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Extracting Coastal Water Depths from Multi-Temporal
Sentinel-2 Images Using Convolutional Neural Networks

Yustisi Lumban-Gaola,b, Ken Arroyo Ohoria, and Ravi Petersa

aFaculty of Architecture and the Built Environment, Delft University of Technology, Delft,
Netherlands; bResearch Organization for Earth and Maritime, National Research and Innovation
Agency, Cibinong, Indonesia

ABSTRACT
Satellite-Derived Bathymetry (SDB) can be calculated using
analytical or empirical approaches. Analytical approaches
require several water properties and assumptions, which
might not be known. Empirical approaches rely on the linear
relationship between reflectances and in-situ depths, but the
relationship may not be entirely linear due to bottom type
variation, water column effect, and noise. Machine learning
approaches have been used to address nonlinearity, but those
treat pixels independently, while adjacent pixels are spatially
correlated in depth. Convolutional Neural Networks (CNN) can
detect this characteristic of the local connectivity. Therefore,
this paper conducts a study of SDB using CNN and compares
the accuracies between different areas and different amounts
of training data, i.e., single and multi-temporal images.
Furthermore, this paper discusses the accuracies of SDB when
a pre-trained CNN model from one or a combination of mul-
tiple locations is applied to a new location. The results show
that the accuracy of SDB using the CNN method outperforms
existing works with other methods. Multi-temporal images
enhance the variety in the training data and improve the CNN
accuracy. SDB computation using the pre-trained model
shows several limitations at particular depths or when water
conditions differ.
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Introduction

Shallow water depth information is essential to understand the dynamics of
the water bed contour characteristics. This data is essential for coastal man-
agement and research, including nautical chart production for safe naviga-
tion, coastal spatial planning, onshore buildings and ports construction
planning, fishing industry, and coastal disaster mitigation. Water depth
data can be obtained through a bathymetric survey. However, traditional
survey methods, such as single/multi-beam echo sounding (S/MBES), have

� 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction
in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

CONTACT Yustisi Lumban-Gaol yustisiardhitasari@gmail.com Jl. Raya Bogor Km. 47 Cibinong, Indonesia.

MARINE GEODESY
2022, VOL. 45, NO. 6, 615–644
https://doi.org/10.1080/01490419.2022.2091696

http://crossmark.crossref.org/dialog/?doi=10.1080/01490419.2022.2091696&domain=pdf&date_stamp=2022-10-07
https://doi.org/10.1080/01490419.2022.2091696
http://www.tandfonline.com


high operational costs and require a long measurement time, and the sur-
vey vessels cannot reach shallow water areas. The vessels’ incapability to
measure very shallow water depth, around 5m below sea level, will cause
data gaps along the shoreline area. While airborne LiDAR bathymetry
could deal with this issue and produce accurate water depth data, the sur-
vey plan must consider numerous factors, including the weather for flying,
air traffic control, waves, tides, ground control accessibility, turbidity, and
seafloor type (Quadros 2016). Not accounting for these factors could lead
to errors or even the inability to capture measurements in a particular area.
Also, the operational cost is very high, so measurements using this method
are still infrequent in large areas.
Since those survey methods are inefficient in measuring large water areas,

especially shallow water, optical remote sensing images are a promising alter-
native data source for extracting water depth information. The availability of
satellite imagery worldwide with different spatial and temporal resolution
datasets makes it popular in various applications, including bathymetric
modeling. Satellite-Derived Bathymetry (SDB) is a way to model water depth
in shallow water areas using multispectral imagery. The basic principle of
SDB is based on the attenuation of light in the water column. The light pen-
etrates the water column and interacts with the water bed before the signal
returns to the sensor. Once the light touches the water bed, the bottom
reflectance value can be obtained from satellite images after removing other
components in the atmosphere, water surface, and water column. The bot-
tom reflectance is then used to extract water depth values.
SDB has efficiently filled data gaps with the survey method based on

echo sounding. SDB is also a low-cost technique since remote sensing
images are used instead of field surveys. It has few environmental impacts
and risks to personnel or equipment since the model can be derived with-
out directly accessing seawater areas. Also, water depth information can be
generated relatively quickly compared to in-situ surveys. Because of this,
many researchers continuously study SDB to improve the accuracy of the
model and make it more efficient.
Since its initial development, many algorithms have been developed to

improve the accuracy of SDB. These algorithms can be classified as analytical
and empirical. The analytical methods (such as Polcyn, Brown, and Sattinger
(1970), Lyzenga (1978), Favoretto et al. (2017), and Casal et al. (2020)), known
as the radiative transfer model, are based on light penetration in water. It
requires several optical properties of a shallow water region, such as the
attenuation coefficient, backscatter coefficient, coefficient of suspended and dis-
solved materials, and bottom reflectance (Hengel and Spitzer 1991; Gao 2009).
In comparison, the empirical methods find the relationship between

reflected radiation and in-situ depth empirically without explicitly modeling
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light transmission in water. The empirical methods assume that the total
water reflectance is more correlated with depth than water column inter-
action. The linear transform method (Lyzenga 1985) and the ratio trans-
form method (Stumpf, Holderied, and Sinclair 2003) are considered the
former empirical algorithms.
Afterward, much research on SDB applied the linear and ratio transform

methods, e.g., Hamylton, Hedley, and Beaman (2015), Kabiri (2017),
Traganos et al. (2018), Caballero and Stumpf (2019), to different locations.
Some modified the Lyzenga method (Lyzenga 1985) to improve its accuracy
(Lyzenga, Malinas, and Tanis 2006; Kanno, Koibuchi, and Isobe 2011;
Kanno and Tanaka 2012; Kanno et al. 2013). Kanno, Koibuchi, and Isobe
(2011) stated that the improved methods had better accuracy when suffi-
cient training data were available. There is no accuracy improvement when
the data is limited. Others used different regression techniques to address
the spatial heterogeneity into the model, such as Geographically Weighted
Regression (Vinayaraj, Raghavan, and Masumoto 2016). However, the cali-
bration process for this method is computationally extensive and over-
shooting/undershooting of the prediction becomes a major problem since
the model depends on the radius used to compute the coefficients of
regression. A larger radius will produce a more general prediction with
fewer variations than the smaller one. Consequently, this method is limited
by the number of data points or areas.
The regression techniques mentioned above only focus on the linear rela-

