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Abstract A model for numerical homogenization of triply periodic minimal surfaces (TPMS) based on elec-
trostrictive composites is presented. This electrostrictive composite consists of TPMS (a three-dimensional con-
tinuous structure) implanted in a soft non-electrostrictivematrix.A representative volume element (RVE)-based
approach is used to homogenize the electrostrictive composites and determine all the effective electrostrictive,
mechanical, and electrical coefficients. Finite element formulation is employed to solve the nonlinear elec-
trostrictive constitutive equations. Special attention is paid to designing the boundary conditions that permit the
fast calculation based on simulations of overall deformation-induced due to mechanical and electrical loads.
Interestingly, the value of the effective electrostrictive coefficient of the composite surpasses that of the inclu-
sion Pb (mg1/3Nb2/3)O3-PbTO3-BaTiO3 (PMN-PT-BT), even though the matrix is non-electrostrictive due to
the additional flexibility imparted by the matrix. This electrostrictive response of TPMS-based composite is
independent of the type of TPMS structures used. It is prudent to say that these composites will find their place
in practical application owing to their salient features of more flexibility and high electrostrictive coefficient.

1 Introduction

The coupling of elastic and electric fields exists amongmany electromechanical materials such as piezoelectric
[1, 2], flexoelectric [3–6], and electrostrictive [7–9]. The materials are also known as smart materials because
they can respond to the change in their surrounding stimuli such as mechanical strain or electric potential. The
dielectric materials with a non-centrosymmetric structure generating mechanical strain when acted upon with
electric polarization and vice versa, are called piezoelectric materials (for example, ZnO and quartz). Owing
to such capability piezoelectric material founds its application in actuation, sensing, and energy harvesting.
While the piezoelectric effect is limited to non-centrosymmetric materials, flexoelectricity can be obtained
in all dielectric materials. A mechanical strain gradient can induce sufficient polarization and vice versa in
micro- and nano-dielectric material, also known as flexoelectricity. Piezoelectricity and flexoelectricity are
those electromechanical phenomena where mechanical strain exhibits linear dependence on the electric field
and vice-versa. However, the electrostrictive materials show a nonlinear relationship between elastic and elec-
tric field, i.e., mechanical strain depends on the square of the electric polarization and vice-versa (also known as
electrostriction). Unlike piezoelectricity and flexoelectricity, electrostriction is not limited by the symmetricity
and size scale of thematerial, respectively. Electrostriction exists in all dielectricmaterials at themacro-, meso-,
micro-, and nanoscale. Owing to the electrostriction property, any dielectric material can generate strain in
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response to the electrical polarization [10], unlike piezoelectric materials, which require prior polling. In these
electrostrictive (dielectric) materials, the displacement of ions occurs in the crystal lattice when subjected to an
electric field. Positive ions move in the same direction, whereas negative ions move opposite to the direction
of the applied electric field. The displaced ions cause the overall strain in the electrostrictive material. Elec-
trostrictive materials find their applications both as sensors and actuators owing to their functionality of energy
conversion reciprocity betweenmechanical energy and electrical energy. Themost attractive choice of research
fraternity for actuators is lead magnesium niobate, Pb (mg1/3Nb2/3)O3-PbTO3-BaTiO3 (PMN-PT-BT), which
is a ferroelectric ceramic [10]. Regardless of being effective and interesting materials, their applications are
limited because of reasons such as lowflexibility, density (causes obstruction in shape control), and large acous-
tic impedance. All these bottlenecks of electrostrictive materials can be addressed by designing a composite
material. Electrostrictive composites find their potential applications in sensors, dampers, actuators, medical
imaging. A set of nonlinear constitutive equations were put forward by Hom and Shankar [11] for electrostric-
tive materials, by considering that the generated strain depends on the second-order polarization term. This
dependence of strain on second-order polarization term makes electrostriction a nonlinear problem. They also
developed a static finite element formulation to simulate the induced strain at a higher electric field [12]. Due
to the constantly growing demand for miniaturized autonomous electronic systems, research fraternities have
resorted to designing electrostrictive composites [7–9].Motivated by experimental studies [11, 13], researchers
started simulating [7, 14–16] polymer-based electrostrictive composites to evaluate their overall macroscopic
behavior. Despite significant research in linear micromechanics modeling of electro-mechanical composites
[17–20], these models cannot be employed to determine nonlinear micromechanical effective properties of
electrostrictive properties. Few researchers attempted to address the nonlinear micromechanics problem by
decoupling it, i.e., evaluating effective mechanical [21–23] and effective dielectric properties [24] indepen-
dently. An experimental approach was put forward by Guillot et al. [25] by measuring the strain and then
using the Rayleigh–Ritz method to minimize the energy, which helped in determining three electrostrictive
coefficients. After these, Li and Rao [26] presented a numerical algorithm for a micromechanical model to
evaluate the effective overall behavior of electrostrictive composite. Lebrun et al. [27] have developed the
empirical formula to predict the electrostrictive coefficient based on the effective dielectric constant and effec-
tive compliance coefficient of the electrostrictive polymer composite. They employed the Euler–Bernoulli
vibration transmission theory to enact the electrostrictive coefficient predicting model. An incremental for-
mulation employing the variational asymptotic method was used to develop the micromechanics model to
predict the electrostrictive model [15]. Wang et al. [25] predicted the overall behavior of electrostrictive cubic
single crystal properties from Berry’s phase approach. A two-dimensional model without employing periodic
boundary conditions in particulate composite wasmodelled byDiguet et al. [7] to predict the physical behavior.
Electrostrictive material is embedded into non-electrostrictive material to convert the electrical energy into
mechanical energy more effectively. Geometric configuration of electrostrictive material highly influences the
electrostrictive composite. These geometric configuration are generally classified as: (1) particulate compos-
ite, in which the electrostrictive material is randomly dispersed in the matrix (represented by ‘0’), (2) fiber
composite, in which electrostrictive material is embedded as fiber in matrix, represented by ‘1’, (3) laminate
composite, in which electrostrictive material is of planetary shape (represented by ‘2’), and (4) composites in
which electrostrictive material is of continuous spatial structure embedded in the matrix (represented by ‘3’).
Electrostrictive composites are lacking deliberate designing attempts; researchers have studied 0–3 [7] and
1–3 composites, but more work is required to investigate the optimum electrostrictive composites in various
applications.

