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RESEARCH ARTICLE

An integrated in silico-in vitro approach 
for identifying therapeutic targets 
against osteoarthritis
Raphaëlle Lesage1,2  , Mauricio N. Ferrao Blanco3  , Roberto Narcisi3  , Tim Welting4  , 
Gerjo J. V. M. van Osch3,5,6   and Liesbet Geris1,2,7*   

Abstract 

Background: Without the availability of disease-modifying drugs, there is an unmet therapeutic need for osteoar-
thritic patients. During osteoarthritis, the homeostasis of articular chondrocytes is dysregulated and a phenotypical 
transition called hypertrophy occurs, leading to cartilage degeneration. Targeting this phenotypic transition has 
emerged as a potential therapeutic strategy. Chondrocyte phenotype maintenance and switch are controlled by an 
intricate network of intracellular factors, each influenced by a myriad of feedback mechanisms, making it challenging 
to intuitively predict treatment outcomes, while in silico modeling can help unravel that complexity. In this study, we 
aim to develop a virtual articular chondrocyte to guide experiments in order to rationalize the identification of poten-
tial drug targets via screening of combination therapies through computational modeling and simulations.

Results: We developed a signal transduction network model using knowledge-based and data-driven (machine 
learning) modeling technologies. The in silico high-throughput screening of (pairwise) perturbations operated with 
that network model highlighted conditions potentially affecting the hypertrophic switch. A selection of promising 
combinations was further tested in a murine cell line and primary human chondrocytes, which notably highlighted a 
previously unreported synergistic effect between the protein kinase A and the fibroblast growth factor receptor 1.

Conclusions: Here, we provide a virtual articular chondrocyte in the form of a signal transduction interactive knowl-
edge base and of an executable computational model. Our in silico-in vitro strategy opens new routes for developing 
osteoarthritis targeting therapies by refining the early stages of drug target discovery.

Keywords: Network of signal transduction, Computational modeling, Drug targets, Osteoarthritis, Chondrocyte 
hypertrophy, In vitro validation, Regulatory network inference, Virtual cell
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Background
Osteoarthritis (OA) is a degenerative disease of the joint 
increasingly prevalent due to the aging population. It is a 
major societal burden as no disease-modifying drugs are 

currently available on the market [1]. OA is characterized 
by cartilage damage, led by an overall increase of cata-
bolic processes and disturbance of anabolic processes. 
The joint cartilage is composed of a unique cell type, the 
chondrocyte, which is responsible for maintaining the 
tissue homeostasis in an environment mainly composed 
of water and biomolecules such as proteoglycans and col-
lagen fibers. Many factors, including inflammation, may 
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influence the shift from stable healthy cartilage towards a 
diseased state [2]. Regardless of the exact inducing mech-
anisms, during that transition, some of the chondrocytes 
enter a maturation process called hypertrophy [3, 4], 
leading to extracellular matrix (ECM) degradation, min-
eralization, and bone formation. This pathological phe-
nomenon resembles the hypertrophic changes observed 
in the course of endochondral ossification, during growth 
and development [2, 5–8]. Therefore, controlling chon-
drocyte phenotype to prevent hypertrophic maturation 
has emerged as a potential therapeutic strategy to treat 
OA patients [7, 9].

Crucial in this approach is the understanding of the 
process of articular chondrocyte hypertrophy for the 
identification of key regulators as potential drug tar-
gets. Several factors have been associated to the promo-
tion of this phenotypic shift, such as Indian hedgehog 
(IHH) and inflammatory signaling pathways [10]. Routes 
downstream of various growth factors are thought to be 
important in the control or disruption of chondrocyte 
homeostasis, such as the WNT and Bone morphogenic 
protein (BMP) pathways, the parathyroid hormone-
related peptide (PTHrP), as well as the insulin-like 
growth factor (IGF)-I, fibroblast growth factors (FGF) 
and transforming growth factors (TGF)-B [9, 11, 12]. 
However, the interplay of intracellular pathways is highly 
intricate with extensive feedback loops, non-linear path-
ways, redundancy, and intertwining [11, 13, 14]. This 
complicates the intuitive prediction of what will happen 
in case of perturbation of a specific target. For example, 
it was observed that the in vitro activation of the WNT 
pathway with the WNT3A ligand and the inhibition of 
that same pathway with Dickkopf1 (DKK1), both induced 
a reduction of glycosaminoglycan rich ECM in human 
articular chondrocytes [15]. The fact that an activator and 
an inhibitor of the canonical WNT pathway both lead to 
the same outcome is surprising and highlights the intri-
cacy of the underlying mechanisms. Hence, the ability to 
predict the effect of external perturbations and potential 
therapies requires a systemic view on the process and a 
holistic approach [13, 14].

We propose to unravel the complexity of these regu-
latory pathways and to rationalize the identification of 
potential drug targets via screening of (pairwise) per-
turbations by using a classical engineering approach, 
namely that of computer modeling and simulation. Con-
trary to in vitro and in vivo approaches, having a sys-
temic view of the process using an in silico model allows 
to study the system numerically, in a cost- and time-
efficient way, and with less ethical concerns. In addition, 
it allows to prioritize experiments, thereby refining the 
traditional funnel of drug target identification in the 
drug discovery process. The in silico approach starts 

with collecting intracellular biological mechanisms. It 
is necessary to identify the important individual com-
ponents of the system and to know how they interact 
and influence each other. A computational model built 
on this information should generate results consistent 
with current knowledge but also allows to investigate 
questions that would lead to new insights into yet unex-
plored situations and interactions [16]. Such computa-
tional mechanistic approaches were already used in the 
past to identify influential candidates for cancer thera-
peutics [17], study the control cell fate decision [18], 
including in cartilage [19, 20] or prioritize personalized 
combination therapies [21].

In this study, we developed an in silico model of the reg-
ulatory intracellular network capturing articular chon-
drocyte phenotypic changes during OA. This network is 
built by combining knowledge-based modeling and data-
driven approaches to ensure the mechanistic accuracy of 
the network whilst taking advantage of current automatic 
network reconstruction technologies. We characterized 
the intracellular states of the articular chondrocyte model 
and investigated consistency with known physiological 
behaviors, through mathematical model implementation 
and computer simulations. We subsequently used the 
model as a “virtual chondrocyte” to perform an in silico 
high throughput screening for early predictions of the 
best potential therapeutic conditions to be tested in wet 
lab experiments. Finally, we investigated in vitro the role 
of a selection of predicted factors in the regulation of the 
phenotypic change, for both single and combinations of 
factors to guide future therapeutic strategy discovery.

Results
Highly interconnected intracellular networks regulate 
articular chondrocytes: building a mechanistic model
In order to build an articular chondrocyte model, we 
gathered known biological mechanisms from the litera-
ture into an activity flow graph or network (Fig. 1). In this 
graphical influence network, or activity flow representa-
tion, the nodes represent biological components (i.e., 
proteins or genes, see Additional file 1 Table S1 for defi-
nitions) important for chondrocyte biology [9]. Directed 
edges linking two nodes represent interactions or acti-
vating/inhibitory influences between source and target 
proteins or between transcription factors (TFs) and tar-
get genes. Information was collected and adapted from 
a previously published model of growth plate chondro-
cytes [22, 23] as well as from additional deep literature 
and database curation (see the “Methods” section). The 
annotations, descriptions, and cross-references for each 
network node and its interactions can be consulted in 
two interactive subnetworks, a protein signaling one and 
a gene regulatory one. The former goes from the growth 
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factors binding their respective receptors down to the TF 
entering the nucleus. The latter represents a network of 
transcription factors regulating the expression of their 
target genes, coding for the corresponding proteins in the 
signaling network (Fig. 1). The two subnetworks are inter-
connected as each biological component is represented 
by a gene in the gene regulatory network (GRN) and its 
corresponding protein in the protein signaling network. 
Both subnetworks, forming the full network, can be 
regarded as an interactive knowledge base on chondro-
cyte signaling pathways, which is available through the 
online platform Cell Collective [24]. We refer the reader 
to that interactive knowledge base for the literature sup-
port of our network model (see links in the “Availability 
of data and materials” section), while the main pathways 
that were included are listed below. It is noteworthy that 
some biological factors were not regulated in one of the 
subnetworks (unknown transcriptional regulators or 
absence of post-translational modifications) and/or did 
not have downstream targets, but they were included in 
the knowledge base anyway (possibly resulting in discon-
nected—but annotated—nodes in that subnetwork) since 
regulatory relationships were described in the other sub-
network (see Additional file 2 for more details).

Unless stated otherwise, all components of the net-
work and of the in silico model are referred to with 
names in upper cases that designate the numerical vari-
ables, which represent neither the protein nor the gene 
but a product of both. Therefore, neither the gene nor 
the protein official nomenclatures are used. A list of cor-
respondence between the numerical variable’s names and 
actual mouse gene names is available in Additional file 3 
Table  S2 and reported in the Cell Collective interactive 
networks, for information.

The regulatory pathways represented in the network 
include the canonical and non-canonical WNT BMP 
pathways, the PTHrP and IHH pathways, as well as the 
IGF-I, FGFs, and TGF-B pathways since they are all 
reported to play a role in chondrocyte fate decisions [9, 
25]. The influence of pro-inflammatory cytokines, such 
as interleukin 1beta (IL-1B) or Tumor Necrosis Factor 
Alpha (TNF-A), was summarized through a node labeled 
‘cytokines’, in the network (Fig. 1). That node can signal 
through a single receptor (labeled ‘Rinfl’) that can activate 

well known downstream pathways such as the phosphati-
dylinositol 3-kinase (PI3K)/AKT axis, the nuclear factor 
kappa B (NFKB) pathway and mitogen-activated pro-
tein kinases (MAPK) pathways. These MAPKs in ques-
tion include extracellular signal-regulated kinase 1&2 
(ERK1/2), c-Jun N-terminal kinase (JNK), and P38. For 
each of the introduced pathways, we represented the 
downstream signaling cascades and known transcription 
factors as well as their target genes in the nucleus. Exam-
ples of important transcription factors that were included 
are the IHH signal transducer GLI2, the signal transducer 
and activator of transcription (STAT1), the transcription 
factor 7 (TCF), the myocyte enhancer factor 2C (MEF2C) 
as well as SRY-Box Transcription Factor (SOX9), a 
marker of differentiated healthy chondrocytes, and runt-
related transcription factor 2 (RUNX2), a hypertrophy 
marker. All pathways in the model are highly intercon-
nected as shown by Fig. 1.

In total, there are 60 biological components in the net-
work, which are listed in Additional file 3, Table S2. Each 
component accounts for a different biochemical entity 
including 8 growth factors, 8 receptors, 20 transcrip-
tion factors, 4 ECM proteins, and 20 signaling molecules 
of another type. Combining the signal transduction and 
the gene regulatory networks into one connected net-
work leads to a total of 264 direct or indirect biochemical 
interactions. Each node has on average 7.2 direct neigh-
bors (i.e., directly connected node) and the average short-
est path (i.e., smaller number of edges) to connect two 
nodes is 3.01. Hence, all nodes may virtually influence 
others by means of a couple of intermediary components, 
supporting the need to represent and study that network 
mathematically to conclude on key controllers.

