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We investigate the stability of traveling-pulse solutions to the stochastic
FitzHugh–Nagumo equations with additive noise. Special attention is given
to the effect of small noise on the classical deterministically stable fast trav-
eling pulse. Our method is based on adapting the velocity of the traveling
wave by solving a scalar stochastic ordinary differential equation (SODE)
and tracking perturbations to the wave meeting a system of a scalar stochastic
partial differential equation (SPDE) coupled to a scalar ordinary differential
equation (ODE). This approach has been recently employed by Krüger and
Stannat (Nonlinear Anal. 162 (2017) 197–223) for scalar stochastic bistable
reaction–diffusion equations such as the Nagumo equation. A main differ-
ence in our situation of an SPDE coupled to an ODE is that the linearization
has essential spectrum parallel to the imaginary axis and thus only generates
a strongly continuous semigroup. Furthermore, the linearization around the
traveling wave is not self-adjoint anymore, so that fluctuations around the
wave cannot be expected to be orthogonal in a corresponding inner product.
We demonstrate that this problem can be overcome by making use of Riesz
instead of orthogonal spectral projections as recently employed in a series of
papers by Hamster and Hupkes in case of analytic semigroups. We expect
that our approach can also be applied to traveling waves and other patterns
in more general situations such as systems of SPDEs with linearizations only
generating a strongly continuous semigroup. This provides a relevant gener-
alization as these systems are prevalent in many applications.
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1. Introduction.

1.1. The stochastic FitzHugh–Nagumo equations. We consider the stochastic FitzHugh–
Nagumo equations

dũ(t, x) = (
ν∂2

x ũ(t, x) + f
(
ũ(t, x)

)− ṽ(t, x)
)
dt + σ dW(t, x) for (t, x) ∈ R+ ×R,(1.1a)

dṽ(t, x) = ε
(
ũ(t, x) − γ ṽ(t, x)

)
dt for (t, x) ∈ R+ ×R,(1.1b)

in which the independent variables t and x denote time and position on a neural axon, respec-
tively. The dependent variable ũ denotes the electric potential and ṽ is a gating variable. The
parameter ν > 0 determines the strength of the diffusion ∂2

x ũ, while the nonlinearity f (ũ) is a
reaction term which typically has the form f (ũ) = χ(ũ)ũ(1− ũ)(ũ−a) with 0 < a < 1 and is
suitably cut off by the factor χ . The parameter σ > 0 determines the strength of the noise W .
Here, we assume that W is an infinite-dimensional Wiener process taking values in a Hilbert
space to be specified in what follows. The parameter ε > 0 determines the strength of the
coupling of the electric potential ũ to the gating variable ṽ and is assumed to be sufficiently
small. The parameter γ > 0 determines the decay of the gating variable ṽ.

The classical FitzHugh–Nagumo [34, 73] partial differential equations (PDEs) obtained
for σ = 0 form a simplified, yet qualitatively very similar, model for the Hodgkin–Huxley
equations [45], which was a key part of Hodgkin’s and Huxley’s Nobel prize awarded in
1963. By now, the FitzHugh–Nagumo system is a standard model for the generation and
transmission of electrical signals in neuroscience [26, 47]. The literature on the PDE version
of the FitzHugh–Nagumo system (σ = 0) is very large; see, for example, the recent papers
[15, 38] and detailed references therein. For the ODE version (σ = 0, ν = 0), the literature
is vast [76], mostly due to the crucial role played by bistable nonlinearities in all areas of
nonlinear science and the commonly found multiple time scale structure of the FitzHugh–
Nagumo system [58]. Also the SODE variant for ν = 0 is quite well studied, mainly due
to a flurry of activity since the mid 1990s; see, for example, [3, 7, 9, 63, 64, 72]. Yet, the
full SPDE variant (1.1) has only attracted major attention quite recently, including a large
number of numerical studies [67, 80, 81, 83, 86–88] as well as analytical studies regarding
existence, regularity, invariant measures and attractors [4, 8, 12, 61, 62, 90]. The question
regarding stochastic stability of pulses for additive noise is far less studied. We refer to [41]
for multiplicative noise with a regularized equation (diffusion in the second variable) and to
the review [60] for the stochastic Nagumo case (ε = 0). For further biophysical motivation
regarding various noise terms in the FitzHugh–Nagumo equation we refer to the review [63].

Here we contribute to a more detailed understanding of stochastic pulse stability of the
FitzHugh–Nagumo equations (1.1) exploiting the multiscale nature of the problem. More
precisely, our aim is to understand the dynamics of (1.1) near a deterministically stable pulse
in the regime, where the parameters σ > 0 (strength of the noise) and ε > 0 (coupling to the
gating variable) are small. The subsequent analysis generalizes the recent analysis of Krüger
and Stannat [55] for corresponding scalar stochastic bistable reaction–diffusion equations
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such as the Nagumo equation. We remark that the idea of tracking small noise fluctuations
for SPDEs around traveling waves via a multiscale SODE approximation goes back at least
to the early 1980s and works by Ebeling, Mikhailov, and Schimansky–Geier [70, 71]. From
the viewpoint of applications the extension from Nagumo to FitzHugh–Nagumo is a crucial
generalization as the FitzHugh–Nagumo model (1.1) is far more realistic than the one stud-
ied in [55] since only (1.1) allows for deterministically stable traveling-pulse solutions. In
fact, deterministically stable localized pulses model far better the real action potentials gen-
erated in neurons in comparison to the deterministically stable traveling fronts appearing in
the Nagumo equation. From a mathematical viewpoint, our generalization is important as it
does extend beyond the setting of treating the equation in a Hilbert space in which the lin-
earization of the traveling wave is self-adjoint (this is the case in [55]) or generates an analytic
semigroup and thereby makes the methods of multiscale approximation available to a broad
class of stochastic SPDE-ODE reaction–diffusion systems.

1.2. Traveling-pulse solutions and their stability. We recall some of the well-known re-
sults on existence of traveling-pulse solutions to the deterministic version of (1.1) where
σ = 0. These solutions have the form ũ(t, x) = û(ξ) and ṽ(t, x) = v̂(ξ), where ξ = x + st

and s ∈ R is the velocity of the traveling wave. The tuple (û, v̂) therefore fulfills the set of
equations

dû

dξ
= û′ for ξ ∈ R,(1.2a)

dû′

dξ
= 1

ν

(
sû′ − f (û) + v̂

)
for ξ ∈ R,(1.2b)

dv̂

dξ
= ε

s
(û − γ v̂) for ξ ∈ R.(1.2c)

Traveling-pulse solutions to (1.2) are solutions (s, û, v̂)t such that (û, û′, v̂)t → (b1, b2, b3)
t

as ξ → ±∞ where (b1, b2, b3)
t ∈ R

3 is a stationary solution to (1.2) fulfilling

b2 = 0, f (b1) = b3 and b1 = γ b3,

that is, they are homoclinic orbits of the dynamical system (1.2). In what follows we will
also have the convention that we mean nontrivial traveling pulses. Furthermore, we are only
interested in solutions (û, v̂)t such that (û, v̂)t → (0,0)t as ξ → ±∞. Indeed, this situation
will occur if the equilibrium point (b1, b2, b3)

t = (0,0,0)t is unique, which is the case, for
example, if γ ≥ 0 is sufficiently small [76]. Further note that the velocity s of the traveling
wave is not a parameter but a functional of f and ε.

Next, we give a very brief overview of the existing literature on the existence of homo-
clinic orbits of (1.2) corresponding to traveling-pulse solutions. For a wave speed s = 0 and
ε = 0, we recover the planar ODE associated to traveling waves of the Nagumo equation.
Using the resulting Hamiltonian structure of the ODE, it is easy to see that a homoclinic orbit
exists for s = 0 and ε = 0. A singular perturbation argument in combination with Melnikov’s
method [44, 58, 85] yields the existence of a slow pulse with wave speed s ≈ 0. Yet, an ap-
plication of the Sturm–Liouville theory [52, 59] shows that the slow pulse is unstable. As it
is deterministically already unstable, considering this pulse under the influence of noise is
not expected to be biophysically relevant as the noisy small perturbations will be amplified
exponentially near the slow pulse. Yet, there is also a fast pulse corresponding to much higher
wave speeds s = s(f, ε). Carpenter [13] and Conley [21] constructed these homoclinic orbits
to (1.2) employing the method of isolating blocks of the fast and slow subsystems [20]. See
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also [35], where the methods developed in [21] have been further improved. Then a gen-
eralization of the pulse construction to large classes of FitzHugh–Nagumo-like models has
been provided in [33]. Later, a fully geometric construction of the fast pulse via the exchange
lemma [49, 50, 58] was proved by Jones, Kopell, and Langer [51] using differential forms.
The connection in parameter space between slow and fast pulses has been proved in [56].
Then the parametric bifurcation structure has been analyzed in a more refined way in [15, 16,
38, 39]. A nonperturbative approach to construct traveling-pulse solutions of (1.2) has been
carried out by Arioli and Koch [2] for the value ε = 0.01 using computer-assisted proofs.

Stability of the fast traveling-pulse solutions to the deterministic version of (1.1) with
σ = 0 in the space of bounded uniformly continuous functions has been obtained by Jones
[48] for the case of a cubic polynomial, in the sense that solutions starting sufficiently close
to a wave profile decay to a translate of(

û(· + st), v̂(· + st)
)t

.

The proof relies on analysis developed by Evans [27–32], where it is proved that in the space
of bounded uniformly continuous functions that linear stability implies nonlinear stability
and that the point spectrum of the linearization around the traveling pulse is determined by
the roots of a function D(λ), the Evans function. Jones proves that instability can only occur
due to eigenvalues of the linear operator near λ = 0. By calculating the winding number of
D(λ) for a small circle around λ = 0, it is shown that only two eigenvalues lie in it, one of
which is λ = 0 (related to the translation invariance of the problem) and the other is nega-
tive because dD

dλ
(0) > 0. For a more recent stream-lined stability analysis allowing for more

general reaction terms f but still restricted to the space of bounded uniformly continuous
functions, we refer to [2, 91] while stability in L2(R;R2) and H 1(R;R2) is proved in [36,
77, 92] (see Section 2.2 for further details). Nonlinear stability of the fast FitzHugh–Nagumo
pulse with oscillatory tails (instead of monotone tails as considered in this paper) has been
proved by Carter, de Rijk, and Sandstede in [14]. For general introductions into the subject,
we refer to [19, 79].

1.3. An approach for computing the velocity correction. Our aim is to investigate the
following decomposition:

ũ(t, x) = û
(
x + st + ϕ(t)

)+ uϕ(t, x),(1.3a)

ṽ(t, x) = v̂
(
x + st + ϕ(t)

)+ vϕ(t, x)(1.3b)

of solutions to (1.1), where the function ϕ(t) is a random correction to the position of the wave
front, and uϕ(t, x) and vϕ(t, x) denote lower-order fluctuations that are uniquely defined
through (1.3) for any choice of ϕ = ϕ(t). Ideally, we would like to choose ϕ to minimize
the distance in the direction of the traveling wave between the solution X̃ := (ũ, ṽ)t of the
FitzHugh–Nagumo SPDEs (1.1) and the suitably translated traveling wave X̂ = (û, v̂)t, that
is,

(1.4) ϕ(t) ∈ argmin
ϕ∈R

∥∥�0
st+ϕ

(
X̃(t, ·) − X̂(· + st + ϕ)

)∥∥2
H with X̃ :=

(
ũ

ṽ

)
, X̂ :=

(
û

v̂

)
,

where ‖·‖H is the norm in the spatial variable of a suitable underlying Hilbert space H and

�0
st+ϕ is a suitable projection operator onto the traveling wave such that �0

st+ϕ
dX̂
dξ

(· + st +
ϕ) = dX̂

dξ
(· + st + ϕ) (see Proposition 2.8(d) and (3.1) further below). However, as the mini-

mization problem (1.4) is not necessarily convex, uniqueness of a minimizer is not ensured.
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We follow the approach in [55] and replace (1.4) by the weaker condition for a critical point
of finding ϕ = ϕ(t) such that

(1.5) 0 =
(
�0

st+ϕ

(
X̃(t, ·) − X̂(· + st + ϕ)

)
,

dX̂

dξ
(· + st + ϕ)

)
H

,

where (·, ·)H denotes the inner product of H . This approach has been employed by Inglis and
MacLaurin in [46] for more general classes of SPDE systems with the drawback that results
only hold up to the first stopping time when the local minimum turns into a saddle. Here, we
follow the work around proposed in [55] in the sense that ϕ(t) is approximated by a process
ϕm(t), which in our case fulfills the random ordinary differential equation (RODE)

(1.6)
dϕm

dt
(t) = m

(
�0

st+ϕm(t)

(
X̃(t, ·) − X̂

(· + st + ϕm(t)
))

,
dX̂

dξ

(· + st + ϕm(t)
))

H

for given initial condition and a relaxation parameter m > 0 that is chosen sufficiently large.
Notably, approximating ϕ with ϕm through (1.6) implies differentiability while this is in
general not true for (1.5). By further analyzing (1.6) we will construct ϕ as a solution of an
SODE and (uϕ, vϕ)t as the solution of a system of an SPDE coupled to an SODE in such
a way that (uϕ, vϕ)t fulfill estimates in suitable function spaces, making precise what the
notion “lower order” means.

In [55], Section 3.4, it has been pointed out that with the strategy described above the first-
order fluctuations around the traveling wave are orthogonal in their suitably chosen inner
product. In fact, in the case of second-order bistable reaction–diffusion equations, the spatial
linearization around the traveling wave, the frozen-wave operator, is of Sturm–Liouville type.
Hence, one can always find a weighted L2-inner product in which it is self-adjoint, so that
one can replace the projection operator used in (1.4) with an orthogonal projection induced
by this inner product. One cannot expect a similar approach to be applicable in our situation
(1.1) of an SPDE coupled to an ODE or other more complicated systems of SPDEs. Instead,
we will build up our analysis on Riesz spectral projections of the frozen-wave operator that do
not require a self-adjoint structure and yield a partition into two subspaces invariant under the
linearized flow. Note that nonorthogonal Riesz spectral projections have also been employed
by Hamster and Hupkes in [40–43] by projecting onto the eigenvector of the adjoint of the
frozen-wave operator. Their SODE to determine ϕ is more involved compared to (1.6). Their
method applies to a variety of (systems) of reaction–diffusion equations with special forms of
multiplicative noise (partially only including a one-dimensional Wiener process). However,
in all situations treated there, the frozen-wave operator is sectorial with spectral angle larger
than π

2 and therefore generates an analytic semigroup. Specifically, in [41], (1.2), [42], (1.3),
[43], (1.17), the second component of the FitzHugh–Nagumo system is regularized by adding
c∂2

x ṽ with some c > 0 to the right-hand side of (1.1b) (see [17, 22] for existence and stability
of the pulse in this case), which is different from the only partly parabolic FitzHugh–Nagumo
system without diffusion in the second component as treated for instance in [2, 13, 21, 35,
48, 51, 91]. In our setting, the frozen-wave operator has essential spectrum parallel to the
imaginary axis (see Section 2.2 and Appendix A.2 below) and therefore is so far not covered
by this approach.

Historically, one can track back stability and fluctuation analysis of bistable scalar SPDEs,
such as the Nagumo SPDE, at least to early works by Ebeling, Mikhailov, and Schimansky–
Geier in [70, 71], where it was recognized that the deterministic reference wave speed should
be corrected by a stochastic term, which in turn satisfies an SODE. Many further works fol-
lowed, for example, using a more rigid/frozen stochastic frame in combination with numeri-
cal simulations by Lord and Thümmler in [68], employing functional inequalities to establish
stability bounds by Stannat in [84], the adaptation of a rigorous multiscale expansion by
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Krüger and Stannat in [55] originally motivated by work on the related problem of stochastic
traveling waves for bistable neural field equations by the same authors in [54] and by Inglis
and MacLaurin in [46], and work on long-time stochastic stability tracking for suitable mul-
tiplicative noise by Hamster and Hupkes in [40] via stochastic convolution estimates by the
sameauthors in [41]. We also remark that in case of stochastic dispersive PDEs, the random
modulation of soliton solutions (i.e., standing or traveling wave packages) has been inves-
tigated by de Bouard and Debussche for the stochastic Korteweg–de Vries equation in [24]
and by de Bouard and Fukuizumi for the Gross–Pitaevskii equation in [25]. Furthermore,
multiscale expansions also frequently appear in the context of SPDE amplitude equations at
bifurcation points as treated for instance by Blömker in [10] and by Blömker, Hairer, and
Pavliotis in [11].

1.4. Outline. We continue with the setting and auxiliary results in Section 2, followed
by the main results in Section 3. The proofs of auxiliary results are contained in the Ap-
pendix while the proofs of the main results can be found in Section 4. In Section 2.1 and
Appendix A.1 we construct solutions to (1.1) using the variational approach for equations
with locally monotone coefficients [65, 66]. In Section 2.2 and Appendix A.2, we then for-
mulate the SPDE of perturbations around the traveling wave which to leading-order is gov-
erned by the linearization around the deterministically-stable fast FHN pulse. Results on the
deterministic linearized evolution of perturbations around the traveling wave are provided
in Proposition 2.6 and Proposition 2.8 below. Afterwards, in Section 3.1 and Section 4.1,
we derive an SODE approximating the correction of the wave velocity (cf. Proposition 3.2
below). The leading-order part of this SODE is an Ornstein–Uhlenbeck-type process with a
linear damping in the drift due to the relaxation method of the frame and additive stochastic
fluctuations obtained from projecting the infinite-dimensional noise onto the deterministic
translation-invariant mode. Practically, this entails that the deterministic reference wave has
phase diffusion along the translation direction. Subsequently, in Section 3.2 and Section 4.2,
we prove a multiscale expansion in terms of the linearized evolution (cf. Theorem 3.3 be-
low), which is further investigated in Section 3.3 and Section 4.3 in the limit as m → ∞ of
immediate relaxation (cf. Theorem 3.4 and Proposition 3.5 below). In particular, our results
yield bounds on:

• the first exit time where the multiscale decomposition cannot be guaranteed to hold any-
more and

• on the second moment of fluctuations transverse to the traveling wave mode after correct-
ing the wave velocity.

Concluding remarks and an outlook on future research can be found in Section 5.

2. Setting and auxiliary results. For what follows, we fix a stochastic basis, that is, a
complete filtered probability space (

,F, (Ft )t∈[0,T ],P
)
,

with a complete and right-continuous filtration (Ft )t∈[0,T ], where T ∈ (0,∞) is arbitrary.

2.1. Existence and uniqueness of solutions using the variational approach. In line with
the classical findings for the deterministic FitzHugh–Nagumo PDE discussed above, we make
the following assumption on (1.1) or (1.2), respectively. In particular, we are only going to
study stochastic perturbations to the deterministically stable fast pulse solution.



MULTISCALE ANALYSIS FOR THE STOCHASTIC FITZHUGH–NAGUMO EQUATIONS 3235

GLOBAL ASSUMPTION 2.1. In a right-neighborhood of ε = 0 the system (1.2) has
a nontrivial homoclinic orbit of the point (0,0,0)t in phase space. The corresponding
traveling-pulse solution (û, v̂)t of the FitzHugh–Nagumo equations (1.1) with σ = 0 is lo-
cally asymptotically stable up to translation.