tionship between the ratio of water-leaving radiance in multispectral bands
and depth. However, the variation of bottom types and noise in the satellite
images cause the relationship to be not exactly linear. Consequently, some
studies have started implementing machine learning for SDB to consider
the nonlinear relationship. Machine learning is known to be able to learn a
complicated relationship between input and target variables (Auret and
Aldrich 2012; Sarker 2021). In the SDB case, machine learning needs to
learn the relationship between water reflectance and depth to fit the model.
In the last five years, machine learning approaches such as Random

Forest (Manessa et al. 2016; Sagawa et al. 2019; Tonion et al. 2020; Mateo-
P�erez et al. 2021), Support Vector Machine (Misra et al. 2018; Manessa
et al. 2018; Tonion et al. 2020; Mateo-P�erez et al. 2020), and Neural
Networks (Liu et al. 2018; X. M. Li et al. 2020; Kaloop et al. 2022) have
been used and have shown promising results. However, their spatial extent
is limited to locations with in-situ coverage of depths acquired through
other methods. Those methods require tuning several parameters and gen-
erating many handcrafted features to improve the algorithm. Also, they do
not consider the spatial component. In SDB, spatial correlation influences
the model results, assuming that pixels close together have a particular
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reflectance pattern linked to the depth. This characteristic of local connect-
ivity can be captured by Convolutional Neural Networks (CNN). Several
attempts to use CNN for bathymetry have been performed by Wilson et al.
(2020); Mandlburger et al. (2021) in areas of groundwater (lakes). Ai et al.
(2020) applied CNN to retrieve water depth in the shallow marine area
from restricted remote sensing images using a single convolutional layer.
However, the data may not be representative enough since it only covered
two neighboring areas with clean conditions.
Most of the developed algorithms are based on the empirical method

since it does not require as many physical parameters about water as the
analytical method. Nevertheless, the training process still requires in-situ
data to determine model coefficients that represent the relationship
between reflectance and depth. That can be a major limitation of SDB since
shallow water in-situ data is not available for many areas. Many studies
focus on improving the model’s accuracy but still require in-situ coverage.
J. Li et al. (2021) provide a global shallow-water bathymetry that did not
require in-situ depth in the computation but used a fixed chlorophyll-a
concentration as a parameter to compute the water depth. Meanwhile, the
accuracy of water depth predictions is sensitive to chlorophyll concentra-
tion, especially for areas shallower than 15m (Kerr and Purkis 2018). On
the other hand, it is now possible to use satellite-based LiDAR from
ICESat-2 to get global training data (Parrish et al. 2019; Y. Li et al. 2019;
Ma et al. 2020). However, another data processing algorithm is required to
obtain water depth from ICESat-2 data since it does not provide shallow
water depth directly.
As an alternative, this paper aims to study the transferability of a pre-

trained CNN model when it is reused outside in-situ coverage, so creating
SDB models without in-situ data has become possible. This paper first dis-
cusses the quality of SDB results using the CNN approach in different
coastal areas before applying a pre-trained CNN model from one location
to a new location.
The remainder of this paper is organized as follows. Dataset, study areas,

and methods are described in Section “Materials and methods”. Section
“Overview of experiments” explains the experiments. All results and discus-
sions are provided in Section “Results and discussion”. Finally, Section
“Conclusions” concludes this paper.

Materials and methods

Data

This study uses Sentinel-2 Level-2A collection images, which are atmos-
pherically corrected. In-situ bathymetry data from LiDAR and MBES were
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used. They should meet the IHO Standards for Hydrographic Surveys (S-
44) 5th Edition (International Hydrographic Organization 2008) for Orders
special or 1, with the maximum allowable Total Vertical Uncertainty
(TVU) at the 95% confidence level for a specific depth, which is given by:

TVU ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðb�dÞ2

q
(1)

where a is the portion of the uncertainty that does not vary with depth,
b is a constant, and d is the depth. The values for a and b are defined in
the standard depending on the Order. For Order special, a¼ 0.25m and
b¼ 0.0075; while for Order 1a, a¼ 0.5m and b¼ 0.013. The Order spe-
cial is defined as areas where under keel clearance, the distance between
the lowest point of the ship’s hull or keel and the sea floor, is critical,
e.g., harbors, berthing areas, and shipping channels. Meanwhile, Order
1a is for areas where under keel clearance is less critical, but features
that are a concern to shipping may exist. Order 1a is limited to water
shallower than 100m. Besides these Orders, IHO specifies Order 1 b and
Order 2. Order 1 b is similar to Order 1a, but the under keel clearance is
not an issue here. Meanwhile, Order 2 is intended for areas deeper
than 100m.