Learning from transcriptomic OA data by complementing 
the mechanistic network with data‑inferred interactions
We complemented the knowledge-based GRN with data-
driven network inference, allowing for identification of de 
novo regulatory links, introduction of previously unstud-
ied or undiscovered interactions and the reduction of the 
bias related to human literature curation. To that end, we 
generated an informative cross-platform merged dataset 
on mouse osteoarthritic cartilage. It was composed of 
109 samples coming from 6 microarray experiments from 

Fig. 1 Influence map of the signaling and gene regulatory networks (GRN) implemented in the model. Red, T-ended arrows represent inhibitory 
influences and black arrows represent activating influences. On the signaling side, growth factors and pro-inflammatory cytokines are represented 
by green rectangular nodes, receptors are yellow triangles, kinase proteins are yellow hexagons and other signaling proteins are yellow ellipses. 
Transcription factors (TFs) are represented in blue both in the signaling network and the GRN. In addition, target genes are represented by yellow 
rectangles in the GRN, and TFs might also be targets of other TFs in the GRN. In this image, each biological component is represented by a gene 
in the GRN and a protein in the signaling network, except for the ones that are not involved in one of the subnetworks (e.g., NKX3.2 only plays a 
role in the GRN while COL-II and COL-X do not have upstream and downstream influences in the protein signaling network). Network images were 
designed with Cell Designer

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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which we selected a subset corresponding to the expres-
sion profile of 41 genes (see the “Methods” section and 
full list in Additional file 4 Data S1). The selected genes 
were the ones present in or closely related to the biologi-
cal factors from the mechanistic model. The purpose was 
to identify potential regulatory interactions among those 
genes of interest without adding new variables (see the 
“Methods” section). The sub-dataset was normalized and 
corrected for batch effects originating from the differ-
ences in microarray platform technologies, as described 
in the “Methods” section. Our data indicate that the gene 
expression distribution was correctly normalized among 
the different microarrays (Fig. 2A). The principal compo-
nent analysis (PCA) showed the inter-array variance was 
strongly reduced after merging and correction, thereby 
highlighting successful removal of the batch effect. As a 
quality control, we applied an unsupervised clustering 
method to the merged dataset to evaluate whether the 
biological information was still maintained after merg-
ing and correction. The resulting heatmap features the 
clustering of the 109 samples as well as their prior anno-
tations as “OA” and “WT” (for wild-type or control sam-
ples) (Fig. 2B). See the “Methods” section and Additional 
file 4 Data S1 for annotations definition. While splitting 
the clustering result in three groups, we could identify 
an OA-like group and a WT-like group as well as a WT-
like sample clustering alone. Based on these categories, 
81% of the OA-tagged samples were correctly identified 
in the OA group whereas 56% of the WT-tagged samples 
were correctly located in the WT group. These accuracy 
levels are like the ones achieved when clustering each of 
the individual microarray experiments separately, before 
batch effect removal (Additional file 5 Fig. S1). We con-
cluded that, despite the diversity of the technical plat-
forms used in the assembled dataset, most of the variance 
was not due the arrays’ underlying technology but rather 
due to the biologically meaningful information usable as 
input for GRN reconstruction.

In order to complement the GRN with new data-
derived hypothetical interactions, we inferred genetic 
interactions out of this newly assembled dataset. 
Directed edges between nodes were added in the GRN 
to account for newly inferred regulatory interactions, as 
represented in Fig.  2C. We inferred regulatory interac-
tions directed from TFs towards target genes by using 
three different algorithms to avoid algorithm-specific bias 
on the inferred edges (see the “Methods” section) [27]. 
Only interactions predicted by all the three algorithms 
were implemented in the gene regulation layer of the 
mechanistic model. The matrix of inferred interactions is 
reported for each algorithm and for the consensus result 
in Additional file 6 Data S2. In addition, the sign of the 
Spearman correlation score allowed us to define whether 

the interactions were genetic activations or inhibitions 
(Fig.  2C). The inferred interactions are reported with 
the correlation factors in Fig. 2D. Note that the machine 
learning methods predicted some TF as regulator of a 
given target gene even for pairs that had not a high cor-
relation score (Fig. 2D). This showed that the ensemble of 
algorithms we used went beyond the simple correlation 
for inferring genetic interactions, relying on the concept 
that some form of covariation is implied by a causal rela-
tionship. The inferred interactions were included in the 
GRN part of the model for all subsequent analyses pre-
sented in this study.

The computational model captured two chondrocyte 
phenotypes and several physiologically relevant behaviors 
qualitatively
We translated the regulatory network into mathematical 
equations in order to develop an executable numerical 
model of the articular cartilage chondrocyte. We used a 
semi-quantitative additive modeling formalism with pri-
ority classes as it allows to study large networks without 
requiring much information on kinetics parameters. Each 
node takes on a continuous value in the interval [0,1], 
representing the global functional activity of that node, 
defined as the multiplication of the gene expression level 
and the protein activation potential. That way, a protein 
cannot exert its function on downstream targets unless 
it is both expressed at the genetic level and activated/not 
blocked at the post-translational level (global functional 
activity > 0) (see the “Methods” section, Additional file 2: 
supplementary computational method and Additional 
file 1 Table S1).

With the above-described numerical chondrocyte 
model, we studied the system free of fixed external cues 
to identify mathematically stable states that may emerge 
naturally. These stable states are also called attractors and 
they equate potentially existing cell phenotypes (see def-
inition of attractors in Additional file  1 Table  S1). They 
were evaluated using methodologies like those used with 
logical models [28]. Any initial state inputted into the 
system of equations is like a set of external stimuli that 
would trigger signal transduction inside a cell, eventually 
leading to a specific cell state. By randomly initializing 
the in silico model (see the “Methods” section for Monte 
Carlo analysis), we were able to explore possible model 
outcomes and we observed three emerging attractors that 
were singleton stable states. No cyclic attractors were 
obtained. Each of those states had a unique global activ-
ity profile for the 60 components as reported in Fig. 3A; 
the details of the protein activation and gene expression 
level for each component are available in Additional file 8 
Data S3. Two of the attractor states that we found were 
biologically relevant, meaning they were comparable 
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Fig. 2 Microarray integration for GRN inference. A Assembling and correcting the microarray sub-datasets. PCA plots and gene expression 
distributions of the assembled dataset colored by arrays (GSE-number), before and after quantile normalization and batch effect correction with 
ComBat. B Unsupervised clustering with the Euclidian complete method highlights that the samples do not cluster according to the technological 
platform but rather according to the OA status of the samples. When splitting the hierarchical tree into three branches, a mostly OA group and 
a mostly WT group stand out. The table summarizes the percentage of true OA (resp. WT) samples correctly grouped in the “OA-group” (resp. 
“WT-group”) highlighting a clustering accuracy in line with what is obtained for the individual sets before correction. C the algorithms compute 
possible regulatory interactions and output a list of possible transcriptional interactions from a transcription factor to another gene. “g1,” “g2,” and 
“g3” denote gene1, 2, and 3. D List of interactions inferred with the merged OA dataset and integrated into the mechanistic model (11 predictions 
in total). Inference was run with three algorithms, solely interactions that were present in the results of the three algorithms were reported and 
integrated. An interaction was considered present for one algorithm if its score was higher than a threshold defined as the difference between the 
mean and standard deviation of all scores (Additional file 6, Data S2). Corr.score is the Spearman correlation coefficient, computed solely to define 
the interaction sign (activation if positive, inhibition if negative). The validity of inferred interactions was supported by looking for binding sites 
of the source gene in the enhancer region of the target with using the GeneHancer database embedded in GeneCards [26]. GeneHancer IDs are 
reported, when found. ‘etc.’ in indicated when more than one was found. The queried gene IDs and the full list of GeneHancer IDs are reported in 
Additional file 7, Table S3
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to existing chondrocyte phenotypes identified based on 
known cell state biomarkers such as type II and type X 
collagen (COL-II and COL-X, respectively), RUNX2 or 
SOX9. We identified one of the states as a normal healthy 
articular chondrocyte since markers such as SOX9, 
NKX.3.2 and COL-II were strongly active and expressed 
while RUNX2, COL-X, and matrix metalloproteinase 13 
(MMP13) were inactive or not expressed (Fig. 3A and [8, 

29–31]). In addition, the inflammation-associated vari-
ables had low activity. That correlates with what is known 
of real chondrocytes during homeostasis [32, 33]. The 
second state corresponded to a hypertrophic-like chon-
drocyte since factors such as RUNX2, COL-X, MMP13, 
and IHH were present or active (i.e., global activities 
equaling to 1) while SOX9 was not and COL-II and the 
proteoglycans were degraded and/or not expressed 

Fig. 3 Predicted chondrocyte profiles and canalization for the three emerging states during Monte Carlo analyses. The Monte Carlo analyses 
consist in sampling 10.000 random initial states for the variables, with the possibility to impose constraints (similar to external biological cues). A The 
Monte Carlo analysis without constraints highlights the existence of three final states (i.e., attractors) with different activity profiles (in columns). The 
global activity of a protein is presented in this table as the product of the predicted gene expression and the protein activation level. The table only 
reports the global activity; a complete table including the gene expression and protein activation levels is available in Data file S2. Rows represent 
the variables of the model and are grouped by pathways or functional groups. B Specific activity profiles were imposed to the growth factors, as 
reported in the table, while variables other than growth factors were initialized randomly. Profile A represents a possible healthy environment. 
Profile B represents a more pathological environment. The ‘Random’ column indicates the case without constraints in which initial activities were 
randomly sampled within the interval [0,1]. In the Sankey diagram, initial states are on the left and final states on the right. Strips indicate the 
percentage of initializations (among the 10.000) that reached each of the possible attractors during the Monte Carlo without constraints (“Random 
initializations”). That percentage is also reported for the Monte Carlo with constraints (profile A and B)
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(functional activities nearly zero) (Fig. 3A and [4, 30, 31, 
34–37]). In addition, the WNT and inflammation-related 
pathways were active (e.g., WNT =1, DC=0, βcatenin = 
1, cytokines =1, NFκB = 1, TAK1= 0.76) (Fig 3A and [12, 
33, 38]). The third state we found had nearly all protein 
activities close to zero, consequently, we couldn’t associ-
ate it with any specific phenotype as it was more likely 
a trivial mathematical solution. We named it the ‘None’ 
state as it was neither healthy nor hypertrophic Fig. 3A.

The number of random initializations reaching an 
attractor during the Monte Carlo simulation gives a sense 
of the probably of reaching that state (Fig. 3B). Most of 
the random initial states led to the ‘None’ final state, 
reflecting the fact that most of these random initial val-
ues might very well be nonsensical from a chondrocyte 
biology perspective. In addition, about 21% of the ini-
tializations led to the healthy state and about 2% to the 
hypertrophic state (Fig.  3B). These attractors are the 
spontaneously emerging states arising from the proposed 
map of biochemical interactions.