We will assume certain properties on the reaction term f (w) that are fulfilled for in-
stance by the choice f (w) = χ(w)w(1−w)(w −a), where a ∈ (0,1) and χ ∈ C∞(R) meets

χ|[−c1,∞) ≡ 1 and χ(w) = c2
2

w2 for w ∈ (−∞,−c2], where 1 < c1 < c2 sufficiently large (cut-
off at −∞), for which existence of a traveling-pulse solution (cf. Global Assumption 2.1)
is guaranteed provided ε > 0 is small. Here, we directly make the usual abstract bi-stability
assumptions [18, 55, 91] for f so that the nonlinearity effectively behaves like the classical
cubic nonlinearity chosen for the Nagumo and FitzHugh–Nagumo equations.

GLOBAL ASSUMPTIONS 2.2. We have f ∈ C3(R) and there exist a ∈ (0,1) and d > 0
with

f (0) = f (a) = f (1) = 0,(2.1a)

f (w) < 0 for w ∈ (0, a) ∪ (1,∞),(2.1b)

f (w) > 0 for w ∈ (−∞,0) ∪ (a,1),(2.1c)

f ′(0) < 0, f ′(a) > 0, f ′(1) < 0,(2.1d)

f (w) − w

d
�= 0 for w ∈ R \ {0},(2.1e)

ˆ 1

0
f (w)dw > 0,(2.1f)

η1 := sup
w∈R

f ′(w) < ∞,(2.1g)

∣∣f (w1 + w2) − f (w1) − f ′(w1)w2
∣∣≤ η2

(
1 + |w1| + |w2|)|w2|2

for w1,w2 ∈ R,
(2.1h)

∣∣f ′(w)
∣∣≤ η3

(
1 + |w|2) for w ∈ R,(2.1i) ∣∣f (w1) − f (w2)

∣∣≤ η4|w1 − w2|(1 + |w1|2 + |w2|2)
for w1,w2 ∈ R,

(2.1j)

∣∣f ′(w1 + w2) − f ′(w1) − f ′′(w1)w2
∣∣≤ η5|w2|2

for w1,w2 ∈ R,
(2.1k)

∣∣f ′(w1) − f ′(w2)
∣∣≤ η6|w1 − w2|(1 + |w1| + |w2|)

for w1,w2 ∈ R,
(2.1l)

∣∣f ′′(w1) − f ′′(w2)
∣∣≤ η7|w1 − w2| for w1,w2 ∈R,(2.1m)

where η2, η3, η4, η5, η6, η7 < ∞.

Note that the linearization of (1.2) in (0,0,0)t only depends on f ′(0) and because
of (2.1d) this point is hyperbolic and hence dj û

dξj for j ∈ {0,1,2,3,4,5} and dj v̂
dξj for j ∈

{0,1,2,3,4} are exponentially decaying as |ξ | → ±∞. In particular,∥∥∥∥dj û

dξj

∥∥∥∥
L∞(R)

< ∞ and
∥∥∥∥dj û

dξj

∥∥∥∥
L2(R)

< ∞ for all j ∈ {0,1,2,3,4,5},
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as well as ∥∥∥∥dj v̂

dξj

∥∥∥∥
L∞(R)

< ∞ and
∥∥∥∥dj v̂

dξj

∥∥∥∥
L2(R)

< ∞ for all j ∈ {0,1,2,3,4}.

For ϕ ≡ 0, we may use (1.3) as a definition of (u, v) := (u0, v0) and employing (1.2), we
obtain the system

du(t, x) = (
ν∂2

xu(t, x) + f
(
u(t, x) + û(x + st)

)− f
(
û(x + st)

)− v(t, x)
)

dt

+ σ dW(t, x),
(2.2a)

dv(t, x) = ε
(
u(t, x) − γ v(t, x)

)
dt.(2.2b)

In order to analyze (2.2), we use the following Hilbert space setting. Suppose that L2(R) is
the standard L2-space of R-valued functions on the real line,

H 1(R) := {
u ∈ L2(R) : ∂xu ∈ L2(R)

}
,

where ∂xu denotes the distributional derivative, and H−1(R) denotes the topological dual of
H 1(R) relative to L2(R). The Laplacian ∂2

xu for u ∈ H 1(R) can be defined via its bilinear
form as

(2.3) H 1(R)

〈
w,∂2

xu
〉
H−1(R) := −

ˆ
R

(∂xw)(∂xu)dx.

Then, we may recast the system (2.2) in form of the abstract stochastic evolution equation

(2.4) dX(t, ·) = A
(
t,X(t, ·))dt +B

(
t,X(t, ·))dWU(t, ·)

and introduce the rigged space triple (Gelfand triple)

(2.5) H 1(R)√εkL2(R)︸ ︷︷ ︸
=:V

↪→ L2(R)√εkL2(R)︸ ︷︷ ︸
=:H=H ∗

↪→ H−1(R)√εkL2(R)︸ ︷︷ ︸
=V

,

where

(Y1, Y2)H := Z

ˆ
R

(εw1w2 + q1q2)dx,(2.6a)

(Y1, Y2)V := Z

ˆ
R

(
εw1w2 + ε(∂xw1)(∂xw2) + q1q2

)
dx,(2.6b)

with

(2.7) Yj :=
(
wj

qj

)
and Z :=

(ˆ
R

(
ε

(
dû

dξ

)2
+
(

dv̂

dξ

)2)
dξ

)−1
,

and where

X :=
(
u

v

)
,(2.8a)

A : [0, T ] × V ×  → V ∗,

(t,X,ω) �→ A(t,X) :=
(
ν∂2

xu + f
(
u + û(· + st)

)− f
(
û(· + st)

)− v

ε(u − γ v)

)
,(2.8b)

B : [0, T ] × V ×  → L2(U ;H),

(t,X,ω) �→
(
U → H,N �→ B(t,X)N :=

(
σ
√

QN

0

))
.(2.8c)
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Here, we assume that U := L2(R), Q ∈ L(U) is a symmetric nonnegative-definite bounded
linear operator in U with finite trace, L2(U ;H) denotes the space of Hilbert–Schmidt op-
erators U → H , and WU is a U -valued (Ft )t∈[0,T ]-adapted cylindrical idU -Wiener process.
Note that W = √

QWU is in fact a U -valued (Ft )t∈[0,T ]-adapted Q-Wiener process. We re-
mark that the assumption of Q having finite trace leads to a noise term in (2.4) which is
not translation invariant. However, since we study stability of a pulse with exponential tails
traveling with finite speed on an axon (which in reality has finite length), this assumption ap-
pears to be acceptable regarding the relevance of our results in terms of applications. Further
note that the scaling of the first component with

√
ε in (2.6) changes the geometry of the

orthogonal sums indicated by the symbol √
εk rather than k in (2.5). On the other hand, the

normalization with Z merely implies the convenient property that ‖dX̂
dξ

‖H = 1 but leaves all
angles between vectors unchanged.

In order to show existence of solutions to (2.4), one could use the concept of mild solutions
as employed for the FitzHugh–Nagumo SPDE with additive noise in [61, 90]. The approach
presented in [55], which we build upon, uses variational solutions [57, 66, 75] for equations
with locally monotone coefficients [65, 66]. As we will show in Proposition 2.5 below, the
variational solution (constructed in Proposition 2.4 below) also turns out to be a mild solution.
We remark that the authors of [41–43] use [65] to construct solutions, too, but as previously
mentioned, their system is regularized by adding c∂2

xu with c > 0 to the second component in
(2.8b), which also changes the Gelfand triple to H 1(R;R2) ↪→ L2(R;R2) ↪→ H−1(R;R2).
Since the variational approach has not been directly worked out for the FitzHugh–Nagumo
SPDE with additive noise and no regularization of the second component, we use this oppor-
tunity to fill this gap within this work as an auxiliary step. Therefore, we use the concept of
variational solutions (cf. [65], Definition 1.1, and [66], Definition 5.1.2):

DEFINITION 2.3. A variational solution to (2.4) is a continuous H -valued (Ft )t≥0-
adapted process (X(t, ·))t∈[0,T ] such that the dt ⊗ P-equivalence class X̌ meets X̌ ∈
L2([0, T ] × ,dt ⊗ P;V ) and such that the solution formula

(2.9) X(t, ·) = X(0, ·)+
ˆ t

0
A
(
t ′, X̄

(
t ′, ·))dt ′ +

ˆ t

0
B
(
t ′, X̄

(
t ′, ·))dWU

(
t ′, ·) for t ∈ [0, t]

is satisfied, P-almost surely, where X̄ denotes any V -valued progressively measurable dt ⊗P-
version of X̌.

Under the given hypothesis, we can prove existence of solutions and regularity in space
under additional assumptions.

PROPOSITION 2.4. For p ∈ [6,∞) and T > 0, the stochastic evolution equation (2.4)
has for any X(0, ·) = (u(0, ·), v(0, ·))t = X(0) = (u(0), v(0))t ∈ Lp(,F0,P;H) a unique
variational solution. The solution further satisfies X ∈ Lp(,F,P;C0([0, T ];H)).

For the subsequent result, we define the stronger space

(2.10a) V := H 1(R)√εkH 1(R)

with inner product

(Y1, Y2)V := Z

ˆ
R

(
εw1w2 + ε(∂xw1)(∂xw2) + q1q2 + (∂xq1)(∂xq2)

)
dx(2.10b)

(2.6a)= (Y1, Y2)H + (∂xY1, ∂xY2)H ,

where Yj and Z are as in (2.7).
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PROPOSITION 2.5. In the situation of Proposition 2.4, the solution X is also a mild
solution in the sense of [23] with linear operator(

ν∂2
x 0

0 −εγ

)
: H ⊇ H 2(R)√εkL2(R) → H.

If additionally
√

Q ∈ L2(U ;H 1(R)), u(0) ∈ L2(R), and v(0) ∈ H 1(R), then

tu, v ∈ C0([0, T ];H 1(R)
)
, P-almost surely.

If further u(0) ∈ H 1(R), that is, X(0) ∈ V , then X ∈ C0([0, T ];V), P-almost surely.

We will give the proof of Proposition 2.4 and Proposition 2.5 in Appendix A.1.

2.2. Linearization around the traveling wave. We recall the global Assumptions 2.1 and
write X̂ := (û, v̂)t for the deterministically stable fast traveling pulse. Then we define

(2.11) X̃(t, x) := (
ũ(t, x), ṽ(t, x)

)t = X(t, x) + X̂(x + st),

and in line with (1.3) set

(2.12)
Xϕ(t, x) := (

uϕ(t, x), vϕ(t, x)
)t := X̃(t, x) − X̂(x + st + ϕ)

= X(t, x) + X̂(x + st) − X̂(x + st + ϕ),

where ϕ = ϕ(t) is yet to be determined. We split the stochastic evolution equation (2.4)
around the traveling-wave profile X̂ into a linear and nonlinear part using (1.2). This yields

(2.13)
dXϕ(t, ·) =

(
Lst+ϕ(t)Xϕ(t, ·) + Rϕ(t)

(
t,Xϕ(t, ·), ·)− ϕ̇(t)

dX̂

dξ

(· + st + ϕ(t)
))

dt

+
(
σ

0

)
dW(t, ·),

where

(2.14) Lst+ϕY :=
(
ν∂2

xw + f ′(û(· + st + ϕ)
)
w − q

ε(w − γ q)

)
, Y :=

(
w

q

)
,

and

(2.15) Rϕ(t, Y, ·) :=
(
f
(
w + û(· + st + ϕ)

)− f
(
û(· + st + ϕ)

)− f ′(û(· + st + ϕ)
)
w

0

)
.

We have the following result, which is proved in Appendix A.2.1.

PROPOSITION 2.6 (Linearized evolution). The family of operators (Lst )t≥0, with

Lst : D(Lst ) = H 3(R)√εkH 1(R) → V (2.10)= H 1(R)√εkH 1(R),

generates an evolution family (Pst,st ′)t≥t ′≥0 in V with

(2.16a) ‖Pst,st ′‖L(V) ≤ eβ(t−t ′),

where

(2.16b) β := ∥∥f ′(û) − f ′(0)
∥∥
W 1,∞(R) − min

{−f ′(0), εγ
}
,

and we have used the norm in the ξ = x + st coordinate in the last expression.
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We also write

(2.17) L#Y :=
(
ν∂2

ξ w + f ′(û)w − q − s∂ξw

ε(w − γ q) − s∂ξq

)
=
(
ν∂2

ξ + f ′(û) − s∂ξ −1
ε −εγ − s∂ξ

)
Y

for the linearized evolution in the moving frame, that is, with respect to ξ = x + st , and call
L# the frozen-wave operator. Defining the translation operator Tc by

(2.18) TcY := Y(· + c) for any c ∈ R,

one may readily check that

(2.19) ∂t −Lst = Tst

(
∂t −L#)T−st .

Furthermore, by differentiating (1.2) it follows

(2.20) L# dX̂

dξ
= 0 where X̂ :=

(
û

v̂

)
.

Equation (2.20) simply means that the derivative of the traveling wave is an eigenvector of
the frozen-wave operator, which actually arises due to translation invariance [59]. Here and
in what follows, we use the conventions of [52], Section 2.2.4, Section 2.2.5, Definition 2.2.3,
(4.1.11):

DEFINITION 2.7. For a complex Banach space E and a linear operator B : E ⊇ D(B) →
E we define:

(a) the resolvent set ρ(B) as the set of all λ ∈ C such that λ idE −B is invertible and
(λ idE −B)−1 is bounded;

(b) the spectrum σ(B) := C \ ρ(B);
(c) the point spectrum σp(B) as the set of all λ ∈ C such that the index ind(λ idE −B) of

λ idE −B satisfies ind(λ idE −B) = 0 but λ idE −B is not invertible;
(d) the essential spectrum σess(B) as the set of all λ ∈ C such that λ idE −B is not a

Fredholm operator with ind(λ idE −B) = 0;
(e) for a C-Hilbert space E with inner product (·, ·)E the numerical range

RE(B) := {
(BY,Y )E : Y ∈ D(B),‖Y‖E = 1

}
.

Next, we are going to list (spectral) properties of the frozen-wave operator in the statements
below, which make use of a complex Hilbert space

(2.21a) HC := L2(R;C)√εkL2(R;C),

endowed with the inner product

(2.21b)

(Y1, Y2)HC
:= Z

ˆ
R

(εw1w2 + q1q2)dξ, Yj :=
(
wj

qj

)
,

Z
(2.7)=

(ˆ
R

(
ε

(
dû

dξ

)2
+
(

dv̂

dξ

)2)
dξ

)−1
.

As mentioned in Section 1.2 already, the spectral properties of L# have in fact been studied
by Jones [48] (based on the framework developed in [27–32]) with shorter proofs given by
Yanagida in [91] and by Arioli and Koch in [2], Section 3, in the space of bounded uniformly
continuous functions. Furthermore, in [2], Section 4.1, bounds on the eigenvalues for square
integrable functions on the torus have been derived by a scaling of the components analogous
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to the one used in (2.6) or (2.21b). Here, we adapt these approaches in order to give corre-
sponding results in HC in Appendix A.2.2, a choice being compatible with the Hilbert-space
setting of Section 2.1. Directly applying the deterministic results [2, 48, 91] would require to
adapt our stochastic framework to Banach spaces, which we briefly comment on in Section 5.

We emphasize that the following stability result, Proposition 2.8, in the space of square-
integrable functions is (up to a scaling of the components of Y ) in more generality proved
by Ghazaryan, Latushkin, and Schecter in [36] and by Yurov in [92]. These proofs mainly
rely on applying the Gearhart–Prüss theorem (see, e.g., [52], Theorem 4.1.5) and Palmer’s
theorem [5] and are more complicated than our relatively elementary arguments provided
in Appendix A.2.2. See also [77] for an alternative proof using the Laplace transform by
Rottmann–Matthes and [78] by the same author, where the method has been applied to first-
order hyperbolic PDEs.

PROPOSITION 2.8 (Properties of the frozen-wave operator L#). For the frozen-wave op-
erator

L# : D
(
L#) := H 2(R;C)√εkH 1(R;C) → HC

(2.21a)= L2(R;C)√εkL2(R;C)

it holds:

(a) L# [L#|D(L#)∩H ] generates a C0-semigroup (P #
st )t≥0 [(P #

st |H )t≥0] in HC [H ].
(b) We have Pst,st ′ = TstP

#
s(t−t ′)|VT−st ′ with Pst,st ′ as in Proposition 2.6.

(c) The spectrum σ(L#) = σess(L#) ∪̇ σp(L#) consists of:

(i) essential spectrum σess(L#) ⊆ {λ ∈ C : Reλ ≤ −κ} with

(2.22) κ := min
{−f ′(0), εγ

}
and

(ii) point spectrum σp(L#) consisting of an isolated eigenvalue 0 of multiplicity 1
with eigenvector dX̂

dξ
such that σp(L#) \ {0} ⊆ {λ ∈ C : Reλ ≤ λ∗(ε)} for an eigenvalue

λ∗(ε) < 0, which we will call the Jones eigenvalue [48] (see [91] for more general reac-
tion terms f as treated here).

(d) Defining the Riesz spectral projections using Dunford calculus as

(2.23) �#,0 := 1

2πi

‰
|λ|=r

(
λ idHC

−L#)−1 dλ and �# := idHC
−�#,0,

where r := 1
2 min{|λ∗(ε)|, κ}, it follows that for any ϑ < min{κ,−λ∗(ε)} there exists

Cϑ ∈ [0,∞) independent of t ∈ [0,∞) such that

(2.24)
∥∥P #

st�
#∥∥

L(HC) ≤ Cϑe−ϑt ,

where ‖·‖L(HC) denotes the operator norm of bounded linear operators

L2(R;C)√εkL2(R;C) → L2(R;C)√εkL2(R;C).

(e) The operators .�#,0|H , .�#|H : H → H are well defined and bounded, too, with
‖�#,0‖L(H) ≤ ‖�#,0‖L(HC), ‖�#‖L(H) ≤ ‖�#‖L(HC), and (2.24) holds true with HC

replaced by H .
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3. Main results. For the following results, we can choose T ∈ [0,∞) arbitrarily.

3.1. Correction of the wave velocity. In accordance with (1.6) we define the translated
spectral Riesz projections

(3.1) �0
st+ϕ := Tst+ϕ�#,0T−st−ϕ, �st+ϕ := Tst+ϕ�#T−st−ϕ,

and postulate the RODE as an approximation for the noise-induced wave velocity change

(3.2a) ϕ̇m(t) = dϕm

dt
(t) = m

(
�0

st+ϕm(t)X
m(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

,

where m > 0 and

Xm(t, x) := Xϕm(t, x)
(2.12)= X̃(t, x) − X̂

(
x + st + ϕm(t)

)
(2.12)= X(t, x) + X̂(x + st) − X̂

(
x + st + ϕm(t)

)
.

REMARK 3.1. Indeed, from (1.4) with the choices (3.1) and H
(2.5)= L2(R)√εkL2(R),

for X(0) ∈ V we obtain the necessary condition for a minimum to be

0 = ∂ϕ

∥∥�0
st+ϕXϕ(t, ·)∥∥2

H

(2.12)= ∂ϕ

∥∥�0
st+ϕ

(
X̃(t, ·) − X̂(· + st + ϕ)

)∥∥2
H

(3.1)= ∂ϕ

∥∥�#,0(X̃(t, · − st − ϕ) − X̂
)∥∥2

H

= −2
(
�#,0(X̃(t, · − st − ϕ) − X̂

)
,�#,0((∂xX̃)(t, · − st − ϕ)

))
H

= −
ˆ
R

∂ξ

∣∣diag(
√

ε,1) · (�#,0(X̃(t, · − st − ϕ) − X̂
))

(ξ)
∣∣2 dξ︸ ︷︷ ︸

=0

− 2
(
�#,0(X̃(t, · − st − ϕ) − X̂

)
,

dX̂

dξ

)
H

= −2
(
�0

st+ϕ

(
X̃(t, ·) − X̂(· + st + ϕ)

)
,

dX̂

dξ
(· + st + ϕ)

)
H

(2.12)= −2
(
�0

st+ϕXϕ(t, ·), dX̂

dξ
(· + st + ϕ)

)
H

,

so that (1.5) holds true, while (1.6) or (3.2a) correspond to a relaxation of this condition with
numerical parameter m.