Study area

For this study, several areas (see Figure 1) were selected considering the
availability of datasets that have mostly clear water conditions. The water
conditions were measured visually and by looking for spectral values that
differed according to the depth. Six Areas of Interest (AOIs) are scattered
around the Puerto Rico’s main island, southern Florida, and the Oahu
island. Puerto Rico’s main island is one of the locations with various
coastal water characteristics. The south part of the island faces the
Caribbean Sea, famous for its clear water, while the northern coast faces
the North Atlantic Ocean. This situation makes the northern areas gener-
ally have bigger waves than the southern. This study used two areas in the
south of the island and one in the north. The following study area is in
southern Florida, which has relatively clear water that is shallower than the
Puerto Rico areas. Geographically, the area is surrounded by the Bahamas
and the Gulf of Mexico. These first four areas were used to analyze CNN
accuracies in different cases, i.e., coastal water conditions. Meanwhile, the
last two areas acted as test locations for the previous results. They are
located on the Oahu island, Hawaii, between the North and South Pacific
Oceans. Oahu areas generally have a high clarity level with the same depth
range as Puerto Rico’s coastal waters.
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To introduce the character of the coastal waters and in-situ depth data
source, Figure 2 presents the multispectral and depth imagery visualization,
while Table 1 provides the general overview of each study area. The turbid-
ity levels are defined based on the RGB color composite image and litera-
ture studies. The waters are generally clear, except near the shore in AOI-1
and AOI-2 due to river plumes (Bejarano and Appeldoorn 2013), or beach
wave resuspension strokes underwater sediments as in AOI-4 (Brice~no and
Boyer 2015). Both AOI-3 and AOI-5 are port areas that contain various
pollutants, e.g., oil, grease, ammonia, suspended solids, pathogens, and low

Figure 1. Distribution of study areas. Source: Map data from OpenStreetMap.1

1https://www.openstreetmap.org/copyright
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dissolved oxygen, as an impact of industrial operations, wastewater treat-
ment systems, urban runoff, and sewers (Puerto Rico Environmental
Quality Board (PREQB)) 2016; The Hawaii State Department of Health
2018). A full description of each study area is available in Lumban-Gaol
(2021). Some areas have been studied before, such as AOI-4, AOI-5, and
AOI-6. AOI-4 has been studied by Caballero and Stumpf (2019) with larger
extents, covering the northern and eastern regions. The previous study

Figure 2. Six AOIs used in this study: AOI-1 (a), AOI-2 (b), AOI-3 (c), AOI-4 (d), AOI-5 (e) and
AOI-6 (f). The left pictures show Sentinel-2 Level-2A image, and others present the in-situ depth
data from LiDAR or MBES measurements.
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used the ratio transform method to extract shallow water depths. AOI-5
has been studied by Sagawa et al. (2019) using another machine learning
technique, which is Random Forest, and Landsat-8 images. AOI-6 has been
studied by Lyzenga, Malinas, and Tanis (2006) using an IKONOS image
and a simplified radiative transfer model, where the parameters were
empirically derived based on a comparison between multispectral and
measured depth values.

Data acquisition

The Sentinel-2 Level-2A datasets are open and accessible through the
Copernicus Open Access Hub.2 In order to select appropriate images, this
study uses the GEE3 platform to filter the Sentinel-2 Level-2A image collec-
tion based on the boundary extent of each study area and cloud pixel per-
centage. Additionally, the acquisition date is used to obtain multi-temporal
images, i.e., one image per month throughout the year of 2019. The image
collection is then sorted based on its clouds percentage, and the least
cloudy image of each month is downloaded from the Copernicus database.
The availability of LiDAR and MBES data can be checked through the

National Oceanic and Atmospheric Administration (NOAA) Bathymetric
Data Viewer4. The MBES datasets are downloaded from the same source,
while the LiDAR data is collected from the NOAA Data Access Viewer5.
The LiDAR data is available as a raster or point cloud. When available, this

Table 1. An overview of coastal water conditions in each study area.
Area Turbidity Benthic habitat

AOI-1: Ponce Low – medium Sand, patch reefs, seagrass, algae, coral rock (Appeldoorn
et al. 2016; National Oceanic and Atmospheric
Administration (NOAA)) 2017)

AOI-2: Lajas Low – medium Sand, reefs with high coral diversity and density,
seagrass, algae, rock/boulder (Bauer et al. 2012;
Larsen and Webb 2009; National Oceanic and
Atmospheric Administration (NOAA)) 2017)

AOI-3: San Juan High Sand, mud, pollutants, seagrass meadows, reefs and
coral rocks outside the ports (Puerto Rico
Environmental Quality Board (PREQB)) 2016)

AOI-4: Key West Low – high Sand, mud, seagrass, algae, live coral (National Centers
for Coastal Ocean Science, n.d.)

AOI-5: Makua Low Sand, coral reef, rock/boulder (Hawaii State Office of
Planning, n.d.; University of Hawaii 2013)

AOI-6: Honolulu Low – medium Sand, mud, algae, reef, pavement (University of
Hawaii 2013)

2https://scihub.copernicus.eu/
3https://earthengine.google.com/
4https://www.ncei.noaa.gov/maps/bathymetry/
5https://coast.noaa.gov/dataviewer/
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research uses the LiDAR image products where the depths are delivered
with 1m resolution. If the LiDAR raster is not available, the point cloud is
downloaded. The MBES datasets are delivered as raster with a spatial reso-
lution of 32m. The LiDAR and MBES images are available in AOI-1 and
AOI-3, both used in these areas. For AOI-2 and AOI-3, only LiDAR raster
products are available. Meanwhile, AOI-5 and AOI-6 use LiDAR point
cloud instead of an image as the data source for in-situ depths. In addition,
NOAA also provides tide predictions6 that are used for in-situ depth cor-
rection. Tidal data of each location is collected following the Sentinel-2
images’ sensing date and time.