We also sampled random initial states while fixing 
seven growth factors at values that were physiologically 
relevant in either a normal healthy or a disease environ-
ment (profile A and B of Fig. 3B, respectively). Interest-
ingly, when imposing the profile A to the growth factors 
during the Monte Carlo, the system only settled into the 
healthy state and when imposing profile B it settled into 
the hypertrophic state, thereby abolishing the “None” 
state (Fig. 3B).

As a first step to support the validity of our model, we 
established a tool enabling to test in silico scenarios and 
assess whether the model could successfully recapitu-
late relevant physiological behaviors. We used this tool 
to test specific scenarios for which the expected out-
come was known from literature or hypothesized from 
clinical observations. For instance, inflammation in the 
knee is one of the symptoms of OA and has been shown 
to be one of the drivers of cartilage degradation, possi-
bly by pushing chondrocytes to undergo hypertrophy 
and produce matrix-degrading enzymes [39, 40]. For 
that reason, inflammation-related targets are subject to 
several investigations for potential OA therapies. Inter-
estingly, in silico experiments with our model showed 
that blocking important transducers of inflammation 
such as the TGF-β-activating kinase (TAK1) or NFKB 
concomitantly to activating the PTHrP-related path-
way could push a hypertrophic-like chondrocyte into 
transitioning towards a more healthy or anabolic state 
(Additional file 9 Data S4). Moreover, other studies have 
reported that the TGF-β pathway had a protective effect 
against inflammation [41–44], a scenario we evaluated 
with our model too. In silico mimicking the presence 
of inflammation in a healthy chondrocyte by forcing 

several inflammation related pathways of the model to 
be set at their highest values led to 100% of transitions 
towards the diseased hypertrophic state (Fig.  4A). This 
effect was partially rescued by concomitantly forcing 
the presence of TGF-β since 5.3% ±1.2 of the perturba-
tions failed to exit the healthy state, thus, confirming in 
silico that TGF-β could have a protective effect against 
inflammation through the mechanisms present in the 
model. Nevertheless, the role of TGFβ in OA has been 
reported to be dual as this growth factor transduces sig-
nals in chondrocytes mainly via two receptors, the type 
I TGFβ receptor (ALK5) and the type II TGFβ receptor 
ALK1 [45]. They are involved in different intra-signaling 
routes and depending on which receptor is activated, the 
downstream-activated signals would be rather anabolic 
(ALK5) or catabolic (ALK1) [45] and impact chondro-
cyte maturation differentially [46]. Clinical observations 
reported that the ALK5/ALK1 balance decreased with 
age and in OA patients [47–49]. In silico simulations with 
our model showed that, roughly, the rescue by TGFβ was 
lost when the ratio between the receptors was forced to 
be ALK1

ALK5
> 1 (Fig. 4 A and Additional file 10 Fig. S2). For 

higher values of ALK1, ALK1 activity could be as low as 
0.86*ALK5 and still show the loss of the TGF-β protective 
effect (Additional file 10 Fig. S2). This is in line with what 
was previously modeled [41], demonstrating that the 
decrease in that balance could explain why TGF-β loses 
its protective effect against inflammation in OA patients.

Together, these results show the ability of the articular 
chondrocyte in silico model to behave in a physiologically 
relevant way and predict emerging effects qualitatively, 
highlighting the pro- or anti-hypertrophic nature of bio-
logical components in specific conditions. The afore-
mentioned tool was further implemented through an 
executable App (available in GitHub [50]) allowing users, 
such as biologists, to easily test hypotheses by perform-
ing in silico experiments on the virtual chondrocyte (see 
interface Additional file 11 Fig. S3).

In silico experiments on the modeled system predicted 
potential important nodes to control chondrocyte fate
We next decided to exploit further the model by studying 
the effect of all possible perturbations of each compo-
nent. Starting either from the healthy or the hyper-
trophic-like state, variables were individually activated or 
inhibited in a systematic manner. Over-activation of the 
FGF receptor 1 (FGFR1) or NFKB was the most potent 
condition to trigger a transition from the healthy towards 
the hypertrophic state. To a lesser extent, activation of 
the variables for ERK1/2 kinases, the AKT member of the 
PI3K/Akt axis, the RUNX2 transcription factor or JNK 
kinases also promoted this diseased transition (Fig. 4B). 
On the other hand, transition from the hypertrophic 
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Fig. 4 Study of the virtual chondrocyte state transition and in silico screening of target perturbations. A Relation between Inflammation and TGFβ 
and influence on the chondrocyte state. Perturbations are applied on the healthy attractor, bar height gives the average percentage of transitions 
towards one of the target states, error bar denotes standard deviation. “Infl.” refers to imposed inflammation, “TGF” refers to TGFβ over-activation, 
and “Alk balance” to the modification of the ratio between TGFβ receptors (ALK1 and ALK5). Conditions were mimicked as described in the table. 
“−” denotes no modification of the initial value. A transition from “healthy” to “healthy” means no transition. B All single node perturbations 
triggering a state transition from the Healthy (resp. Hypertrophic) state. (C) Markov chain providing the overall probability of transition from 
one state to another, under single node perturbations. Arrows indicate transitions from an initial state towards a target state with the associated 
probability. Thus, the total probability of outgoing arrows for any state is 1.0. D PCA visualizing the results of the systematic screening of all possible 
combinatorial perturbations on a hypertrophic-like chondrocyte. Each dot represents one of the 7080 screened conditions. Principal components 
are computed based on the percentage of transitions towards the 3 attractors, reported as eigenvalues (blue arrows). Dot colors correspond to 
threshold in the percentage of transitions towards the healthy state for potential OA therapies. The details of the predicted conditions leading to 
70% and up to 100% of transitions towards the healthy state are available in Additional file 9, Data S4, the ones that were selected for experimental 
validation are further described below.
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towards the healthy state was mainly triggered by forced 
activation of the TGFβ intracellular effector SMAD3 and 
partially brought about by activation of the SOX9 tran-
scription factor, IGF-I and members of the PTHrP path-
way (i.e., the protein kinase A (PKA), the PTHrP receptor 
(PPR) and PTHrP). This constitutes a state transition 
study that can be summarized in the Markov Chain rep-
resentation (Fig. 4C) with the system’s overall probability 
of transitioning from one state to another under random 
single-node perturbations. Interestingly, despite the low 
probability of reaching the hypertrophic state in the ran-
dom canalization (Fig.  3B), the transition study shows 
that the total probability of transitioning out of that 
hypertrophic state under random single-node perturba-
tions is 0.11. So, in 89% of the cases, a single node pertur-
bation will not affect this state. This means that even if 
the hypertrophic state is difficult to reach in the articular 
cartilage system, it is particularly robust to small single 
perturbations, and once the numerical system has 
reached that state, it is unlikely to escape from it, via 
transitioning to any other state, with a single targeting 
strategy. For this reason, we also systematically investi-
gated the effect of all possible combinatorial perturba-
tions of two constituents (or pairwise perturbations). The 
full screening amounted to 60

2
× 4 = 7080 tested con-

ditions per state. 94% of the variance was explained by 
the first two components in the PCA reporting the effect 
(percentage of transitions to destination attractors) of the 
combinatorial treatments on a hypertrophic-like chon-
drocyte (Fig. 4D). We searched for the most potent con-
ditions to retrieve the healthy state from a hypertrophic 
chondrocyte (defined as conditions with more than 70% 
of perturbations transitioning to the healthy state and 
less than 5% to the “None” state), which could point 
towards potential drug therapies for OA. Based on those 
results, the most efficient way to transition from a hyper-
trophic towards a healthy chondrocyte in the in silico 
model was with the up-regulation of SMAD3 in 

combination with activation or inhibition of numerous 
other targets such as inhibition of the inflammatory 
mediator NFKB, inhibition of the DLX5 transcription 
factor or activation of SOCS, a blocker of pro-inflamma-
tory signals transduction (see the complete list in Addi-
tional file  9 Data S4). Activation of PKA/PPR in 
combination with inhibition of various targets, such as 
WNT or FGFR1, also seemed to decrease hypertrophy 
successfully in the model with 100% of transitions 
towards the healthy state (Additional file  9 Data S4). 
Therefore, the PKA/PPR axis and SMAD3 seemed to be 
“enablers” that could “unblock” the system, facilitating 
the effect of other relevant targeting treatments, in silico. 
Moreover, some predictions among the ones triggering 
more than 70% of transitions towards the healthy state, in 
Fig. 4D, did not include the two aforementioned enablers. 
For example, the up-regulation of ALK5 in combination 
with the down-regulating ALK1, the two receptors of 
TGF-B in the model, gave more than 90% of transitions 
towards the healthy state. Additionally, inhibition of the 
WNT pathway while activating ALK5 as well as activa-
tion of IGF-1 while activating the destruction complex 
(DC) involved in the WNT pathway allowed between 70 
and 90% of transitions towards the healthy state, to men-
tion but a few (Additional file 9 Data S4). So, the in silico 
model and associated screening algorithms predicted 
pairwise targeting conditions with a potential role against 
chondrocyte hypertrophy. Those predictions can be used 
as an indicator to guide further validation experiments.

In vitro experiments support the role of newly predicted 
(combinatorial) treatments to prevent hypertrophy
We used ATDC5s, a chondrogenic murine cell line able 
to undergo hypertrophy as well as human OA chon-
drocytes, in order to in vitro validate the in silico find-
ings obtained from the model. We measured the activity 
of alkaline phosphatase (ALP), an enzyme typically 
secreted during hypertrophy and participating to ECM 

Fig. 5 In vitro validation of in silico predictions on chondrocyte phenotype changes. A Concept of in silico identification of potential drug targets. 
B Secreted ALP activity, relative to DNA quantity, positively linearly correlates with Col10a1 gene expression during hypertrophic differentiation 
with and without Ihh treatment. Results of one representative experiment. Each point is the average of 3 replicates and bars denote standard 
deviation. C Effect of PKA or SMAD3 activation as measured in silico and in vitro in ATDC5 (N = 3 replicates, histograms show average fold change 
in ALP activity relative to control and bars are standard deviations, p-values are computed with one-tailed t-test and Welch’s correction) and human 
chondrocytes from OA donors (N= 4 donors with 3 replicates each, p-value is computed with one-tailed linear mixed effect model). In silico 
activation was performed by setting the variables to their maximum value (1.0), in vitro PKA (resp. SMAD3) activation was performed with Forskolin 
1μM (resp. Activin 100ng/ml) for 24h. D Single and combinatorial drug screening in ATDC5 with selected conditions based on in silico predictions. 
Boxplot of the series of conditions across independent replicates (z-scores of ALP activity fold change) with control conditions in purple. Conditions 
significantly lower than the control (combined p-value < 0.05) have dark grey borders and dots (Wilcoxon rank-sum test with BH correction and 
combined probabilities over independent runs). For each condition, dots are the average of biological triplicates, summary statistics are represented 
by a horizontal line for the median of independent experimental repetitions and a box for the interquartile range. The whiskers extend to the most 
extreme data point that is not >1.5 times the length of the box away from the box. Blue labels indicate potent conditions predicted by the in silico 
model, gray labeled conditions are added to the experimental set-up for information. CM stands for ‘control medium’, medium1 has 0.02% of DMSO 
and medium 2 0.035%. * Indicates in silico predicted conditions without significant decrease of ALP activity in vitro 

(See figure on next page.)
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mineralization. It showed that there was a positive lin-
ear correlation between the level of ALP activity in the 
medium and the expression level of the hypertrophic 
gene Col10a1 during the ATDC5 differentiation (Fig. 5B). 