Advances in manufacturing technology have offered new kinds of cellular structures, i.e., triply periodic
minimal surfaces (TPMS)-based composites that possess three-dimensional connectivity and bettermechanical
properties [28–30]. Themechanical properties of these cellular composites depend not only on their constituent
materials but also on the topology of the unit cell. The two entwined domains are divided by an infinite
sheet periodic in three mutually perpendicular directions. The salient features of these sheets are minimal
area within a specified domain and the zero-mean curvature at any point [31]. Moreover, researchers have
used mathematical equations to produce a different type of TPMS-based unit cell for functional grading and
hybridization [32–35]. Many researchers have determined the mechanical, electrical, and thermal attributes of
TPMS-based structures [36–40]. Moreover, Abueidda et al. [36, 41, 42] reported that these structures exhibit
better properties as compared to their analog structure due to their better interconnectivity. Following the
above work, Abueidda et al. [43] have investigated six different types of TPMS for electrical and thermal
conductivity. The better interconnectivity of TPMS-based structures serves two appealing points, i.e., avoiding
stress concentrations and smooth load transfer [43].
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The current study focuses on numerical homogenization techniques (i.e., finite element method with peri-
odic boundary conditions) employing the concept of RVE toward general procedure to determine all the effec-
tive properties of four different TPMS-based electrostrictive composites. For this study, matrix and TPMS
structures are considered to be made up of epoxy and PMN-PT-BT, respectively. Section 2 elaborates on the
process of generating different TPMS-based RVEs, some basic concepts, equations about electrostriction,
numerical homogenization, periodic boundary conditions, and finite element formulation to solve nonlinear
electrostrictive constitutive equations. Section 3 reports and discusses the results of the effective properties of
the TPMS-based composites. Section 4 states the conclusion of this paper.

2 Numerical homogenization of TPMS-based electrostrictive composite

This section deals with the prediction of the effective properties of different TPMS-based electrostrictive
composites. To achieve the formerly stated objective, different structural RVEs with varying volume fractions
are generated usingMSLattice software. Four different TPMS structures, i.e., Schoen IWP, Schwarz primitive,
Schoen Gyroid, and Neovius, are focused upon.

2.1 Generation of TPMS-based RVE

Researchers have proposed various methods to generate coordinates that can imitate TPMS-based RVE [33,
44, 45]. However, the most accepted and uncomplicated method for TPMS-based RVE is level set equations.
Moreover, these level set equations comprise the trigonometric term that represents an iso-surface �(x , y, z),
which are plotted at an iso-value t. Two equal volume subdomains can be obtained if t selected as 0. Alteration
of the value of t will give control over the volume possessed by TPMS structures. Considering the function
as �2 � t2, a sheet-based structure can be generated, where the thickness of sheet is controlled by parameter
t. The current study focuses on four TPMS-based structures (i.e., Schoen IWP, Schwarz primitive, Schoen
Gyroid and Neovius), which were obtained using the following level set equations [46, 47]:

Schoen IWP:

�IW P � (2(cosX + cosY + cosZ) − (cos2X + cos2Y + cos2Z))2 � t2, (1)

Schwarz Primitive:

�P � (cosX + cosY + cosZ)2 � t2, (2)

Schoen Gyroid:

�G � (sinXcosY + sinY cosZ + sinZcosX)2 � t2, (3)

Neovius:

�N � (3cosX + cosY + cosZ + 4cosXcosZcosY )2 � t2, (4)

where X � 2πξ x , Y � 2πψy, and Z � 2πζ z, ξ , ψ , and ζ are the constants associated with the size of
RVE in the mutually orthogonal directions. In the present study, a software MSLattice is used to generate
structures of Schoen IWP, Schwarz primitive, Schoen Gyroid, and Neovius structures as shown in Figs. 1a–d,
respectively. For performing the finite element analysis, these structures should be saved in STereoLithography
(STL) format and then, these structures are surrounded by a unit cube to form RVEs of Schoen IWP, Schwarz
primitive, Schoen Gyroid, and Neovius as shown in Figs. 2a–d, respectively.

2.2 Electrostriction and electrostrictive composites

Coupled electrostrictive problems are of two kinds, firstly in which electric field induces distributed force due
to the generation of Maxwell stress, which is present in both conductors and insulators and conventionally also
known as electrostriction. The generated stress depends on the second-order term of the electric field. However,
there is also a second kind of coupling that occurs only in dielectrics owing to their constitutive nature, which
states that induced strain depends on the second order of polarization, while mechanical stress also changes
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Fig. 1 Models of TPMS structures a Schoen IWP, b Schwarz primitive, c Schoen Gyroid, and d Neovius

polarization [12]. Unlike piezoelectricity, the coupling is nonlinear in electrostriction due to the dependence
of induced strain on the second order of polarization. Therefore, the behavior of the electrostrictive materials
can be stated with the help of constitutive equations relating electric displacement D, and stress T to strain ε
and electric field E, which can be written as [48]

εi j � Si jklT kl + Qi jlmDl Dm , (5)

Ei � −2Qkl j i D jT kl + β t
i j D j , (6)

where Si jkl is a fourth-order elastic compliance tensor, β t
i j is the second-order dielectric impermeability

constant matrix, the superscript t stands for transpose, and Qi jlm is the fourth-order electrostrictive constant
tensor, which can also be defined as:

2Qi jkl � ∂2εi j

∂Dk∂Dl
� − ∂2El

∂T i j∂Dk
. (7)

For electric field E >0.6 MV/m, polarization starts saturating. Inspired by Devonshire’s theory [49] and
Suo’s adaptation [50], Hom and Shankar [11] proposed a model for relaxor ferroelectric based on a few
assumptions such as (a) induced strain is proportional to the second order of polarization, (b) temperature and
pressure do not influence the elastic modulus of the crystal and (c) a hyperbolic tangent function can be used
to describe the stress-free dielectric behavior:

|P | � Ps tanh(k|E|), (8)

where Ps is the saturated value of polarization at the very high electric field, k is the material constant, and |P |
and |E| are the magnitude of the polarization and electric field. It can be considered that P ≈ D because of
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Fig. 2 RVEs of TPMS structures a Schoen IWP, b Schwarz primitive, c Schoen Gyroid, and d Neovius

the very large dielectric permittivity of ceramic, where P is polarization and D is electric displacement [48].
Therefore, Eqs. (5) and (6) can be written in condensed form as

{ε} � [S]{T } + [g([Q], D)]t{D}, (9)

{E} � −2[g([Q], D)]{T } + [β t(k, Ps, D)
]{D}, (10)

where

[g] �
⎡

⎣
Q11D1
Q12D2
Q11D3

Q12D1
Q11D2
Q12D3

Q12D1
Q12D2
Q11D3

0
(Q11 − Q12)D3
(Q11 − Q12)D2

(Q11 − Q12)D3
0

(Q11 − Q12)D1

(Q11 − Q12)D2
(Q11 − Q12)D1

0

⎤

⎦, (11)

[
β t] �

⎡

⎢
⎣

1
k
∣
∣D

∣
∣arctanh

(∣
∣D

∣
∣

Ps

)

0
0

0
1

k
∣
∣D

∣
∣arctanh

(∣
∣D

∣
∣

Ps

)

0

0
0

1
k
∣
∣D

∣
∣arctanh

(∣
∣D

∣
∣

Ps

)

⎤

⎥
⎦, (12)

k � 1

Ps(β33)D�0
, (13)
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where Qij is the electrostrictive coefficient. There are only 10 independent coefficients including compliance
coefficients, electrostrictive coefficients, and impermeability coefficients for transversely isotropic electrostric-
tive solid. Hence, Eqs. (9) and (10) can be written in matrix form as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

ε23

ε31

ε12

E1

E2

E3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Seff11
Seff12
Seff13
0
0
0

−2Qeff
11

−2Qeff
12

−2Qeff
12

Seff12
Seff11
Seff13
0
0
0

−2Qeff
12

−2Qeff
11

−2Qeff
12

Seff13
Seff13
Seff33
0
0
0

−2Qeff
12

−2Qeff
12

−2Qeff
11

0
0
0
Seff44
0
0
0

−2
(
Qeff

11 − Qeff
12

)