Data preprocessing

The LiDAR and MBES data have different spatial resolutions, 1m and
32m, respectively. Meanwhile, the spatial resolution of Sentinel-2 images is
10m. Thus, both in-situ datasets were resampled to 10m using nearest-
neighbor interpolation with the default parameters in the QGIS7 software.
Afterwards, both images were merged using the GDAL8 merge algorithm
available in QGIS. It merges multiple rasters based on input arrangements
where the last image overwrites the earlier ones in overlapping areas. In
this case, the MBES data was set as the first image and the LiDAR as the
last, so LiDAR depths were assigned as output when they overlap since
these are considered more accurate. In order to synchronize disparate times
between in-situ and satellite images, a tidal correction was applied to the
MBES and LiDAR bathymetry data depending on the satellite image sens-
ing time and the vertical datum. The datasets have two kinds of vertical
datum: Mean Lower Low Water (MLLW) and Mean Sea Level (MSL).
MLLW is the mean of the lowest tide while MSL is the average hourly
height; both are recorded for 19 years. For each area, the closest tide station
was selected.
A different preprocessing step was applied to AOI-5 and AOI-6 in Oahu

since the LiDAR point cloud is the available data source instead of a
LiDAR-derived raster. The original point cloud covers a wide range of ele-
vation. In order to reduce the computational load when converting the
data, the point cloud was filtered using LAStools9 to a specific range, from
4m to �25m, since this research focuses on up to 20m depth. The point
cloud was converted into a raster using PDAL10 with 10m spatial

6https://tidesandcurrents.noaa.gov/
7https://www.qgis.org
8https://gdal.org
9https://rapidlasso.com/lastools/
10https://pdal.io/
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resolution as output. PDAL provides several statistical methods to assign
an output pixel.
In this study, the mean value of all points within the default radius,

which is resolution� ffiffiffi
2

p
is used. The LiDAR point cloud still refers to the

ellipsoid; consequently, the output image should be corrected to adjust the
elevation to refer to the MSL datum. The product metadata provides this
correction value, which is �0.601m.

Convolutional neural networks

CNN is a promising approach in machine learning when applied to image
analysis. The regular Neural Networks (NN) do not scale well to full
images because the networks end up with an enormous number of param-
eter weights. For example, a small image with dimensions of 200x200x3
needs 120,000 weights to train in a simple NN. Therefore, the alternative
approach is to use a convolution layer. Instead of having a fully connected
layer where every input neuron is connected to all the hidden neurons, a
neuron only is connected to a specific region of interest (usually nearby
pixels) in the layer before it. By doing this, the number of connections is
enormously reduced. A typical CNN architecture uses pixel values as the
input layer, followed by a combination of convolutional layers, activation
functions, pooling layers, and fully connected layers.
Wang et al. (2021) provide an interactive tool11 to visualize how every

layer in CNN works. It describes the basic CNN architecture: convolve
operation, Rectified Linear Unit (ReLU) function, and regularization. A
general overview of some components in CNN architecture is dis-
cussed here.
Input layer. The input layer takes an image with a particular dimension:

width, height, and depth. The depth is the number of channels used
to train.
Convolutional layer. The convolutional layer applies a convolutional fil-

ter that translates only a small region of every pixel and its neighborhood.
The computation is based on a dot product between the filter weights and
a small region connected to the input volume. The output has the same
width and height as the input, and the depth refers to the number of filters
used. A convolutional layer requires a set of parameters, such as the num-
ber of filters, filter extent (dimensions to convolve), stride (how many steps
to skip), and padding (expanding the volume with zeroes to keep the ori-
ginal volume).

11https://poloclub.github.io/cnn-explainer/
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Activation function. The activations introduce nonlinear transformation
to the network. There are several activations available, but the most com-
mon function is ReLU. It applies a function f xð Þ ¼ maxð0, xÞ to each pixel
with a threshold of zero. The minimum value is zero, so negative values
are converted to zero and then deactivated. Activation is also needed at the
end of the network to compute the final output. For classification tasks, a
sigmoid is usually used. It computes the probability of a pixel belonging to
a certain class. Meanwhile, linear activation is employed to obtain continu-
ous values in the regression task.
Fully connected layer. A fully connected layer works as a simple NN

where each neuron has a connection to all neurons in the previous layer.
The dimensions are 1x1xN, where N is the number of desired outputs,
e.g., the number of classes.
Model regularization. In addition to previous architectures, dropout and

batch normalization may be added to perform regularization to avoid over-
fitting. The dropout layer randomly omits a certain proportion of neurons.
Batch normalization reduces the internal covariate shift due to the random-
ness in the input data as well as the parameter initialization. Adding batch
normalization and dropout layer into the CNN network may produce a sta-
bler model.

CNN data preparation
This study applied raster alignment to depths and multispectral images to
perfectly align both rasters. Then, sub-images with 9� 9 window size were
extracted from the data. Figure 3a provides an example of the sub-images
extraction for a window size of nine and stride of three. As we can see, the
amount of training data was reduced by striding the image pixels. On the

Figure 3. Sub-images extraction of multispectral images and depth. The pixels illustrate the
surface reflectance of Sentinel-2, the white boxes are the window size of 9� 9, and the dots
indicate the water depth values. Spectral bands of each window correspond to the water depth
value at the sub-image center.
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other hand, Figure 3b illustrates the sub-images extraction, without strid-
ing, that is used to calculate shallow water depth on each white dot as the
final output.
Furthermore, the LiDAR bathymetry still captures the elevation on the

land, so this study filtered the elevation to include only areas up to 2m
above sea level in the sub-images. At the end of this stage, the sub-images
in Figure 3a were randomly separated into training and testing sets based
on the total number of sub-images, using the numpy:random:choice func-
tion under the NumPy module. The proportion of the training, including
validation, and testing sets was 80% and 20%, respectively.

