard
forgetting factors [54].

6.1 Source Localization on SBM Graphs

The goal of this experiment is to identify which community
in a stochastic block model (SBM) graph is the source of a
diffused signal by observing different realizations in differ-
ent time instants. We considered a connected and undi-
rected graph of N ¼ 50 nodes divided into five blocks each

representing one community fc1; . . . ; c5g. The intra- and

inter-community edge formation probabilities are 0.8 and

0.2, respectively. The source node is one of the five nodes

(i1; . . . ; i5) with the largest degree in the respective commu-

nity. The source signal xð0Þ is a Kronecker delta centered at

the source node. The source signal is diffused at time t 2
½0; 50� as xðtÞ ¼ Stxð0Þ, where S is the graph adjacency

matrix normalized by the maximum eigenvalue.
The training set is composed of 10240 tuples of the form

ðxðtÞ; ciÞ for random t and i 2 f1; . . . ; 5g. These tuples are
used to train the EdgeNets that are subsequently used to pre-
dict the source community c0i for a testing signal x0ðtÞ again
for a random value of t. The validation and the test set are
both composed of 2560 tuples (25% of the training set). The
performance of the different algorithms is averaged over ten
different graph realizations and ten data splits, for a total of
100 Monte-Carlo iterations. ADAM is run for 40 epochs with
batches of 100 samples and learning rate 10�3.

Architecture Parameters. For this experiment, we compared
14 different architectures. All architectures comprise the cas-
cade of a graph filtering layer with ReLU nonlinearity and a
fully connected layer with softmax nonlinearity. The archi-
tectures are: iÞ the edge varying GNN (7); iiÞ the GCNN (12);
iiiÞ three node varying GNNs (15), where the five important
nodes are selected based on iii� aÞ maximum degree; iii�
bÞ spectral proxies [55], which ranks the nodes according to
their contribution to different frequencies; iii� cÞ diffusion
centrality (see Appendix C, available in the online supple-
mental material); ivÞ three node dependent edge varying
GNNs, where the five important nodes B are selected simi-
lalr to the node varying case; vÞ three ARMANets (32) with
Jacobi iterations v� aÞK ¼ 1; v� bÞK ¼ 3; v� cÞK ¼ 5; viÞ

the GAT network from [18]; viiÞ the GCAT network (35); and
viiiÞ the edge varying GAT (38) network.

Our goal is to see how the different architectures handle
their degrees of freedom, while all having linear complexity.
To make this comparison more insightful, we proceed with
the following rationale. For the approaches in iÞ � ivÞ, we
analyzed filter orders in the interval K 2 f1; . . . ; 5g. This is
the only handle we have on these filters to control the num-
ber of parameters and locality radius while keeping the
same computational complexity. For the ARMANet in vÞ,
we set the direct term order to K ¼ 0 to observe only the
effect of the rational part. Subsequently, for each Jacobi iter-
ation value K, we analyzed rational orders in the interval
P 2 f1; . . . ; 5g as for the former approaches. While this strat-
egy helps us controlling the local radius, recall the ARMA-
Net has a computational complexity slightly higher than the
former four architectures. For the GAT in viÞ, we analyzed
different attention heads R 2 f1; . . . ; 5g such that the algo-
rithm complexity matches those of the approaches iÞ � ivÞ.
The number of attention heads is the only handle in the
GAT network. Finally, for the GCAT in viiÞ and the edge
varying GAT in viiiÞ, we fixed the attention heads to R ¼ 3
and analyzed different filter orders K 2 f1; . . . ; 5g. The lat-
ter allows comparing the impact of the local radius for the
median attention head value. Recall, these architectures
have again a slightly higher complexity forK � 2.
Observations. The results of this experiment are shown in
Fig. 6. We make the following observations.

First, the attention-based approaches are characterized
by a slow learning rate leading to a poor performance in 40
epochs. This is reflected in the higher test error of the GAT
and the edge varying GAT networks. However, this is not
the case for the GCAT network. We attribute the latter
reduced error to the superposition of the graph convolu-
tional to attentions that GCAT explores –all convolutional
approaches learn faster. On the contrary, the error increases
further for the edge varying GAT since multiple attention
strategies are adopted for all k 2 f1; . . . ; Kg in (38). There-
fore, our conclusion is the graph convolutional prior can be
significantly helpful for attention mechanisms. We will see
this consistent improvement in all our experiments.