Hypertrophy was further increased when supplement-
ing the differentiation medium with Ihh, as expected 
(Fig.  5B). Indeed, this growth factor is known for its 
pro-hypertrophic effect on ATDC5 [51]. These results 

Fig. 5 (See legend on previous page.)
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allowed us to evaluate ALP activity in the medium as a 
proxy for the level of hypertrophy, significantly increas-
ing the throughput of the experimental set-up for testing 
small molecule treatments.

This semi-high throughput system was used for vali-
dating the in silico predictions. In vitro experiments evi-
denced that treatments with Forskolin, an activator of 
PKA activity or with an activator of the BMP/SMAD3 
pathway, were sufficient to prevent the increase in the 
activity of secreted ALP and thereby were sufficient to 
block hypertrophy in ATDC5s (Fig.  5C). Additionally, 
Forskolin treatment decreased COL10A1 gene expression 
when applied to primary human OA chondrocytes (p < 
0.01) (Fig.  5C). Together these results corroborated the 
in silico predictions that activation of PKA was sufficient 
to block hypertrophic differentiation in chondrocytes 
(Fig. 5C, D).

Additionally, several combinatorial treatments pre-
dicted by the in silico screening were tested in ATDC5 
and compared to the corresponding individual treat-
ments, to assess their efficacy. Additional file 9 file Data 
S4 describes the potent combinatorial conditions and 
their predictions that were selected for subsequent vali-
dation (PKA activation + FGFR1 inhibition, WNT inhi-
bition + PKA activation, ERK1/2 inhibition + PKA 
activation, IGFIR + PKA activation, BMP inhibition + 
IGFI, BMP inhibition + PKA activation, ALK5 + ERK1/2 
inhibition, HDAC4 activation + PKA activation). The 
chemical compounds used for each target are described 
in Additional file 12 Table S4.

The effect of those combinatorial treatments was 
assessed through evaluating ALP activity in ATDC5. 
ALP activity normalized to total DNA content is 
reported by means of z-score for all pairwise and sin-
gle conditions in Fig.  5D. The ALP activity in the 
medium during hypertrophic differentiation was lower 
than the corresponding controls in 6 out of the 8 pre-
dicted combinations. The two conditions for which the 
strongest effect was measured were the inhibition of 
FGFR1 combined with the activation of PKA (“Forsko-
lin + PD161570,” p = 0.032) and the inhibition of BMP 

combined with PKA activation (“LDN-193189 + Forsk,” 
p = 0.014). These two combinations seemed to generate 
an added effect compared to the single drugs. Contrary 
to the in silico model predictions, treatment with exog-
enous IGF-I combined with BMP inhibition (“IGF-I + 
LDN-193189,” p= 0.105) or inhibition of ERK1/2 com-
bined with PKA activation (“PD0325901 + Forsk,” p = 
0.264) did not show a significantly lower hypertrophic 
level, based on ALP activity (Fig. 5D).

Elaborating one of the conditions that showed the 
strongest response, PKA activation combined with 
FGFR1 inhibition, we compared the combinatorial 
effect with the corresponding single drug treatments. 
The combinatorial effect was greater than the one for 
either of the single drug, for both tested concentrations 
ratios (Fig. 6A). This suggests that activating PKA (resp. 
inhibiting FGFR1) would potentiate or enable the effect 
of FGFR1 inhibition (resp. PKA activation) by blocking 
or unblocking key pathways and maintaining the nec-
essary constraints on the system. Dose curve relation-
ships need to be established to confirm that hypothesis. 
Screening various values of functional activities of PKA 
and FGFR1 with the virtual chondrocyte and look-
ing at the percentage of transitions out of the hyper-
trophic state, showed that a minimal level of PKA 
activity (namely about 0.4 on a scale from 0 to1) was 
required to achieve any positive effect with this com-
binatorial treatment (Fig.  6B). In addition, a gradient 
effect was observed suggesting that the lower the PKA 
activity, the more we needed to block FGFR1 to achieve 
an equivalent positive effect (Fig.  6B). In vitro valida-
tion confirmed this dose effect since the overall gradi-
ent shape was very comparable between the in silico 
and in vitro situation (Fig. 6B). Comparing the diagonal 
(combinations of two drugs) to the single drug ranges 
also highlighted a likely synergistic effect in decreasing 
hypertrophy between the two drugs, at the tested 1:5 
ratio. Taken together, these results support that target-
ing the regulatory mechanisms at multiple points might 
be necessary to maintain a physiologically healthy state 

(See figure on next page.)
Fig. 6 In-silico vs. In-vitro dose-response effect of PKA activation with FGFR1 inhibition. The most potent condition from the screening is 
investigated further for a potential dose effect. A Fold change (FC) in ALP activity, with respect to control, due to PKA activator (Forskolin, 1μM) or 
FGFR1 inhibitor (PD161560, 125nM, and 625 nM) or the combination of both. B A range of values for PKA and FGFR1 imposed activities is screened 
in silico with 0 meaning no activity and 1 being the max possible activity. The percentage of transitions remaining in the hypertrophic state or 
transitioning towards the healthy state is reported in the upper panels, the rest of the transitions go to the “None” state. In the middle panels, fold 
change (resp. inverse of fold change) in DNA-normalized ALP activity with respect to control DMSO in ATDC5 is reported for a range of Forskolin and 
PD161570 concentrations. The in-vitro situation without drugs (yellow rectangle) would correspond to the basal level of PKA and FGFR1 in in-silico 
hypertrophy but there is no one-to-one correspondence between the in silico and in vitro ranges. All in vitro results represent n=9 (3 bio-replicates 
in 3 independent experiments), p-values are computed on log-transformed data with a linear mixed-effect model, user-defined contrasts (only 
combination versus corresponding single doses were compared), one-sided test and adjustment for multiple comparisons with the Holm’s method. 
The combinatorial treatment effects were greater than the ones for either of the single treatment both in silico and in vitro, for all concentrations in 
the gradient of dose relationships investigated
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Fig. 6 (See legend on previous page.)
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for a chondrocyte experiencing hypertrophy-inducing 
cues.

Discussion
We report the construction of a mechanistic model of 
chondrocyte phenotype control in articular cartilage by 
combining a knowledge-based approach with a data-
driven approach. We have leveraged decades of knowl-
edge and data about chondrocyte regulatory pathways 
and osteoarthritis by integrating that information in a 
numerical predictive model. This model recapitulated 
physiologically relevant observations and predicted con-
ditional effects resulting from intricate intracellular sign-
aling. It offers the possibility to screen a large amount 
of (combinatorial) treatments and prioritize subsequent 
in vitro experiments for the identification of molecular 
drivers of chondrocyte phenotype and anti-hypertrophic 
drug targets. The in silico target perturbation screening 
and the experimental validation of our findings show the 
potential of in silico experiments to guide in vitro experi-
ments for target discovery. With further validation, these 
predictions might form the basis for successful OA treat-
ment. In particular, our study points towards a possible 
synergistic effect of PKA and FGFR1 targeting strate-
gies to regulate chondrocyte hypotrophy. Several of our 
insights have implications both for the network modeling 
community and for cell and cartilage biology.

We have first built an interactive intracellular network 
as an online knowledge base and as a reference support 
for our numerical model. Most network-based models 
rely on prior mechanistic knowledge. Even current state-
of-the-art computational tools meant to reconstruct 
numerical models automatically from (high-throughput) 
data often require or offer the possibility to introduce 
prior knowledge [52]. Therefore, there is a high need 
for integrating and curating originally isolated pieces 
of knowledge, in a comprehensive way. However, bio-
chemical information specifically related to cartilage and 
osteochondral systems are scarce in public and private 
pathway databases, in which cancer-related cell types 
tend to be over-represented. The network we provide 
along with this study details the prior mechanistic knowl-
edge we have put in the model and that was predomi-
nantly chondrocyte or osteochondral cell type-specific, 
with a focus on articular chondrocytes and osteoarthri-
tis. In our opinion, it is valuable not only for cartilage and 
OA researchers but also for modelers as it can serve as 
a basis to derive other models (e.g., ODE-based models) 
and answer alternative questions.

Combining knowledge and data in a comprehensive 
network resulted in a systemic view of chondrocyte intra-
cellular regulation. Many independent pieces of informa-
tion have accumulated over the past decades and many 

databases have made curated pathways available. Most 
of the time in literature, these pathway descriptions stop 
after the (in)activation of the downstream transcription 
factors while the identity of the target genes downstream 
of these pathways is left obscure. In this study, our strat-
egy was to complement the knowledge-based network 
graph with automatically inferred transcriptional regula-
tions from transcriptomic data using machine learning 
methods. This usually requires a large multi-perturbed 
dataset but in absence of such dataset for chondrocytes, 
we reconstructed one by merging various arrays. Our 
strategy is supported by a previous study, which reported 
that equivalent informative data could be successfully 
achieved by assembling naturally occurring and experi-
mentally generated phenotypic variations of a given cell 
type [53]. Even though relatively few inferred gene regu-
latory interactions were integrated in the mechanistic 
model due to the stringency of our selection strategy, we 
limited the risk of integrating false positive predictions. 
This data-driven approach allowed us to take advantage 
of automatic network reconstruction technologies, which 
are becoming more and more the standard in the state 
of the art [54, 55]. We limited the inference to our genes 
of interest to gain knowledge on regulatory interactions 
without adding new nodes in the network, which would 
add more unknowns. Nevertheless, an alternative strat-
egy could be to infer interactions between all genes from 
the dataset and integrate interactions involving our genes 
of interest, new nodes could be added if relevant feed-
back loops or non-linear paths were observed with some 
genes of interest.