−2
(
Qeff

11 − Qeff
12

)

0
0
0
0
Seff44
0

−2
(
Qeff

11 − Qeff
12

)

0
−2

(
Qeff

11 − Qeff
12

)

0
0
0
0
0
Seff66

−2
(
Qeff

11 − Qeff
12

)

−2
(
Qeff

11 − Qeff
12

)

0

Qeff
11 D1

Qeff
12 D1

Qeff
12 D1

0(
Qeff

11 − Qeff
12

)
D3(

Qeff
11 − Qeff

12

)
D2

βeff
11
0
0

Qeff
12 D2

Qeff
11 D2

Qeff
12 D2(

Qeff
11 − Qeff

12

)
D3

0(
Qeff

11 − Qeff
12

)
D1

0
βeff
22
0

Qeff
12 D3

Qeff
12 D3

Qeff
11 D3(

Qeff
11 − Qeff

12

)
D2(

Qeff
11 − Qeff

12

)
D1

0
0
0

βeff
33

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T 11

T 22

T 33

T 23

T 31

T 12

D1

D2

D3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(14)

2.3 Periodic boundary conditions for the representative volume element

Any general structure under consideration is considered as a large-scale or macroscopic structure, whereas the
mechanical and physical properties of constituent materials are known as microscopic structures. The most
adaptive tool for the modeling of composites is homogenization, in which an equivalent medium is obtained
such that the strain energies stored in the original composite and equivalent medium are equal. Homogenization
is the best tool to speed up the modeling process of composites, i.e., for the discretization and computational
simulation. Different homogenization techniques have been used before as discussed in the introduction. In the
current study, finite element method is used to evaluate the effective properties of TPMS-based electrostrictive
composite.

A representative volume element (RVE) can be periodically organized in three mutually perpendicular
directions to form the original composite. Therefore, the RVE should be subjected to periodic boundary
conditions to ascertain that each RVE is undergoing the same deformation and there is no overlapping or
separation between the adjacent RVEs while deforming. Suquet [51] had reported the periodic boundary
condition in Cartesian coordinates over RVE surfaces as

ui � εi j x j + vi , (15)

where εi j is the average strain and vi is a local fluctuation of the displacement component, which is unknown
and depends on the applied load. The above general Equation (15) can be used to write the equations which
explicitly show displacement on the opposite surfaces of RVE as:

uK
+

i � εi j x
K +

j + vK +

i , (16)

uK
−

i � εi j x
K−
j + vK−

i , (17)

where the superscriptsK+ andK− represent the opposite surfaces of RVE in positive and negative xj directions,
respectively. As shown in Fig. 3, these K+ and K− indices represent the opposite surfaces such as A+/A−,
B+/B−, and C+/C− in the x1, x2, and x3 directions.

Moreover, the value of local fluctuations (i.e., vK +

i and vK−
i ) is approximately the same on the opposite

surfaces of RVE; therefore, subtracting Eqs. (16) and (17) will result in

uK
+

i − uK
−

i � εi j

(
xK

+

j − xK
−

j

)
. (18)
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Fig. 3 Pictorial representation of the representative volume element along with notations for its surfaces

It is considered that the mean mechanical and electrical properties of the RVE are equal to the mean
properties of the electrostrictive composites, which can be written as:

εi j � 1

V

∫

V
εi jdV , T i j � 1

V

∫

V
Ti jdV , (19)

Ei � 1

V

∫

V
EidV , and Di � 1

V

∫

V
DidV . (20)

2.4 Finite element formulation

Consider a domain 
, surrounded by a closed surface � in static equilibrium under the body force f b, and
surface traction t. Therefore, from the balance of linear moment,

∫




f bd
 +
∫

�

t (n)d� � 0, (21)

where surface traction in tensor notation is t (n) � n.T , substituting t (n) and using the Green–Gauss divergence
theorem,

∫

�

n.Td� �
∫




∇.Td
. (22)

Substituting Eq. (22) into Eq. (21), the obtained expression is as follows:
∫




(∇.T + f b
)
d
 � 0. (23)

Therefore, the balance of the linear moment equation at every point of a domain can be written as:

∇.T + f b � 0. (24)

For the dielectric solid, Gauss law states that the net electric flux is equal to the total charge enclosed by the
volume 
 divided by the permittivity of free space b0; hence, this statement can be expressed as

∫

�

n.Ed� � 1

b0

∫




(
q∗ − ∇.P

)
d
, (25)

where q∗ is the volumetric charge density, n is the unit normal outward vector, and P is polarization. The
polarization P induces the volumetric charge density represented by the second term on right-hand side of
Eq. (25). Using the Green–Gauss divergence theorem, Eq. (25) can be rewritten as:

b0

∫




∇.Ed
 +
∫




∇.Pd
 �
∫




q∗d
, (26)
∫




∇.(b0E + P)d
 �
∫




q∗d
, (27)
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∫




∇.Dd
 −
∫




q∗d
 � 0. (28)

Therefore, the electrostatic equilibrium at every point of a domain can be written as:

∇.D − q∗ � 0. (29)

To find out stressT and dielectric fieldD for the electrostrictivematerial, Eqs. (9) and (10)must be inverted;
therefore, on inverting Eq. (9), the obtained equation is as follows:

T � [S]−1ε − [S]−1[g([Q], D)]tD, (30)

and on inverting Eq. (10) and substituting T from Eq. (30) in it, the obtained equation is as follows:

E � −2[g([Q], D)][S]−1ε +
(
2[g([Q], D)] × [S]−1[g([Q], D)]t +

[
β t(k, Ps , D)

])
D. (31)

However, Eqs. (30) and (31) can be concatenated as:

T � [
CE(k, Ps , [Q], D)

]
ε − [e(k, Ps , [Q], D)]tE, (32)

D � 2[e(k, Ps , [Q], D)]ε +
[
ρS(k, Ps , [Q], D)

]
E, (33)

where

[
ρS(k, Ps , [Q], D)

] � ([
β t(k, Ps , D)

]
+ 2[g([Q], D)][S]−1[g([Q], D)]t

)−1
, (34)

[e(k, Ps , [Q], D)] � [
ρS(k, Ps , [Q], D)

]
[g([Q], D)][S]−1, (35)

[
CE(k, Ps , [Q], D)

] � [S]−1 − 2[S]−1[g([Q], D)]t
[
ρS(k, Ps , [Q], D)

]
[g([Q], D)][S]−1. (36)

In the current study domain, 
 of RVE of the electrostrictive composite is discretized with four noded
tetrahedral elements. Three mechanical degrees of freedom (i.e., one displacement degree of freedom in x1, x2,
and x3 directions, respectively) and one electrical degree of freedom (i.e., electric potential) are considered at
each node of the element. The approximate elemental displacement function inside any element can be defined
as:

⎧
⎨

⎩

u∗
v∗
w∗

⎫
⎬

⎭
�

4∑

i�1

⎡

⎣
Ni
0
0

0
Ni
0

0
0
Ni

⎤

⎦

⎧
⎨

⎩

ui
vi
wi

⎫
⎬

⎭
, (37)