Second, the edge varying GNN in (7) achieves the lowest
error, although having the largest number of parameters.
The convolutional approaches parameterize well the edge
varying filter; hence, highlighting the benefit of the graph
convolution. ARMANet is the best among the latter charac-
terized both by a lower mean error and standard deviation.
This reduced error for ARMANet is not entirely surprising
since rational functions have better interpolation and
extrapolation properties than polynomial ones. It is, how-
ever, remarkable that the best result is obtained for a Jacobi
iteration of K ¼ 1. I.e., the parameter sharing imposed by
ARMANet reaches a good local optimal even with a coarse
approximation of the rational function. Notice also the
source localization task is not permutation equivariant,
therefore, architectures that are not permutation equivariant
(edge varying, node varying, hybrid edge varying, ARMA
for low Jacobi orders) are expected to perform better.

Third, for the node selection strategies in architectures
iiiÞ and ivÞ, there is no clear difference between the degree
and the diffusion centrality. For the node varying GNNs,

7468 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

the diffusion centrality offers a lower error both in the mean
and deviation. In the hybrid edge varying GNNs [cf. (17)],
instead, the degree centrality achieves a lower error but
pays in deviation. The spectral proxy centrality yields the
worst performance.

Finally, we remark that we did not find any particular
trend while changing the parameters of the different
GNNs (e.g., order, attention head). A rough observation
is that low order recursions are often sufficient to reach
low errors.

6.2 Source Localization on Facebook Sub-Network

In the second experiment, we considered a similar source
localization on a real-world network comprising a 234-used
Facebook subgraph obtained as the largest connected com-
ponent of the dataset in [56]. This graph has two well-
defined connected communities of different size and the
objective is to identify which of the two communities origi-
nated the diffusion. The performance of the different algo-
rithms is averaged over 100 Monte-Carlo iterations. The
remaining parameters for generating the synthetic data are
similar as before.

Architecture Parameters. We compared the eight GNN
architectures reported in the left-most column of Table 2. For
the node varying and the hybrid edge varying GNNs, the
important nodes are again 10% of all nodes selected based on
diffusion centrality. The Jacobi number of iterations for the
ARMANet isK ¼ 1while there is no direct term.

Overall, this problem is easy to solve if the GNN is hyper-
tuned with enough width and depth. However, this strategy
hinders the impact of the specific filter. To highlight the role
of the latter, we consideredminimal GNN architectures com-
posed of one layer and two features. In turn, this allows
understanding better howmuch the specific filter contributes
to the performance. We then grid-searched all parameters in
Table 2 to reach a classification error of at most 2%. For the
architectures that reach this criterion, we report the smallest
parameters. For the architectures that do not reach this crite-
rion, we report the minimum achieved error and the respec-
tive parameters. Our rationale is that the minimum
parameters yield a lower complexity and showbetter the con-
tribution of the filter type. They also lead to faster training;
the opposite holds for the learning rate.

FromTable 2, we observe that only the edge varyingGNN
and the ARMANet reach the predefined error. Both

TABLE 2
Source Localization Test Error in Facebook Subnetwork

Architecture mean std. dev.
order

f1; 2; 3; 4; 5g
attention heads
f1; 2; 3; 4; 5g

epochs
{10, 20, 40, 100}

learning rate
f10�2; 10�3g

GCNN 4.0% 13.0% 3 n/a 100 10�3

Edge varying 1:5% 8.4% 1 n/a 10 10�3

Node varying 6.0% 15.8% 3 n/a 20 10�3

Hybrid edge var. 6.6% 15.9% 2 n/a 40 10�3

ARMANet 2:0% 9.7% 1 n/a 20 10�3

GAT 10.9% 20.8% n/a 1 40 10�3

GCAT 8.0% 18.4 3 1 100 10�3

Edge varying GAT 7.1% 17.8% 2 3 100 10�3

The goal is to grid-search the parameters to achieve a mean error of at most 2%. For the architectures that did not achieve this criterion, the minimum error is reported.

Fig. 6. Source localization test error in the stochastic block model graph. The y�axis scale is deformed to improve visibility. The thick bar interval indi-
cates the average performance for different parameter choices (e.g., filter order, attention heads). The circle marker represents the mean value of this
interval. The thin line spans an interval of one standard deviation from the average performance. The convolutional-based approaches perform better
than attention-based. We attribute the poor performance of the attention techniques to the slow learning rate. Both the GATand the edge variant GAT
required more than 40 epochs to reach a local minimum. However, the graph convolutional attention network (GCAT) does not suffer from the latter
issue leading to faster learning.