The translation of that network into mathematical 
rules was then further studied computationally and ena-
bled the prediction of the overall effect of each network 
component on the virtual chondrocyte. Our perturba-
tion screening approach helped to discover influencer 
nodes based on the mathematical dynamics, similarly to 
what had been previously proposed for other diseases 
[17]. Important to mention is that no information was 
put in the model that directly made one target prevail 
over the others in being pro- or anti-hypertrophic. The 
information that fed the mathematical model was about 
activating or inhibitory influences of one molecule on 
another molecule, a complex of molecules, or a pathway 
although some edges in the network represented indi-
rect links for the sake of simplification. The advantage of 
the discrete semi-quantitative mathematical formalism 
we employed lies in its ability to reproduce qualitative 
dynamics using only the activating or inhibitory nature 
of interactions and additive rules, without any prereq-
uisite about kinetics. This characteristic makes that 
method perfectly suitable for a large network such as the 
one of this study as the size of a model and quantity of 
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unknow parameters should be subject to a tradeoff and 
is a function of the model purpose [56]. Many biostatis-
tics and machine learning methods that make drug effi-
cacy-related predictions solely based on omics data still 
lack predictability and interpretability [57]. In contrast, 
the numerical approach presented in this study has the 
advantage of providing mechanistic evidence supporting 
the predicted effects, thereby increasing the mechanistic 
interpretability.

Generally, the validation of an in silico model to answer 
questions in a specific context may be achieved in two 
ways: either by showing its ability to predict non-linear 
effects that were already reported in literature or by con-
firming predictions with new experiments. Before car-
rying out new validation experiments, the relevance of 
our model to answer osteoarthritis-related questions was 
investigated by its ability to recapitulate earlier described 
behavior such as the changing role of TGFβ signaling in 
presence of inflammatory stimuli. A recent computa-
tional study reporting a quantitative (ODE-based) time-
dependent model of cartilage breakdown [41] provided 
more detailed and complexed kinetics underlying the 
dual role of TGF-β. The fact that our model could lead to 
equivalent conclusions shows that the more simplifying 
semi-quantitative formalism that we employed could suf-
fice to capture non-straightforward effects, thereby sup-
porting its credibility for subsequent predictions.

The Monte Carlo analysis of the system without con-
straints showed that the healthy state was more easily 
reached than the hypertrophic one. This corroborates 
with the situation for normal articular cartilage in which 
chondrocyte hypertrophy does not spontaneously occur 
unless the homeostasis is disturbed [58]. A great part of 
the state space was occupied by the “None” attractor that 
is most likely a trivial solution towards which the system 
converges when an initial state or a trajectory is too far 
away from a feasible biological state to meet all the con-
straints imposed by the equations. An analysis of the 
ensemble of initial states reaching the “None” state, could 
possibly spotlight initial states that are unlikely to hap-
pen in an in vivo physiological environment. Conversely, 
the analysis of canalization under imposed growth factor 
profiles has suggested that restricting ourselves to ini-
tializing growth factor’s values within biologically “feasi-
ble” ranges can decrease prevalence of the “None” state, 
although the boundaries of those feasible ranges could 
be further explored. Nevertheless, in the scope of finding 
potential therapeutic targets, we are less interested in the 
random canalization of the states than in their robustness 
to perturbations and capacity of transitioning.

This study also suggests that chondrocyte phenotypes 
are not so sensitive to small, single-factor perturbations. 
Even though the resistance of the current in silico model 

to single factor perturbations might, in part, be due the 
omission of some parts of the real world system’s com-
plexity. This could be subject to further experimental 
validation in chondrocytes. This trait of robustness to 
small environmental variations is often considered as a 
fundamental and ubiquitous trait of biological systems 
[59]. This trait allows systems to function in noisy envi-
ronments [60] and systems biologists have theorized that 
disease may establish its own robustness, in some cases 
[61]. In line with that, the Markov chain in our compu-
tational model indicates that, for articular chondrocytes, 
the probability to change phenotype once it has been 
reached is rather low. Indeed, due to the very intricate 
interplay of molecules, it is likely that some pathways 
play redundant roles and that several factors should be 
targeted simultaneously to ‘unlock’ the system. Moreo-
ver, the in silico pairwise perturbation screening confirms 
that targeting at least two components concomitantly 
increases the chance of unlocking the hypertrophic com-
mitment. Overall, as its in vivo counterpart, the in silico 
articular chondrocyte is unlikely to display hypertrophic 
signs in normal conditions or even sometimes under 
inducing treatment [10], but once the hypertrophic tran-
sition has been initiated, it is rather difficult to escape 
that fate.

Another important outcome is the approach to validate 
certain predictions on previously unreported conditions. 
In practice, as reverting a hypertrophic chondrocyte back 
to a healthy state has never been observed experimen-
tally, we hypothesize that the in silico predicted condi-
tions are, at least, more likely to block hypertrophy. The 
in vitro results that we present here support this hypoth-
esis and open new routes for further testing the suggested 
combinatorial conditions. Especially, the combination of 
PKA activation with FGFR1 inhibition is highlighted as 
good candidate treatment by our integrated in silico-in 
vitro approach. Future research should focus on the fur-
ther validation of this result, for instance through an in 
vitro dose curve relationships study and in vivo testing. 
Activation of the PThrP pathway, to which PKA belongs, 
has already been reported to be rather anti-hypertrophic 
for growth plate chondrocytes [62]. Similarly, genetic 
inhibition of the Fgfr1 gene in mouse knee cartilage has 
been shown to attenuate the degeneration of articular 
cartilage in mice [63]. However, to our knowledge, this 
combination has never been investigated nor reported 
before for its synergistic potential against hypertrophy, 
cartilage degradation or OA.

Some predictions (IGF-1 combined with BMP inhibi-
tion, and inhibition of ERK1/2 combined with PKA acti-
vation) could not be validated experimentally. This could 
be explained by several factors, such as the limitations of 
the in vitro model (ALP measurement in ATDC5), the 
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omission of important regulatory mechanisms, or inac-
curate assumptions in the in silico model, possibly point-
ing at necessary corrections in the regulatory network. 
Importantly, here we propose a strategy in which in silico 
predictions are used in an exploratory discovery phase. 
Hence, reducing the number of false positives is less 
important than increasing the true positives and reduc-
ing the false negatives - which hampers the discovery 
process.

Validating in silico predictions for drug target discov-
ery experimentally is a challenging task. This is especially 
true when numerical high-throughput screenings, ena-
bled by high computing power, generate a large number 
of predictions. We leveraged the evaluation of secreted 
ALP activity in ATDC5 cell line as a semi-high through-
put read-out for validating the in silico predictions. 
Indeed, it served as a convenient experimental system 
to assess hypertrophy modulation under many screened 
perturbations [64]. Nevertheless, it is important to note 
that this mouse cell line is cultured in isolation from a 
physiological environment. Therefore, we propose to use 
it within an in silico-in vitro pipeline that would act like 
a funnel with sequential filters for prioritization of can-
didate drug targets. As shown in our study the main hits 
can then be further evaluated in more detail using human 
OA chondrocytes. The next step could be to test the fil-
tered conditions in vivo to evaluate their effect on the dis-
ease progression.

We acknowledge that our study has some limitations. A 
drawback is the absence of a gold standard to assess the 
precision of the data-driven network inference. To miti-
gate this, we used a consensus approach by only integrat-
ing predictions made by three different machine learning 
methods. This reduced the number of interactions we 
would integrate but it alleviated each method’s weak-
ness and reinforced the strengths of the predictions, as 
previously proved [27]. Secondly, the type of mathemati-
cal model we employed comprises almost no numerical 
parameters but the main one, the saturation constant, 
was assigned an arbitrary value based on a previous study 
[22]. This constant determines how fast a protein activ-
ity or gene expression can saturate to the maximal value 
depending on the amount of excess positive and nega-
tive upstream interactions. It intervenes in the weight of 
interactions and changing its value might slightly affect 
the influence of the network’s constituents on the system. 
Moreover, we did not experimentally verify the target 
specificity and dosing regimen for the small molecules 
employed for our in vitro validation since it was out of the 
scope of this study. However, those small molecules were 
selected based on their previously reported and well-
known in vitro action on our targets of interest. Finally, 
the mechanisms integrated in the network model include 

a certain number of assumptions and regulatory relation-
ships that represent the current state of the knowledge; 
however, those assumptions and regulations could still be 
updated and refined as knowledge grow.

Conclusions
This study is a proof-of-concept to showcase how an in 
silico-in vitro integrated approach can suggest single and 
combinatorial target perturbations affecting the hyper-
trophic transition and help to prioritize experiments 
for therapeutic target discovery in OA research. In that 
sense, our model offers the possibility to make hypoth-
eses on the pro- or anti-hypertrophic nature of biochemi-
cal pathways and targets based on strict mathematical 
rules describing the intricate network connectivity. We 
are convinced that this type of approach can guide the 
process of therapy development from basic understand-
ing to target selection early in the drug discovery pipeline 
while reducing time and cost of experiments as well as 
the use of animal models in early stages of drug discov-
ery. Our study highlights targets - such the concomitant 
activation of PKA and inhibition of FGFR1 or BMP - that 
deserve additional investigation. With further validation, 
these conditions might form the basis of a successful OA 
treatment. Furthermore, investigating the effect of a new 
target that was not present in the current model should 
be possible by solely informing the model on how the 
target interacts with and connects to the rest of the net-
work. Typical information on the nature of the upstream 
activators and inhibitors of the protein’s functionality, the 
nature of downstream proteins modulated by the target 
under scrutiny as well as information about its transcrip-
tional regulators, from DNA binding assays for instance 
or reverse engineered from data would be needed. Ide-
ally, this information should be as exhaustive as possible 
based on the current state-of-the-art knowledge, while 
hypothetical connections could be investigated and com-
pared based on the simulated target’s effect. Finally, as 
scientific research is making progress in the identification 
OA disease subgroups based on molecular markers and 
clinical phenotypes [65, 66], we foresee data-informed 
mechanistic models can become more and more patient-
type specific. For instance, such knowledge-based 
network model could serve as a prior and be further 
optimized with engineering approaches, adjusting the 
network topology and/or interaction weights, in order to 
fit chondrocyte baseline profiles of typical patient sub-
groups. The resulting network models and the effect of 
target perturbations could be compared across the differ-
ent patient type-specific models.

In conclusion, this work provides a virtual articular 
chondrocyte in the form of a signal transduction interac-
tive knowledge base and of an executable computational 
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model. The demonstrated in silico-in vitro strategy opens 
new routes for studying OA and discovering targeting 
therapies by refining the early stages of drug discovery.