{u}e � [Nu]e{q}e, (38)

where Ni is the shape function, mentioned in Annexure A, ui , vi and wi are the nodal displacements in x1, x2,
and x3 directions, respectively. Subscript ‘e’ represents elemental and {q}e is the elemental nodal displacement
vector. The elemental strain can be obtained by partially differentiating the elemental nodal vector once, which
is

{ε}e �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

ε23

ε13

ε12

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
e

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u∗
∂x1
∂v∗
∂x2
∂w∗
∂x3

∂w∗
∂x2

+ ∂v∗
∂x3

∂u∗
∂x3

+ ∂w∗
∂x1

∂u∗
∂x2

+ ∂v∗
∂x1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
e

, (39)

{ε}e � [B]e{q}e, (40)
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where {ε}e is the elemental strain vector, and [B]e is the elemental strain displacement matrix, which is given
in Appendix A. The approximate electric potential function ∅

∗ inside an element is

∅
∗ � [N1 N2 N3 N4]

⎧
⎪⎨

⎪⎩

∅1
∅2
∅3
∅4

⎫
⎪⎬

⎪⎭
, (41)

∅
∗
e � [N

∅
]e{�}e, (42)

where ∅i , i � 1 to 4, is the nodal electric potential in an element. The elemental electric field can be defined
as:

{E}e � −[
Bφ

]
e{�}e, (43)

where the electric field and electric potential matrix
[
Bφ

]
e are mentioned in Annexure A. As the current

study is a nonlinear problem, it employs the principle of virtual work. The small arbitrary perturbation of real
displacements ui and electric potential φ is δui and δ∅, respectively. Hence, the weak formulation of Eqs. (24)
and (29) can be given by expression for virtual work done of electrostrictive system, which is

∫




(
Ti j , j + f bi

)
δuid
 +

∫




(
Di ,i − q∗)δφd
 � 0, (44)

∫




Ti j , jδuid
 +
∫




f bi δuid
 +
∫




Di ,iδφd
 −
∫




q∗δφd
 � 0. (45)

The obtained equation after applying integration by parts and the Green–Gauss divergence theorem to
Eq. (45) is as follows:

−
∫




Ti jδui , jd
 +
∫

�

Ti j n jδuid� +
∫




f bi δuid
 −
∫




Diδφ,id
 +
∫

�

Diniδφd� −
∫




q∗δφd
 � 0,

(46)∫




Ti jδεi jd
 −
∫




DiδEid
 �
∫

�

Ti j n jδuid� +
∫




f bi δuid

∫

�

Diniδφd� −
∫




q∗δφd
. (47)

The terms on the left-hand side of Eq. (47) represent the internal work done, whereas all the terms on the
right-hand side of Eq. (47) refer to the external work done. The principle of virtual work states that the system
is in equilibrium if and only if the internal work done and external work done for every virtual displacement
and virtual electric potential field are equal. Neglecting the body force f bi and volumetric charge density q∗,
Eq. (47) can be rewritten as follows:

−
∫




(
Ti jδBi j − DiδEi

)
d
 +

∫

�

(
δui Ti j n j + δφDini

)
d� � 0, (48)

∫




{
δεi j

−δEi

}t{
Ti j
Di

}
d
 −

∫

�

{
δu
δ∅

}t{
fi
q

}
d� � 0, (49)

where fi � Ti j n j and q∗ � Dini are the forces and charge density acting on surface �, respectively. After
applying the finite element discretization, Eq. (49) can be rewritten as:

m∑

e�1

∫


e

⎧
⎨

⎩
δ{ε}e

−δ{E}e

⎫
⎬

⎭

t⎧
⎨

⎩
{T }e
{D}e

⎫
⎬

⎭
d
e −

n∑

e�1

∫

�e

⎧
⎨

⎩
δ{q}e
δ{�}e

⎫
⎬

⎭

t⎧
⎨

⎩
[Nu]te{ f }e

−[
Nφ

]t
e{q}e

⎫
⎬

⎭
d�e � 0. (50)

On substituting {ε}, and {E} from Eqs. (40) and (43) in Eq. (50), the obtained equation is as follows:

m∑

e�1

∫


e

⎧
⎨

⎩
δ[B]e{q}e

−δ
[
Bφ

]
e{�}e

⎫
⎬

⎭

t⎧
⎨

⎩
{T }e
{D}e

⎫
⎬

⎭
d
e −

n∑

e�1

∫

�e

⎧
⎨

⎩
δ{q}e
δ{�}e

⎫
⎬

⎭

t⎧
⎨

⎩
[Nu]te{ f }e

−[
Nφ

]t
e{q}e

⎫
⎬

⎭
d�e � 0, (51)

m∑

e�1

∫


e

{
δ{q}teδ{�}te

}
⎡

⎣ [B]te

0

0
[
Bφ

]t
e

⎤

⎦

⎧
⎨

⎩
{T }e
{D}e

⎫
⎬

⎭
d
e −

n∑

e�1

∫

�e

⎧
⎨

⎩
δ{q}e
δ{�}e

⎫
⎬

⎭

t⎧
⎨

⎩
[Nu]te{ f }e

−[
Nφ

]t
e{q}e

⎫
⎬

⎭
d�e � 0.

(52)
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Substituting {T }, and {D} from Eqs. (32) and (33) into Eq. (52), the obtained equation is as follows:

m∑

e �1

∫


e

{
δ{q}teδ{�}te

}
⎡

⎣
[B]te

0

0
[
Bφ

]t
e

⎤

⎦

⎡

⎣
[
CE (k, Ps, [Q] , D)

]
e

[2e (k, Ps , [Q] , D)]e

−[e (k, Ps, [Q] , D)]te
[
εS (k, Ps, [Q] , D)

]
e

⎤

⎦

⎡

⎣
[B]e

0

0

− [
Bφ

]
e

⎤

⎦

⎧
⎨

⎩

{q}e
{�}e

⎫
⎬

⎭
d
e

−
n∑

e �1

∫

�e

⎧
⎨

⎩
δ{q}e
δ{�}e

⎫
⎬

⎭

t ⎧
⎨

⎩
[Nu]te{ f }e

−[
Nφ

]t
e{q}e

⎫
⎬

⎭
d�e � 0.