ISUFI ETAL.: EDGENETS: EDGE VARYING GRAPH NEURAL NETWORKS 7469

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

architectures stress our observation that low order recur-
sions (K ¼ 1) are often sufficient. Nevertheless, this is not
the case for all other architectures. These observations sug-
gest the edge varying GNN explores well its degrees of free-
dom and adapts well to the non-permutation equivariance
of the task. The ARMANet explores the best the convolu-
tional prior; in accordance with the former results, the Jacobi
implementation does not need to runt until convergence to
achieve impressive results. We also conclude the convolu-
tional prior helps to reduce the degrees of freedom of the
EdgeNet but requires a deeper and/or wider network to
achieve the predefined criterion. This is particularly seen in
the GAT based architectures. The GCAT architecture, in
here, explores the convolutional prior and reduces the error
compared with the GAT. Finally, we remark for all
approaches a substantially lower variance can be achieved
by solely increasing the features.

6.3 Authorship Attribution

In this third experiment, we assess the performance of the
different GNN architectures in an authorship attribution
problem based on real data. The goal is to classify if a text
excerpt belongs to a specific author or any other of the 20
contemporary authors based on word adjacency networks
(WANs) [57]. A WAN is an author-specific directed graph
whose nodes are function words without semantic meaning
(e.g., prepositions, pronouns, conjunctions). The relative
positioning of function words carries stylistic information
about the author. To capture this information, we build a
directed graph, where each node is a function word, and
each weighted edge represents the average co-occurence of
the corresponding function words, discounted by relative
distance (i.e., if the two words are next to each other, the
weight is higher than if the two words are further apart).
We build this graph support only once, and before the train-
ing set. The signal on top of this graph is the frequency
count for the function words in text excerpts of 1,000 words.
These are the graph signals that form the dataset that is
used for training and testing. The WANs and the word fre-
quency count serve as author signatures and allow learning
representation patterns in their writing style. The task trans-
lates into a binary classification problem where one indi-
cates the text excerpt is written by the author of interest and
zero by any other author. A more detailed account on the
creation of WANs can be found in [57] and the used dataset
is available in our code.

The WANs of the respective authors have from N ¼ 190
to N ¼ 210 function word nodes. Following [57], we built
single-author WANS for Jane Austen, Emily Bront€e, and
Edgar Allan Poe. For each author, we processed the texts to
count the number of times each function word pair co-
appears in a window of ten words. These co-appearances
are imputed into an N �N matrix and normalized row-
wise. The resulting matrix is used as the shift operator,
which can also be interpreted as a Markov chain transition
matrix. We considered a train-test split of 95%� 5% of the
available texts. Around 8.7% of the training samples are
used for validation. This division leads to: ðiÞ Austen: 1346
training samples, 118 validation samples, and 78 testing
samples; ðiiÞ Bront€e: 1192 training samples, 104 validation
samples, 68 testing samples; ðiiiÞ Poe: 740 training samples,

64 validation samples, 42 testing samples. For each author,
the sets are extended by a similar amount with texts from
the other 20 authors shared equally between them.
Architecture Parameters. We considered again the eight
GNN architectures of the former section shown in the left-
most column of Table 3. Following the setup in [10], all
architectures comprise a graph neural layer of F ¼ 32 fea-
tures with ReLU nonlinearity followed by a fully connected
layer. The baseline order for all filters is K ¼ 4. For the
ARMANet this is also the number of denominator parame-
ters and the order of the direct term in (32); the number of
the Jacobi iterations in (33) is one. We want to show how
much the rational part helps to improve the performance of
the GCNN (which is the direct term in the ARMANet [cf.
(32)]). The important nodes for the node varying and the
hybrid edge varying are 20 (�10% of N) selected with
degree centrality. The GAT, GCAT, and edge varying GAT
have a single attention head to highlight the role of the con-
volutional and edge varying recursion over it. The loss func-
tion is the cross-entropy optimized over 25 epochs with a
learning rate of 0.005. The performance is averaged over ten
data splits.

Table 3 shows the results of this experiment. Overall, we
see again the graph convolution is a solid prior to learning
meaningful representations. This is particularly highlighted
in the improved performance of the GCAT for Austen and
Bront€e compared with the GAT even with a single attention
head. These observations also suggest the GAT and the edge
varying GAT architectures require multi-head approaches to
achieve comparable performance. An exception is the case of
Poe. In this instance, multi-head attention is also needed for
the GCAT. The (approximated) rational part of the ARMA-
Net gives a consistent improvement of the GCNN. Hence,
we recommend considering the additional parameterization
of the ARMANet when implementing graph convolutional
neural networks, since the increased number of parameters
and implementation costs are minimal. Finally, we remark
the hybrid edge varying GNN improves the accuracy of the
node varying counterpart.