Methods
Network construction
The knowledge-derived networks were built by incor-
porating fine-grained mechanistic knowledge about 
signaling pathways and transcriptional regulations. A 
previously published model of chondrocyte differentia-
tion in the growth plate [23] was used as a basis and was 
adapted and completed through literature curation of 
decades of knowledge about articular chondrocyte and 
osteoarthritis. Reference sources for the experimental 
evidence (binding assays, clinical observations, etc.) were 
mostly from mouse and human origin. References used 
chondrocytes (or related cell lines) and predominantly 
involved direct protein or promoter binding informa-
tion, curated pathways, or observed phenomenon in 
cartilage during homeostasis and disease. All references 
and mechanism descriptions are available through the 
interactive networks in the online platform Cell Collec-
tive [24]. See the links for the chondrocyte knowledge 
base in the “Availability of data and materials” section 
(separated in two subnetworks). Additionally, some gene 
regulatory interactions were automatically identified 
with machine learning algorithms using gene expression 
multi-perturbed data as input. Such informative dataset 
was achieved by merging six published microarray data-
sets of mouse articular cartilage (GSE26475, GSE33754, 
GSE79239, GSE33656, GSE53857, GSE45793). Each 
dataset had a control or wild type group and an OA-
like group, which was either using genetically modified 
mouse spontaneously developing OA or a DMM-induced 
OA mouse model. Importantly, the initial annotations 
provided by the authors were not necessarily “OA” or 
“WT” but rather experiment-specific annotations such as 
‘DMM’ or ‘SHAM operated’. Therefore, the binary anno-
tation as OA-like or WT-like samples was established 
by hand for the purpose of this study according to the 
original data annotations published on GEO, as reported 
Data S1. The datasets were merged applying an in-house 
developed pipeline adapted from previously published 
methods [67]. Briefly, the datasets were preprocessed first 
in a platform-specific way prior to assembly as a merged 
dataset. For the purpose of this study, a sub-dataset was 
created by restricting ourselves to the genetic profile of 
74 genes of interest, being the ones present or closely 
related to the biological factors from the mechanistic 
model as listed in Additional file 4: Data S1. This allowed 
finding new regulatory relationships without adding new 
variables to limit the model’s size. 41 genes, out of the 
5470 from the full dataset, matched our list of interest, 

based on the Ensembl IDs, and the associated genetic 
profiles constituted the final sub-dataset (41 genes (or 
variables) × 109 samples (or observations)). This data-
set was quantile normalized and the batch effects were 
removed through the ComBat algorithm based on Bayes 
methods [68].

Inference was performed for regulatory interactions 
within the aforementioned subset of genes. This was 
achieved by employing three different algorithms, being 
ARACNE, TIGRESS, and GENIE3 [69–71]; the final 
retained network was a consensus network of the three 
algorithms. Typically, an interaction between a transcrip-
tion factor and a gene was kept if it was present in the 
three methods’ results. An interaction was called present 
for a method if the interaction score was higher than a 
certain threshold for that method. This threshold was 
set to m − σ, where m is the average score for the given 
method and σ is the standard deviation of the scores. The 
validity of the inferred interactions was corroborated by 
searching the GeneCards database [26]. When one or 
several binding sites for the source gene (transcription 
factor) in the enhancer region of the target was found 
with GeneCards, one of the GeneHancer ID was reported 
(Fig. 2) and the full list with the exact gene IDs that were 
queried is in Additional file 7: Table S3.

Unless specified, all the aforementioned microarray 
data analytics were accomplished using the R compu-
tational environment (v.3.2.2). Topological parameter 
analysis of the final network was carried out with the 
Network Analyzer plug-in of the Cytoscape software 
v3.7.2 (https:// cytos cape. org/) [72].

Implementation of the mathematical model and dynamic 
analysis
The information contained in the network was translated 
into mathematical equations through an additive formal-
ism with 2 priority classes to distinguish between fast and 
slow reactions, the importance of which was repeatedly 
highlighted [73–75]. This additive formalism resembles 
the Boolean threshold networks [76] and was previ-
ously implemented with priority classes as described by 
Kerkhofs and Geris [22]. In this formalism, the biologi-
cal components were represented by variables evolving 
over pseudo-time steps. The model is semi-quantitative 
since the variables could take on a continuous activity 
value between 0 and 1. The evolution of all variables (pro-
teins or genes) was defined by the sum of the upstream 
activating variables and the subtraction of the upstream 
inhibitory variables from the network (see definitions 
in Additional file 1 Table S1), in some exceptional cases 
(particular mechanisms) a product of several regulators 
was used (see Additional file  2, Supplementary compu-
tational method). Biological influences could happen at 

https://cytoscape.org/
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two time scales, reflecting the priority classes: reactions 
related to slow biological processes, such as gene expres-
sion, mRNA, or protein production, were referred to as 
slow reactions (lower priority), and those related to fast 
processes, such as protein activation or inhibition, were 
referred to as fast reactions (higher priority) (see Addi-
tional file  3 Table  S2 for the definition of fast and slow 
reactions and variable). A formal description of the 
mathematical system underlying the model as well as the 
full list of equations is available in Additional file 2.

The asymptotic solutions were evaluated with a Monte 
Carlo simulation procedure, like methods employed for 
logical models [28, 75]. When running a simulation (also 
see the section below on Monte Carlo analysis), an initial 
value in the interval [0,1] was assigned to each variable. 
Every simulation step, the sub-variables (see definition in 
Additional file 1 Table S1) were updated asynchronously 
according to the rules given in the equations and fol-
lowing the priority classes, in such a way that fast reac-
tions were always updated before the slow reactions. The 
order in which variables were updated within a priority 
class was random, hereby recapitulating the stochasticity 
inherent to any biological system. See Additional file 13 
Fig. S4 and Additional file  14 S5 for graphical explana-
tions about the algorithm and simulation scheme on a 
reduced illustrative example network. A stable state (defi-
nition in Additional file  1 Table  S1) was reached when-
ever the next iteration step did not bring any change 
for any of the variables up to a tolerance  10−2. In other 
words, when initializing the system at a random point, it 
was considered converged when the relations detailed by 
the system of equations were fulfilled up to a tolerance of 
 10−2. Thanks to the stochasticity of the model, the same 
initial input could lead to different types of stable states. 
Therefore, all computational results of this paper were 
computed 3 times and standard deviations were evalu-
ated. All implementations and simulations were carried 
with the MathWorks® suite, MATLAB (2018b).

Monte Carlo analysis and estimation of attractors
A Monte Carlo canalization estimated the nature of the 
attractors and their reachability, given the regulatory 
network provided in the equations. In short, all vari-
ables were initialized 10.000 times with random values in 
the interval [0,1] simulations converged towards several 
attractors (only singleton attractors were observed). We 
considered that two simulations reached the same unique 
stable state when the absolute difference between both 
final states was less than a tolerance set to  10-2 for all 
the 60 components since such a difference. The number 
of initializations reaching each final state was computed 
and reported in terms of percentage of initial states. This 
number gives a sense of the probability of reaching the 

state for the unperturbed system, i.e., without constraints 
[28, 75]. The number of initializations (10.000) was con-
sidered sufficient to estimate the state space of the system 
as higher numbers had little influence on the canalization 
results (see sensitivity analysis Additional file 15 Fig. S6). 
Then, we performed two other Monte Carlo canalizations 
in which all variables were randomly initialized, except 
for seven growth factors that were fixed at values meant 
to represent a normal healthy or a disease environment 
(profile A and B of Fig. 3B, respectively). The networkD3 
package from R was used to produce the Sankey diagram 
for the visualization of the canalization results.

In silico target perturbations and selection
By essence, the attractors are stable, meaning that vari-
ables cannot evolve anymore. These states may however 
be escaped by forcing, computationally, the value of one 
or several variables to change. Such a perturbation was 
imposed for a fixed number of computational iterations, 
after which the system was left to evolve freely, thereby 
accounting for the fact that chemical treatments affect 
biological systems for a finite period of time. The dura-
tion of the perturbation was set to 1000 time steps as the 
perturbed state did not take more than 200 time-steps to 
be reached, on average and going further than 1000 time-
steps would not induce further changes in the result. 
Imposing a perturbation on a stable state forces the sys-
tem to evolve again, following rules imposed by the equa-
tions, and eventually settle down in the same initial or 
a new attractor (see convergence description above). A 
representative example of the pseudo-time evolution of 
representative variables (RUNX2, SOX9, MMPs, Colla-
gen, etc.) after an input perturbation (PKA activation + 
FGFR1 inhibition) is provided in Additional file 16 Fig. S7 
to illustrate the choice of the perturbation duration.

The different in silico scenarios or treatment experi-
ments that were tested amounted to perturbing one or 
several variables, from the healthy or the diseased hyper-
trophic state and assessing the effect of that perturbation 
on the state stability. Variables were perturbed by forc-
ing their global activity value to be 0 or 1 for inhibition 
or activation respectively. Imposing intermediary values 
between 0 and 1 was also done for some specific ques-
tions in which extreme values would be unlikely, such as 
varying the ratio between different membrane receptors. 
Each perturbed condition was imposed starting from the 
relevant initial stable states (healthy or diseased) and the 
nature of the final state to which the perturbation led 
after simulation was documented. We considered that 
the tested perturbation triggered a state transition when 
the final state was different from the initial one. Given 
the stochastic nature of the model, the same perturbation 
could trigger a different outcome if simulated a second 
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time, therefore the same perturbation was repeated 100 
times and we reported the percentage of transitions 
towards each of the possible target states. Standard devi-
ation in the percentage of transitions was assessed by 
repeating that experiment 3 times.

Due to the computational cost associated with the 
systematic screening of all possible pairwise perturba-
tions, (for each pair there are 4 possible pairwise condi-
tions to be tested either from the healthy state or from 
the hypertrophic state. The independent simulations 
were run in parallel using high-performance computing 
infrastructure of the KU Leuven (Vlaams Supercomputer 
Centrum). The selection of potent conditions against 
hypertrophy that could be validated experimentally was 
done in two main steps. First, we automatically selected 
combinatorial conditions for which at least 70% of the 
perturbations triggered a transition from the hyper-
trophic state towards the healthy one. Among them, 
we focused on those conditions with more than 70% of 
transitions towards the healthy state but less than 5% 
towards the ‘None’ state as a first discriminatory factor. 
Conditions were classified by ranges of percentages of 
transitions towards the healthy state (100-90%, 89-80%, 
79-70%), see Additional file  9 Data S4. Second, among 
those potent conditions, some were further selected for 
their druggability and their ease to be tested in a sim-
ple in vitro system. The selection criteria also involved 
additional elements such as the readily availability of the 
necessary small molecules to target the predicted com-
ponent in the expected way, the availability of literature 
to define appropriate concentrations, and the variety of 
combinatorial conditions tested. For instance, condi-
tions involving the modulation of transcription factors 
were not considered for the in vitro validation since no 
small molecule treatment could directly affect transcrip-
tion factor activity, or for conditions that were too similar 
(e.g., PKA activation+ ERK1/2 inhibition vs. PPR activa-
tion + ERK1/2 inhibition, PPR being directly upstream 
of PKA in the signaling network) only the one of the two 
was selected.