CNN architecture
This study used a CNN architecture that has been studied previously in
Lumban-Gaol, Ohori, and Peters (2021). The architecture differs from Ai
et al. (2020) because the previous experiment indicates that training cannot
converge with a single convolutional layer. The study concluded that this
architecture is considered suitable for the SDB task: triple convolutional
layers with 3� 3 kernel size and batch normalization, a window size of
9� 9, RGBNSS channel, ReLU activation at the convolution layers, linear
activation at the output layer, and dropout layer. In order to optimize the
model while training, the default loss function, which is the Mean Square
Error (MSE), is used. The function computes the mean of squares of errors
between measured and predicted depths. The squaring results in a higher
error when there is a large deviation between the predicted and ground truth
values. The optimizer will try to minimize that error to improve the model
in each iteration. After a particular epoch, the MSE will stop improving. The
training can be stopped automatically with an early stopping callback, using
the MSE value to monitor the loss and a certain threshold used to stop the
training. Meanwhile, this project uses a fixed 300 epochs total to monitor
the training. Besides the loss function, the MSE and Mean Absolute Error
(MAE) values are used as the metric to evaluate the training results by mon-
itoring the validation accuracy on each epoch. Based on the preliminary
experiments, the validation accuracy in the training process was optimal
with a learning rate of 0.0001, batch size of 512, and a dropout rate of 0.3.
Thus, these parameters were used as the default setting in this research.

Result assessment

The assessment of the SDB model from CNN is carried out by comparing
the predicted and in-situ depth from the test data. We use a standard
accuracy assessment by estimating the RMSE (Equation 2) to measure the
error and the coefficient of determination R2 (Equation 3) to measure the
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variance of the model and the ground truth values. An additional metric,
the Median Absolute Error (MedAE, Equation 4), is used to compare the
existing related work. In those equations, dref i is measured depth at pixel i,
dpredi is predicted value at the same pixel as dref i , and dref is the mean of
in-situ data.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðdref i�dprediÞ2
n

s
(2)

R2 ¼ 1�
Pn

i¼1 ðdref i� dprediÞ2Pn
i¼1 ðdref i�dref Þ2

(3)

MedAE ¼ median dref i � dpredi
�� �� (4)

Overview of experiments

SDB comparison in different locations from a single image. The CNN
architecture that has been defined is applied to four study areas, which are
Ponce (AOI-1), Lajas (AOI-2), San Juan (AOI-3), and Key West (AOI- 4).
These areas represent three different cases. AOI-2 portrays a neighbor area
of AOI-1, which is located in the same image as Ponce. AOI-3 serves as a
location in the same coastal waters as AOI-1 and AOI-2, which is on
Puerto Rico’s main island but has a different water condition and a differ-
ent image. AOI-4 represents coastal waters far from the previous areas and
has different water conditions.
SDB using multi-temporal images. In general, the quality of the

machine learning result depends on the quality of the input datasets used
for training. The quality includes the variation of the data to obtain a gen-
eralized model. When the training data represents a given study area, it is
likely to produce an accurate and reliable SDB model. This experiment
aims to improve the variety of datasets using a time series of images in
each location. With suitable cloud conditions, this study collects one image
per month in 2019 at each location. Sub-images from each image are com-
bined to train the model. Then, the trained model is applied to the multi-
temporal images. The results are compared to the previous results from a
single image on the same acquisition date.
Transfer model analysis. This experiment introduces two new datasets:

Makua (AOI-5) and Honolulu (AOI-6). They are located on the Oahu
island and set as test locations to test various pre-trained models in other
locations. Beforehand, individual training in each area is carried out. Then,
each pre-trained model from each AOI is reused in these new locations.
Additionally, several combinations of training data between AOI-1 to AOI-
4 are trained and tested in AOI-5 and AOI-6.
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Results and discussion

SDB in different locations using a single image

The same CNN architecture was applied to several areas in the same
coastal waters, i.e., AOI-1, AOI-2, and AOI-3, and in a different area, i.e.,
AOI-4. Table 2 presents the accuracy of each location. Note that AOI-1 to
AOI-3 have the same depth range (0-20m), while AOI-4 has a shallower
range of 0-10m. The RMSE values within the same depth range (0-10m)
in AOI-1, AOI-2, and AOI-3 are 0.91m, 1.61m, and 2.33m, respectively.
Additionally, Table 3 depicts the RMSE values for each increment of 5m,
indicating that the accuracy tends to decrease as the depth increases, except
at 10-15m.
A more detailed assessment is provided in Figure 4, where the RMSE is

calculated in increments of 1m in depth, and in Figures 5–8. The error
trend per 1m depth range between different locations is different. Overall,
AOI-3 produces a more significant error compared to other locations.
Many factors presumably contribute to these errors, including the light
penetration rates concerning depth and turbidity levels.
The profile section a-b of AOI-1 (Figure 5) indicates that the SDB pro-

duces a good fit for the depths shallower than 14m. SDB tends to fit
poorer in the deeper ranges than in shallow depths. Meanwhile, the profile
section c-d describes the trend over the area shallower than 14m with land
present in between. The cross-section illustrates a good fit in the SDB
model, but improvements are still needed to detect the coastline area accur-
ately. In AOI-2, Figure 6a and b shows an inaccurate SDB result compared
to Figure 6c and d, which has the same depth range. It may occur when
profiles a-b and c-d have different water characteristics, and the training
data is not sufficient to represent areas in profile section a-b.
Figure 7 shows two cross-sections in the San Juan harbor area. The first

cross profile (Figure 7a and b) compares different SDB results and in-situ
depths from the east around the nearshore area, close to the estuary, to the
west. It shows that the errors occur almost at all depth levels, including the
very shallow area (0-5m) where the RMSE of SDB prediction only achieves
2.06m with an R2 of 0.11. Figure 7c and d shows a similar trend where the
channel is not identified well in the SDB trained. In general, the SDB
results predict shallower depths than the references. Besides the noisier
reflectance due to sediments or pollutants in the turbid water column, the

Table 2. Accuracy assessment of SDB using CNN trained in AOI-1, AOI-2, AOI-3, and AOI-4.
AOI RMSE (m) R2

AOI-1 1.22 0.95
AOI-2 1.63 0.93
AOI-3 3.03 0.55
AOI-4 0.73 0.94
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nearshore area, especially around the estuary, may be characterized/suffer
from silting due to suspended solids from the river stream. This result indi-
cates that SDB computation encounters difficulty in more turbid waters
since the reflectance values from the bottom are obscured by the particles
that cause turbidity.
Figure 8 provides the visualization of the SDB results with the default

setting, which indicates a good prediction considering the estuary and
dredging area are visible in the SDB output. Previous research by Caballero
and Stumpf (2019) used the same area but to a more considerable extent.
The study used LiDAR bathymetry acquired in 2016, having the same
depth range as this project, and an image from Sentinel-2 Level-1C cap-
tured on 8 February 2017. The SDB was generated based on the ratio

Table 3. RMSE values per 5m depth increment using CNN trained in AOI-1, AOI-2, AOI-3, and
AOI-4.