6.4 Recommender Systems

In this last experiment, we evaluate all former architectures
for movie rating prediction in a subset of theMovieLens 100K
data set [58]. The full data set comprises U ¼ 943 users and
I ¼ 1; 582 movies and 100K out of �1; 5M potential ratings.
We set themissing ratings to zero. From the incompleteU � I
rating matrix, we consider two scenarios: A user-based and a

TABLE 3
Authorship Attribution Test Error

Architecture Austen Bront€e Poe

GCNN 7:2ð2:0Þ% 12:9ð3:5Þ% 14:3ð6:4Þ%
Edge varying 7:1ð2:2Þ% 13:1ð3:9Þ% 10:7ð4:3Þ%
Node varying 7:4ð2:1Þ% 14:6ð4:2Þ% 11:7ð4:9Þ%
Hybrid edge var. 6:9ð2:6Þ% 14:0ð3:7Þ% 11:7ð4:8Þ%
ARMANet 7:9ð2:3Þ% 11:6ð5:0Þ% 10:9ð3:7Þ%
GAT 10:9ð4:6Þ% 22:1ð7:4Þ% 12:6ð5:5Þ%
GCAT 8:2ð2:9Þ% 13:1ð3:5Þ% 13:6ð5:8Þ%
Edge varying GAT 14:5ð5:9Þ% 23:7ð9:0Þ% 18:1ð8:4Þ%

The results show the average classification test error and standard deviation on
10 different training-test 95%� 5% splits.

7470 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

movie-based. In a user-based scenario, we considered the 200
users that have rated the most movies as the nodes of a graph
whose edges represent Pearson similarities between any two
users. Each of the I ¼ 1; 582 movies is treated as a different
graph signal whose value at a node is the rating given to that
movie by a user or zero if unrated.We are interested to predict
the rating of a specific user uwith GNNs, which corresponds
to completing the uth row of the 200� 1; 5882 sub-rating
matrix. In a movie-based scenario, we considered the 200
movies with the largest number of ratings as nodes of a graph
whose edges represent Pearson similarities between any two
movies. In this instance, there are 943 graph signals: The rat-
ings each user gives to all 200movies is one such graph signal.
We are interested to predict the rating to a specific movie i
with GNNs, which corresponds to completing the ith column
of the rating matrix. We remark this task is permutation
equivariant, therefore, we expect architectures holding this
property to perform better.

Architecture Parameters. We considered the same architec-
tural settings as in the authorship attribution experiments
to highlight consistent behaviors and differences. Following
[59], we chose ten 90%� 10% splits for training and test sets
and pruned the graphs to keep only the top-40 most similar
connections per node. The shift operator is again the adja-
cency matrix normalized by the maximum eigenvalue. The
ADAM learning algorithm is run over 40 epochs in batches
of five and learning rate 5� 10�3. We trained the networks
on a smooth-‘1 loss and measure the accuracy through the
root mean squared error (RMSE).

Tables 4 and 5 show the results for the five users and
five movies with the largest number of ratings, respec-
tively. The first thing to note is that GCAT consistently
improves GAT. The latter further stresses that multi-
head attentions are more needed in the GAT than in the
GCAT. Second, the edge varying GNN yields the worst
performance because it is not a permutation equivariant
architecture. In fact, the node varying and the hybrid
edge varying, which are approaches in-between permu-
tation equivariance and local detail, work much better.
This trend is observed also in the edge varying GAT
results, suggesting that also the number of parameters in
the edge varying is too high for this task.

6.5 General Observations

Altogether these experiments lead to fourmain observations.

Edge Varying GNN Useful for Non-Permutation Equivar-
iant Tasks. The edge varying GNN [cf. (7)] can perform

well if the task is not permutation equivariant (e.g., source
localization). We have observed that minimal architectures
(i.e., lower number of features F , layers L and filter order
K) adapt easier to the task. This is because a minimal archi-
tecture has less degrees of freedom and can avoid overfit-
ting. Contrarily, when the task is permutation equivariant
the edge varying GNN will suffer and parameterizations
matched to the task are needed.