(53)

The above Eq. (53) will attain condensed form, after defining the elemental elastic stiffness matrix[
K uu

(
qi , �i )]

e (where qi and �i are the known solution after iteration i), the elemental electromechani-
cal coupling matrix

[
K uŒ

(
qi , �i

)]
e, and the elemental dielectric stiffness matrix

[
KŒŒ

(
qi , �i

)]
e as:

[
K uu

(
qi ,�i

)]

e
�
∫


e

[B]te
[
CE(k, Ps, [Q], D)

]
e[B]ed
e, (54)

[
K uŒ

(
qi ,�i

)]

e
�
∫


e

[B]te[e(k, Ps , [Q], D)]te
[
Bφ

]
ed
e, (55)

[
KŒŒ

(
qi ,�i

)]

e
�
∫


e

[
Bφ

]t
e

[
εS(k, Ps , [Q], D)

]
e

[
Bφ

]
ed
e, (56)

and the elemental mechanical excitation vector
{
F
(
qi , �i

)}
e and the elemental electrical excitation vector{

Q
(
qi , �i

)}
e as:

{
F
(
qi ,�i

)}

e
�
∫

�e

[Nu]
t
e{ f }ed�e, (57)

{
Q
(
qi ,�i

)}

e
�
∫

�e

[
Nφ

]t
e{q}ed�e. (58)

Hence, the condensed elemental finite element equation is as follows:

{
δ{q}teδ{�}te

}
⎛

⎝

⎡

⎣
[
K uu

(
qi ,�i

)]
e

2
[
K uŒ

(
qi ,�i

)]
e

[
K uŒ

(
qi ,�i

)]
e

−[
KŒŒ

(
qi ,�i

)]
e

⎤

⎦

⎧
⎨

⎩

{
qi+1

}
e{

�i+1
}
e

⎫
⎬

⎭
−
⎧
⎨

⎩

{
F
(
qi ,�i

)}
e{

Q
(
qi ,�i

)}
e

⎫
⎬

⎭

⎞

⎠ � 0. (59)

After assembly of these elemental systems of equations, global finite element equation for static analysis
is obtained, which is,

⎡

⎣
[
K uu

(
qi ,�i

)]

2
[
K uŒ

(
qi ,�i

)]

[
K uŒ

(
qi ,�i

)]

−[
KŒŒ

(
qi ,�i

)]

⎤

⎦

⎧
⎨

⎩

{
qi+1

}

{
�i+1

}

⎫
⎬

⎭
�
⎧
⎨

⎩

{
F
(
qi ,�i

)}

{
Q
(
qi ,�i

)}

⎫
⎬

⎭
. (60)

Equation (60) is a nonlinear equation as
[
K uu

(
qi , �i

)]
,
[
K uŒ

(
qi , �i

)]
, and

[
KŒŒ

(
qi , �i

)]
depends on

electric displacement D, which can be observed using Eqs. (34), (35), (36), (54), (55), and (56). Therefore, to
solve the global finite element Eq. (60), Newton–Raphson method is used.

2.5 Boundary condition to determine effective electrostrictive properties

To determine the effective properties of the electrostrictive composite, it is required to subject the representative
volume element to periodic boundary conditions. Using Eqs. (14), a final formula can be derived for each
effective property, which is also given in Table 1.

The following notations are used in Table 1 for explaining the distinct boundary conditions on the different
surfaces (i.e., A+/A−, B+/B−, and C+/C− in the x1, x2, and x3 directions, see Fig. 3) of RVE. 0 represents the
prescribed zero displacement or electric potential, − represents the unprescribed value of displacement ui of
electric potential φ, φ is the prescribed nonzero electric potential, and ui represents the constraint coupling
of displacement component u1 on an opposite surface of RVE. Applying the appropriate boundary conditions
to the surfaces of the representative volume element, as prescribed in Table 1, effective properties can be
evaluated. Elaborated discussion to investigate effective properties is given below.
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Table 1 Appropriate boundary conditions and formulas for effective electrostrictive properties

Eff. Coe A− A+ B− B+ C− C+ Formula

ui/φ ui/φ ui/φ ui/φ ui/φ ui/φ

Seff11 0/− u1/0 0/− −/− 0/0 −/0 ε11
T 11

Seff12 0/− u1/0 0/− −/− 0/0 −/0 ε22
T 11

Seff13 0/− u1/0 0/− −/− 0/0 −/0 ε33
T 11

Seff33 0/− −/− 0/− −/− 0/0 u3/0
ε33
T 33

Seff44 u3/− u3/− 0/− −/− u1/0 u1/0
ε13
T 13

Seff66 u2/− u2/− u1/− u1/− 0/0 −/0 ε12
T 12

Qeff
11 0/φ −/0 0/− −/− 0/− −/− ε11(

D1
)2

Qeff
12 0/φ −/0 0/− −/− 0/− −/− ε22(

D1
)2

βeff
11 0/φ −/0 0/− −/− 0/− −/− E1

D1

βeff
33 0/− −/− 0/− −/− 0/φ −/0 E3

D3

2.5.1 Determining the effective coefficients Seff11 , S
eff
12 , S

eff
13 , and Seff33

To evaluate the effective compliance coefficients Seff11 , S
eff
12 , and Seff13 , the boundary condition is applied such

that unit tensile strain is achieved in x1 direction, whereas the RVE is allowed to shrink in other two directions
(i.e., x2, and x3). Moreover, the zero electric potential is applied such that there is no electric displacement in
any direction. Utilizing Eq. (14) and applying such boundary conditions leads to

ε11 � Seff11 T 11 + Seff12 T 22 + Seff13 T 33. (61)

Due to the applied boundary conditions, the second and third terms on the right-hand side are very small
(i.e., Seff12 T 22, Seff13 T 33 << Seff11 T 11); therefore, neglecting these terms, Seff11 can be evaluated as:

Seff11 � ε11

T 11
. (62)

Similarly, using the second and third row of Eq. (14), Seff12 and Seff13 can be obtained as follows:

Seff12 � ε22

T 11
and Seff13 � ε33

T 11
. (63)

Moreover, for estimation of the coefficient Seff33 involves analogous boundary conditions which were pre-
scribed to evaluate Seff11 , and only the known strain is applied in x3 direction, whereas the RVE is allowed to
shrink in other two directions (i.e., x1, and x2). Therefore, utilizing the third row of Eq. (14),

ε33 � Seff13 T 11 + Seff13 T 22 + Seff33 T 33. (64)

As the second and third terms on the right-hand side are very small (i.e., Seff13 T 11, Seff13 T 22 << Seff33 T 33),
therefore neglecting these terms, Seff33 can be evaluated as:

Seff33 � ε33

T 33
. (65)
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2.5.2 Determining the effective coefficients Seff44 , and Seff66

To determine the coefficients Seff44 , and S
eff
66 , the pure shear state should be enforced in x1− x3 plane and x1− x2

plane, respectively. To obtain pure shear state, coupling constraints on two pairs of opposite surfaces should
be applied. For evaluation of coefficient Seff44 , coupling constraint for the node pairs on opposite planes C

+/C−

can be derived from Eq. (18), i.e., uA
+

3 � uA
−

3 + ε13

(
xA

+

1 − xA
−

1

)
. An arbitrary value should be assigned to

ε13

(
xA

+

1 − xA
−

1

)
and prescribing the analogous coupled constraints on the paired nodes of opposite surfaces

A+/A−, thereafter constraining the rigid body motion of RVE by restricting the motion of intersecting edge
of surfaces C− and A− in the x1 and x3 directions. Therefore, using the fifth row of Eq. (14), Seff44 can be
calculated as:

Seff44 � ε13

T 13
. (66)

Similarly, applying the appropriated boundary conditions as mentioned in Table 1, Seff66 can be calculated as:

Seff66 � ε12

T 12
. (67)