AOI

RMSE (m)

0-5 m 5-10 m 10-15 m 15-20 m

AOI-1 0.71 0.99 1.60 1.35
AOI-2 0.66 2.03 2.22 1.77
AOI-3 1.84 2.5 5.31 3.03
AOI-4 0.57 0.89 – –

Figure 4. SDB accuracy per 1m depth range using CNN trained in AOI-1 (orange), AOI-2 (grey),
AOI-3 (yellow), and AOI-4 (blue).

Figure 5. AOI-1 SDB model (left) and cross profiles (right). The cross-section compares the SDB
model using CNN trained (blue) and in-situ depth (green).
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transform method, and the accuracy was evaluated in terms of MedAE,
which is 0.39m. Using the same accuracy metric, the SDB using CNN in
this research yields a better MedAE value of 0.31m.
The light penetration rate in water for each wavelength is different. Red,

green, and blue are visible, so it is possible to visually distinguish different

Figure 6. AOI-2 SDB model (left) and cross profiles (right). The cross-section compares the SDB
model using CNN trained (blue) and in-situ depth (green).

Figure 7. AOI-3 SDB model (left) and cross profiles (right). The cross-section compares the SDB
model using CNN trained (blue) and in-situ depth (green).

Figure 8. AOI-4 SDB model (left) and cross profiles (right). The cross-section compares the SDB
model using CNN trained (blue) and in-situ depth (green).

630 Y. LUMBAN-GAOL ET AL.



backscatter or absorption rates based on their natural color composite. For
example, water color appears blue when red and green are mostly absorbed
or white when they are mostly backscattered. In AOI-3, San Juan has a
large port with different and more turbid water conditions than AOI-1 and
AOI-2. This condition causes different variations in reflectance, so the rela-
tionship with depth is less clear. The reflectance values in AOI-3 are gener-
ally higher and noisier than AOI-1 and AOI-2 because the particles in the
water column interfere with the light spectrum in all bands and cause a
more substantial backscattering effect in the water column. Meanwhile,
AOI-4 has a different water condition than the study areas in Puerto Rico,
where the pixels are more reflective, especially in the 0-5m depth range,
but more absorbed as well. The reflective pixels occur due to high
nutrients, which correlate with more turbid waters than in other areas. The
absorbed pixels, which appear darker, occur where most red, NIR, and
SWIR bands are completely absorbed, so the reflectance values are almost
zero. Based on the spectral reflectance plot, AOI-4 has more extensive
reflectance ranges than other areas.

SDB using multi-temporal images

The number of multi-temporal images for each AOI is different due to the
different availability of mostly cloud-free images in every satellite image
within one year. AOI-1 and AOI-2 have complete images from January to
December 2019. Meanwhile, due to cloud cover, AOI-3 and AOI-4 do not
have suitable images in particular months.
Figure 9 compares RMSE values using single and multi-temporal images

in different locations. The accuracy improved when using multi-temporal
images in all sites, where the RMSE at AOI-3, AOI-2, AOI-4, and AOI-1
decreased by 0.67m, 0.19m, 0.17m, and 0.11m, respectively. These results
indicate that multi-temporal images enhance training data variations and
benefit in areas with more noise present in the image.

Figure 9. SDB accuracy comparison between results with a single image and multi-tem-
poral images.
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The multi-temporal images indicate a seasonal variation shown by vari-
ous image tones corresponding to seasonal change. For example, images of
Puerto Rico’s areas appear greener between October and March than in
other months. Besides that, the color is also affected by the substitution of
particles in the water column, where the images can appear dark, greenish,
or bluish in different months. Accordingly, when all bands are mostly
absorbed, the image appears darker than others. Meanwhile, when green or
blue reflect more energy than other bands, the image appears greenish or
bluish. Therefore, including several images in different seasons increases
the variety of sample data for training, thus increasing the possibility of
CNN to generalize the model.

Transfer model analysis

AOI-5 and AOI-6 represent other locations used to analyze the SDB result
when reusing a pre-trained model. They are captured in different satellite
footprints on the same acquisition date, 10 December 2019. The trained
model’s accuracy in both areas generally indicates an accurate prediction.
Specifically for AOI-5, the same area has been studied by Sagawa et al.
(2019) using another machine learning approach, i.e., Random Forest, and
Landsat-8 surface reflectance product, which is atmospherically corrected.
That study used 26 multi-temporal images from 2013 to 2018, and 9,974
data pixels were used for training. In terms of RMSE, the maximum accur-
acy was 1.24m with an R2 of 0.93. Compared to the same area, with less
training data (5,851), this study yields a better RMSE of 0.79m with an R2
of 0.98. Table 4 provides RMSE and R2 values in AOI-5 and AOI-6 using
various CNN models calculated in Section “SDB using multi-tem-
poral images”.
Figures 10–15 demonstrate prediction vs ground truth plots, SDB mod-

els, and absolute error maps in AOI-5 and AOI-6, respectively. SDB results
in AOI-5 and AOI-6 using the pre-trained models indicate discrepancy
with the in-situ depths or SDB trained. When the pre-trained model of

Table 4. SDB accuracy in AOI-5 and AOI-6 using the trained model, pre-trained model of dif-
ferent study areas, and bathymetry model from Allen Coral Atlas.