Convolution Provides a Strong Parameterization. In per-
mutation equivariant tasks, we have seen GCNNs are a
valid parameterization. They have shown potential also
in tasks that are not permutation equivariant. However,
contrarily to the edge varying GNN, GCNNs requite a
wider architecture and with filters of higher order. We
have also seen the ARMANet [cf. (22)–(33)] can improve
the performance of the polynomial counterpart [cf (12)].
This is because for the rational frequency response
ARMANet implements in each layer, thus requiring
less parameters. However, surprisingly to us, we have
observed that even with a few Jacobi iterations –ARMA-
Nets require at each layer to compute a matrix inverse,
which we solve iteratively with the Jacobi method–
ARMANet can often achieve a better performance than
the polynomial GCNN.

Hybrid Solutions Offer a Good Parameterization. While
the edge varying GNN and the GCNN may outperform
each other depending on the task, the node varying [cf. (15)]
and the hybrid edge varying [cf. (17)] has shown a good
parameterization of the EdgeNet in all tasks. We have seen
the hybrid edge varying to perform overall better than the
node varying due to its edge-dependent parameters. How-
ever, we did not found any consistent difference in the node
selection strategies. Our rationale is that the sampling strat-
egy of the important nodes needs to be matched with the
task at hand.

Graph Convolutions Improve Attention. The graph convo-
lutional attention network [cf. (35)] improves consistently
over the GAT. This is because it generalizes the latter from a
convolutional filter of order one to an arbitrary order. Work-
ing with the GCAT has shown to accelerate the learning
procedure of the GAT and perform well in any task. In addi-
tion, the GCATmay result effective even with a single atten-
tion head. Instead, by generalizing the GAT to an edge
varying GAT [cf. (38)] we have not seen substantial
improvement than that seen in the GCAT. This indicates
that the attention mechanism may not be the best strategy
to learn different shift operators in each layer.

TABLE 4
Average RMSE on User Graph

Archit./User-ID 405 655 13 450 276 Average

GCNN 1:09 0.72 1.18 0.82 0.66 0.89
Edge var. 1.25 0.74 1.34 0.99 0.70 1.00
Node var. 1.17 0:68 1.19 0.83 0.67 0.91
Hybrid edge var. 1:10 0.72 1.27 0.80 0:60 0.90
ARMANet 1.13 0:69 1.24 0.80 0.65 0.90
GAT 1.27 0.74 1.44 0.92 0.80 1.03
GCAT 1:09 0.71 1:12 0:77 0.65 0:87
Edge var. GAT 1.19 0.70 1.31 0.85 0.75 0.96

TABLE 5
Average RMSE on Movie Graph

Archit./Movie-ID 50 258 100 181 294 Average

GCNN 0:82 1.08 0:95 0.86 1.04 0.95
Edge var. 0.93 1:03 1.00 0.88 1.24 1.02
Node var. 0.78 1.04 1.00 0.87 1:00 0:94
Hybrid edge var. 0.75 1:02 0.98 0:82 1.08 0:93
ARMANet 0:81 1.05 1.02 0.87 1.09 0.97
GAT 0.98 1.24 1.28 1.00 1.30 1.16
GCAT 0.83 1.06 1.04 0:83 1.05 0.96
Edge var. GAT 0:81 1.04 1.01 0.86 1.07 0.96

ISUFI ETAL.: EDGENETS: EDGE VARYING GRAPH NEURAL NETWORKS 7471

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

7 CONCLUSION

This paper introduced EdgeNets: GNN architectures that
allow each node to collect information from its direct neigh-
bors and apply different weights to each of them. EdgeNets
preserve the state-of-the-art implementation complexity and
provide a single recursion that encompasses all state-of-the-
art architectures. By showcasing how each solution is a par-
ticular instance of the EdgeNet, we provided guidelines to
develop more expressive GNN architectures, yet without
compromising the computational complexity. This paper, in
specific, proposed eight GNN architectures that can be read-
ily extended to scenarios containingmulti-edge features.

The EdgeNet link showed a tight connection between the
graph convolutional and graph attention mechanism, which
have been so far treated as two separate approaches. We
found the graph attention network learns the weight of a
graph and then performs an order one convolution over
this learned graph. Following this link, we introduced the
concept of graph convolutional attention networks, which is
an EdgeNet that jointly learns the edge weights and the
parameters of a convolutional filter.