2.5.3 Determining the effective electrostrictive coefficients Qeff
11 , and Qeff

12

Evaluation of effective electrostrictive coefficients Qeff
11 , and Qeff

12 can be achieved by applying the electric field
and measuring the induced strain, for which the RVE’s rigid body motion should be restrained by prescribing
zero normal displacements on A−, B−, and C− surfaces of RVE. At the same time, the RVEmust be subjected
to a known electric field, which can be achieved by applying known electric potential on the surface A−, while
electrically grounding the surface A+. Therefore, from the first row of Eq. (14),

ε11 � Seff11 T 11 + Seff12 T 22 + Seff13 T 33 + Qeff
11

(
D1

)2
+ Qeff

11

(
D2

)2
+ Qeff

12

(
D3

)2
. (68)

The first, second, third, fifth, and sixth terms on the right-hand side of Eq. (65) are negligible in comparison

with the fourth term on the right-hand side (i.e., Seff11 T 11, Seff12 T 22, Seff13 T 33, Qeff
11

(
D2

)2
, andQeff

12

(
D3

)2
<<<

Qeff
11

(
D1

)2
). Therefore, Qeff

11 can be calculated as:

Qeff
11 � ε11

(
D1

)2 . (69)

Similarly, employing the second row of Eq. (14), Qeff
12 can be calculated as:

Qeff
12 � ε22

(
D1

)2 . (70)

2.5.4 Determining the effective impermeability coefficients βeff
11 and βeff

33

To determine the effective impermeability coefficient βeff
11 , RVE should be subjected to zero normal displace-

ment on A−, B−, and C− surfaces, while being subject to a known nonzero electric filed in x1 direction, by
applying nonzero electric potential on surface A− and grounding A+ surface. Therefore, using the seventh row
of Eq. (14), the relation obtained is

E1 � −2Qeff
11 T 11 − 2Qeff

12 T 22 − 2Qeff
12 T 33 − 2

(
Qeff

11 − Qeff
12

)
T 31 − 2

(
Qeff

11 − Qeff
12

)
T 12 + βeff

11 D1 + βeff
22 D2 + βeff

33 D3.

(71)

When the RVE is subjected to the formerly mentioned boundary conditions, all the terms except βeff
11 D1 on

the right-hand side are negligible (i.e., 2Qeff
11 T 11, 2Qeff

12 T 22, 2Qeff
12 T 33, 2

(
Qeff

11 − Qeff
12

)
T 31, 2

(
Qeff

11 − Qeff
12

)
T 12,

βeff
22 D2, &βeff

33 D3 << βeff
11 D1). Hence, βeff

11 can be calculated as:

βeff
11 � E1

D1
. (72)
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Fig. 4 a Geometry of the electrostrictive bar and b validation study of induced microstrain as a function of an electric field

Table 2 Constitutive material properties

S11 � S22 �
S33(m2/N)

S12 � S13 �
S23(m2/N)

S44 � S55 �
S66 (m2/N)

Q11 (m4/C2) Q12(m4/C2) b11 � b33

(C/(V.m))

Ps (C/m2) k (m/V)

PMN-PT-BT 0.890 ×
10−11 [52]

−0.311 × 10−112.4 × 10−11 0.133×10−1

[53]

−0.606 × 10−2 2.1928 ×
10−7 [52]

0.262 [54] 9.20 × 10−7

[52]

Epoxy 2.05×10−10

[55]

−7.28 × 10−11 5.56 × 10−10 − − 0.0372 ×
10−9 [55]

7.28 × 10−4

[56]

5.11 × 10−8

Similarly, by applying the analogous boundary conditions as mentioned in Table 1, βeff
33 can be calculated as:

βeff
33 � E3

D3
. (73)

3 Results and discussions

For the validation of static finite element formulation, an electrostrictive bar of length l 10 mm, width w, and
thickness t of 2 mm is considered, with surface electrodes in the x1 direction, as shown in Fig. 4.

The material of electrostrictive bar in the validation study is PMN-PT-BT, whose material properties are
mentioned in Table 2. Just for validation with Debus et al. [48], the value of Q11 is considered as 0.121×10−1

m4/C2. From Fig. 4b, it is evident that induced microstrain is in good concurrence with the literature; hence,
it is prudent to say that the current finite element formulation is validated.

3.1 Mesh sensitivity analysis

After the validation study before evaluating the effective electrostrictive properties of TPMS-based composites,
it iswise to performmesh sensitivity analysis tomake sure that the evaluated effective properties are independent
of the mesh size. To perform the mesh sensitivity analysis, the TPMS-based electrostrictive composite RVE
is discretized using tetrahedral element and effective compliance coefficient Seff11 is evaluated for every mesh
refinement till the value of effective compliance coefficient Seff11 gets saturated. This study is performed for all
the TPMS-based structures considered in the current study, i.e., Schoen Gyroid, Neovius, Schoen IWP, and
Schwarz primitive, as shown in Fig. 5.

It is necessary to do the convergence study for every TPMS-based composite RVE, as different geome-
tries require different meshes for convergence. For example, the effective compliance coefficient’s converged
values for the 10% volume fraction of Schoen Gyroid, Neovius, Schoen IWP, and Schwarz primitive-based
electrostrictive composites are1.23× 10−10, 1.06× 10−10, 1.17× 10−10, and 1.32× 10−10 (m2/N) achieved
at 130,636, 167,418, 144,697, and 99,650 number of elements, respectively. After achieving the convergence,
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Fig. 5 Mesh sensitivity analysis of effective compliance coefficient Seff11 for Schoen Gyroid, Neovius, Schoen IWP, and Schwarz
primitive-based electrostrictive composite’s RVE

the same mesh refinement is employed for subsequent simulation of effective electrostrictive properties for
the corresponding TPMS-based electrostrictive composite. The properties of constitutive materials used in the
current study are mentioned in Table 2.

3.2 Effective properties

Ensuring that all the simulation resultswill be liberated from themesh size, effective properties can be evaluated.
Applying the appropriated boundary conditions mentioned in Table 1, effective electrostrictive properties can
be evaluated.

3.2.1 Effective compliance coefficients

All the effective elastic compliance coefficients, i.e., (Seff11 , S
eff
12 , S

eff
33 , and Seff66 ) of Schoen Gyroid, Neovius,

Schoen IWP, and Schwarz primitive-based electrostrictive composite, are evaluated simultaneously, as shown
in Figs. 6a–d. The volume fraction for every TPMS structure is varied from10 to 40%with a step size of 5%. For
every volume fraction, an RVE was generated as explained in Sect. 2.1. For each TPMS-based electrostrictive
composite, seven different RVEs were subjected to boundary conditions employed using the finite element
method.