Testing treatments in vitro with ATDC5 culture
The validation of our in silico predicted treatments 
required in vitro testing with small molecules. This was 
performed with ATDC5, a mouse chondroprogenitor cell 
line obtained from the Riken Biological Ressource Center. 
Cells were cultured in 2D in proliferation medium con-
taining DMEM/F12 (ThermoFisher, UK), 5% Fetal Bovine 
Serum (Biowest, Belgium) and 1% antibiotic/antimy-
cotic (Gibco, ThermoFisher Scientific). Chondrogenic 
differentiation was induced by plating the cells at 6,400 
cell/cm2 in proliferation medium for 24h, followed by 
changing the medium to differentiation medium, being 

proliferation medium supplemented with 10 μg/ml insu-
lin (Sigma-Aldrich), 10 μg/ml transferrin (Sigma-Aldrich) 
and 30 nM sodium selenite (Sigma-Aldrich). Cells were 
incubated in a humid environment at 37°C, 5%  CO2 and 
differentiation medium was refreshed every other day 
for the first 10 days, and every day after the  10th day, for 
longer experiments (i.e., Fig.  5B). Supernatant medium 
was taken for ALP activity assay and cells were harvested 
for DNA quantification (0.05% Triton-X reagent). ALP 
activity was reported relatively to the total DNA quantity 
to alleviate potential variation in cell number.

To study the correlation between Col10a1 expression 
and secreted ALP activity, cells were differentiated for 14 
days with or without Ihh supplement (150ng/ml, R&D 
Systems Europe LTD). The cells were harvested for RNA 
isolation on days 0, 7, 9, 12, and 14 during differentiation 
(TRIzol reagent; Thermo Fisher Scientific), in addition to 
the ALP activity assay and DNA quantification.

To assess the effect of small molecule and growth fac-
tor treatments on hypertrophic differentiation, cells 
were treated on day 8 of ATDC5 chondrogenic differ-
entiation for readout at day 9. Cells were treated with 
one or a combination of the following compounds: For-
skolin (1μM, Axon Medchem), Recombinant Human/
Mouse/Rat Activin A Protein (100ng/ml, R&D Systems), 
Recombinant Mouse IGF-I/IGF-1 Protein (10ng/ml, 
R&D Systems), Transforming Growth Factor (TGF)β1 
(10ng/ml, PreproTech), PD0325901 ( 1μM, Axon Med-
chem), PD161570 (1μM, Axon Medchem), ITSA1 (50μM, 
Chembridge), LDN-193189 (0.5μM, Axon Medchem), 
LY294002 (20μM, Axon Medchem) and IWP2 (2μM, 
Stem cell technology). ALP activity in treated conditions 
is expressed in terms of fold change with respect to the 
control medium with the appropriate amount of DMSO, 
which was used as a solvent for most small molecules. 
Four types of control media were used throughout this 
study due to sparse solubilities of the compounds. The 
control medium was with 0.02% DMSO (Medium1) for 
most treatments, with 0.1% DMSO (Medium2) for the 
ITSA1-related conditions, without DMSO) for the Activ-
inA treatment (Fig. 5), and with 0.0375% DMSO for the 
Forskolin/PD161570 synergy study and dose screening 
(Fig. 6).

Validating treatment effects in primary human 
chondrocyte culture in alginate beads
Human articular cartilage was obtained with implicit 
consent as waste material from patients undergoing total 
knee replacement surgery. This protocol was approved 
by the medical ethical committee of the Erasmus MC, 
University Medical Center, Rotterdam, protocol number 
MEC-2004-322. To isolate chondrocytes, cartilage chips 
were subjected to protease (2 mg/ml, Sigma-Aldrich) for 
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2 h followed by overnight digestion with 1.5 mg/ml colla-
genase B (Roche Diagnostics, Switzerland) in Dulbecco’s 
modified Eagle’s medium (DMEM) high glucose supple-
mented with 10% fetal bovine serum. Single cell suspen-
sion was obtained by filtrating the cellular solution by a 
100 μm filter. The isolated chondrocytes were expanded 
in monolayer at a seeding density of 7500 cells/cm2 in 
DMEM high glucose supplemented with 10% fetal bovine 
serum, 50 μg/ml gentamicin, and 1.5 μg/ml fungizone 
(Gibco, Grand Island, NY, USA). Upon approximately 
80% confluency cells were trypsinized and reseeded at 
7,500 cells/cm2. Cells were used for experiments after 
three passages. Redifferentiation of articular chondro-
cytes was performed using a 3D alginate bead culture 
model. For preparation of alginate beads, chondrocytes 
after three passages in monolayer were re-suspended 
in 1.2% (w/v) low viscosity alginate (Kelton LV alginate, 
Kelko Co, San Diego, CA, USA) in 0.9% NaCl (Sigma-
Aldrich) at a concentration of 4 × 106 cells/mL. Beads 
were made by dripping the cell-alginate suspension in 
105 mM CaCl2 (Sigma-Aldrich) through a 22-gauge nee-
dle. Beads were washed with 0.9% NaCl and DMEM low 
glucose. Beads with a size that deviated from the average 
after a visual inspection were not included in the experi-
ment. Re-differentiation of chondrocytes was performed 
in a 24-well plate (BD Falcon) for two weeks in 100 μL/
bead DMEM low glucose supplemented with 1% ITS fetal 
(Biosciences), 10 ng/ml transforming growth factor beta 
one (TGFβ1, recombinant human, R&D systems) 25 μg/
mL l-ascorbic acid 2-phosphate (Sigma-Aldrich), 50 μg/
ml gentamicin, and 1.5 μg/mL fungizone (both Gibco). 
After two weeks, TGFβ1 was no longer added to the 
medium and cells were cultured with and without 1μM of 
Forkosolin for 24h. Each experiment was performed with 
cells derived from 4 OA donors (3 Females, 1 Male, 65 ± 
6 years), in triplicates.

RNA isolation and real‑time quantitative PCR (RT‑qPCR) 
for ATDC5 samples
Gene expression of Col10a1 in ATDC5 experiments was 
evaluated by RT-PCR. For RNA isolation, chloroform 
was added to the TRIzol samples (TRIzol 5: Chloror-
form 1), which were subsequently centrifuged for 15min 
at 15,000 rpm (i.e., RCF = 218849) and 4°C. RNA was 
isolated by collecting the aqueous phase and precipi-
tated with isopropanol (aqueous phase 1: ispropanol 1) 
for 30min at -80°C. After centrifugation at 15,000 rpm 
(i.e., RCF = 218849) and 4°C for 30 min, supernatant 
was removed, and the resulting pellet was washed with 
80% Ethanol. RNA pellets were dried for 10min in des-
iccator and dissolved in 15μl RNase-free water. Finally, 
RNA content and purity was determined with Nanodrop. 

RNA was converted to cDNA with the Revert Aid H 
Minus First strand cDNA synthesis kit (Thermo Scien-
tific) according to the manufacturer’s protocols. Quanti-
fication of gene expression was done using Syber Select 
Master Mix (Applied Biosystems) adding 400nM forward 
and reverse oligonucleotides primers (primer sequences 
available in [77]). The StepOne Plus System (Applied Bio-
systems) was used for amplification using the following 
protocol: denaturation cycle at 95°C for 10min followed 
by 40 cycles of amplification (15 s 95°C and 1 min 60°C), 
followed by a melting curve. Expression levels were ana-
lyzed using the  2−ΔCt method and normalized for the 
expression of the reference gene Hprt. This housekeeping 
(HK) gene was determined after verification of multiple 
HK genes and selecting the one that remained most con-
stant throughout the procedure.

RNA isolation and RT‑qPCR for human primary OA 
chondrocytes
Alginate beads were dissolved using citrate buffer, cen-
trifuged at 200g and the pellet was resuspended in RLT 
(Qiagen, Hilden, Germany) buffer containing 1% beta-
mercaptoethanol for RNA isolation. mRNA isolation 
was performed according to the manufacturer’s protocol 
utilizing the RNeasy Column system (Qiagen, Hilden, 
Germany). The RNA concentration was determined 
using a NanoDrop spectrophotometer (Isogen Life Sci-
ence, Utrecht, the Netherlands). 0.5 μg RNA was used 
for cDNA synthesis following the protocol of the manu-
facturer of the RevertAid First Strand cDNA kit (Thermo 
Fisher Scientific, Waltham, MA, USA). qPCR was per-
formed on a Bio-Rad CFX96 Real-Time PCR Detection 
System (Bio-Rad) to assess gene expression, Collagen 
type 10 (COL10A1), and Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), which was found stable and 
therefore used as reference gene. Data were analyzed by 
the ΔΔCt method and normalized to the expression of 
GAPDH of each condition and compared to the corre-
sponding gene expression in the control groups. Data and 
primers are available in [77].

Alkaline phosphatase assay (ALP)
Enzymatic activity of secreted ALP in the supernatant 
medium of ATDC5 cultures was determined in a col-
orimetric assay as previously described [78]. Briefly, ALP 
activity was determined in flat-bottom 96-well plates 
(Sigma-Aldrich, CAT M9410) containing assay buffer 
(1.5 M Tris-HCl, pH 9.0, 1 mM MgCl2; 7.5 mM p-nitro-
phenyl phosphate). The ALP activity was assessed as a 
function of formed nitrophenyl phosphate (pNp), the 
reaction-colored product, which was measured by spec-
trophotometry at 405nM after 30min of reaction. The 
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reaction was stopped with 1M NaOH Stop Buffer. A cali-
bration curve containing an increasing concentration of 
pNp served to determine the absolute amount of ALP-
generated pNp. Sample values were normalized to total 
DNA amount, expressed as μmol of pNp/mg of DNA, 
and reported as fold change with respect to the relevant 
control medium.

DNA quantification
After harvesting the cells with 350μl of 0.05% Tri-
tonX-100, samples were vortexed and frozen at -80°C 
for further processing. Samples were sonicated for 5 
s, centrifuged for 1′ at 13,000 rpm (i.e. RCF= 164,380) 
and 200μl of the supernatant was harvested. Samples 
were diluted with a factor 1/10 with distilled water 
then DNA content was measured with the Qubit 3.0 
fluorometer (Life Technologies). Qubit dsDNA HS 
(high sensitivity, 0.2 to 500ng) Assay Kit was used 
according to the manufacturer’s protocols; a sample 
volume of 5μl was added to 195μl of a Qubit working 
solution.

Statistical analysis
In general, one-tailed statistical tests were used to ana-
lyze in vitro results and relate them to expected out-
comes from the in silico model’s predictions since the 
model predicts a directionality of the outcomes. Aver-
age effect of Forskolin and Activin treatments were 
compared to control in one representative experiment 
with 3 replicates thanks to a one-tailed unpaired t-test 
with Welch’s correction, in Fig. 5C. Effect of Forskolin 
treatment in OA chondrocytes from human donors 
was performed in triplicates for 4 donors. Compari-
son of the average effect with the control is done with 
a linear-mixed effect model to account for donor vari-
ability. Graphical visualization and statistical analyses 
for the semi-high throughput small molecule screening 
(Fig. 5D) were performed by modifying the BraDiPluS 
package from the Saez Lab [79]. More precisely, the 
probability that a treated condition resulted in a lower 
ALP activity z-score than the corresponding control in 
the ATDC5 screening was estimated with a one-tailed 
Wilcoxon rank-sum test (the in vitro screening dataset 
was not normally distributed based on the Shapiro-
Wilk test), with Benjamini–Hochberg correction for 
multiple testing. Three independent experiments were 
performed for each condition, and treatment effects 
were assessed in triplicates, in each experiment (or 
run). Probabilities from the independent runs were 
combined with Fisher’s method using the combine.
test function from the survcomp R package. A treated 
condition was considered lower than the control for 
p-value < 0.05 and z-score <0.
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Additional file 1: Table S1. Definitions. Definitions of technical terms per-
taining to biological signaling network modeling with a semi-quantitative 
additive formalism.