We advocate the EdgeNet as a more formal way to build
GNN solutions. However, further research is needed in
three main directions. First, research should be done to
explore the connection between the EdgeNets and receptive
fields. This will lead to different parameterizations and
architectures. Second, works needs to be done for assessing
the capabilities of EdgeNets solutions to handle graph iso-
morphisms [60], [61]. Third, theoretical work is also needed
to characterize how the stability of the EdgeNet to link per-
turbations [42], [62].

ACKNOWLEDGMENTS

This work was supported by NSF CCF 1717120, ARO
W911NF1710438, ARL DCIST CRA W911NF-17-2-0181,
ISTC-WAS and Intel DevCloud. Part of this work has been
presented in [1].

REFERENCES

[1] E. Isufi, F. Gama, and A. Ribeiro, “Generalizing graph convolu-
tional neural networks with edge-variant recursions on graphs,”
in Proc. 27th Eur. Signal Process. Conf., 2019, pp. 1–5.

[2] L. Tang and H. Liu, “Relational learning via latent social
dimensions,” in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2009, pp. 817–826.

[3] N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor
spaces for chemical compound retrieval and classification,”
Knowl. Inf. Syst., vol. 14, no. 3, pp. 347–375, 2008.

[4] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vander-
gheynst, “Geometric deep learning: Going beyond euclidean
data,” IEEE Signal Process. Mag., vol. 34, no. 4, pp. 18–42, Jul. 2017.

[5] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vander-
gheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other
irregular domains,” IEEE Signal Process. Mag., vol. 30, no. 3,
pp. 83–98, May 2013.

[6] F. Scarselli, S. L. Yong, M. Gori, M. Hagenbuchner, A. C. Tso, and
M. Maggini, “Graph neural networks for ranking web pages,” in
Proc. IEEE/WIC/ACM Int. Conf. Web Intell., 2005, pp. 1–7.

[7] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE Trans. Neural
Netw., vol. 20, no. 1, pp. 61–80, Jan. 2009.

[8] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral net-
works and deep locally connected networks on graphs,” in Proc.
2nd Int. Conf. Learn. Representations, 2014, pp. 1–14.

[9] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Proc. 30th Conf. Neural Inf. Process. Syst., 2016, pp. 3844–3858.

[10] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional
neural network architectures for signals supported on graphs,”
IEEE Trans. Signal Process., vol. 67, no. 4, pp. 1034–1049, Feb. 2019.

[11] J. Du, J. Shi, S. Kar, and J. M. F. Moura, “On graph convolution for
graph CNNs,” in Proc. IEEE Data Sci. Workshop, 2018, pp. 239–243.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proc. 5th Int. Conf. Learn. Repre-
sentations, 2017, pp. 1–14.

[13] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?,” in Proc. 7th Int. Conf. Learn. Representa-
tions, 2019, pp. 1–17.

[14] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spectral
filters,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97–109, Jan. 2019.

[15] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned
filters in convolutional neural networks on graphs,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 29–38.

[16] F. Monti, D. Boscaini, J. Masci, E. Rodol�a, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds
using mixture model CNNs,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2017, pp. 5425–5434.

[17] J. Atwood and D. Towsley, “Diffusion-convolutional neural
networks,” in Proc. 30th Conf. Int. Neural Inf. Process. Syst., 2016,
pp. 2001–2009.

[18] P. Veli�ckovi�c, G. Cucurull, A. Casanova, A. Romero, P. Li�o, and Y.
Bengio, “Graph attention networks,” in Proc. 6th Int. Conf. Learn.
Representations, 2018, pp. 1–12.

[19] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” 2019, arXiv:1901.00596v3.

[20] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” 2019, arXiv:1812.08434v4.

[21] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A
survey,” 2018, arXiv:1812.04202v1.

[22] J. B. Lee, R. A. Rossi, S. Kim, N. K. Ahmed, and E. Koh, “Attention
models in graphs: A survey,” 2018, arXiv:1807.07984v1.

[23] G. Taubin, “Geometric signal processing on polygonal meshes,”
in Proc. 21st Annu. Conf. Eur. Assoc. Comput. Graph., 2000, pp. 1–11.

[24] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard,
“Distributed signal processing via Chebyshev polynomial approx-
imation,” IEEE Trans. Signal Inf. Process. Netw., vol. 4, no. 4,
pp. 736–751, Dec. 2018.

[25] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
Apr. 2013.

[26] S. K. Narang and A. Ortega, “Compact support biorthogonal
wavelet filterbanks for arbitrary undirected graphs,” IEEE Trans.
Signal Process., vol. 61, no. 19, pp. 4673–4685, Oct. 2013.