By choosing ϕm from (3.2a) as the velocity adaption, the SPDE (2.13) becomes

(3.2b)
dXm(t, ·) =

(
Lst+ϕm(t)X

m(t, ·) + Rm(t,Xm(t, ·), ·)− ϕ̇m(t)
dX̂

dξ

(· + st + ϕm(t)
))

dt

+
(
σ

0

)
dW(t, ·),
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where

Rm(t, Y, ·) := Rϕm(t, Y, ·)
(2.15)=

(
f
(
w + û

(· + st + ϕm))− f
(
û
(· + st + ϕm))− f ′(û(· + st + ϕm))w

0

)
,

(3.3a)

Y =
(
w

q

)
.(3.3b)

The proof of the following proposition is contained in Section 4.1.

PROPOSITION 3.2. Suppose
√

Q ∈ L2(L
2(R);H 1(R)) and u(0), v(0) ∈ H 1(R).

(a) P-almost surely, there exists a unique (Ft )t≥0-adapted solution ϕm ∈ C1([0, T ]) to the
pathwise ODE (3.2a) subject to ϕm(0) = 0.

(b) The correction ϕ̇m to the velocity s of the traveling pulse satisfies the SODE

(3.4)

dϕ̇m(t) = −mϕ̇m(t)

(
1 +

(
�0

st+ϕm(t)∂xX
m(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

)
dt

+ σm

(
�0

st+ϕm(t)(1,0)tdW(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

+ m

(
�0

st+ϕm(t)R
m(t,Xm(t, ·), ·), dX̂

dξ

(· + st + ϕm(t)
))

H

dt.

3.2. Reduced stochastic dynamics and multiscale analysis. Since for small values of σ ,
Xm and ϕ̇m are expected to be small, we may also consider the reduced set of equations (in
which by linearity σ can be scaled out)

dϕ̇m
0 (t) = −mϕ̇m

0 (t)dt + m

(
�0

st (1,0)tdW(t, ·), dX̂

dξ
(· + st)

)
H

,(3.5a)

dXm
0 (t, ·) =

(
LstX

m
0 (t, ·) − ϕ̇m

0 (t)
dX̂

dξ
(· + st)

)
dt + (1,0)t dW(t, ·).(3.5b)

Note that the SPDE (3.5b) describes the stochastic fluctuations around the stable fast pulse
with stochastically adapted wave velocity. Due to the construction (cf. the definition of Lst

in (2.14)), the aforementioned SPDE arises from a multiscale argument and represents a
leading-order approximation to track the fluctuations around the deterministically stable fast
pulse.

The following statements establish existence of solutions to (3.5) and yield a multiscale
expansion of the solution X̃ = (ũ, ṽ)t to the original equation (1.1). Their proof is contained
in Section 4.2.

THEOREM 3.3. For√
Q ∈ L2

(
L2(R);H 1(R)

)
, Xm

0 (0, ·) = X
(0)
0 ∈ V,

ϕ̇m
0 (0) = m

(
�#,0X(0),

dX̂

dξ

)
H

, ϕm
0 (0) = 0,

we have:
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(a) The system (3.5) has a unique mild solution [82], Definition 1.1, given by

ϕm
0 (t) = (

1 − e−mt )(�#,0X(0),
dX̂

dξ

)
H

+
ˆ t

0

(
1 − e−m(t−t ′))(�0

st ′(1,0)tdW
(
t ′, ·), dX̂

dξ

(· + st ′
))

H

,

(3.6a)

Xm
0 (t, ·) = Pst,0X

(0)
0 − ϕm

0 (t)
dX̂

dξ
(· + st) +

ˆ t

0
Pst,st ′(1,0)t dW

(
t ′, ·),(3.6b)

P-almost surely, where (Pst,st ′)t≥t ′≥0 is given by Proposition 2.6.
(b) Let X be defined as in (2.12) using Proposition 2.4 and Proposition 2.5. Define the

stopping times

τq,σ := inf
({

t ∈ [0, T ] : ∥∥X(t, ·)∥∥V ≥ σ 1−q}∪ {T }),(3.7a)

τm
q,σ := inf

({
t ∈ [0, T ] : ∣∣ϕm

0 (t)
∣∣≥ σ−q}∪ {T }),(3.7b)

where q ∈ [0, 1
2). Then, on {min{τq,σ , τm

q,σ } = T } we have

(3.8) X̃(t, ·) =: X̂(· + st + σϕm
0 (t)

)+ σXm
0 (t, ·) + σSm(t, ·),

where the remainder Sm meets the estimate

(3.9)
∥∥Sm(t, ·)∥∥V ≤ Cσ 1−2q(1 + σ 1−q), P-almost surely,

with C < ∞ being independent of σ .
(c) For q ∈ [0, 1

2) it holds P[min{τq,σ , τm
q,σ } = T ] ≥ 1 − Cσ 2q → 1 as σ ↘ 0 for a con-

stant C < ∞.

Note that by scaling out σ beforehand, we have X
(0)
0 := σ−1X(0), where X(0) is the initial

condition for the unscaled equations (2.4) describing the fluctuations around the traveling
wave.

3.3. Immediate relaxation. In the limit as m → ∞ (immediate relaxation), the system
(3.5) further simplifies and we expect the solution (Xm

0 , ϕm
0 ) to (3.5) to converge to

ϕ∞
0 (t) :=

(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

+
ˆ t

0

(
�0

st ′(1,0)tdW
(
t ′, ·), dX̂

dξ

(· + st ′
))

H

,(3.10a)

X∞
0 (t, ·) := Pst,0�

#X
(0)
0 +

ˆ t

0
Pst,st ′�st ′(1,0)t dW

(
t ′, ·),(3.10b)

where (Pst,st ′)t≥t ′≥0 is given by Proposition 2.6.
The proof of the following statement is contained in Section 4.3.

THEOREM 3.4. Suppose
√

Q ∈ L2(L
2(R);H 1(R)) and X

(0)
0 ∈ V . Let ϕm be given as in

Proposition 3.2(a), Xm := Xϕm be defined as in (2.12) using Proposition 2.4 and Proposi-
tion 2.5, and ϕm

0 and Xm
0 be given by Theorem 3.3.

(a) We have �0
stX

∞
0 (t, ·) = 0 or equivalently �stX

∞
0 (t, ·) = X∞

0 (t, ·) for all t ∈ [0, T ],
P-almost surely.
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(b) For any δ > 0, we have

E

[
sup

t∈[δ,T ]
∣∣ϕm

0 (t) − ϕ∞
0 (t)

∣∣]→ 0 as m → ∞,(3.11a)

E

[
sup

t∈[δ,T ]
∥∥Xm

0 (t, ·) − X∞
0 (t, ·)∥∥V]→ 0 as m → ∞.(3.11b)

(c) Suppose q ∈ [0, 1
2), let τq,σ be defined as in (3.7a), and

(3.12) τ∞
q,σ := inf

({
t ∈ [0, T ] : ∣∣ϕ∞

0 (t)
∣∣≥ σ−q}∪ {T }).

On {min{τq,σ , τ∞
q,σ } = T } the stochastic traveling wave has the multiscale decomposition

(3.13) X̃(t, ·) =: X̂(· + st + σϕ∞
0 (t)

)+ σX∞
0 (t, ·) + σS∞(t, ·),

with

(3.14)
∥∥S∞(t, ·)∥∥V ≤ Cσ 1−2q(1 + σ 1−q), P-almost surely,

where C < ∞ is independent of σ .
(d) For q ∈ [0, 1

2) it holds P[min{τq,σ , τ∞
q,σ } = T ] ≥ 1 − Cσ 2q → 1 as σ ↘ 0 for some

C < ∞.
(e) On {min{τq,σ , τ∞

q,σ } = T }, where q ∈ [0, 1
2), the function

R � ϕ �→ ∥∥�0
st

(
X̃(t, ·) − X̂(· + st + σϕ)

)∥∥2
H ∈ R

is for 0 ≤ t ≤ T fixed, P-almost surely, locally approximately minimal at ϕ = ϕ∞
0 (t) in the

sense that

(3.15a) ∂ϕ

∥∥�0
st

(
X̃(t, ·) − X̂(· + st + σϕ)

)∥∥2
H

∣∣
ϕ=ϕ∞

0 (t) = O
(
σ 3−2q)= o

(
σ 2),

and

(3.15b) ∂2
ϕ

∥∥�0
st

(
X̃(t, ·) − X̂(· + st + σϕ)

)∥∥2
H

∣∣
ϕ=ϕ∞

0 (t) = σ 2
(

2
∥∥∥∥dX̂

dξ

∥∥∥∥2

H

+O
(
σ 1−2q))> 0

as σ ↘ 0, P-almost surely.

Note that Theorem 3.4(a) is a generalization of the orthogonality property in [55], Sec-
tion 3.3. Theorem 3.4(c) and Theorem 3.4(d) yield a multiscale expansion in the immediate-
relaxation limit. Finally, Theorem 3.4(e) relates to our original motivation in (1.4) to obtain
the correction of the translation of the wave through a minimization argument. The following
result is proved in in Section 4.3.

PROPOSITION 3.5. Suppose that
√

Q ∈ L2(L
2(R);L2(R)) and X

(0)
0 ∈ H . Then the sec-

ond moment of X∞
0 satisfies the bound

(3.16) E
[∥∥X∞

0 (t, ·)∥∥2
H

]≤ 2C2
ϑe−2ϑt

∥∥X(0)
0

∥∥2
H + C2

ϑ

1 − e−2ϑt

ϑ

∥∥�#∥∥2
L(H)εZ‖√Q‖2

L2(L
2(R))

with ϑ < min{κ,−λ∗(ε)}, where κ and the Jones eigenvalue λ∗(ε) have been introduced in
Proposition 2.8, and the constant Cϑ ∈ [0,∞) only depends on ϑ (and the parameters γ , ε,
f , and ν of the deterministic FitzHugh–Nagumo system (1.1) with σ = 0) but is independent
of t , T , and σ .
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The inequality (3.16) is crucial for theoretical and application purposes as it bounds the
expected size of fluctuations/deviations from the deterministic pulse. It shows that the second
moment of the remaining deviations from the pulse, after correcting the wave velocity, are
bounded by a sum of two contributions. The first term is simply due to the initial data X

(0)
0

and is exponentially decaying as in (2.24) of Proposition 2.8(d). The second term is due to
noise around the traveling wave, where once more the decay constant of (2.24) enters. From
a theoretical viewpoint the multiscale estimate for the second moment can then be useful in
Doob/Markov-type inequalities to control the probabilities of individual sample paths [1, 6,
37].

Note that the noise contribution is of lower order compared to the second moment of fluctu-
ations around the corresponding deterministic traveling wave (i.e., without stochastic velocity
adaptation) because we have shifted appropriately to minimize the deviations in direction of
the derivative of the traveling wave (which corresponds to the eigenvector with eigenvalue
0 of the frozen-wave operator). This is made more precise in the following proposition, in
which we compute the second moment of the fluctuations in direction of the derivative of the
traveling wave on the event {min{τq,σ , τ∞

q,σ } = T } where the multiscale decomposition holds
true. The proof can be found in Section 4.3.

PROPOSITION 3.6. There exists a sequence (QN)N∈N with
√

QN ∈ L2(L
2(R);H 1(R))

such that for the deviations without adapting the wave velocity X := X0 of (2.12) (i.e., with
ϕ = 0) with respect to QN in the definition of the noise (2.8c), the second moment of devia-
tions in direction of the traveling wave satisfies

E

[(
�0

stX(t, ·), dX̂

dξ
(· + st)

)2

H

1{min{τq,σ ,τ∞
q,σ }=T }

]

= σ 2
(
�#,0X

(0)
0 ,

dX̂

dξ

)2

H

+ σ 2εZ

(
t

∥∥∥∥(1,0)t
(
�#,0)∗ dX̂

dξ

∥∥∥∥2

H

+ o
(
N0))+ o

(
σ 2),

where ‖(1,0)t(�#,0)∗ dX̂
dξ

‖2
H > 0, o(N0) can depend on t but not on σ , and o(σ 2) can depend

on t and N . In particular, asymptotically the in σ leading contribution of this moment grows
linearly in time.

4. Proofs of main results.

4.1. Correction of the wave velocity. In this section, we prove Propositions 3.2.

PROOF OF PROPOSITION 3.2(a). We use the pathwise definition

F : [0, T ] ×R �→R, (t, ϕ) �→ m

(
�0

st+ϕ

(
X̃(t, ·) − X̂(· + st + ϕ)

)
,

dX̂

dξ
(· + st + ϕ)

)
H

and note that by employing translation invariance of integrals, we have

F(t, ϕ)
(3.1)= m

(
�#,0(X̃(t, · − st − ϕ) − X̂

)
,

dX̂

dξ

)
H

for (t, ϕ) ∈ [0, T ] ×R.

Then, we can compute for (t1, ϕ1), (t2, ϕ2) ∈ [0, T ] ×R,

∣∣F(t1, ϕ1) − F(t2, ϕ2)
∣∣≤ m

∥∥�#,0∥∥
L(H)

∥∥X̃(t1, · − st1 − ϕ1) − X̃(t2, · − st2 − ϕ2)
∥∥
H

∥∥∥∥dX̂

dξ

∥∥∥∥
H
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and on noting that ∥∥X̃(t1, · − st1 − ϕ1) − X̃(t2, · − st2 − ϕ2)
∥∥
H

≤ ∥∥X̃(t1, · − st1 − ϕ1) − X̃(t2, · − st1 − ϕ1)
∥∥
H

+ ∥∥X̃(t2, · − st1 − ϕ1) − X̃(t2, · − st2 − ϕ2)
∥∥
H ,

with ∥∥X̃(t1, · − st1 − ϕ1) − X̃(t2, · − st1 − ϕ1)
∥∥
H

(2.11)≤ ∥∥X(t1, · − st1 − ϕ1) − X(t2, · − st1 − ϕ1)
∥∥
H

+ ∥∥X̂(· − ϕ1) − X̂
(· + s(t2 − t1) − ϕ1

)∥∥
H

= ∥∥X(t1, ·) − X(t2, ·)
∥∥
H +

∥∥∥∥
ˆ ϕ1

s(t1−t2)+ϕ1

dX̂

dξ
(· − ξ)dξ

∥∥∥∥
H

≤ ∥∥X(t1, ·) − X(t2, ·)
∥∥
H + |s||t1 − t2|

∥∥∥∥dX̂

dξ

∥∥∥∥
H

and ∥∥X̃(t2, · − st1 − ϕ1) − X̃(t2, · − st2 − ϕ2)
∥∥
H

=
∥∥∥∥
ˆ st2+ϕ2

st1+ϕ1

∂ξ X̃(t2, · − ξ)dξ

∥∥∥∥
H

≤
∣∣∣∣
ˆ st2+ϕ2

st1+ϕ1

∥∥∂ξ X̃(t2, · − ξ)
∥∥
H dξ

∣∣∣∣
≤ (|s||t1 − t2| + |ϕ1 − ϕ2|) sup

t∈[0,T ]
∥∥∂ξ X̃(t, ·)∥∥H

(2.11)≤ (|s||t1 − t2| + |ϕ1 − ϕ2|)( sup
t∈[0,T ]

∥∥∂ξX(t, ·)∥∥H +
∥∥∥∥dX̂

dξ

∥∥∥∥
H

)
,

and applying Proposition 2.5, we obtain supt∈[0,T ]‖∂ξX(t, ·)‖H < ∞, P-almost surely, so that
F is, P-almost surely, continuous and globally Lipschitz continuous in the second component.
Making use of the Picard–Lindelöf theorem finishes the proof. �

PROOF OF PROPOSITION 3.2(b). We can rewrite (3.2a) according to

ϕ̇m(t)
(3.2a)= m

(
�0

st+ϕm(t)X
m(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

(3.1)= m

(
�#,0Xm(t, · − st − ϕm(t)

)
,

dX̂

dξ

)
H

, P-almost surely.

Taking the differential yields

dϕ̇m(t) = m

(
�#,0(dXm)(t, · − st − ϕm(t)

)
,

dX̂

dξ

)
H

− (
s + ϕ̇m(t)

)
m

(
�#,0∂ξX

m(t, · − st − ϕm(t)
)
,

dX̂

dξ

)
H

dt
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(3.1)= m

(
�0

st+ϕm(t)dXm(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

dt

− (
s + ϕ̇m(t)

)
m

(
�0

st+ϕm(t)∂ξX
m(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

dt

(3.2b)= m

(
�0

st+ϕm(t)Lst+ϕm(t)X
m(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

dt

+ m

(
�0

st+ϕm(t)R
m(t,Xm(t, ·), ·), dX̂

dξ

(· + st + ϕm(t)
))

H

dt

− mϕ̇m(t)

(
�0

st+ϕm(t)

dX̂

dξ

(· + st + ϕm(t)
)
,

dX̂

dξ

(· + st + ϕm(t)
))

H

dt

+ σm

(
�0

st+ϕm(t)(1,0)tdW(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

− m
(
s + ϕ̇m(t)

)(
�0

st+ϕm(t)∂xX
m(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

dt,

P-almost surely. Now, we note that(
�0

st+ϕm(t)

dX̂

dξ

(· + st + ϕm(t)
)
,

dX̂

dξ

(· + st + ϕm(t)
))

H

(3.1)=
(
�#,0 dX̂

dξ
,

dX̂

dξ

)
H

(2.20),(2.23)=
∥∥∥∥dX̂

dξ

∥∥∥∥2

H

(2.6a)= 1,

so that we obtain the simplification

dϕ̇m(t) = m

(
�0

st+ϕm(t)(Lst+ϕm(t) − s∂x)X
m(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

dt

− mϕ̇m(t)

(
1 +

(
�0

st+ϕm(t)∂xX
m(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

)
dt

+ σm

(
�0

st+ϕm(t)(1,0)tdW(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

+ m

(
�0

st+ϕm(t)R
m(t,Xm(t, ·), ·), dX̂

dξ

(· + st + ϕm(t)
))

H

dt,

P-almost surely. Next, we use (2.14), (2.17), (2.18), (2.23), and (3.1) to conclude that

�0
st+ϕm(t)(Lst+ϕm(t) − s∂x) = Tst+ϕm(t)�

#,0L# (2.23)= Tst+ϕm(t)L#�#,0

and therefore(
�0

st+ϕm(t)(Lst+ϕm(t) − s∂x)X
m(t, ·), dX̂

dξ

(· + st + ϕm(t)
))

H

=
(
L#�#,0Xm(t, · − st − ϕm(t)

)
,

dX̂

dξ

)
H

(2.6a),(2.7)=
(
L# dX̂

dξ
,

dX̂

dξ

)
H

(
�#,0Xm(t, · − st − ϕm(t)

)
,

dX̂

dξ

)
H

(2.20)= 0,

P-almost surely, so that we end up with (3.4). �
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4.2. Reduced stochastic dynamics and multiscale analysis. In this section, we prove The-
orem 3.3. We note that the existence and uniqueness of mild solutions for all nonautonomous
linear SPDEs appearing in the next proof is guaranteed by standard results, see for instance
[82] or the very general approach in [89], Theorem 1.3.