It can be observed from Fig. 6a that the effective compliance coefficient Seff11 is decreasing as the volume
fraction of TPMS-based structure is increasing, which also satisfies the rule of mixture. As the value of
compliance coefficient of epoxy (polymer) is more than PMN-PT-BT (ceramic), the effective compliance
coefficient is decreasing with an increase in volume fraction of TPMS structure (PMN-PT-BT). The intuition
from the rule of mixture is also justified by all other effective compliance coefficients, i.e., Seff12 , S

eff
33 , and

Seff66 (see Fig. 6b–6d). Not only volume fraction but also the shape of TPMS structure governs the effective
properties, which is evident from all Fig. 6a–d. For instance, the value of effective compliance coefficient Seff11 ,
for Schwarz primitive and SchoenGyroid-based electrostrictive composites, is highest and lowest, respectively,
among all the studied structures at 10% volume fraction. The difference in the value of effective compliance
coefficient Seff11 keeps on reducing as the volume fraction is increasing. However, at a 40% volume fraction,
the values of Seff11 are almost close, i.e., 4.58× 10−11, 3.78× 10−11, 3.82× 10−11, and 4.92× 10−11 m2/N for
Schoen Gyroid, Neovius, Schoen IWP, and Schwarz primitive-based electrostrictive composite, respectively.
Moreover, this observation holds good for all other effective compliance coefficients (see Fig. 6b–d). The values
of all the effective compliance coefficients for all the TPMS-based electrostrictive composite as a function
of volume fraction are mentioned in Table 3. However, the values of effectively saturated polarization are
calculated from the rule of mixture, and its values for different TPMS composites as a function of volume
fraction are mentioned in Table 3.
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Fig. 6 Variation of effective elastic compliance coefficients a Seff11 , b Seff12 , c Seff33 , and d Seff66 with TPMS volume fraction

3.2.2 Effective impermeability constant and domain wall constant

The effective impermeability constants (βeff
11 ) and effective domain wall constant keff for all the different

TPMS-based electrostrictive composites as a function of volume fraction are discussed. Effective imperme-
ability constant βeff

11 decreases as the volume fraction of TPMS increases (see Fig. 7a), and effective domain
wall constant also decreases with the increase in volume fraction of TPMS in composite (see Fig. 7b). This
decreasing trend justifies the essence of the rule of mixture as both the impermeability constant and domain
wall constant of the matrix (epoxy) are more than the reinforcement material (PMN-PT-BT); hence, with
an increase in the volume of reinforcement material, the overall effective value decreases. All the values of
effective impermeability constant and effective domain wall constant as a function volume fraction of TPMS
for Schoen Gyroid, Neovius, Schoen IWP, and Schwarz primitive-based electrostrictive composite are given
in Table 4.

3.2.3 Effective electrostrictive coefficients

Effective electrostrictive coefficients for different TPMS-based electrostrictive composites are evaluated as
a function of volume fraction using the appropriate boundary conditions mentioned in Table 1. The values
of both effective electrostrictive coefficients Qeff

11 , and Qeff
12 as a function of volume fraction are depicted in

Fig. 8a, b, respectively.
The values of effective electrostrictive coefficient Qeff

11 are decreasing as the volume fraction is increasing;
this trend is justifying the well-known relation Q ∝ S

b orQ ∝ βS (i.e., the electrostrictive coefficient is
directly proportional to the compliance coefficient and the impermeability constant) [57]. As it is evident from
Figs. 6a and 7a that the effective compliance coefficient and effective impermeability constant are decreasing,
it is prudent to say that our results for effective electrostrictive coefficient follow the formerly mentioned
relation. All the values of effective electrostrictive coefficients as the function of volume fraction for different
TPMS-based composites are given in Table 5.
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Table 3 Effective compliance coefficient of TPMS-based electrostrictive composites

Eff. properties TPMS type TPMS volume fraction

10% 15% 20% 25% 30% 35% 40%

Seff11 (m
2/N) Schoen Gyroid 1.23 × 10−10 1.02 × 10−10 8.56 × 10−11 7.26 × 10−11 6.19 × 10−11 5.32 × 10−11 4.58 × 10−11

Seff12 (m2/N) −4.24 × 10−11 −3.5 × 10−11 −2.9 × 10−11 −2.4 × 10−11 −2.1 × 10−11 −1.7 × 10−11 −1.5 × 10−11

Seff13 (m2/N) −4.19 × 10−11 −3.4 × 10−11 −2.8 × 10−11 −2.4 × 10−11 −2 × 10−11 −1.7 × 10−11 −1.4 × 10−11

Seff33 (m2/N) 1.23 × 10−10 1.02 × 10−10 8.56 × 10−11 7.26 × 10−11 6.19 × 10−11 5.32 × 10−11 4.58 × 10−11

Seff44 (m2/N) 3.27 × 10−10 2.72 × 10−10 2.3 × 10−10 1.95 × 10−10 1.68 × 10−10 1.45 × 10−10 1.25 × 10−10

Seff66 (m2/N) 3.27 × 10−10 2.72 × 10−10 2.3 × 10−10 1.95 × 10−10 1.68 × 10−10 1.45 × 10−10 1.25 × 10−10

Peff
s (C/m2) 0.0268 0.0399 0.0529 0.066 0.0791 0.0921 0.1052

Seff11 (m2/N) Neovius 1.06 × 10−10 8.37 × 10−11 6.84 × 10−11 5.72 × 10−11 4.87 × 10−11 4.22 × 10−11 3.82 × 10−11

Seff12 (m2/N) −3.48 × 10−11 −2.7 × 10−11 −2.2 × 10−11 −1.8 × 10−11 −1.5 × 10−11 −1.3 × 10−11 −1.2 × 10−11

Seff13 (m
2/N) −3.48 × 10−11 −2.7 × 10−11 −2.2 × 10−11 −1.8 × 10−11 −1.5 × 10−11 −1.3 × 10−11 −1.2 × 10−11

Seff33 (m2/N) 1.06 × 10−10 8.37 × 10−11 6.84 × 10−11 5.72 × 10−11 4.87 × 10−11 4.22 × 10−11 3.82 × 10−11

Seff44 (m2/N) 3.43 × 10−10 2.85 × 10−10 2.38 × 10−10 2 × 10−10 1.67 × 10−10 1.42 × 10−10 1.27 × 10−10

Seff66 (m
2/N) 3.43 × 10−10 2.85 × 10−10 2.38 × 10−10 2 × 10−10 1.67 × 10−10 1.42 × 10−10 1.27 × 10−10

Peff
s (C/m2) 0.0268 0.0399 0.0529 0.066 0.0791 0.0921 0.1052

Seff11 (m
2/N) Schoen IWP 1.16 × 10−10 9.23 × 10−11 7.52 × 10−11 6.23 × 10−11 5.22 × 10−11 4.42 × 10−11 3.78 × 10−11

Seff12 (m2/N) −3.89 × 10−11 −3 × 10−11 −2.4 × 10−11 −1.9 × 10−11 −1.6 × 10−11 −1.3 × 10−11 −1.1 × 10−11

Seff13 (m2/N) −3.89 × 10−11 −3 × 10−11 −2.4 × 10−11 −1.9 × 10−11 −1.6 × 10−11 −1.3 × 10−11 −1.1 × 10−11

Seff33 (m2/N) 1.16 × 10−10 9.23 × 10−11 7.52 × 10−11 6.23 × 10−11 5.22 × 10−11 4.42 × 10−11 3.78 × 10−11

Seff44 (m2/N) 3.42 × 10−10 2.85 × 10−10 2.43 × 10−10 2.08 × 10−10 1.8 × 10−10 1.55 × 10−10 1.35 × 10−10

Seff66 (m2/N) 3.42 × 10−10 2.85 × 10−10 2.43 × 10−10 2.08 × 10−10 1.8 × 10−10 1.55 × 10−10 1.35 × 10−10