CNN model

AOI-5 AOI-6

RMSE (m) R2 RMSE (m) R2

Trained 0.79 0.98 1.34 0.94
Pre-trained on AOI-1 2.61 0.79 3.16 0.73
Pre-trained on AOI-2 2.92 0.69 2.98 0.71
Pre-trained on AOI-3 7.42 0.13 6.42 0.16
Pre-trained on AOI-4 6.84 �7.56 5.56 �4.72
Allen Coral Atlas 3.19 0.73 2.99 0.79
Sagawa et al. (2019) 1.24 0.93 – –
Lyzenga, Malinas, and Tanis (2006) – – 3.01 –

632 Y. LUMBAN-GAOL ET AL.



AOI-1 is used to build the SDB model in AOI-5, the prediction results
tend to fit the references until 15m depth (see Figure 10b). However, in
areas deeper than that, the calculated depths include significant errors
where the values are predicted to be shallower or deeper than the measured
depths. In general, the SDB models become deeper when using other pre-
trained models, except when using the pre-trained model at AOI-4, where
the result shows a completely different trend as presented in Figure 10e
with absolute error illustrated in Figure 12e. It shows that the pre-trained
model from AOI-4 cannot predict areas deeper than 10m. Moreover, errors
in Figure 11c mostly appear in deeper areas, with a sandy bottom, than in
shallow waters, with coral reefs and hardbottom, especially from the north-
ern to the middle (see Figure 12b).

Figure 10. Prediction vs reference depth plots in AOI-5 using different CNN models: trained (a);
pre-trained on AOI-1 (b); pre-trained on AOI-2 (c); pre-trained on AOI-3 (d); pre-trained on AOI-
4 (e); pre-trained on the combined AOI-1, AOI-2, and AOI-3 (f); pre-trained on the combined
AOI-1, AOI-2, and AOI-4 (g); pre-trained on the combined AOI-1, AOI-2, AOI-3, and AOI-4 (h).
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For another comparison, Figures 13 and 14 portray different SDB results
in AOI-6. As mentioned in Section “Study area”, Honolulu is another port
area, so the disturbance of reflectance due to water turbidity is more

Figure 11. LiDAR bathymetric depths (a) and SDB results in AOI-5 using different CNN models:
trained (b); pre-trained on AOI-1 (c); pre-trained on AOI-2 (d); pre-trained on AOI-3 (e); pre-
trained on AOI-4 (f); pre-trained on the combined AOI-1, AOI-2, and AOI-3 (g); pre-trained on
the combined AOI-1, AOI-2, and AOI-4 (h); pre-trained on the combined AOI-1, AOI-2, AOI-3,
and AOI-4 (i).
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substantial than in Makua. More dredged bottoms also appear in this area.
Although the result is not as accurate as AOI-5 within the same depth
range, the RMSE is better than the San Juan port. Figure 13a points out
that several depth values are predicted to be too shallow, and Figure 14a
shows that it occurs in the western channel, which is a dredge zone. The
other dredged areas also appear shallower than the measured depth. This
circumstance is similar to the San Juan area. However, even though they
share the same characteristics around the harbor, the pre-trained model
from San Juan is incompatible with the data for Honolulu, as shown in
Figures 13d, 14e, and 15d.
Additionally, the pre-trained model of AOI-4 is also unable to calculate

the SDB in AOI-6. Therefore, the pre-trained model of AOI-4 is incompat-
ible for Oahu regions as the shallow water was calculated to have deeper
values and vice versa. The fact that the pre-trained model of AOI-4 resulted
in shallower predictions at the 10-20 depth range is related to the fact that
the AOI-4 training data only covers 0-10m depths. Besides different reflect-
ance characteristics, in the case of AOI-4, the pre-trained model does not
represent the entire depth range.
Another study using the radiative transfer model in AOI-6 was per-

formed by Lyzenga, Malinas, and Tanis (2006) using an IKONOS

Figure 12. Absolute error of SDB per pixel when using different CNN models: trained (a), pre-
trained on AOI-1 (b); pre-trained on AOI-2 (c); pre-trained on AOI-3 (d); pre-trained on AOI-4
(e); pre-trained on the combined AOI-1, AOI-2, and AOI-3 (f); pre-trained on the combined AOI-
1, AOI-2, and AOI-4 (g); pre-trained on the combined AOI-1, AOI-2, AOI-3, and AOI-4 (h).
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multispectral image. With a combination of empirical and analytical meth-
ods, the study yielded an RMSE of 3.01m. In this study, the accuracy of
the SDB using the trained model is 1.34m, while the optimum accuracy
when reusing the pre-trained model from another location is 2.98m. The
simplified radiative model delivers a similar accuracy to the computed SDB
using the pre-trained CNN model, but it still requires in-situ depths within
the study area to derive the physical parameters empirically. In the case of
the transfer model of CNN, no measured depth is needed anymore so that
the SDB can be derived directly.
Additionally, we compare the transferability results in AOI-5 and AOI-6

with the global shallow-water bathymetry produced by J. Li et al. (2021).
Using the same extent as our study area, we downloaded the bathymetry

Figure 13. Prediction vs reference depth plots in AOI-6 using different CNN models: trained (a);
pre-trained on AOI-1 (b); pre-trained on AOI-2 (c); pre-trained on AOI-3 (d); pre-trained on AOI-
4 (e); pre-trained on the combined AOI-1, AOI-2, and AOI-3 (f); pre-trained on the combined
AOI-1, AOI-2, and AOI-4 (g); pre-trained on the combined AOI-1, AOI-2, AOI-3, and AOI-4 (h).
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data from the Allen Coral Atlas website12 and computed the RMSE using
the same ground truth data and depth range. The accuracies are 3.19m
and 2.99m for AOI-5 and AOI-6, respectively (see Table 4). The results

Figure 14. LiDAR bathymetric depths (a) and SDB results in AOI-6 using different CNN models:
trained (b); pre-trained on AOI-1 (c); pre-trained on AOI-2 (d); pre-trained on AOI-3 (e); pre-
trained on AOI-4 (f); pre-trained on the combined AOI-1, AOI-2, and AOI-4 (g); pre-trained on
the combined AOI-1, AOI-2, and AOI-4 (h); pre-trained on the combined AOI-1, AOI-2, AOI-3,
and AOI-4 (i).