PROOF OF THEOREM 3.3(a). Since equation (3.5a) decouples from (3.5b), it forms a
linear SDE for which we have a unique mild solution given by

ϕ̇m
0 (t) = me−mt

(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

+ m

ˆ t

0
e−m(t−t ′)

(
�0

st ′(1,0)tdW
(
t ′, ·), dX̂

dξ

(· + st ′
))

H

,

P-almost surely. Another integration using ϕm
0 (0) = 0 yields

ϕm
0 (t) = (

1 − e−mt )(�#,0X
(0)
0 ,

dX̂

dξ

)
H

+ m

ˆ t

0

ˆ t ′

0
e−m(t ′−t ′′)

(
�0

st ′′(1,0)tdW
(
t ′′, ·), dX̂

dξ

(· + st ′′
))

H

dt ′,

P-almost surely. Utilizing

m

ˆ t

0

ˆ t ′

0
e−m(t ′−t ′′)

(
�0

st ′′(1,0)tdW
(
t ′′, ·), dX̂

dξ

(· + st ′′
))

H

dt ′

=
ˆ t

0

ˆ t−t ′′

0
me−mt ′′′ dt ′′′

(
�0

st ′′(1,0)tdW
(
t ′′, ·), dX̂

dξ

(· + st ′′
))

H

=
ˆ t

0

(
1 − e−m(t−t ′′))(�0

st ′′(1,0)tdW
(
t ′′, ·), dX̂

dξ

(· + st ′′
))

H

,

we end up with (3.6a).
Since ϕm

0 is already uniquely defined, we may uniquely solve (3.5b) with the mild-solution
formula

Xm
0 (t, ·) = Pst,0X

(0)
0 −

ˆ t

0
ϕ̇m

0
(
t ′
)
Pst,st ′

dX̂

dξ

(· + st ′
)

dt ′ +
ˆ t

0
Pst,st ′(1,0)t dW

(
t ′, ·),

P-almost surely. With the help of Proposition 2.8(a) and (b) it follows that

Pst,st ′
dX̂

dξ

(· + st ′
) (2.18)= TstP

#
s(t−t ′)

dX̂

dξ

(2.18),(2.20)= dX̂

dξ
(· + st),

so thatˆ t

0
ϕ̇m

0
(
t ′
)
Pst,st ′

dX̂

dξ

(· + st ′
)

dt ′ =
ˆ t

0
ϕ̇m

0
(
t ′
)

dt ′ dX̂

dξ
(· + st) = ϕm

0 (t)
dX̂

dξ
(· + st)

and we arrive at (3.6b). �

PROOF OF THEOREM 3.3(b). In what follows, we restrict ourselves to paths on
{min{τq,σ , τm

q,σ } = T }, which ensures smallness of X(t, ·) and ϕm
0 (t).

We consider the remainder

σSm(t, ·) (3.8)= X̃(t, ·) − X̂
(· + st + σϕm

0 (t)
)− σXm

0 (t, ·)
(2.11)= X(t, ·) + X̂(· + st) − X̂

(· + st + σϕm
0 (t)

)− σXm
0 (t, ·),
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so that with

dX(t, ·) (2.13),(2.15)= LstX(t, ·)dt +
(
σ

0

)
dW(t, ·),

+
(
f
(
u(t, ·) + û(· + st)

)− f
(
û(· + st)

)− f ′(û(· + st)
)
u(t, ·)

0

)
dt

dX̂(· + st)
(1.2),(2.14)= Lst X̂(· + st)dt +

(
f
(
û(· + st)

)− f ′(û(· + st)
)
û(· + st)

0

)
dt,

as well as

dX̂
(· + st + σϕm

0 (t)
)

(1.2),(2.14)= Lst X̂
(· + st + σϕm

0 (t)
)

dt

+
(
f
(
û
(· + st + σϕm

0 (t)
))− f ′(û(· + st)

)
û
(· + st + σϕm

0 (t)
)

0

)
dt

+ σ ϕ̇m
0 (t)

dX̂

dξ

(· + st + σϕm
0 (t)

)
dt

and

dXm
0 (t, ·) (3.5b)= LstX

m
0 (t, ·)dt − ϕ̇m

0 (t)
dX̂

dξ
(· + st)dt +

(
1
0

)
dW(t, ·),

we get with

(4.1) ũm
0 (t, ·) := u(t, ·) + û(· + st) − û

(· + st + σϕm
0 (t)

)
that

dSm(t, ·) −LstS
m(t, ·)dt = Sm

1 (t, ·) + Sm
2 (t, ·) + Sm

3 (t, ·),
where

Sm
1 (t, ·) := σ−1

(
f
(
û
(· + st + σϕm

0 (t)
)+ ũm

0 (t, ·))− f
(
û
(· + st + σϕm

0 (t)
))

0

)

− σ−1
(
f ′(û(· + st + σϕm

0 (t)
))

ũm
0 (t, ·)

0

)
,

(4.2a)

Sm
2 (t, ·) := σ−1(f ′(û(· + st + σϕm

0 (t)
))− f ′(û(· + st)

))(ũm
0 (t, ·)

0

)
,(4.2b)

Sm
3 (t, ·) := ϕ̇m

0 (t)

(
dX̂

dξ
(· + st) − dX̂

dξ

(· + st + σϕm
0 (t)

))
.(4.2c)

Since (Lst )t≥0 generates an evolution family (Pst,st ′)t≥t ′≥0 (cf. Proposition 2.6), we find the
mild-solution representation

(4.3) Sm(t, ·) =
ˆ t

0
Pst,st ′

(
Sm

1
(
t ′, ·)+ Sm

2
(
t ′, ·)+ Sm

3
(
t ′, ·))dt ′, P-almost surely.

Note that (4.3) can be rigorously justified by following the arguments detailed at the begin-
ning of the proof of Proposition 2.5. We continue by treating the terms

´ t

0 Pst,st ′Sm
j (t ′, ·)dt ′

for j ∈ {1,2,3} separately.
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First observe that we have the pointwise estimate

∣∣Sm
1 (t, x)

∣∣ (2.1h),(4.2a)≤ σ−1η2
(
1 + ∣∣û(x + st + σϕm

0 (t)
)∣∣+ ∣∣ũm

0 (t, x)
∣∣)∣∣ũm

0 (t, x)
∣∣2

≤ σ−1η2
(
1 + ‖û‖L∞(R) + ∥∥ũm

0 (t, ·)∥∥H 1(R)

)∥∥ũm
0 (t, ·)∥∥H 1(R)

∣∣ũm
0 (t, x)

∣∣,
where the Sobolev embedding in form of ‖ũm

0 (t, ·)‖L∞(R) ≤ ‖ũm
0 (t, ·)‖H 1(R) has been ap-

plied. This already yields

(4.4)

∥∥Sm
1 (t, ·)∥∥H

(2.6a)≤ σ−1
√

εZη2
(
1 + ‖û‖L∞(R) + ∥∥ũm

0 (t, ·)∥∥H 1(R)

)∥∥ũm
0 (t, ·)∥∥H 1(R)

∥∥ũm
0 (t, ·)∥∥L2(R).

On the other hand, a direct computation gives (suppressing the arguments in Sm
1 = Sm

1 (t, x),
um

0 = um
0 (t, x), û = û(x + st + σϕm

0 (t)), and ũm
0 = ũm

0 (t, x))

σ∂xS
m
1

(4.2a)=
(
f ′(û + ũm

0
)(

∂xũ
m
0 + dû

dξ

)
− f ′(û)

dû

dξ
− f ′′(û)

dû

dξ
ũm

0 − f ′(û)∂xũ
m
0

)
(1,0)t

=
((

f ′(û + ũm
0
)− f ′(û) − f ′′(û)ũm

0
)dû

dξ
+ (

f ′(û + ũm
0
)− f ′(û)

)
∂xũ

m
0

)
(1,0)t.

Now, we note that∣∣∣∣(f ′(û + ũm
0
)− f ′(û) − f ′′(û)ũm

0
)dû

dξ

∣∣∣∣ (2.1k)≤ η5
(
ũm

0 (t, x)
)2∣∣∣∣dû

dξ

(
x + st + σϕm

0 (t)
)∣∣∣∣

≤ η5
∥∥ũm

0 (t, ·)∥∥H 1(R)

∥∥∥∥dû

dξ

∥∥∥∥
L∞(R)

∣∣ũm
0 (t, x)

∣∣,
∣∣(f ′(û + ũm

0
)− f ′(û)

)
∂xũ

m
0

∣∣ (2.1l)≤ η6
∣∣ũm

0 (t, x)
∣∣∣∣∂xũ

m
0 (t, x)

∣∣(
1 + 2

∣∣û(x + st + σϕm
0 (t)

)∣∣+ ∣∣ũm
0 (t, x)

∣∣)
≤ η6

∥∥ũm
0 (t, ·)∥∥H 1(R)

∣∣∂xũ
m
0 (t, x)

∣∣(
1 + 2‖û‖L∞(R) + ∥∥ũm

0 (t, ·)∥∥H 1(R)

)
,

where ‖ũm
0 (t, ·)‖L∞(R) ≤ ‖ũm

0 (t, ·)‖H 1(R) has been utilized once again. Hence,∥∥∂xS
m
1 (t, ·)∥∥H

(2.6a)≤ σ−1
√

εZη5
∥∥ũm

0 (t, ·)∥∥H 1(R)

∥∥∥∥dû

dξ

∥∥∥∥
L∞(R)

∥∥ũm
0 (t, ·)∥∥L2(R)

+ σ−1
√

εZη6
∥∥ũm

0 (t, ·)∥∥H 1(R)

∥∥∂xũ
m
0 (t, ·)∥∥L2(R)

(
1 + 2‖û‖L∞(R) + ∥∥ũm

0 (t, ·)∥∥H 1(R)

)
.

The combination with (4.4) yields

(4.5)
∥∥Sm

1 (t, ·)∥∥V (2.10b)≤ σ−1C1
∥∥ũm

0 (t, ·)∥∥2
H 1(R)

(
1 + ∥∥ũm

0 (t, ·)∥∥H 1(R)

)
,

where C1 < ∞ is independent of σ .
Next, we estimate Sm

2 . Notice that on one hand we have

∣∣f ′(û(x + st + σϕm
0 (t)

))− f ′(û(x + st)
)∣∣ (2.1l)≤ η6

∣∣û(x + st + σϕm
0 (t)

)− û(x + st)
∣∣

× (
1 + ∣∣û(x + st + σϕm

0 (t)
)∣∣+ ∣∣û(x + st)

∣∣)
≤ η6

∥∥∥∥dû

dξ

∥∥∥∥
L∞(R)

(
1 + 2‖û‖L∞(R)

)
σ
∣∣ϕm

0 (t)
∣∣,
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so that

(4.6)
∥∥Sm

2 (t, ·)∥∥H

(2.6a),(4.2b)≤ √
εZη6

∥∥∥∥dû

dξ

∥∥∥∥
L∞(R)

(
1 + 2‖û‖L∞(R)

)∣∣ϕm
0 (t)

∣∣∥∥ũm
0 (t, ·)∥∥L2(R).

On the other hand, for the derivative we get

∂x

[(
f ′(û(x + st + σϕm

0 (t)
))− f ′(û(x + st)

))
ũm

0 (t, x)
]

=
[
f ′′(û(x + st + σϕm

0 (t)
))dû

dξ

(
x + st + σϕm

0 (t)
)− f ′′(û(x + st)

)dû

dξ
(x + st)

]
ũm

0 (t, x)

+ [
f ′(û(x + st + σϕm

0 (t)
))− f ′(û(x + st)

)]
∂xũ

m
0 (t, x)

= [
f ′′(û(x + st + σϕm

0 (t)
))− f ′′(û(x + st)

)]dû

dξ

(
x + st + σϕm

0 (t)
)
ũm

0 (t, x)

+ f ′′(û(x + st)
)[dû

dξ

(
x + st + σϕm

0 (t)
)− dû

dξ
(x + st)

]
ũm

0 (t, x)

+ [
f ′(û(x + st + σϕm

0 (t)
))− f ′(û(x + st)

)]
∂xũ

m
0 (t, x),

so that∣∣∂x

[(
f ′(û(x + st + σϕm

0 (t)
))− f ′(û(x + st)

))
ũm

0 (t, x)
]∣∣

(2.1l),(2.1m)≤ η7
∣∣û(x + st + σϕm

0 (t)
)− û(x + st)

∣∣∣∣∣∣dû

dξ

(
x + st + σϕm

0 (t)
)∣∣∣∣∣∣ũm

0 (t, x)
∣∣

+ ∣∣f ′′(û(x + st)
)∣∣∣∣∣∣dû

dξ

(
x + st + σϕm

0 (t)
)− dû

dξ
(x + st)

∣∣∣∣∣∣ũm
0 (t, x)

∣∣
+ η6

∣∣û(x + st + σϕm
0 (t)

)− û(x + st)
∣∣(1 + ∣∣û(x + st + σϕm

0 (t)
)∣∣+ ∣∣û(x + st)

∣∣)
× ∣∣∂xũ

m
0 (t, x)

∣∣
≤ η7

∥∥∥∥dû

dξ

∥∥∥∥2

L∞(R)

σ
∣∣ϕm

0 (t)
∣∣∣∣ũm

0 (t, x)
∣∣+ ∥∥f ′′(û)

∥∥
L∞(R)

∥∥∥∥d2û

dξ2

∥∥∥∥
L∞(R)

σ
∣∣ϕm

0 (t)
∣∣∣∣ũm

0 (t, x)
∣∣

+ η6

∥∥∥∥dû

dξ

∥∥∥∥
L∞(R)

(
1 + 2‖û‖L∞(R)

)
σ
∣∣ϕm

0 (t)
∣∣∣∣∂xũ

m
0 (t, x)

∣∣.
This gives ∥∥∂x

[(
f ′(û(· + st + σϕm

0 (t)
))− f ′(û(· + st)

))
ũm

0 (t, ·)]∥∥H

(2.6a)≤ √
εZη7

∥∥∥∥dû

dξ

∥∥∥∥2

L∞(R)

σ
∣∣ϕm

0 (t)
∣∣∥∥ũm

0 (t, ·)∥∥L2(R)

+ √
εZ
∥∥f ′′(û)

∥∥
L∞(R)

∥∥∥∥d2û

dξ2

∥∥∥∥
L∞(R)

σ
∣∣ϕm

0 (t)
∣∣∥∥ũm

0 (t, ·)∥∥L2(R)

+ √
εZη6

∥∥∥∥dû

dξ

∥∥∥∥
L∞(R)

(
1 + 2‖û‖L∞(R)

)
σ
∣∣ϕm

0 (t)
∣∣∥∥∂xũ

m
0 (t, ·)∥∥L2(R)

and the combination with (4.6) yields

(4.7)
∥∥Sm

2 (t, ·)∥∥V (2.10b)≤ C2
∣∣ϕm

0 (t)
∣∣∥∥ũm

0 (t, ·)∥∥H 1(R),

where C2 < ∞ is independent of σ .
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For estimating ‖´ t

0 Pst,st ′Sm
3 (t ′, ·)dt ′‖V , observe that

(∂t − s∂x)

(
X̂
(
x + st + σϕm

0 (t)
)− X̂(x + st) − dX̂

dξ
(x + st)σϕm

0 (t)

)

= σ ϕ̇m
0 (t)

(
dX̂

dξ

(
x + st + σϕm

0 (t)
)− dX̂

dξ
(x + st)

)
(4.2c)= −σSm

3 (t, ·).

Using integration by parts, this gives

σ

ˆ t

0
Pst,st ′S

m
3
(
t ′, ·)dt ′

= −
ˆ t

0
Pst,st ′(∂t ′ − s∂x)

×
(
X̂
(· + st ′ + σϕm

0
(
t ′
))− X̂

(· + st ′
)− dX̂

dξ

(· + st ′
)
σϕm

0
(
t ′
))

dt ′

= −X̂
(· + st + σϕm

0 (t)
)+ X̂(· + st) + dX̂

dξ
(· + st)σϕm

0 (t)

+
ˆ t

0

(
(∂t ′Pst,st ′) + Pst,st ′s∂x

)

×
(
X̂
(· + st ′ + σϕm

0
(
t ′
))− X̂

(· + st ′
)− dX̂

dξ

(· + st ′
)
σϕm

0
(
t ′
))

dt ′

= −X̂
(· + st + σϕm

0 (t)
)+ X̂(· + st) + dX̂

dξ
(· + st)σϕm

0 (t)

−
ˆ t

0
Pst,st ′(Lst ′ − s∂x)

×
(
X̂
(· + st ′ + σϕm

0
(
t ′
))− X̂

(· + st ′
)− dX̂

dξ

(· + st ′
)
σϕm

0
(
t ′
))

dt ′,

P-almost surely, and therefore by boundedness of

(Lst − s∂x)|H 3(R)√εkH 2(R) : U := H 3(R)√εkH 2(R) → V

(cf. (2.14)) and employing Proposition 2.6, we have

σ

∥∥∥∥
ˆ t

0
Pst,st ′S

m
3
(
t ′, ·)dt ′

∥∥∥∥
V

(2.16a)≤
∥∥∥∥X̂(· + st + σϕm

0 (t)
)− X̂(· + st) − dX̂

dξ
(· + st)σϕm

0 (t)

∥∥∥∥
V

+ C

ˆ t

0
eβ(t−t ′)

∥∥∥∥X̂(· + st ′ + σϕm
0
(
t ′
))− X̂

(· + st ′
)− dX̂

dξ

(· + st ′
)
σϕm

0
(
t ′
)∥∥∥∥

U
dt ′,

P-almost surely, where C < ∞ and β
(2.16b)= ‖f ′(û) − f ′(0)‖W 1,∞(R) − min{ν,−f ′(0), εγ }.