[27] O. Teke and P. P. Vaidyanathan, “Extending classical multirate
signal processing theory to graphs—Part I: Fundamentals,” IEEE
Trans. Signal Process., vol. 65, no. 2, pp. 409–422, Jan. 2017.

[28] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter
design and applications to distributed linear network operators,”
IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4117–4131, Aug. 2017.

[29] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive
moving average graph filtering,” IEEE Trans. Signal Process., vol. 65,
no. 2, pp. 274–288, Jan. 2017.

[30] J. You, J. Leskovec, K. He, and S. Xie, “Graph structure of neural
networks,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 10 881–10 891.

[31] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proc. 3rd Int. Conf.
Learn. Representations, 2015, pp. 1–15.

[32] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Conf.
Neural Inf. Process. Syst., 2017, pp. 1–11.

[33] M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph
filtering,” IEEE Trans. Signal Process., vol. 67, no. 9, pp. 2320–2333,
May 2019.

[34] P. W. Battaglia et al., “Relational inductive biases, deep learning,
and graph networks,” 2018, arXiv:1806.01261.

[35] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 1263–1272.

[36] A. Ortega, P. Frossard, J. Kova�cevi�c, J. M. Moura, and P. Vander-
gheynst, “Graph signal processing: Overview, challenges, and
applications,” Proc. IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

7472 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

[37] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolu-
tional networks for skeleton-based action recognition,” in Proc.
AAAI Conf. Artif. Intell., 2018, pp. 7444–7452.

[38] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 31st Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 1025–1035.

[39] V. N. Ioannidis, A. G. Marques, and G. B. Giannakis, “A recurrent
graph neural network for multi-relational data,” in Proc. 44th
IEEE Int. Conf. Acoust. Speech Signal Process., 2019, pp. 8157–8161.

[40] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman, “Invariant
and equivariant graph networks,” in Proc. Int. Conf. Learn. Repre-
sentations, 2019.

[41] R. Levie, E. Isufi, andG.Kutyniok, “On the transferability of spectral
graph filters,” in Proc. IEEE 13th Int. Conf. Sampling Theory Appl.,
2019, pp. 1–5.

[42] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph
neural networks,” 2019, arXiv:1905.04497v2.

[43] F. Gama, G. Leus, A. G. Marques, and A. Ribeiro, “Convolutional
neural networks via node-varying graph filters,” in Proc. IEEE
Data Sci. Workshop, 2018, pp. 1–5.

[44] A. Sandyhaila and J. M. F. Moura, “Discrete signal processing on
graphs: Frequency analysis,” IEEE Trans. Signal Process., vol. 62,
no. 12, pp. 3042–3054, Jun. 2014.

[45] S. Liu and G. Trenkler, “Hadamard, Khatri-Rao, Kronecker and
other matrix products,” Int. J. Inf. Syst. Sci., vol. 4, no. 1, pp. 160–177,
2008.

[46] N. A. Heckert and J. J. Filliben, “Exploratory data analysis,” in
NIST/SEMATECH E-Handbook of Statistical Methods, Gaithersburg,
MD, USA: NIST, 2003, ch. 1.

[47] L. N. Trefethen, Approximation Theory and Approximation Practice,
Extended ed. Philadelphia, PA, USA: SIAM, 2019.

[48] J. Liu, E. Isufi, and G. Leus, “Filter design for autoregressive mov-
ing average graph filters,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 5, no. 1, pp. 47–60, Mar. 2019.

[49] E. Isufi, A. Loukas, and G. Leus, “Autoregressive moving average
graph filtering: A stable distributed implementation,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., 2017, pp. 4119–4123.

[50] F.M. Bianchi, D. Grattarola, C. Alippi, andL. Livi, “Graph neural net-
workswith convolutional ARMAfilters,” 2019, arXiv:1901.01343v5.

[51] W. A. S. Wijesinghe and Q. Wang, “DFNets: Spectral CNNs for
graphs with feedback-looped filters,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2019, pp. 6007–6018.

[52] L. Ruiz, F. Gama, and A. Ribeiro, “Gated graph recurrent neural
networks,” IEEE Trans. Signal Process., vol. 68, pp. 6303–6318, 2020.

[53] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 399–406.

[54] D. P. Kingma and J. L. Ba, “ADAM: A method for stochastic opti-
mization,” inProc. 3rd Int. Conf. Learn. Representations, 2015, pp. 1–15.