Peff
s (C/m2) 0.0268 0.0399 0.0529 0.066 0.0791 0.0921 0.1052

Seff11 (m2/N) Schwarz

primitive

1.32 × 10−10 1.13 × 10−10 9.62 × 10−11 8.16 × 10−11 6.89 × 10−11 5.82 × 10−11 4.92 × 10−11

Seff12 (m2/N) −4.76 × 10−11 −4.1 × 10−11 −3.5 × 10−11 −2.9 × 10−11 −2.4 × 10−11 −2 × 10−11 −1.7 × 10−11

Seff13 (m2/N) −4.76 × 10−11 −4.1 × 10−11 −3.5 × 10−11 −2.9 × 10−11 −2.4 × 10−11 −2 × 10−11 −1.7 × 10−11

Seff33 (m2/N) 1.32 × 10−10 1.13 × 10−10 9.62 × 10−11 8.16 × 10−11 6.89 × 10−11 5.82 × 10−11 4.92 × 10−11

Seff44 (m2/N) 3.03 × 10−10 2.47 × 10−10 2.05 × 10−10 1.74 × 10−10 1.49 × 10−10 1.3 × 10−10 1.14 × 10−10

Seff66 (m2/N) 3.03 × 10−10 2.47 × 10−10 2.05 × 10−10 1.74 × 10−10 1.49 × 10−10 1.3 × 10−10 1.14 × 10−10

Peff
s (C/m2) 0.0268 0.0399 0.0529 0.066 0.0791 0.0921 0.1052

Fig. 7 a Effective impermeability constant and b effective domain wall constant variation with volume fraction of TPMS
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Table 4 Effective impermeability and domain wall constant of TPMS-based electrostrictive composites

Eff. prop TPMS type TPMS volume fraction

10% 15% 20% 25% 30% 35% 40%

βeff
11 [(Vm)/C] Schoen

Gyroid
1.44 × 109 1.13 × 109 9.27 × 108 7.87 × 108 6.82 × 108 6.01 × 108 5.34 × 108

βeff
33 [(Vm)/C] 1.44 × 109 1.13 × 109 9.27 × 108 7.87 × 108 6.82 × 108 6.01 × 108 5.34 × 108

keff (m/V) 2.58 × 10−8 2.22 × 10−8 2.04 × 10−8 1.92 × 10−8 1.85 × 10−8 1.81 × 10−8 1.78 × 10−8

βeff
11 [(Vm)/C] Neovius 1.41 × 109 1.11 × 109 9.02 × 108 7.51 × 108 6.32 × 108 5.21 × 108 4.68 × 108

βeff
33 [(Vm)/C] 1.41 × 109 1.11 × 109 9.02 × 108 7.51 × 108 6.32 × 108 5.21 × 108 4.68 × 108

keff (m/V) 2.63 × 10−8 2.26 × 10−8 2.09 × 10−8 2.02 × 10−8 2 × 10−8 1.97 × 10−8 1.95 × 10−8

βeff
11 [(Vm)/C] Schoen IWP 1.63 × 109 1.27 × 109 1.06 × 109 9.02 × 108 7.87 × 108 6.97 × 108 6.24 × 108

βeff
33 [(Vm)/C] 1.63 × 109 1.27 × 109 1.06 × 109 9.02 × 108 7.87 × 108 6.97 × 108 6.24 × 108

keff (m/V) 2.27 × 10−8 1.97 × 10−8 1.78 × 10−8 1.68 × 10−8 1.61 × 10−8 1.56 × 10−8 1.52 × 10−8

βeff
11 [(Vm)/C] Schwarz

primitive

based

1.71 × 109 1.32 × 109 1.07 × 109 9.04 × 108 7.78 × 108 6.81 × 108 6.03 × 108

βeff
33 [(Vm)/C] 1.71 × 109 1.32 × 109 1.07 × 109 9.04 × 108 7.78 × 108 6.81 × 108 6.03 × 108

keff (m/V) 2.16 × 10−8 1.89 × 10−8 1.76 × 10−8 1.68 × 10−8 1.63 × 10−8 1.59 × 10−8 1.57 × 10−8

Fig. 8 Electrostrictive coefficients a Qeff
11 , and b Qeff

12 illustrated as a function of volume fraction of different TPMS structures

Table 5 Effective electrostrictive coefficients of TPMS-based composites as a function of volume fraction

Eff. prop TPMS type TPMS volume fraction

10% 15% 20% 25% 30% 35% 40%

Qeff
11 (m4/C2) Schoen Gyroid 1.1716 0.6073 0.3792 0.2606 0.1899 0.144 0.1123

Qeff
12 (m4/C2) −0.465 −0.237 −0.145 −0.098 −0.070 −0.0529 −0.041

Qeff
11 (m4/C2) Neovius 1.455 0.739 0.447 0.296 0.206 0.154 0.124

Qeff
12 (m4/C2) −0.453 −0.226 −0.135 −0.089 −0.062 −0.046 −0.037

Qeff
11 (m4/C2) Schoen IWP 1.377 0.6703 0.4062 0.2741 0.1967 0.1471 0.1132

Qeff
12 (m4/C2) −0.436 −0.208 −0.123 −0.082 −0.058 −0.043 −0.033

Qeff
11 (m4/C2) Schwarz primitive based 0.863 0.465 0.298 0.209 0.155 0.119 0.0945

Qeff
12 (m4/C2) −0.221 −0.117 −0.075 −0.053 −0.040 −0.0315 −0.025
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4 Conclusions

A model to predict the homogenized properties of TPMS-based electrostrictive composites, which employs
the finite element method is presented in the current study. Finite element formulation is presented to solve the
nonlinear electrostrictive constitutive equations. All the results satisfy the intuition from the rule of mixture
and relations established in the literature (i.e., Q ∝ S

b orQ ∝ βS). The composites consist of epoxy matrix and
PMN-PT-BT as TPMS structure reinforcement. The study considered the four different structures, i.e., Schoen
Gyroid, Neovius, Schoen IWP, and Schwarz primitive for TPMS-based electrostrictive composite for the
present work. Effective properties are not only a function of the volume fraction of reinforcement but also their
structures. Even on considering the non-electrostrictive matrix, the TPMS-based electrostrictive composite is
showing more value of electrostriction coefficient than the PMN-PT-BT at a 10% volume fraction independent
of anyTPMSstructure. Themaximumvalue of effective electrostrictive coefficient [i.e., Qeff

11 � 1.455 (m4/C2)]
is achieved for Neovius electrostrictive composite. It is prudent to say that these composites will find their place
in practical application owing to their salient features of more flexibility and high electrostrictive coefficient.
From the current study, it is revealed that an even higher electrostrictive coefficient can be achieved if a matrix
of electrostrictive active polymer is selected.

Appendix A

Shape function Ni for linear tetrahedral element is

Ni � (αi + βi x1 + γi x2 + δi x3)

6V
, (A.1)

where i varies from 1 to 4, and
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where the superscript (i.e., 1, 2, 3, and 4) represents the node number and the subscript (i.e., 1, 2, and 3)
represents the direction.
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The elemental strain displacement matrix is
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The elemental electric field and electric potential matrix is
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