Now, we note that∥∥∥∥∂j
x

(
û
(·+st +σϕm

0 (t)
)− û(·+st)− dû

dξ
(·+st)σϕm

0 (t)

)∥∥∥∥
L2(R)

≤ 1

2

∥∥∥∥dj+2û

dξj+2

∥∥∥∥
L2(R)

(
σϕm

0 (t)
)2
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for j ∈ {0,1,2,3} and in the same way∥∥∥∥∂j
x

(
v̂
(·+ st +σϕm

0 (t)
)− v̂(·+ st)− dv̂

dξ
(·+ st)σϕm

0 (t)

)∥∥∥∥
L2(R)

≤ 1

2

∥∥∥∥dj+2v̂

dξj+2

∥∥∥∥
L2(R)

(
σϕm

0 (t)
)2

for j ∈ {0,1,2}. As a result, we obtain

(4.8)

∥∥∥∥
ˆ t

0
Pst,st ′S

m
3
(
t ′, ·)dt ′

∥∥∥∥
V

≤ σ−1C3

((
σϕm

0 (t)
)2 +

ˆ t

0
eβ(t−t ′)(σϕm

0
(
t ′
))2 dt ′

)

≤ σ−1C3
eβt + β − 1

β
max

t ′∈[0,t]
(
σϕm

0
(
t ′
))2

,

P-almost surely, where C3 < ∞ is independent of σ .
We collect (4.5), (4.7), and (4.8), and obtain because of (2.16) of Proposition 2.6 and (4.3),

(4.9)

∥∥Sm(t, ·)∥∥V
≤ σ−1C1

ˆ t

0
eβ(t−t ′)(∥∥ũm

0
(
t ′, ·)∥∥2

H 1(R) + ∥∥ũm
0
(
t ′, ·)∥∥3

H 1(R)

)
dt ′

+ σ−1C2

ˆ t

0
eβ(t−t ′)σ

∣∣ϕm
0
(
t ′
)∣∣∥∥ũm

0
(
t ′, ·)∥∥H 1(R) dt ′

+ σ−1C3
eβt + β − 1

β
max

t ′∈[0,t]
(
σϕm

0
(
t ′
))2

≤ σ−1C4 max
t ′∈[0,t]

((∥∥ũm
0
(
t ′, ·)∥∥H 1(R) + σ

∣∣ϕm
0
(
t ′
)∣∣)2 + ∥∥ũm

0
(
t ′, ·)∥∥3

H 1(R)

)
,

P-almost surely, where C4 < ∞ is independent of σ . Now, because of (4.1) we have∥∥ũm
0 (t, ·)∥∥H 1(R) ≤ ∥∥u(t, ·)∥∥H 1(R) + ∥∥û(· + st) − û

(· + st + σϕm
0 (t)

)∥∥
H 1(R)

≤ ∥∥u(t, ·)∥∥H 1(R) +
∥∥∥∥dû

dξ

∥∥∥∥
L∞(R)

σ
∣∣ϕm

0 (t)
∣∣,

which in combination with (3.7) and (4.9) gives (3.9). �

PROOF OF THEOREM 3.3(c). We fix an element ω ∈ . If for σ ∈ (0,1] we have t :=
τq,σ (ω) < T , then

σ 1−q (3.7a)= ∥∥X(t, ·)∥∥V (2.11)= ∥∥X̃(t, ·) − X̂(· + st)
∥∥
V

(3.8)≤ σ
∥∥Sm(t, ·)∥∥V + ∥∥X̂(· + st + σϕm

0 (t)
)− X̂(· + st) + σXm

0 (t, ·)∥∥V
(3.9)≤ Cσ 2−2q + ∥∥X̂(· + st + σϕm

0 (t)
)− X̂(· + st) + σXm

0 (t, ·)∥∥V ,

where C < ∞ is independent of σ ∈ (0,1]. This gives with help of Markov’s inequality

P[τq,σ < T ]
≤ P

[
max

t∈[0,T ]
∥∥X(t, ·)∥∥V ≥ σ 1−q

]
≤ P

[
max

t∈[0,T ]
∥∥X̂(· + st + σϕm

0 (t)
)− X̂(· + st) + σXm

0 (t0, ·)
∥∥
V ≥ σ 1−q(1 − Cσ 1−q)]

≤ 2σ 2q−2

(1 − Cσ 1−q)2E
[

max
t∈[0,T ]

∥∥X̂(· + st + σϕm
0 (t)

)− X̂(· + st)
∥∥2
V

]
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+ 2σ 2q

(1 − Cσ 1−q)2E
[

max
t∈[0,T ]

∥∥Xm
0 (t, ·)∥∥2

V

]

≤ C̃σ 2q

(1 − Cσ 1−q)2

(
E

[
max

t∈[0,T ]
∣∣ϕm

0 (t)
∣∣2]+E

[
max

t∈[0,T ]
∥∥Xm

0 (t, ·)∥∥2
V

])
,

where C̃ < ∞ is independent of σ ∈ (0,1] ∩ (0,C
− 1

1−q ). Hence, in order to conclude that
P[τq,σ < T ] ≤ Cσ 2q → 0 as σ ↘ 0 for some C < ∞, it suffices to prove that

E

[
max

t∈[0,T ]
∣∣ϕm

0 (t)
∣∣2]< ∞ and E

[
max

t∈[0,T ]
∥∥Xm

0 (t, ·)∥∥2
V

]
< ∞.

This follows from the representations (3.6) and the Burkholder–Davis–Gundy inequality [53],
Theorem 3.28, or [23], Lemma 7.7, to estimate the martingale. Indeed, we have

E

[
max

t∈[0,T ]
∣∣ϕm

0 (t)
∣∣2]

≤ 2
∣∣∣∣
(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

∣∣∣∣2

+ 2E max
t∈[0,T ]

∣∣∣∣
ˆ t

0

(
1 − e−m(t−t ′))(�0

st ′(1,0)tdW
(
t ′, ·), dX̂

dξ

(· + st ′
))

H

∣∣∣∣2
(3.1)≤ 2

∥∥�#,0∥∥2
L(H)

∥∥X(0)
0

∥∥2
H

∥∥∥∥dX̂

dξ

∥∥∥∥2

H

+ 2C1T εZ
∥∥�#,0∥∥2

L(H)

∥∥∥∥dX̂

dξ

∥∥∥∥2

H

‖√Q‖2
L2(L

2(R))
< ∞,

as well as

E

[
max

t∈[0,T ]
∥∥Xm

0 (t, ·)∥∥2
V

]

≤ 3 max
t∈[0,T ]

∥∥Pst,0X
(0)
0

∥∥2
V + 3

∥∥∥∥dX̂

dξ

∥∥∥∥2

V
E max

t∈[0,T ]
∣∣ϕm

0 (t)
∣∣2

+ 3E max
t∈[0,T ]

∥∥∥∥
ˆ t

0
Pst,st ′(1,0)tdW

(
t ′, ·)∥∥∥∥2

V

(2.16)≤ 3e2βT
∥∥X(0)

0

∥∥2
V + 3

∥∥∥∥dX̂

dξ

∥∥∥∥2

V
E max

t∈[0,T ]
∣∣ϕm

0 (t)
∣∣2 + 3C2

e2βT − 1

2β
εZ‖√Q‖2

L2(L
2(R))

< ∞,

where C1,C2 < ∞ are independent of σ and Proposition 2.6 has been employed.
In the same way, we obtain

P
[
τm
q,σ < T

] (3.7b)≤ P

[
max

t∈[0,T ]
∣∣ϕm

0 (t)
∣∣≥ σ−q

]
≤ σ 2q

E

[
max

t∈[0,T ]
∣∣ϕm

0 (t)
∣∣2]→ 0 as σ ↘ 0. �

4.3. Immediate relaxation. Here, we give the proofs of Theorem 3.4 and Proposition 3.5.

PROOF OF THEOREM 3.4(a). Utilizing Proposition 2.8(b) and (d) yields

�0
stX

∞
0 (t, ·) (3.10b)= �0

stPst,0�
#X

(0)
0 +

ˆ t

0
�0

stPst,st ′�st ′(1,0)t dW
(
t ′, ·)

(3.1)= Tst�
#,0P #

st�
#X

(0)
0 +

ˆ t

0
Tst�

#,0P #
s(t−t ′)�

#T−st ′(1,0)t dW
(
t ′, ·)

(2.23)= TstP
#
st �

#,0�#︸ ︷︷ ︸
(2.23)= 0

X
(0)
0 +

ˆ t

0
TstP

#
s(t−t ′) �

#,0�#︸ ︷︷ ︸
(2.23)= 0

T−st ′(1,0)t dW
(
t ′, ·)= 0,

P-almost surely, so that because of (2.23) and (3.1) the claim follows. �
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PROOF OF THEOREM 3.4(b). Using Theorem 3.3(a), we obtain for the difference of ϕm
0

and ϕ∞
0 the following form:

(
ϕ∞

0 − ϕm
0
)
(t)

(3.6a),(3.10a)= e−mt

(
�#,0X

(0)
0 ,

dX̂

dξ

)
H(4.10)

+
ˆ t

0
e−m(t−t ′)

(
�0

st ′(1,0)tdW
(
t ′, ·), dX̂

dξ

(· + st ′
))

H

,

P-almost surely. On the other hand, we obtain with (2.23), (3.1), (3.6b), and (3.10b)

(
X∞

0 − Xm
0
)
(t, ·) = −Pst,0�

#,0X
(0)
0 −

ˆ t

0
Pst,st ′�

0
st ′(1,0)t dW

(
t ′, ·)+ ϕm

0 (t)
dX̂

dξ
(· + st)

and with help of Proposition 2.8(b), (cii), and (d) we conclude that

Pst,0�
#,0X

(0)
0

(2.20),(2.23)=
(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

TstP
#
st

dX̂

dξ

(2.18),(2.20)=
(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

dX̂

dξ
(· + st),

Pst,st ′�
0
st ′(1,0)t dW

(
t ′, ·) (2.20),(2.23),(3.1)=

(
�0

st ′(1,0)tdW
(
t ′, · − st ′

)
,

dX̂

dξ

)
H

TstP
#
s(t−t ′)

dX̂

dξ

(2.18),(2.20)=
(
�0

st ′(1,0)tdW
(
t ′, ·), dX̂

dξ

(· + st ′
))

H

dX̂

dξ
(· + st),

and thus

(4.11)

(
X∞

0 − Xm
0
)
(t, ·)

=
(
−
(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

−
ˆ t

0

(
�0

st ′(1,0)tdW
(
t ′, ·), dX̂

dξ

(· + st ′
))

H

+ ϕm
0 (t)

)
dX̂

dξ
(· + st)

(3.10a)= −(ϕ∞
0 (t) − ϕm

0 (t)
)dX̂

dξ
(· + st), P-almost surely.

Hence, once (3.11a) is established, (3.11b) is immediate from (4.11).
In order to prove (3.11a), notice that obviously

lim
m→∞ sup

t∈[δ,T ]
e−mt

∣∣∣∣
(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

∣∣∣∣= 0

for any δ > 0. For the remaining term we apply the simplification
ˆ t

0
e−m(t−t ′)

(
�0

st ′(1,0)tdW
(
t ′, ·), dX̂

dξ

(· + st ′
))

H

(2.18),(3.1)=
ˆ t

0
e−m(t−t ′)

(
�#,0T−st ′(1,0)tdW

(
t ′, ·), dX̂

dξ

)
H

(2.18)=
(
�#,0(1,0)tW(t, · − st),

dX̂

dξ

)
H
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− m

ˆ t

0
e−m(t−t ′)

(
�#,0(1,0)tW

(
t ′, · − st ′

)
,

dX̂

dξ

)
H

dt ′

+ s

ˆ t

0
e−m(t−t ′)

(
�#,0(1,0)t(∂xW)

(
t ′, · − st ′

)
,

dX̂

dξ

)
H

dt ′
(4.12)

= e−mt

(
�#,0(1,0)tW(t, · − st),

dX̂

dξ

)
H

+ m

ˆ t

0
e−m(t−t ′)

(
�#,0(1,0)t

(
W(t, · − st) − W

(
t ′, · − st ′

))
,

dX̂

dξ

)
H

dt ′

+ s

ˆ t

0
e−m(t−t ′)

(
�#,0(1,0)t(∂xW)

(
t ′, · − st ′

)
,

dX̂

dξ

)
H

dt ′, P-almost surely.

Now, note that [0, T ] � t �→ W(t, ·) ∈ H 1(R) is, P-almost surely, Hölder continuous with
exponent α < 1

2 , so that in particular

sup
t,t ′∈[0,T ]

|(�#,0(1,0)t(W(t, · − st) − W(t ′, · − st)), dX̂
dξ

)H |
|t − t ′|α

(2.6a)≤ ∥∥�#,0∥∥
L(H)

∥∥∥∥dX̂

dξ

∥∥∥∥
H

√
εZ sup

t,t ′∈[0,T ]
‖W(t, ·) − W(t ′, ·)‖L2(R)

|t − t ′|α < ∞,

P-almost surely. Furthermore,∣∣∣∣
(
�#,0(1,0)t

(
W(t, · − st) − W

(
t, · − st ′

))
,

dX̂

dξ

)
H

∣∣∣∣
=
∣∣∣∣s
ˆ t

t ′

(
�#,0(1,0)t(∂xW)

(
t, · − st ′′

)
,

dX̂

dξ

)
H

dt ′′
∣∣∣∣

(2.6a)≤ |s|∥∥�#,0∥∥
L(H)

√
εZ
∥∥(∂xW)(t, ·)∥∥L2(R)

∥∥∥∥dX̂

dξ

∥∥∥∥
H

∣∣t − t ′
∣∣,

so that we may conclude

M := sup
t,t ′∈[0,T ]

|(�#,0(1,0)t(W(t, · − st) − W(t ′, · − st ′)), dX̂
dξ

)H |
|t − t ′|α < ∞,

P-almost surely, that is,∣∣∣∣m
ˆ t

0
e−m(t−t ′)

(
�#,0(1,0)t

(
W(t, · − st) − W

(
t ′, · − st ′

))
,

dX̂

dξ

)
H

dt ′
∣∣∣∣

≤ m−αM

ˆ mT

0
e−τ τα dτ ≤ m−αM�(1 + α) → 0 as m → ∞,P-almost surely.

By continuity, furthermore

sup
t∈[δ,T ]

e−mt

∣∣∣∣
(
�0

st (1,0)tW(t, ·), dX̂

dξ
(· + st)

)
H

∣∣∣∣
(3.1)≤ e−mδ

∥∥�#,0∥∥
L(H)

√
εZ sup

t∈[δ,T ]
∥∥W(t, ·)∥∥L2(R)

∥∥∥∥dX̂

dξ

∥∥∥∥
H

→ 0 as m → ∞,P-almost surely,
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and

sup
t∈[δ,T ]

∣∣∣∣s
ˆ t

0
e−m(t−t ′)

(
�#,0(1,0)t(∂xW)

(
t ′, · − st ′

)
,

dX̂

dξ

)
H

dt ′
∣∣∣∣

≤ m−1|s|∥∥�#,0∥∥
L(H)

√
εZ sup

t∈[0,T ]
∥∥(∂xW)(t, ·)∥∥L2(R)

∥∥∥∥dX̂

dξ

∥∥∥∥
H

→ 0 as m → ∞,P-almost surely.

As a result, we infer that

(4.13) sup
t∈[δ,T ]

∣∣(ϕ∞
0 − ϕm

0
)
(t)
∣∣→ 0 as m → ∞,P-almost surely.

From (4.10) and (4.12) we further deduce that supt∈[0,T ]|(ϕ∞
0 − ϕm

0 )(t)| ≤ g, where

g := ∥∥�#,0∥∥
L(H)

∥∥X(0)
0

∥∥
H

∥∥∥∥dX̂

dξ

∥∥∥∥
H

+ ∥∥�#,0∥∥
L(H)

√
εZ sup

t∈[0,T ]
∥∥W(t, ·)∥∥L2(R)

∥∥∥∥dX̂

dξ

∥∥∥∥
H

+ |s|T ∥∥�#,0∥∥
L(H)

√
εZ sup

t∈[0,T ]
∥∥(∂xW)(t, ·)∥∥L2(R)

∥∥∥∥dX̂

dξ

∥∥∥∥
H

.

With help of the Burkholder–Davis–Gundy inequality [23], Lemma 7.7, we infer that

E sup
t∈[0,T ]

∥∥W(t, ·)∥∥H 1(R) ≤ C
√

T ‖√Q‖L2(L
2(R);H 1(R)) < ∞,

that is, E[g] < ∞. Hence, with (4.13) and dominated convergence, we conclude that (3.11a)
holds true. �

PROOF OF THEOREM 3.4(c). We introduce the auxiliary stopping time

τ∞
q,σ,c := inf

({
t ∈ [0, T ] : ∣∣ϕ∞

0 (t)
∣∣≥ σ−q − c

}∪ {T }),
where c ∈ (0, σ−q], and start by proving that we can use the multiscale decomposition (3.8)
of Theorem 3.3(b) on {min{τq,σ , τ∞

q,σ,c} = T } ∩ Ep , P-almost surely, where Ep ∈ F is an
event with P[Ep] ≥ 1 − p, and where p ∈ (0,1] is arbitrary. On {min{τq,σ , τ∞

q,σ,c} = T } we
have

ϕ∞
0 (0) + c

2
(3.10a)=

∣∣∣∣
(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

∣∣∣∣+ c

2
< σ−q.

Now, note that for any m > 0 we have

ϕm
0 (t)

(3.6a)= (
1 − e−mt )(�#,0X

(0)
0 ,

dX̂

dξ

)
H

+
ˆ t

0

(
1 − e−m(t−t ′))(�0

st ′(1,0)tdW
(
t ′, ·), dX̂

dξ

(· + st ′
))

H

(2.18),(3.1)= (
1 − e−mt )(�#,0X

(0)
0 ,

dX̂

dξ

)
H

+
ˆ t

0

(
1 − e−m(t−t ′))(�#,0T−st ′(1,0)tdW

(
t ′, ·), dX̂

dξ

)
H

(2.18)= (
1 − e−mt )(�#,0X

(0)
0 ,

dX̂

dξ

)
H
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− m

ˆ t

0
e−m(t−t ′)

(
�#,0(1,0)tW

(
t ′, · − st ′

)
,

dX̂

dξ

)
H

dt ′

+ s

ˆ t

0

(
1 − e−m(t−t ′))(�#,0(1,0)t(∂xW)

(
t ′, · − st ′

)
,

dX̂

dξ

)
H

dt ′,

P-almost surely, where we have integrated by parts in the last step. Hence, for δ > 0 it holds
supt∈[0,δ]|ϕm

0 (t)| ≤ g(δ), P-almost surely, where

g(t) :=
∣∣∣∣
(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

∣∣∣∣+ ∥∥�#,0∥∥
L(H) sup

t ′∈[0,t]
∥∥W (

t ′, ·)∥∥H

∥∥∥∥dX̂

dξ

∥∥∥∥
H

+ |s|t∥∥�#,0∥∥
L(H)

√
εZ sup

t ′∈[0,t]
∥∥(∂xW)

(
t ′, ·)∥∥L2(R)

∥∥∥∥dX̂

dξ

∥∥∥∥
H

is m-independent. It is obvious that g is, P-almost surely, nondecreasing and by the
Burkholder–Davis–Gundy inequality [23], Lemma 7.7, as in the proof of Theorem 3.4(b),
we see that

E

[
sup

t∈[0,δ]
∣∣ϕm

0 (t)
∣∣]≤ E

[
g(δ)

]→ ∣∣∣∣
(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

∣∣∣∣ as δ ↘ 0.

Since

g(δ) ≥ g(0) =
∣∣∣∣
(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

∣∣∣∣,
we conclude that

P

[
sup

t∈[0,δ]
∣∣ϕm

0 (t)
∣∣≥ ∣∣∣∣

(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

∣∣∣∣+ c

2

]
→ 0 as δ ↘ 0

and hence, for any p ∈ (0,1] there exists δ ∈ [0, T ] small enough such that

sup
t∈[0,δ]

∣∣ϕm
0 (t)

∣∣≤ ∣∣∣∣
(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

∣∣∣∣+ c

2
< σ−q

on an event E
p
1 ∈ F with P[Ep

1 ] ≥ 1 − p
2 . Using the convergence (3.11a), we infer that for

any p ∈ (0,1] we find m ∈ (0,∞) sufficiently large with

sup
t∈[δ,T ]

∣∣ϕm
0 (t)

∣∣≤ sup
t∈[δ,T ]

∣∣ϕ∞
0 (t)

∣∣+ c ≤ σ−q

on an event E
p
2 ∈ F with P[Ep

2 ] ≥ 1 − p
2 . Define Ep := E

p
1 ∩ E

p
2 , then

P
[
Ep]= 1 − P

[
 \ Ep]≥ 1 − P

[
 \ E

p
1

]− P
[
 \ E

p
2

]= −1 + P
[
E

p
1

]+ P
[
E

p
2

]≥ 1 − p.