12https://allencoralatlas.org/
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show that our method is comparable to the Allen Coral Atlas product,
even better by roughly 0.4m in AOI-5.
Nevertheless, the SDB generated using the pre-trained model has a wide

range of accuracies, which becomes a drawback since choosing which pre-
trained model to use is not easy. Extra knowledge about the coastal water
characteristics, such as chlorophyll concentration and turbidity, may help
select an appropriate pre-trained model considering similar water condi-
tions are more suitable for implementing the transfer model than a differ-
ent one. Also, it is better to keep verifying the result with the measured
depth. Our experiments show that the trained model SDB results in better
accuracy than the pre-trained model in the 1.64m � 2.13m range for the
pre-trained model of AOI-1 and AOI-2 and the 4.22m � 6.63m range for
AOI-3 and AOI-4.

Figure 15. Absolute error of SDB per pixel when using different CNN models: trained (a), pre-
trained on AOI-1 (b); pre-trained on AOI-2 (c); pre-trained on AOI-3 (d); pre-trained on AOI-4
(e); pre-trained on the combined AOI-1, AOI-2, and AOI-3 (f); pre-trained on the combined AOI-
1, AOI-2, and AOI-4 (g); pre-trained on the combined AOI-1, AOI-2, AOI-3, and AOI-4 (h).
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A similar experiment of the transfer model was performed in the central
part of the South China Sea, on a small island of 0.3 km2 named Robert
Island, where the water depth was computed using a pre-trained model
from its neighboring island named North Island (Ai et al. 2020). In terms
of Mean Absolute Error (MAE), the accuracy of the trained model in the
North Island using a ZY3 image is around 0.668m to 0.785m in different
depth ranges. The accuracy reached 0.95m on the Robert Island using the
pre-trained model. However, we cannot measure the relative performance
of the transfer model with the trained model since the study did not train
the Robert Island area.
Furthermore, this project combines training data from several locations

to produce a more generalized CNN model. The assumption is that the
combined training data will enrich the variation of reflectances concerning
different water column compositions and bottom types in different depth
ranges. Nevertheless, SDB results using several training datasets show
inaccurate outputs compared to the single data from AOI-1 or AOI-2. This
issue might be caused by unbalanced training because a particular location
provides more information than others. In an attempt to solve this prob-
lem, this study tries to balance the data in a combination of AOI-1, AOI-2,
AOI-3, and AOI-4 by undersampling and oversampling, taking the number
of training data per location into consideration. For the undersampling
case, the proportion of training data in AOI-2 and AOI-4 was reduced by
50%, considering the number of training data in AOI-2 is double that of
others, and AOI-4 only covers the 0-10m depth range. However, the accur-
acy is lower than the original combination without undersampling, which
is 4.70m and 0.34 for the RMSE and the R2, respectively. It occurs possibly
because the undersampling method removes some details in the training
data. On the other hand, the oversampling case increases the number of
training data in AOI-1 by copying the existing data. The oversampling
method obtains inaccurate results with RMSE and R2 of 7.4m and 0.26,
respectively.
These results pinpoint that SDB calculation using a pre-trained model is

likely affected by water characteristics. In this case, AOI-5 and AOI-6 water
characteristics are more alike with AOI-1 or AOI-2 than AOI-3 or AOI-4.
The combination of pre-trained models shows the difficulty of CNN to fit
the training data from different locations to a new location, even if the new
location has similar characteristics to one of them. To study the transfer
model comprehensively, a rigorous technique to create balanced training
data should be considered. Several water characteristics, such as water
color, chlorophyll concentration, and turbidity, should be considered while
combining training data from different locations, even though they have
the same bottom types.
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Conclusions

The results show that SDB accuracies depend on the local characteristics of
the coastal water. In this case, turbid water has a more significant error
than clean water. Thus, SDB is not suitable to be used in the turbid area.
The improved accuracy of SDB in different locations occurs when using
multi-temporal images instead of a single image only. Therefore, adding
temporal variation in the training data helps generalize the training model
and improve the accuracy of SDB. Compared to existing works, the accur-
acy of SDB using CNN outperform other methods, such as ratio transform,
radiative transfer model, and Random Forest.
Implementing the pre-trained models of different study areas, or their com-

bination, to the new areas yields a wide range of accuracy. Some pre-trained
models are more suitable for reusing than others, but the output is reliable
only at particular depth ranges. Meanwhile, other pre-trained models are not
suitable for reusing due to a lack of data at particular depths or reflectances
that are too noisy. The pre-trained model of turbid waters at the harbor area
tends to apply to local areas only, meaning that the pre-trained model is
unsuitable for reuse even if the new area is also a harbor because the turbidity
rate may differ, so the level of noise in the reflectance is not the same.
Combining several training datasets from different study areas also yields

a lower accuracy. It can be argued that the combination did not represent
balanced training data, resulting in an unreliable trained model. Hence,
supplementary information concerning the bottom types and water column
properties helps preserve the variety of data. Since the accuracies diverge, it
is hard to predict which pre-trained model is compatible with which data.
Therefore, besides having the supplementary data, verifying the SDB model
using measured depths considering the risk when computing the SDB using
a pre-trained model is recommended.
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