[55] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selec-
tion for bandlimited graph signals using graph spectral proxies,”
IEEE Trans. Signal Process., vol. 64, no. 14, pp. 3775–3789, Jul. 2016.

[56] J. McAuley and J. Leskovec, “Learning to discover social circles in
Ego networks,” in Proc. 26th Conf. Neural Inf. Process. Syst., 2012,
pp. 539–547.

[57] S. Segarra, M. Eisen, and A. Ribeiro, “Authorship attribution
through function word adjacency networks,” IEEE Trans. Signal
Process., vol. 63, no. 20, pp. 5464–5478, Oct. 2015.

[58] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History
and context,” ACM Trans. Interactive Intell. Syst., vol. 5, no. 4,
pp. 1–19, 2015.

[59] L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro, “Invariance-pre-
serving localized activation functions for graph neural networks,”
IEEETrans. Signal Process., vol. 68, no. 68, pp. 127–141,Nov. 25, 2019.

[60] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman,
“Provably powerful graph networks,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2019, pp. 2156–2167.

[61] C. Morris et al., “Weisfeiler and Leman go neural: Higher-order
graph neural networks,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 4602–4609.

[62] R. Levie, W. Huang, L. Bucci, M. M. Bronstein, and G. Kutyniok,
“Transferability of spectral graph convolutional neural networks,” ,
2019, arXiv:1907.12972.

[63] A. Banerjee, A. G. Chandrasekhar, E. Duflo, andM.O. Jackson, “The
diffusion of microfinance,” Science, vol. 341, no. 6144, Jul. 2013,
Art no. 1 236498.

Elvin Isufi received the MSc (cum laude) degree
from the University of Perugia, Perugia, Italy, in
2014, and the PhD degree from the Delft University
of Technology, Delft, The Netherlands, in 2019. He
is currently an assistant professor with theMultime-
dia Computing Group, Delft University of Technol-
ogy. Prior to that, he was a postdoctoral researcher
with the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadel-
phia, Pennsylvania. His research interests include
intersection of signal processing, mathematical

modeling, machine learning, and network theory. He has received paper
awards at DSLW2021 andCAMSAP 2017.

Fernando Gama received the electronic engineer
degree from the University of Buenos Aires, Argen-
tina, in 2013, the MA degree in statistics from the
Wharton School, University of Pennsylvania, in
2017, and the PhD degree in electrical and sys-
tems engineering from the University of Pennsylva-
nia, Philadelphia, Pennsylvania, in 2020. He is
currently a postdoctoral research fellow with the
Electrical and Computer Engineering Department,
Rice University. He has been a visiting researcher
with TUDelft, TheNetherlands, in 2017, a research

intern with Facebook Artificial Intelligence Research, Montreal, Canada, in
2018, and a postdoctoral scholar with UC Berkeley in 2020-2021. His
research interests include the field of information processing and machine
learning over network data. He has been awarded a Fulbright scholarship
for international students and he has received a Best Student Paper Award
at EUSIPCO2019.

Alejandro Ribeiro received the BSc degree in
electrical engineering from the Universidad de la
Republica Oriental del Uruguay, Montevideo, Uru-
guay, in 1998, and the MSc and PhD degrees in
electrical engineering from the Department of Elec-
trical and Computer Engineering, University of Min-
nesota,Minneapolis, Minnesota, in 2005 and 2007,
respectively. He joined the University of Pennsylva-
nia (Penn), Philadelphia, in 2008 where he is
currently professor of electrical and systems engi-
neering. His research interests include the applica-

tions of statistical signal processing to the study of networks and networked
phenomena. His focus is on structured representations of networked data
structures, graph signal processing, network optimization, robot teams,
and networked control. He received an Outstanding Research Award from
Intel in 2019, the 2014 O. Hugo Schuck Best Paper Award, and paper
awards at ICASSP 2020, EUSIPCO 2019, CDC 2017, 2016 SSP Work-
shop, 2016 SAM Workshop, 2015 Asilomar SSC Conference, ACC 2013,
ICASSP 2006, and ICASSP 2005. His teaching has been recognized with
the 2017 Lindback Award for distinguished teaching and the 2012 S. Reid
Warren, Jr. Award presented by Penn’s undergraduate student body for
outstanding teaching. He is a Fulbright scholar class of 2003 and a Penn
Fellow class of 2015.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ISUFI ETAL.: EDGENETS: EDGE VARYING GRAPH NEURAL NETWORKS 7473

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:01:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