In total, on {min{τq,σ , τ∞
q,σ,c} = T } ∩ Ep we can apply the multiscale decomposition (3.8) of

Theorem 3.3(b) in order to obtain

σ
∥∥S∞(t, ·)∥∥V

(3.13)= ∥∥X̃(t, ·) − X̂
(· + st + σϕ0(t)

)− σX∞
0 (t, ·)∥∥V

(3.8)≤ σ
∥∥Sm(t, ·)∥∥V + σ

∥∥X∞
0 (t, ·) − Xm

0 (t, ·)∥∥V
+ ∥∥X̂(· + st + σϕ∞

0 (t)
)− X̂

(· + st + σϕm
0 (t)

)∥∥
V
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(3.9)≤ Cσ 2−2q(1 + σ 1−q)+ σ
∥∥X∞

0 (t, ·) − Xm
0 (t)

∥∥
V

+
√

σ
∣∣ϕ∞

0 (t) − ϕm
0 (t)

∣∣√Z

√
2ε

∥∥∥∥dû

dξ

∥∥∥∥
W 1,∞(R)

‖û‖W 1,1(R) + 2
∥∥∥∥dv̂

dξ

∥∥∥∥
W 1,∞(R)

‖v̂‖W 1,1(R)

→ Cσ 2−2q(1 + σ 1−q) as m → ∞,P-almost surely,

that is, (3.14) holds true on {min{τq,σ , τ∞
q,σ,c} = T } ∩ Ep , where C < ∞ is independent of

σ , p, and c. Setting E := ⋃
p∈(0,1] Ep , it follows P[E] = 1 and we infer that the pointwise

estimate (3.14) holds true on {min{τq,σ , τ∞
q,σ,c} = T }, too. Since

{
min

{
τq,σ , τ∞

q,σ

}= T
}= ⋃

c∈(0,σ−q ]

{
min

{
τq,σ , τ∞

q,σ,c

}= T
}
,

we infer that (3.14) is also valid on {min{τq,σ , τ∞
q,σ } = T }. �

PROOF OF THEOREM 3.4(d). Because of Theorem 3.3(c), it suffices to prove

P[τ∞
q,σ < T ] ≤ Cσ 2q → 0 as σ ↘ 0

for some C < ∞. Indeed, by Markov’s inequality, we obtain

P
[
τ∞
q,σ < T

] (3.12)≤ P

[
max

t∈[0,T ]
∣∣ϕ∞

0 (t)
∣∣≥ σ−q

]
≤ σ 2q

E

[
max

t∈[0,T ]
∣∣ϕ∞

0 (t)
∣∣2].

Now note that E[maxt∈[0,T ]|ϕ∞
0 (t)|2] < ∞ because of the representation (3.10a), where

the martingale can be estimated using the Burkholder–Davis–Gundy inequality [53], The-
orem 3.28, or [23], Lemma 7.7. �

PROOF OF THEOREM 3.4(e). We use

∂ϕ

∥∥�0
st

(
X̃(t, ·) − X̂(· + st + σϕ)

)∥∥2
H

∣∣
ϕ=ϕ∞

0 (t)

= −2σ

(
�0

st

(
X̃(t, ·) − X̂

(· + st + σϕ∞
0 (t)

))
,

dX̂

dξ

(· + st + σϕ∞
0 (t)

))
H

(3.13)= −2σ 2
(
�0

st

(
X∞

0 (t, ·) + S∞(t, ·)), dX̂

dξ

(· + st + σϕ∞
0 (t)

))
H

= −2σ 2
(
�0

stS
∞(t, ·), dX̂

dξ

(· + st + σϕ∞
0 (t)

))
H

, P-almost surely,

where we have used Theorem 3.4(a) in the last step. Hence,

∣∣∂ϕ

∥∥�0
st+ϕ

(
X̃(t, ·) − X̂(· + st + σϕ)

)∥∥2
H

∣∣
ϕ=ϕ∞

0 (t)

∣∣ (3.1)≤ 2σ 2∥∥�#,0∥∥
L(H)

∥∥∥∥dX̂

dξ

∥∥∥∥
H

∥∥S∞(t, ·)∥∥H

(3.14)≤ Cσ 3−2q(1 + σ 1−q),
P-almost surely, where C < ∞ is independent of σ . This proves (3.15a).
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For the second derivative, we obtain

∂2
ϕ

∥∥�0
st

(
X̃(t, ·) − X̂(· + st + σϕ)

)∥∥2
H

∣∣
ϕ=ϕ∞

0 (t)

= −2σ∂ϕ

(
�0

st

(
X̃(t, ·) − X̂(· + st + σϕ)

)
,

dX̂

dξ
(· + st + σϕ)

)
H

∣∣∣∣
ϕ=ϕ∞

0 (t)

= 2σ 2
(
�0

st

dX̂

dξ

(· + st + σϕ∞
0 (t)

)
,

dX̂

dξ

(· + st + σϕ∞
0 (t)

))
H

− 2σ 2
(
�0

st

(
X̃(t, ·) − X̂

(· + st + σϕ∞
0 (t)

))
,

d2X̂

dξ2

(· + st + σϕ∞
0 (t)

))
H

(3.13)= 2σ 2
(
�0

st

dX̂

dξ

(· + st + σϕ∞
0 (t)

)
,

dX̂

dξ

(· + st + σϕ∞
0 (t)

))
H

− 2σ 2
(
�0

st

(
X∞

0 (t, ·) + S∞(t, ·)), d2X̂

dξ2

(· + st + σϕ∞
0 (t)

))
H

(3.1)= 2σ 2
(
�#,0 dX̂

dξ

(· + σϕ∞
0 (t)

)
,

dX̂

dξ

(· + σϕ∞
0 (t)

))
H

− 2σ 2
(
�0

stS
∞(t, ·), d2X̂

dξ2

(· + st + σϕ∞
0 (t)

))
H

, P-almost surely,

where Theorem 3.4(a) was used in the last step once more. Further utilizing

2σ 2
(
�#,0 dX̂

dξ

(· + σϕ∞
0 (t)

)
,

dX̂

dξ

(· + σϕ∞
0 (t)

))
H

= 2σ 2
∥∥∥∥dX̂

dξ

∥∥∥∥2

H

+ 2σ 3
ˆ ϕ∞

0 (t)

0

(
�#,0 d2X̂

dξ2 (· + σϕ),
dX̂

dξ

)
H

dϕ

+ 2σ 3
ˆ ϕ∞

0 (t)

0

(
dX̂

dξ
,

d2X̂

dξ2 (· + σϕ)

)
H

dϕ

+ 2σ 4
ˆ ϕ∞

0 (t)

0

ˆ ϕ∞
0 (t)

0

(
�#,0 d2X̂

d2ξ
(· + σϕ),

d2X̂

dξ2

(· + σϕ′))
H

dϕ dϕ′,

we can estimate∣∣∣∣
ˆ ϕ∞

0 (t)

0

(
�#,0 d2X̂

dξ2 (· + σϕ),
dX̂

dξ

)
H

dϕ

∣∣∣∣≤ σ−q
∥∥�#,0∥∥

L(H)

∥∥∥∥d2X̂

dξ2

∥∥∥∥
H

∥∥∥∥dX̂

dξ

∥∥∥∥
H

,

∣∣∣∣
ˆ ϕ∞

0 (t)

0

(
dX̂

dξ
,

d2X̂

dξ2 (· + σϕ)

)
H

dϕ

∣∣∣∣≤ σ−q

∥∥∥∥dX̂

dξ

∥∥∥∥
H

∥∥∥∥d2X̂

dξ2

∥∥∥∥
H

,

and ∣∣∣∣
ˆ ϕ∞

0 (t)

0

ˆ ϕ∞
0 (t)

0

(
�#,0 d2X̂

d2ξ
(· + σϕ),

d2X̂

dξ2

(· + σϕ′))
H

dϕ dϕ′
∣∣∣∣

≤ σ−2q
∥∥�#,0∥∥

L(H)

∥∥∥∥d2X̂

dξ2

∥∥∥∥2

H

,
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as well as∣∣∣∣
(
�0

stS
∞(t, ·), dX̂

dξ

(· + st + σϕ∞
0 (t)

))
H

∣∣∣∣ (3.1)≤ ∥∥�#,0∥∥
L(H)

∥∥∥∥d2X̂

dξ2

∥∥∥∥
H

∥∥S∞(t, ·)∥∥H

(3.14)≤ Cσ 1−2q(1 + σ 1−q),
P-almost surely, where C < ∞ is independent of σ , we conclude that (3.15b) holds true, too.

�

PROOF OF PROPOSITION 3.5. From (3.10b) we obtain with help of (2.18), Proposi-
tion 2.8(b) and (d), and (3.1)

∥∥X∞
0 (t, ·)∥∥H ≤ ∥∥P #

st�
#X

(0)
0

∥∥
H +

∥∥∥∥
ˆ t

0
P #

s(t−t ′)�
#T−st ′(1,0)tdW

(
t ′, ·)∥∥∥∥

H

(2.24)≤ Cϑe−ϑt
∥∥X(0)

0

∥∥
H +

∥∥∥∥
ˆ t

0
P #

s(t−t ′)�
#T−st ′(1,0)tdW

(
t ′, ·)∥∥∥∥

H

,

P-almost surely, where ϑ has been introduced in (2.22). Therefore, using Itô’s isometry, the
second moment can be bounded as follows

E
[∥∥X∞

0 (t, ·)∥∥2
H

]≤ 2C2
ϑe−2ϑt

∥∥X(0)
0

∥∥2
H + 2

ˆ t

0

∥∥P #
s(t−t ′)�

#T−st ′(1,0)t
√

Q
∥∥2
L2(L

2(R);H) dt ′.

For an orthonormal basis (ek)k∈N of L2(R) we can write

∥∥P #
s(t−t ′)�

#T−st ′(1,0)t
√

Q
∥∥2
L2(L

2(R);H) =
∞∑

k=1

∥∥P #
s(t−t ′)�

#T−st ′(1,0)t
√

Qek

∥∥2
H

≤ C2
ϑe−2ϑ(t−t ′)∥∥�#∥∥2

L(H)εZ

∞∑
k=1

‖√Qek‖2
L2(R)

≤ C2
ϑe−2ϑ(t−t ′)∥∥�#∥∥2

L(H)εZ‖√Q‖2
L2(L

2(R))
,

so that eventually we arrive at (3.16). �

PROOF OF PROPOSITION 3.6. Suppose Q = QN ∈ L2(L
2(R);H 1(R)) to be specified

further below. With (2.12)–(2.15), the deviations around the traveling wave without stochastic
velocity adaption (ϕ = 0) satisfy the following mild-solution formula:

X(t, ·) = σPst,0X
(0)
0 +

ˆ t

0
Pst,st ′R0

(
t ′,X

(
t ′, ·), ·)dt ′ + σ

ˆ t

0
Pst,st ′(1,0)t dW

(
t ′, ·),

which can be justified with arguments analogous to those given at the beginning of the proof
of Proposition 2.5. Thanks to Proposition 2.8(b) and (2.18), in the moving frame this corre-
sponds to

X(t, · − st) = σP #
stX

(0)
0 +

ˆ t

0
P #

s(t−t ′)R0
(
t ′,X

(
t ′, · − st ′

)
, · − st ′

)
dt ′

+ σ

ˆ t

0
P #

s(t−t ′)(1,0)t dW
(
t ′, · − st ′

)
.

We are interested in the deviations in direction of the derivative of the traveling wave which
is given by the projection �#,0 defined in (2.23). Note that by (2.20) we have �#,0P #

st =
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P #
st�

#,0 = �#,0, so that

�#,0X(t, · − st) = σ�#,0X
(0)
0 +

ˆ t

0
�#,0R0

(
t ′,X

(
t ′, · − st ′

)
, · − st ′

)
dt ′

+ σ

ˆ t

0
�#,0(1,0)t dW

(
t ′, · − st ′

)
.

Hence,(
�#,0X(t, · − st),

dX̂

dξ

)
H

= σ

(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

+
ˆ t

0

(
�#,0R0

(
t ′,X

(
t ′, · − st ′

)
, · − st ′

)
,

dX̂

dξ

)
H

dt ′︸ ︷︷ ︸
=:I1

+ σ

ˆ t

0

(
�#,0(1,0)t dW

(
t ′, · − st ′

)
,

dX̂

dξ

)
H︸ ︷︷ ︸

=:I2

.

In order to compute E[(�#,0X(t, · − st), dX̂
dξ

)2
H1{min{τq,σ ,τ∞

q,σ }=T }] we develop the square and
consider the terms separately. For the first term note that

E

[
σ 2
(
�#,0X

(0)
0 ,

dX̂

dξ

)2

H

1{min{τq,σ ,τ∞
q,σ }=T }

]

= σ 2
(
�#,0X

(0)
0 ,

dX̂

dξ

)2

H

− P
(
min

{
τq,σ , τ∞

q,σ

}
< T

)
σ 2
(
�#,0X

(0)
0 ,

dX̂

dξ

)2

H

= σ 2
(
�#,0X

(0)
0 ,

dX̂

dξ

)2

H

+ o
(
σ 2),

since by Theorem 3.4(d) we have P(min{τq,σ , τ∞
q,σ } < T ) ≤ Cσ 2q for some C < ∞ depend-

ing on t and N but independent of σ .
Now note that using (2.15), with the same argumentation as in the estimate of Sm

1 (cf.
(4.2a)) in the proof of Theorem 3.3(b) it holds that

E
[
I 2

1 1{min{τq,σ ,τ∞
q,σ }=T }

]≤ C2σ 2σ 2−4q(1 + σ 1−q)2
for a constant C < ∞ depending on t and N but independent of σ . For the third term we
write again

E
[
I 2

2 1{min{τq,σ ,τ∞
q,σ }=T }

]= E
[
I 2

2
]−E

[
I 2

2 1{min{τq,σ ,τ∞
q,σ }<T }

]
,

and we will recognize that E[I 2
2 1{min{τq,σ ,τ∞

q,σ }<T }] = o(σ 2) depending on t and N by domi-

nated convergence together with Theorem 3.4(d) and the fact that σ−2I 2
2 1{min{τq,σ ,τ∞

q,σ }<T } ≤
σ−2I 2

2 , where the latter is a random variable independent of σ whose expectation is finite by
the computations that follow.

Take an orthonormal basis (ek)k∈N of L2(R) with ek ∈ C∞
c (R) for each k ∈ N (existence

of such a basis follows by applying the Gram–Schmidt algorithm to a countable dense subset
of L2(R) in C∞

c (R)). With Itô’s isometry we obtain

E
[
I 2

2
]= σ 2

ˆ t

0

∞∑
k=1

(
�#,0T−st ′(1,0)t

√
QNek,

dX̂

dξ

)2

H

dt ′.
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Now take the sequence of Hilbert–Schmidt operators (QN)N∈N with

√
QNek =

{
ek, k ≤ N,

0, k > N,

and compute the with N increasing second moment of I2 for each N ∈ N

E
[
I 2

2
] = σ 2

ˆ t

0

N∑
k=1

(
�#,0(1,0)tek

(· − st ′
)
,

dX̂

dξ

)2

H

dt ′

(2.6a)= σ 2ε2Z2
ˆ t

0

N∑
k=1

(
ek

(· − st ′
)
,

((
�#,0)∗ dX̂

dξ

)
1

)2

L2(R)

dt ′,

where ((�#,0)∗ dX̂
dξ

)1 denotes the first component of (�#,0)∗ dX̂
dξ

. Taking the limit N → ∞, we
obtain with Parseval’s identity

E
[
I 2

2
]→ σ 2ε2Z2

ˆ t

0

∥∥∥∥
((

�#,0)∗ dX̂

dξ

)
1

∥∥∥∥2

L2(R)

dt ′ = σ 2εZt

∥∥∥∥(1,0)t
(
�#,0)∗ dX̂

dξ

∥∥∥∥2

H

.

By the previous estimates, the mixed terms E[2σ(�#,0X
(0)
0 , dX̂

dξ
)H I11{min{τq,σ ,τ∞

q,σ }=T }] and

E[2I1I21{min{τq,σ ,τ∞
q,σ }=T }] are of order o(σ 2) depending on t and N by the Cauchy–Schwarz

inequality. For the third mixed term, we write again

E

[
2σ

(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

I21{min{τq,σ ,τ∞
q,σ }=T }

]

= E

[
2σ

(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

I2

]
−E

[
2σ

(
�#,0X

(0)
0 ,

dX̂

dξ

)
H

I21{min{τq,σ ,τ∞
q,σ }<T }

]

= o
(
σ 2)

depending on t and N since the first term in the second line is equal to 0 because I2 is a
martingale (and equal to 0 for t = 0) and the second term in the second line is of order o(σ 2)

by the Cauchy–Schwarz inequality in conjunction with dominated convergence as σ ↘ 0.

In order to ensure linear growth in time, we prove that (1,0)t(�#,0)∗ dX̂
dξ

�= 0 by contradic-

tion. Assume that (1,0)t(�#,0)∗ dX̂
dξ

= 0. Then for φ ∈ L2(R) we have

0 = εZ

(((
�#,0)∗ dX̂

dξ

)
1
, φ

)
L2(R)

=
(

dX̂

dξ
,�#,0(1,0)tφ

)
H

.

Since �#,0 is a projection on the linear subspace generated by dX̂
dξ

(see (2.23)), we obtain
�#,0(1,0)tφ = 0. Hence, for any Y ∈ H it holds that

0 = (
Y,�#,0(1,0)tφ

)
H = εZ

(((
�#,0)∗Y )1, φ)L2(R).

The above equality is in particular valid for a nontrivial eigenfunction Y = (w,q)t �= 0 of
(L#)∗ with eigenvalue 0, that is, ((�#,0)∗Y)1 = 0. Note that such an eigenfunction exists be-
cause of (2.20) or Proposition 2.8(cii), respectively. Indeed, we have ind(L#) = ind((L#)∗) =
0 by Definition 2.7(c) and because for any Ỹ ∈ HC we have

0 =
(
Ỹ ,L# dX̂

dξ

)
HC

=
((
L#)∗Ỹ ,

dX̂

dξ

)
HC

,
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the range of (L#)∗ is orthogonal to dX̂
dξ

, so that the dimension of the kernel of (L#)∗ is at
least 1. Interchanging the roles of L# and (L#)∗ shows that the range of L# is orthogonal to
the kernel of (L#)∗. Since the range of L# has codimension 1 we conclude that the dimension
of the kernel of (L#)∗ is 1.

For such Y we additionally have

(
�#,0)∗Y (2.23)=

(
− 1

2πi

‰
|λ|=r

(
λ idHC

−(L#)∗)−1 dλ

)
Y

=
(

1

2πi

‰
|λ|=r

(
λ idHC

−(L#)∗)−1 dλ

)
Y = Y.

With ((�#,0)∗Y)1 = 0 this implies immediately that w = 0. In order to determine the second
component, we compute (L#)∗Y explicitly. Let Yj = (wj , qj )

t ∈ C∞
c (R;C)2 for j = 1,2,

then by (2.17) we obtain through integration by parts and regrouping terms

(
L#Y1, Y2

)
HC

= εZν

ˆ
R

(
∂2
ξ w1

)
w2 dξ + εZ

ˆ
R

f ′(û)w1w2 dξ − εZ

ˆ
R

q1w2 dξ

− εZs

ˆ
R

(∂ξw1)w2 dξ + εZ

ˆ
R

w1q2 dξ

− εZγ

ˆ
R

q1q2 dξ − Zs

ˆ
R

(∂ξq1)q2 dξ

=
(
Y1,

(
ν∂2

ξ + f ′(û) + s∂ξ 1
−ε −εγ + s∂ξ

)
Y2

)
HC

= (
Y1,

(
L#)∗Y2

)
HC

.