Additional file 2. Supplementary computational method. Equations, 
mathematical framework and justification of deviation from the general 
rule in the equations.

Additional file 3: Table S2. List of variables and mouse genes corre-
spondence. All mathematical variables and the corresponding node in the 
network have names written in upper cases and do not reflect the official 
human or mouse nomenclatures. To relate those variables to actual genes 
more easily, we provide this table of correspondence. A related mouse 
gene name and NCBI ID is indicated for each variable. Nevertheless, this 
is not exhaustive since some variables represent a group of factors or a 
family of ligands rather than a single factor.

Additional file 4: Data S1. Subset of genes for gene expression profiles 
and description of GEO datasets with manual binary annotations.

Additional file 5: Fig. S1. Individual dataset clustering and heatmap. The 
microarray sub-datasets, used in the merged dataset, were also investi-
gated individually. They were pre-processed (i.e. processing steps before 
merging and correcting for batch effect) in the same way as the merged 
dataset but the unsupervised clustering analysis was done on each 
sub-dataset separately in order to compare the biological or OA related 
information content before and after the data merging. The heatmaps 
show the expression profile of the same list of genes of interest than for 
the merged dataset (see Additional file 4, Data S1.). These expression 
datasets were submitted to unsupervised clustering with the Euclidean 
distance method and the Complete aggregation method in R thanks to 
the heatmap3 function from the Github repository https:// github. com/ 
obigr iffith/ biost ar- tutor ials/ tree/ master/ Heatm aps . The headers indicate 
the GEO accession numbers of the 6 original datasets. Samples labeled 
as ‘WT’, for wild type, are in green, samples labeled as ‘OA’, for osteoar-
thritis, in red. The pre-labelling is the same as for the merged dataset 
(see Additional file 4, Data S1). When applicable, a grey scale indicate the 
time points (w stands for weeks, in the legend). For some datasets (e.g. 
GSE26475, GSE33656, GSE53857) the OA and the WT samples are well 
separated in different clusters, while for other the separation is not so 
clear. For instance, in GSE45793 the variance due the time point 6weeks is 
greater than the OA induced variance, while for weeks 1 and 2 OA and WT 
samples are well separated due to the OA condition.

Additional file 6: Data S2. GRN inference and validation. (Microsoft Excel 
Worksheet). The GRN inference with the 3 algorithms and the consensus 
matrix are reported. We have set stringent rules and only interactions 
that were inferred by the 3 algorithms were included in the mechanistic 
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model: those interactions are all reported in Fig. 2D. The validity of 
the inferred interactions was investigated by searching the GeneCard 
database. The relevant GeneHancer IDs are reported when supportive 
evidence was found.

Additional file 7: Table S3. Validation of transcriptional data-inferred 
regulatory interactions. Transcriptional interactions were inferred from 
the merged OA dataset. Inference was run with three algorithms and 
only interactions that were present in the results of the three algorithms 
(GENIE3, ARACNE, TIGRESS) were considered as additions to the model. 
An interaction was considered present for one algorithm if it scored 
higher than a threshold defined as the difference between the mean 
and standard deviation of all scores (Additional file 6, Data S2 ). Inferred 
interactions were validated whenever possible by looking for binding 
sites of the source transcription factor in the enhancer region of the target 
gene with GeneCards. The complete list of GeneHancer IDs provided by 
GeneCards are reported in the last column. ‘NA’ indicate that no binding 
site was found. The exact gene names and gene IDs that were queried in 
GeneCards are reported in the first columns.

Additional file 8: Data S3. Attractors complete protein and gene expres-
sion profiles. (Microsoft Excel Worksheet). The predicted profiles of the 3 
attractors are reported for all variables. The dataset contains the values 
of the fast sub-variables (i.e. protein subnetwork), slow sub-variables (i.e. 
gene subnetwork) and the global functional activity.

Additional file 9: Data S4. In silico screening predictions of combinato-
rial treatments. (Microsoft Excel Worksheet). This file reports the results of 
a screening of combinatorial perturbations. More particularly, it reports 
all conditions that lead to a transition towards a healthy chondrocyte 
(SOX9+) when starting from a hypertrophic-like chondrocyte (Runx2+). 
The first sheet reports conditions leading to such transition 100% of the 
time, between 99 and 90% of the time for the next sheet and so on. The 
TFs sheet references all the transcription factors of the model that could 
be retrieved in the result and that are less convenient to target experi-
mentally (to define exclusion criteria for the experimental validation). The 
‘Summary’ sheet, reports a list of conditions that might be interesting to 
test. It excludes conditions involving TFs.

Additional file 10: Fig. S2. Effect of ALKs ratio in the influence of inflam-
mation and TGFβ signaling on chondrocyte hypertrophy. Percentage 
of perturbations remaining in the healthy state (right) or transitioning 
towards the hypertrophic one (left) during inflammatory pathway activa-
tion with TGF-B treatment while changing the ratio between ALK1 and 
ALK5. The inflammatory and TGF-B profiles that were imposed are the 
same as in Fig. 4A except that the value imposed for ALK1 and ALK5 are 
varying between 0 and 1 with a 0.1 increment. ALK1=ALK5 on the red 
diagonals and ALK1>ALK5 in the upper right corner. Roughly, the rescue 
of the healthy state by TGF-B is lost when ALK1 is greater than ALK5. If 
ALK1 is high enough and that the difference between ALK1 and ALK5 
is not greater than 10-20% then the protective effect of TGF-B is also 
disturbed for ALK1<ALK5.

Additional file 11: Fig. S3. Screenshot of the user-friendly interface for 
the virtual chondrocytes App. The standalone Matlab-based applications 
can be launched and used without Matlab license, provided that the 
compiler Matlab Runtime is installed (https:// nl. mathw orks. com/ produ cts/ 
compi ler/ matlab- runti me. html). The virtual chondrocyte initial state can 
be set as healthy or hypertrophic, allowing the user to test any scenarios. 
All the 60 components may be perturbed alone or in any sort of combina-
tion by forcing the variables to take a value in the interval [0:1], with a 
step of 0.1. The most left column indicate the value of the variable in the 
selected initial state, for information. Obviously, applying a perturbation 
that is equal to the initial value of the variable will not affect the system. 
Once the setting are done, the user can apply the experimental condition 
by pushing the button ‘Test condition’ and the percentage of transitions 
towards each of the possible basal stable states (i.e. ‘None’, ‘Healthy’ and 
‘Hypertrophic’) is computed. If the ‘Compute statistics’ box is ticked, 
then the experiment is repeated 3 times and the average and standard 
deviations are displayed (variation occurs due to the stochastic nature of 
the model). The results may be exported and saved in an excel file via the 
‘Save’ button. The application can be installed with the executable file on 

the GitHub repository, [https:// github. com/ Rapha-L/ Insil ico_ chond ro. git]. 
No Matlab license is required, however, the operating system should be 
able to support the Matlab software. For Linux users, a Windows virtual 
machine may be used.

Additional file 12: Table S4. Targets and associated small molecules or 
growth factors for in vitro validation. The first row indicates the targets to 
be perturbed, [+] stands for activation while [-] stands for inhibition. The 
name (resp. cat number) of the small molecule or growth factor employed 
to achieve that effect is indicated in the row called ‘Molecule name’ (resp. 
‘Cat n°’).

Additional file 13: Fig. S4. Decision tree summarizing the variable updat-
ing scheme employed in algorithm to simulate the in silico chondrocyte. 
Each biological component is represented by the gene expression level 
(slow variable) and the protein activity potential (fast variable). Variables 
are updated based on the rules stored in the model’s equations. First, fast 
variables are updated in random order, when a pseudo-stable state is 
reached and that all fast variables have been updated, the next random 
chosen slow variable is updated. This goes on until a state that is stable 
both at the fast and slow level is reached. This is the final stable state. A 
state is considered stable if further variable updates do not bring further 
changes for any of the variables, with a predefined tolerance interval. The 
order in which variables are updated is random, thereby generating some 
stochasticity in the model. Within the fast (resp. slow) updating loops, 
variables are updated asynchronously (meaning the one after the others) 
according to the rules defined in the system of equations and in a random 
order. For some systems (i.e. set of equations) cyclic attractors may arise, 
meaning that the system never reaches a fixed stable state but oscillates 
between several states. This situation did not occur in the current study.

Additional file 14: Fig. S5. Illustration of the algorithm for the asynchro-
nous updating of variables with a simplified (3 nodes) example network. 
The network represents interactions happening in one of the subnet-
works (protein= fast reactions or genetic = slow reactions). Inhibitions 
are represented in red and activations are in black. The mathematical rules 
corresponding to the network are displayed. If the rules result in a value 
lower than 0 (resp. higher than 1), the value is brought back to 0 (resp. 
1). For this example, 3 different initial states are inputted and each of the 
three variables is updated asynchronously. The order in which variables 
are updated is random. The system reaches a stable state when the next 
update gives the same state as in the previous time step and that all vari-
ables were screened in the random ordering list. That state is a pseudo-
stable state if the rules were describing fast reactions, in that case, a new 
slow variable can be updated (see Fig. S4.). However it is a final stable state 
if the rules were describing slow interactions since it would mean that the 
system had first reached a pseudo-stable state at the fast level and would 
now be stable at the slow level too. The example illustrates that different 
initial states may reach the same final state but also that the same initial 
state (e.g. [1 0 1] ) can reach different final states, depending on the order 
in which variables are updated, thereby introducing stochasticity in the 
system.

Additional file 15: Fig. S6. Sensitivity analysis: impact of the number 
of initialization on the canalization results during the Monte Carlo. The 
percentage of random initialization reaching each attractor is displayed 
with the Sox9 positive state (healthy) in orange, the Runx2 positive state 
in blue and the None in grey. Data labels indicate the absolute amount of 
state reaching the attractors. None of initializations reached an alternative 
attractor, even for higher amount of random initializations The number 
of initialization has no significant impact on the basal canalization and 
10.000 initializations were considered sufficient to screen the state space 
in the current study.

Additional file 16: Fig. S7. Pseudo-time evolution of variables during 
simulations. The sequence of variable updating over each time steps after 
introducing a perturbation from the healthy state was saved as a time-
series and plotted. It shows the discrete behavior of the simulation and 
that a steady state is reached way before the duration of the perturbation 
(1000 time steps) is reached in such a way that maintain the perturbation 
longer would not change the output of the simulation once the perturba-
tion is released.

https://nl.mathworks.com/products/compiler/matlab-runtime.html
https://nl.mathworks.com/products/compiler/matlab-runtime.html
https://github.com/Rapha-L/Insilico_chondro.git
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