Now ((�#,0)∗Y)1 = 0 is equivalent to

ν∂2
ξ w + f ′(û)w + s∂ξw + εq = 0.

With w = 0 this implies q = 0, a contradiction to Y being nontrivial. �

5. Conclusions and outlook. In this work, we have shown how to derive a multiscale de-
composition near a deterministically stable traveling wave for the FitzHugh–Nagumo SPDE-
ODE system. This decomposition into a component along the translation invariant family
and into its complement exploits the small noise and small time scale separation parameters
to derive leading-order dynamics. More precisely, the stochastically adjusted wave speed is
given by an SODE to account for stochastic phase dynamics along the deterministically neu-
tral translation mode. The fluctuations in the infinitely many remaining modes are captured
by an SPDE system. Locally, near the wave, these two equations can be linearized to pro-
vide a relatively explicit solution representation which approximates well the deviations in
the corresponding modes. In particular, our approach does not require an analytic semigroup
generated by the linearization and it applies to much wider classes of SPDE systems as well
as other patterns.

Natural generalizations of our work could be to treat the case of a cylindrical Wiener
process allowing for translation-invariant (white) noise or to allow for multiplicative noise.
Furthermore, it would be a desirable goal to obtain optimal estimates on the relevant stopping
times, where the approach breaks down which has been addressed for the FitzHugh–Nagumo
system with a regularizing Laplacian in the second component in [43] and for stochastic
neural field equations in [69]. These could then be compared with high-accuracy numerical
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simulations; cf. the references in numerics in the Introduction. Of course, other classes of
traveling wave patterns and effects could also be tackled via multiscale decomposition, for
example, periodic wave trains, deterministically chaotic waves, stochastic pulse splitting ef-
fects induced by large deviations or propagation failure, just to name a few. Many of these
effects are somewhat understood for special examples of scalar SPDEs (see [60] and the ref-
erences therein) but it is clear that the dynamics can be far more complicated for SPDE sys-
tems. From a technical viewpoint, we have already pointed out that applying stochastic slow
manifold methods and related fast-slow sample path estimates would be natural directions
for future research. Furthermore, a generalization from the Hilbert-space setting to Banach
spaces appears possible as the variational approach also works if V and V ∗ are Banach spaces
(cf. Assumptions A.1), we do not require any orthogonality, and Riesz spectral projections
are available in Banach spaces, too. Notably, related techniques in the deterministic setting,
such as Lyapunov–Schmidt or center-manifold reductions work in Banach spaces as well. In
summary, it seems evident that rigorous multiscale methods for pattern formation in SPDEs
have already been very successful but still need additional development.

APPENDIX: PROOFS OF AUXILIARY RESULTS

A.1. Existence and uniqueness of solutions using the variational approach. In this
section, we prove Proposition 2.4 and Proposition 2.5. Note that the formulation (2.4) for
general operators A : [0, T ] × V ×  → V ∗ and B : [0, T ] × V ×  → L2(U ;H) can be
found in [65] and existence of variational solutions has been established under the following
conditions.

ASSUMPTIONS A.1. The Hilbert space H is separable, V is a reflexive Banach space
which is continuously and densly embedded into H , and (WU(t), t ≥ 0) is a cylindrical
Wiener process on a separable Hilbert space U with respect to a complete filtered proba-
bility space (

,F, (Ft )t∈[0,T ],P
)

with a complete and right-continuous filtration (Ft )t∈[0,T ]. Furthermore, there exist α > 1,
β ≥ 0, θ > 0, C1,C2 < ∞, a positive (Ft )t∈[0,T ]-adapted process F ∈ L

p
2 ([0, T ]×;dt ×P)

with p ≥ β +2, and g : V → [0,∞) measurable and locally bounded, such that the following
conditions (LR1)–(LR6) hold for all Y,Y1, Y2 ∈ V and (t,ω) ∈ [0, T ] × :

(LR1) Hemicontinuity: the map R � τ �→ V ∗〈A(t, Y1 + τY2), Y 〉V ∈R is continuous.
(LR2) Local monotonicity:

2V ∗
〈
A(t, Y1) −A(t, Y2), Y1 − Y2

〉
V + ∥∥B(t, Y1) −B(t, Y2)

∥∥2
L2(U ;H)

≤ (
C1 + g(Y2)

)‖Y1 − Y2‖2
H .

(LR3) Coercivity: 2V ∗〈A(t, Y ), Y 〉V + ‖B(t, Y )‖2
L2(U ;H) + θ‖Y‖α

V ≤ F(t) + C1‖Y‖2
H .

(LR4) Growth: ‖A(t, Y )‖
α

α−1
V ∗ ≤ (F (t) + C1‖Y‖α

V )(1 + ‖Y‖β
H ).

(LR5) ‖B(t, Y )‖2
L2(U ;H) ≤ C2(F (t) + ‖Y‖2

H ).

(LR6) g(Y ) ≤ C2(1 + ‖Y‖α
V )(1 + ‖Y‖β

H ).

Note that conditions (LR1) and (LR3) are the same as the classical ones from [57], while
conditions (LR2) and (LR4) are weaker. A main theorem presented in [65] reads as follows:
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THEOREM A.2 (Liu and Röckner [65]). Under Assumptions A.1, for any initial datum

X(0) = X(0) ∈ Lp(,F0,P;H),

equation (2.4) has a unique variational solution (X(t, ·))t∈[0,T ] (cf. Definition 2.3), which
additionally satisfies

E

[
sup

t∈[0,T ]
∥∥X(t, ·)∥∥p

H +
ˆ T

0

∥∥X(t, ·)∥∥α
V dt

]
< ∞.

We will use Theorem A.2 to prove Proposition 2.4 by verifying Assumptions A.1.

PROOF OF PROPOSITION 2.4. The Hilbert spaces

U = L2(R) and H
(2.5)= L2(R)√εkL2(R)

are obviously separable, V
(2.5)= H 1(R)√εkL2(R) is reflexive, and as the test functions are

dense in H and V , also V is dense in H . Next, we concentrate on verifying (LR1)–(LR6)
with the choices

α := 2,(A.1a)

β := 4,(A.1b)

θ := ν,(A.1c)

C1 := max
{

2η1,1, η1 + ν,4ν2,
64η2

4

ε2Z2

}
,(A.1d)

C2 := 1,(A.1e)

g := 0,(A.1f)

F(t) := max
{
1 + (

2
√

ε + εγ + η4
(
1 + 3‖û‖2

L∞(R)

))4
, εZσ‖√Q‖2

L2(U)

}
,(A.1g)

p ≥ 6.(A.1h)

Proof of (LR1). We have for Y = (w,q)t, Y1 = (w1, q1)
t, Y2 = (w2, q2)

t ∈ V ,

V ∗
〈
A(t, Y1 + τY2), Y

〉
V

(2.8b)= εZH−1(R)

〈
ν∂2

x (w1 + τw2),w
〉
H 1(R)

+ εZH−1(R)

〈
f
(
w1 + τw2 + û(· + st)

)− f
(
û(· + st)

)
,w
〉
H 1(R)

− εZH−1(R)〈q1 + τq2,w〉H 1(R)

+ εZL2(R)

〈
w1 + τw2 − γ (q1 + τq2), q

〉
L2(R)

= τεZ
(−ν(∂xw2, ∂xw)L2(R) − (q2,w)L2(R) + (w2 − γ q2, q)L2(R)

)
+ εZ

(
f
(
w1 + τw2 + û(· + st)

)− f
(
û(· + st)

)
,w
)
L2(R)

− εZν(∂xw1, ∂xw)L2(R) − εZ(q1,w)L2(R) + εZ(w1 − γ q1, q)L2(R).

Hence, hemicontinuity follows if

h : R→R, τ �→ h(τ) := εZ
(
f
(
w1 + τw2 + û(· + st)

)− f
(
û(· + st)

)
,w
)
L2(R)
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is continuous. This is true because for τ1, τ2 ∈R we have∣∣h(τ1) − h(τ2)
∣∣ = εZ

∣∣(f (w1 + τ1w2 + û(· + st)
)− f

(
w1 + τ2w2 + û(· + st)

)
,w
)
L2(R)

∣∣
(2.1j)≤ εZη4

(
1 + 6‖û‖2

L∞(R) + 6‖w1‖2
L∞(R) + 3

(
τ 2

1 + τ 2
2
)‖w2‖2

L∞(R)

)
× ‖w2‖L2(R)|τ1 − τ2|‖w‖L2(R)

(2.6b)≤ η4

(
1 + 6‖û‖2

L∞(R) + 6

εZ
‖Y1‖2

V + 3(τ 2
1 + τ 2

2 )

εZ
‖Y2‖2

V

)
× ‖Y2‖H‖Y‖H |τ1 − τ2|,

where the Sobolev embedding theorem in form of ‖wj‖L∞(R) ≤ ‖wj‖H 1(R) has been applied.

Proof of (LR2). For proving local monotonicity, observe that for Y1 = (w1, q1)
t, Y2 =

(w2, q2)
t ∈ V ,

2V ∗
〈
A(t, Y1) −A(t, Y2), Y1 − Y2

〉
V

(2.8b)= −2εZν
∥∥∂x(w1 − w2)

∥∥2
L2(R)

+ 2εZ
(
f
(
w1 + û(· + st)

)− f
(
w2 + û(· + st)

)
,w1 − w2

)
L2(R)

− 2εZγ ‖q1 − q2‖2
L2(R)

.

On noting that

2εZ
(
f
(
w1 + û(· + st)

)− f
(
w2 + û(· + st)

)
,w1 − w2

)
L2(R)

(2.1g)≤ 2εZη1‖w1 − w2‖2
L2(R)

(2.6b)≤ 2η1‖Y1 − Y2‖2
H ,

and B(t, Y1) −B(t, Y2)
(2.8c)= 0, this results in

2V ∗
〈
A(t, Y1) −A(t, Y2), Y1 − Y2

〉
V + ∥∥B(t, Y1) −B(t, Y2)

∥∥2
L2(U ;H) ≤ 2η1‖Y1 − Y2‖2

H

(A.1d)≤ C1‖Y1 − Y2‖2
H .

Note that we have verified the classical monotonicity assumption in [57], that is, local mono-
tonicity is not needed here.

Proof of (LR3). For proving coercivity, we note that for Y = (w,q)t ∈ V ,

V ∗
〈
A(t, Y ), Y

〉
V

(2.8b)= −εZν‖∂xw‖2
L2(R)

+ εZ
(
f
(
w + û(· + st)

)− f
(
û(· + st)

)
,w
)
L2(R)

− εZγ ‖q‖2
L2(R)

.

Using

εZ
(
f
(
w + û(· + st)

)− f
(
û(· + st)

)
,w
)
L2(R)

(2.1g)≤ εZη1‖w‖2
L2(R)

(2.6a)≤ η1‖Y‖2
H

and ‖B(t, Y )‖2
L2(U ;H)

(2.6a),(2.8c)= εZσ‖√Q‖2
L2(U), we obtain the estimate

V ∗
〈
A(t, Y ), Y

〉
V + ∥∥B(t, Y )

∥∥2
L2(U ;H) ≤ εZσ‖√Q‖2

L2(U) − εZν‖∂xw‖2
L2(R)

+ η1‖Y‖2
H

(2.6)= εZσ‖√Q‖2
L2(U) + (η1 + ν)‖Y‖2

H − ν‖Y‖2
V

(A.1)≤ F(t) + C1‖Y‖2
H − θ‖Y‖2

V ,

which yields (LR3).
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Proof of (LR4). We have for Y = (w,q)t, Ỹ = (w̃, q̃)t ∈ V ,

V ∗
〈
A(t, Y ), Ỹ

〉
V

(2.8b)= −εZν(∂xw, ∂xw̃)L2(R) + εZ
(
f
(
w + û(· + st)

)− f
(
û(· + st)

)
, w̃
)
L2(R)

− εZ(q, w̃)L2(R) + εZ(w, q̃)L2(R) − εZγ (q, q̃)L2(R)

(2.1j)≤ εZν‖∂xw‖L2(R)‖∂xw̃‖L2(R)

+ εZη4
(
1 + 3‖û‖2

L∞(R) + 2‖w‖2
L∞(R)

)‖w‖L2(R)‖w̃‖L2(R)

+ εZ‖q‖L2(R)‖w̃‖L2(R) + εZ‖w‖L2(R)‖q̃‖L2(R) + εZγ ‖q‖L2(R)‖q̃‖L2(R)

(2.6)≤
(
‖Y‖V

(
ν + 4η4

εZ
‖Y‖2

H

)
+ ‖Y‖H

(
2
√

ε + εγ + η4
(
1 + 3‖û‖2

L∞(R)

)))‖Ỹ‖V ,

where we have used that

‖w‖2
L∞(R) ≤ 2‖w‖L2(R)

∥∥∥∥dw

dx

∥∥∥∥
L2(R)

(2.6)≤ 2

εZ
‖Y‖H‖Y‖V .

This implies∥∥A(t, Y )
∥∥ α

α−1
V ∗

(A.1a)= ∥∥A(t, Y )
∥∥2
V ∗

≤ 2‖Y‖2
V

(
ν + 4η4

εZ
‖Y‖2

H

)2
+ 2

(
2
√

ε + εγ + η4
(
1 + 3‖û‖2

L∞(R)

))2‖Y‖2
H

≤
(

1 + (
2
√

ε + εγ + η4
(
1 + 3‖û‖2

L∞(R)

))4 + 4 max
{
ν2,

16η2
4

ε2Z2

}
‖Y‖2

V

)(
1 + ‖Y‖4

H

)
(A.1)≤ (

F(t) + C1‖Y‖α
V

)(
1 + ‖Y‖β

H

)
,

that is, (LR4). Note that here we have not obtained the classical growth condition in [57].

Proof of (LR5). We have

‖B(t, Y )‖2
L2(U ;H)

(2.6a),(2.8c)= εZσ‖√Q‖2
L2(U) ≤ C2(F (t) + ‖Y‖2

H ).

Proof of (LR6). This trivially holds because g = 0. �

PROOF OF PROPOSITION 2.5. Denote by X = (u, v)t the solution from Proposition 2.4.
We first apply [66], Proposition G.0.5 (i), and verify the conditions there to conclude that
X meets a mild-solution representation. Notably, B(t,X(t, ·)) (cf. (2.8c)) does for t ∈ [0, T ]
neither depend on t nor on X and takes values in L2(U ;H). Hence, B(t,X(t, ·)) is determin-
istic and in particular

P

[ˆ T

0

∥∥B(t,X(t, ·))∥∥L2(U ;H) dt < ∞
]

= 1

trivially holds true. Furthermore, by the regularity of the variational solution stated in Defini-
tion 2.3, we have

E

[ˆ T

0

∥∥X(t, ·)∥∥V dt

]
≤ √

T

(
E

[ˆ T

0

∥∥X(t, ·)∥∥2
V dt

]) 1
2
< ∞,
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which is why obviously also

P

[ˆ T

0

∥∥X(t, ·)∥∥H dt < ∞
]

= 1

is valid. In view of the above estimate, the mixing of u and v in the two components of
A(t,X(t)) (cf. (2.8b)) is immaterial, so that it remains show that

(A.2) P

[ˆ T

0

∥∥f (u(t, ·) + û(· + st)
)− f

(
û(· + st)

)∥∥
L2(R) dt < ∞

]
= 1

holds true. Indeed, we can estimate

E

[ˆ T

0

∥∥f (u(t, ·) + û(· + st)
)− f

(
û(· + st)

)∥∥
L2(R) dt

] 1
2

(2.1j)≤ η4E

[
sup

t∈[0,T ]
∥∥u(t, ·)∥∥L2(R)

ˆ T

0

(
1 + 2‖û‖2

L∞(R) + 3
∥∥u(t, ·)∥∥2

H 1(R)

)
dt

] 1
2

≤ η4

2
E

[
sup

t∈[0,T ]
∥∥u(t, ·)∥∥L2(R)

]
+ η4T

2

(
1 + 2‖û‖2

L∞(R)

)+ 3η4

2
E

[ˆ T

0

∥∥u(t, ·)∥∥2
H 1(R) dt

]
,

where the Sobolev embedding in form of ‖u(t, ·)‖L∞(R) ≤ ‖u(t, ·)‖H 1(R) has been used and
finiteness of the terms in the last line follows from the regularity of the variational solution
stated in Definition 2.3 and Proposition 2.4. Hence, also (A.2) is satisfied.

Next, we prove additional regularity provided
√

Q ∈ L2(U ;H 1(R)), u(0) ∈ L2(R), and
v(0) ∈ H 1(R). From the first component of (2.4) or (2.9) we derive the mild-solution formula

tu(t, ·) =
ˆ t

0
Kt−t ′ ∗ (f (u(t ′, ·)+ û

(· + st ′
))− f

(
û
(· + st ′

))− v
(
t ′, ·))t ′ dt ′

+
ˆ t

0
Kt−t ′ ∗ u

(
t ′, ·)dt ′ +

ˆ t

0
Kt−t ′ ∗ t ′ dW

(
t ′, ·), P-almost surely,

where Kt(x) = e
− x2

4νt√
4πνt

denotes the heat kernel generated by ν∂2
x and ∗ the convolution on the

real line. For the second component of (2.4) or (2.9) we get analogously

v(t, ·) = e−εγ tv(0) + ε

ˆ t

0
e−εγ (t−t ′)u

(
t ′, ·)dt ′, P-almost surely.

Differentiation in space yields

(A.3)

t (∂xu)(t, ·) =
ˆ t

0
Kt−t ′ ∗

(
f ′(u(t ′, ·)+ û

(· + st ′
))(

∂xu
(
t ′, ·)+ dû

dξ

(· + st ′
)))

t ′ dt ′

−
ˆ t

0
Kt−t ′ ∗

(
f ′(û(· + st ′

))dû

dξ

(· + st ′
)+ ∂xv

(
t ′, ·))t ′ dt ′

+
ˆ t

0
Kt−t ′ ∗ ∂xu

(
t ′, ·)dt ′ +

ˆ t

0
Kt−t ′ ∗ (t ′ d(∂xW)

(
t ′, ·)),

P-almost surely, and

(A.4) ∂xv(t, ·) = e−εγ t (∂xv
(0))+ ε

ˆ t

0
e−εγ (t−t ′)(∂xu)

(
t ′, ·)dt ′, P-almost surely.

We estimate the three lines on the right-hand side of (A.3) separately:
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Using ‖Kt−t ′‖L1(R) = 1, we obtain for the first term on the right-hand side of (A.3) with
Young’s convolution inequality∥∥∥∥

ˆ t

0
Kt−t ′ ∗

(
f ′(u(t ′, ·)+ û

(· + st ′
))(

∂xu
(
t ′, ·)+ dû

dξ

(· + st ′
)))

t ′dt ′
∥∥∥∥
L2(R)

(2.1i)≤ η3

ˆ t

0

(
1 + 2‖û‖2

L∞(R) + 2
∥∥u(t ′, ·)∥∥2

H 1(R)

)(∥∥∂xu
(
t ′, ·)∥∥L2(R) +

∥∥∥∥dû

dξ

∥∥∥∥
L2(R)

)
t ′ dt ′

≤ η3T

2

(
1 + 2‖û‖2

L∞(R)

)(
T

∥∥∥∥dû

dξ

∥∥∥∥
L2(R)

+ 2T
1
2√

3
‖∂xu‖L2([0,T ]×R)

)

+ 2η3T

∥∥∥∥dû

dξ

∥∥∥∥
L2(R)

‖u‖2
L2([0,T ];H 1(R))

+ 2η3T
3
2√

3
‖u‖2

C0([0,T ];L2(R))
‖∂xu‖L2([0,T ]×R)

+ 2η3

ˆ t

0

∥∥∂xu
(
t ′, ·)∥∥2

L2(R)t
′∥∥∂xu

(
t ′, ·)∥∥L2(R) dt ′,

where the Sobolev embedding on the real line in the form of ‖u(t ′, ·)‖L∞(R) ≤ ‖u(t ′, ·)‖H 1(R)

has been applied.
For the second line of (A.3), we obtain similarly∥∥∥∥

ˆ t

0
Kt−t ′ ∗

(
f ′(û(· + st ′

))dû

dξ

(· + st ′
)+ ∂xv

(
t ′, ·))t ′dt ′

∥∥∥∥
L2(R)

(2.1i)≤ η3T
2

2

(
1 +

∥∥∥∥dû

dξ

∥∥∥∥2

L∞(R)

)∥∥∥∥dû

dξ

∥∥∥∥
L2(R)

+ T
3
2√
3
‖∂xv‖L2([0,T ]×R),

where we may use

(A.5) ‖∂xv‖L2([0,T ]×R)

(A.4)≤ 1√
2εγ

∥∥∂xv
(0)
∥∥
L2(R) + 1

γ
‖∂xu‖L2([0,T ]×R), P-almost surely.

Finally, the first integral on third line of (A.3) yields∥∥∥∥
ˆ t

0
Kt−t ′ ∗ ∂xu

(
t ′, ·)dt ′

∥∥∥∥
L2(R)

≤ √
T ‖∂xu‖L2([0,T ]×R),

while the second integral gives with help of Itô’s isometry

E

[∥∥∥∥
ˆ t

0
Kt−t ′ ∗ (t ′d(∂xW)

(
t ′, ·))∥∥∥∥2

L2(R)

]
≤
ˆ t

0

(
t ′
)2∥∥(Kt−t ′∗)∂x

√
Q
∥∥2
L2(U) dt ′

≤ T 3

3
‖√Q‖2

L2(U ;H 1(R))
.

Using X = (u, v)t ∈ L2([0, T ];V ) ∩ C0([0, T ];H), P-almost surely, and therefore

u ∈ L2([0, T ];H 1(R)
)∩ C0([0, T ];L2(R)

)
, P-almost surely,

we conclude that there exists a constant C < ∞, P-almost surely, with C → 0 as T ↘ 0,
P-almost surely, such that

∥∥t (∂xu)(t, ·)∥∥L2(R) ≤ C + 2η3

ˆ t

0

∥∥∂xu
(
t ′, ·)∥∥2

L2(R)t
′∥∥∂xu

(
t ′, ·)∥∥L2(R) dt, P-almost surely.

Grönwall’s inequality implies

∥∥t (∂xu)(t, ·)∥∥L2(R) ≤ C exp
(

2η3

ˆ t

0

∥∥∂xu
(
t ′, ·)∥∥2

L2(R) dt ′
)

< ∞, P-almost surely,
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whence t (∂xu) ∈ L∞([0, T ];L2(R)), P-almost surely. Furthermore, since C → 0 as T ↘ 0,
P-almost surely, [0, T ] � t �→ t∂xu(t, ·) ∈ L2(R) is, P-almost surely, continuous in t = 0.

For proving continuity, observe that for T ≥ t2 ≥ t1 > 0 we have

t2∂xu(t2, ·) − t1∂xu(t1, ·) = (t2 − t1)∂xu(t2, ·) + t1
(
∂xu(t2, ·) − ∂xu(t1, ·)).

Then, it follows that (t2 − t1)∂xu(t2, ·) → 0 as t2 → t1 in L2(R) by the reasoning before if
one translates in time and uses uniqueness. For the remaining term, we derive once more
from the first component of (2.4) or (2.9)

(A.6)

∂xu(t2, ·) − ∂xu(t1, ·)
= Kt2−t1 ∗ (∂xu)(t1, ·) − ∂xu(t1, ·)

+
ˆ t2

t1

Kt2−t ′ ∗
(
f ′(u(t ′, ·)+ û

(· + st ′
))(

∂xu
(
t ′, ·)+ dû

dξ

(· + st ′
)))

dt ′

−
ˆ t2

t1

Kt2−t ′ ∗
(
f ′(û(· + st ′

))dû

dξ

(· + st ′
)− ∂xv

(
t ′, ·))dt ′

+
ˆ t2

t1

Kt2−t ′ ∗ d(∂xW)
(
t ′, ·), P-almost surely.

For the first line of (A.6) observe that∥∥Kt2−t1 ∗ (∂xu)(t1, ·) − ∂xu(t1, ·)
∥∥
L2(R) → 0 as t2 → t1,P-almost surely,

follows from tu ∈ L∞([0, T ];L2(R)), P-almost surely, and the fact that (Kt∗)t≥0 ⊂
L(L2(R)) is strongly continuous in t = 0. The other lines of (A.6) can be estimated as before.
Altogether, we obtain∥∥t2∂xu(t2, ·) − t1∂xu(t1, ·)

∥∥
L2(R) → 0 as t2 → t1,P-almost surely,

which implies tu ∈ C0([0, T ];H 1(R)), P-almost surely. Finally, by (A.4) and (A.5) it follows
that v ∈ C0([0, T ];H 1(R)), P-almost surely.

If u(0) ∈ H 1(R), an analogous reasoning without time weight yields that

u ∈ C0([0, T ];H 1(R)), P-almost surely,

too. �

A.2. Linearization around the traveling wave. In this section, we give the proofs of
Proposition 2.6 and Proposition 2.8.

A.2.1. Fixed frame. We focus on investigating the linearized evolution generated by the
family of operators (Lst )t≥0 defined in (2.14).

PROOF OF PROPOSITION 2.6. Note that in view of (2.14) we may write

(A.7) Lst = L±∞ +Rst with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
L±∞ :=

(
ν∂2

x + f ′(0) − 1

ε − εγ

)
,

Rst :=
(
f ′(û(· + st)

)− f ′(0) 0

0 0

)
.
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For Y = (w,q)t ∈ (C∞
c (R))2 we have

(L±∞Y,Y )V = εZ

(
ν

d2w

dx2 + f ′(0)w − q,w

)
H 1(R)

+ εZ(w − γ q, q)H 1(R)

= εZ

(
−ν

∥∥∥∥d2w

dx2

∥∥∥∥2

L2(R)

− (
ν − f ′(0)

)∥∥∥∥dw

dx

∥∥∥∥2

L2(R)

+ f ′(0)‖w‖2
L2(R)

)

− εZγ ‖q‖2
H 1(R)

≤ −min
{−f ′(0), εγ

}‖Y‖2
V − εZν

∥∥∥∥d2w

dx2

∥∥∥∥2

L2(R)

.

By density of (C∞
c (R))2 in D(L±∞) = H 3(R)√εkH 1(R), we infer that L±∞ + κ idV with

κ := min
{−f ′(0), εγ

} (2.1d)≥ 0

is dissipative.
In order to prove that L±∞ + (κ − 1) idV : D(L±∞) → V is a bijection, we define

M(Y1, Y2) := −εZν

(
dw1

dx
,

dw2

dx

)
H 1(R)

+ εZ
((

f ′(0) + κ − 1
)
w1 − q1,w2

)
H 1(R)

+ εZ
(
w1 + (κ − 1 − γ )q1, q2

)
H 1(R)

for

Yj := (wj ,wj )
t ∈ H 2(R)√εkH 1(R)

and we recognize that M : (H 2(R)√εkH 1(R))2 → V is bilinear, continuous, and −M
is coercive, so that by the Lax–Milgram theorem for any Y2 ∈ V there exists Y1 ∈
H 2(R)√εkH 1(R) such that M(Y1, Ỹ ) = (Y2, Ỹ )V for all Ỹ ∈ H 2(R)√εkH 1(R). This im-
plies L±∞Y1 + (κ − 1)Y1 = Y2 distributionally and hence in particular

ν
d2w1

dx2 = w2 + (
1 − κ − f ′(0)

)
w1 + q1 ∈ H 1(R),

giving w1 ∈ H 3(R) and thus Y1 ∈ D(L±∞). The arguments have shown that

L±∞ + (κ − 1) idV : D(L±∞) → V

is a bijection.
The Lumer–Philips theorem [74], Chapter 1, Theorem 4.3, yields that L±∞ + κ idV gener-

ates a C0-semigroup of contractions in V . Hence, L±∞ generates a C0-semigroup (etL±∞)t≥0

in V with bound ∥∥etL±∞∥∥
L(V) ≤ e−κt .

Now, since û and dû
dξ

are bounded and f ∈ C1(R), the family (Rst )t≥0 is uniformly bounded
V → V with ‖Rst‖L(V) ≤ ‖f ′(û) − f ′(0)‖W 1,∞(R) < ∞. By [74], Chapter 5, Theorem 2.3,
the family (Lst )t≥0 of linear operators generates an evolution family (Pst,st ′)t≥t ′≥0 of
bounded linear operators V → V meeting estimate (2.16), that is,

‖Pst,st ′‖L(V) ≤ eβ(t−t ′) with β := ∥∥f ′(û) − f ′(0)
∥∥
W 1,∞(R) − min

{−f ′(0), εγ
}
. �
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A.2.2. Moving frame. In this section, we prove spectral properties of the frozen-wave
operator L# (cf. (2.17)), as stated in Proposition 2.8.

We view L# as a perturbation of the limiting operator L#±∞ (cf. (2.17))

(A.8a) L# = L#±∞ +R#,

where

(A.8b) L#±∞ :=
(
ν∂2

ξ + f ′(0) − s∂ξ − 1
ε − εγ − s∂ξ

)
and R# :=

(
f ′(û) − f ′(0) 0

0 0

)
.

LEMMA A.3. For Y ∈ D(L#) = H 2(R;C)√εkH 1(R;C) we have

(A.9)
(
L#±∞Y,Y

)
HC

≤ −κ‖Y‖2
HC

− εZν

∥∥∥∥dw

dξ

∥∥∥∥2

L2(R)

with κ
(2.22)= min

{−f ′(0), εγ
}
.

In particular, L#±∞ generates a C0-semigroup (P ±∞
st )t≥0 of contractions in HC satisfying

(A.10)
∥∥P ±∞

st

∥∥
L(HC) ≤ e−κt .

PROOF. By density, we may assume Y = (w,q)t ∈ (C∞
c (R;C))2 and obtain

(
L#±∞Y,Y

)
HC

= εZ

(
ν

d2w

dξ2 + f ′(0)w − s
dw

dξ
− q,w

)
L2(R;C)

+ Z

(
ε(w − γ q) − s

dq

dξ
, q

)
L2(R;C)

= εZ

(
−ν

∥∥∥∥dw

dξ

∥∥∥∥2

L2(R;C)

+ f ′(0)‖w‖2
L2(R;C)

)
− εZγ ‖q‖2

L2(R;C)

+ 2iεZ Im
(
(w,q)L2(R;C)

)− εZs

ˆ
R

(
dw

dξ

)
w dξ − Zs

ˆ
R

(
dq

dξ

)
q dξ.

This implies

Re
((
L#±∞Y,Y

)
HC

) (2.21b)≤ −min
{−f ′(0), εγ

}‖Y‖2
HC

− Zs

2

ˆ
R

d

dξ

(
ε|w|2 + |q|2)dξ

− εZν

∥∥∥∥dw

dξ

∥∥∥∥2

L2(R)

= −κ‖Y‖2
HC

− εZν

∥∥∥∥dw

dξ

∥∥∥∥2

L2(R)

,

which is (A.9). From (A.9), we recognize that

L#±∞ + κ idHC
: D

(
L#)= H 2(R;C)√εkH 1(R;C) → HC

(2.21a)= L2(R;C)√εkL2(R;C)

is dissipative, so that, as in the proof of Proposition 2.6, we deduce with the Lax–Milgram
and the Lumer–Philips theorem [74], Chapter 1, Theorem 4.3, that L#±∞ generates a C0-
semigroup of contractions (P ±∞

st )t≥0 in HC meeting (A.10). �

PROOF OF PROPOSITION 2.8(a). Since R# is a bounded operator in HC with∥∥R#∥∥
L(HC) ≤ ∥∥f ′(û) − f ′(0)

∥∥
L∞(R),
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we conclude with Lemma A.3 and [74], Chapter 5, Theorem 2.3, that L# generates a C0-
semigroup (P #

st )t≥0 in HC meeting the bound

(A.11)
∥∥P #

st

∥∥
L(HC) ≤ e−ρt with ρ := κ − ∥∥f ′(û) − f ′(0)

∥∥
L∞(R).

Since L# has real coefficients (cf. (2.17)), the statement for H instead of HC is immediate.
�

PROOF OF PROPOSITION 2.8(b). We have(
∂t −L#)T−stPst,st ′Tst ′

(2.19)= T−st (∂t −Lst )Pst,st ′Tst ′ = 0,

so that with

T−stPst,st ′Tst ′ |t=t ′ = T−st ′ idV Tst ′ = T−st ′Tst ′ |V = idV

the claim follows by uniqueness of the evolution family. �

Note that (A.11) just provides a rough estimate on the action of the semigroup (P #
st )t≥0.

In what follows, we provide a more detailed spectral analysis of L#, leading to the proofs of
Proposition 2.8(c) and (d).

LEMMA A.4. We have

σess
(
L#±∞

)⊆ {λ ∈ C : Reλ ≤ −κ} where κ
(2.22)= min

{−f ′(0), εγ
}
.

In particular, σess(L#±∞) lies to the left of the imaginary axis.

PROOF. We first use that σess(L#±∞) ⊆ RHC
(L#±∞) (cf. Definition 2.7(d) and (e), and

[52], Lemma 4.1.9). Then the result is immediate from (2.1d), Definition 2.7(e), and
Lemma A.3. �

Lemma A.4 can be lifted to obtain the essential spectrum of L# using the following com-
pactness argument.

LEMMA A.5 (Compactness). The operator (cf. (A.8b))

R# : HC ⊃ H 1(R;C)√εkL2(R;C) → HC

is compact. In particular,

L# (A.8)= L#±∞ +R# : HC ⊃ D
(
L#)= H 2(R;C)√εkH 1(R;C) → HC

is a relatively compact perturbation of L#±∞ : HC ⊃ D(L#) → HC.

PROOF. Though the proof is standard, for the sake of self-contained presentations we
provide all necessary details. Suppose that (Yn)n ∈ (H 1(R;C)√εkL2(R;C))N with Yn =
(wn, qn)

t and supn∈N‖wn‖H 1(R;C) < ∞. Because of

R#Yn
(A.8b)=

((
f ′(û) − f ′(0)

)
wn

0

)
,

we first prove that ((f ′(û) − f ′(0))wn)n has a convergent subsequence in L2(R;C). There-
fore, note that f ′′(û(ξ))dû

dξ
and |f ′(û(ξ))−f ′(0)| ≤ supw∈[0,û(ξ)]∪[û(ξ),0]|f ′′(w)||û(ξ)| decay
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exponentially as |ξ | → ±∞. Now, setting y := arctan ξ and φn(y) :=
√

1 + ξ2(f ′(û(ξ)) −
f ′(0))wn(ξ), we may compute that dy = 1

1+ξ2 dξ , d
dy

= (1 + ξ2) d
dξ

,

dφn

dy
= ξ

√
1 + ξ2

(
f ′(û(ξ)

)− f ′(0)
)
wn(ξ) + (

1 + ξ2) 3
2 f ′′(û(ξ)

)dû

dξ
(ξ)wn(ξ)

+ (
1 + ξ2) 3

2
(
f ′(û(ξ)

)− f ′(0)
)dwn

dξ
(ξ),

and therefore

‖φn‖2
H 1((− π

2 , π
2 );C)

=
ˆ π

2

− π
2

(
|φn|2 +

∣∣∣∣dφn

dy

∣∣∣∣2
)

dy

≤ C

ˆ
R

(
|wn|2 +

∣∣∣∣dwn

dξ

∣∣∣∣2
)

dξ = C‖wn‖2
H 1(R;C)

for an n-independent constant C < ∞. By the Rellich–Kondrachov theorem, (φn)n has a
convergent subsequence in L2((−π

2 , π
2 );C) and because

‖φn − φm‖L2((− π
2 , π

2 );C) = ∥∥(f ′(û(ξ)
)− f ′(0)

)
(wn − wm)

∥∥
L2(R;C),

we infer that ((f ′(û(ξ)) − f ′(0))wn)n has a convergent subsequence in L2(R;C).
Suppose that (Yn)n ∈ (D(L#))N meets supn∈N(‖Yn‖HC

+ ‖L#±∞Yn‖HC
) < ∞. Then, it

suffices to show that supn∈N‖wn‖H 1(R;C) < ∞. Observe that by interpolation, we have for
Y = (w,q)t ∈ (C∞

c (R;C))2

∥∥L#±∞Y
∥∥2
HC

= ε

∥∥∥∥ν d2w

dξ2 + f ′(0)w − s
dw

dξ
− q

∥∥∥∥2

L2(R;C)

+
∥∥∥∥εw − εγ q − s

dq

dξ

∥∥∥∥2

L2(R;C)

≥ C1

∥∥∥∥dw

dξ

∥∥∥∥2

L2(R;C)

− C2
(‖w‖2

L2(R;C)
+ ‖q‖2

L2(R;C)

)
,

with C1 > 0 and C2 < ∞ independent of n. Since

‖Yn‖2
HC

(2.21b)= εZ‖wn‖2
L2(R;C)

+ Z‖qn‖2
L2(R;C)

,

we may conclude with (2.1d) that indeed supn∈N‖wn‖H 1(R;C) < ∞ holds true. �

PROOF OF PROPOSITION 2.8(ci). If

(A.12) σess
(
L#)= σess

(
L#±∞

)
holds true, it follows in particular that

σess
(
L#)⊆ {λ ∈ C : Reλ ≤ −κ} where κ

(2.22)= min
{−f ′(0), εγ

}
by Lemma A.4. The equality (A.12), on the other hand, follows by Weyl’s essential spectrum
theorem [52], Theorem 2.2.6, because the operators

L#,L#±∞ : D
(
L#)= H 2(R;C)√εkH 1(R;C) → HC

(2.21a)= L2(R;C)√εkL2(R;C)

are closed (which follows by an interpolation argument as in the proof of Lemma A.5) and
L# is a compact pertubation of L# by Lemma A.5. �

PROOF OF PROPOSITION 2.8(cii). It suffices to prove that for λ ∈ σp(L#) any corre-
sponding eigenvector Y = (w,q)t ∈ D(L#) is bounded and has infinitely many bounded
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derivatives to conclude that in HC there are no additional eigenvalues compared to the ones
obtained by Yanagida [91], Section 5.1 (cf. [48], Section 1, Theorem, in the case of the cubic
polynomial without cut off).

Indeed, for Y as above satisfying L#Y = λY , we have

ν
d2w

dξ2
(2.17)= λw − f ′(û)w + s

dw

dξ
+ q︸ ︷︷ ︸

∈H 1(R;C)

,

s
dq

dξ

(2.17)= −λq + εw − εγ q︸ ︷︷ ︸
∈H 1(R;C)

,

which immediately yields w ∈ H 3(R;C) and q ∈ H 2(R;C). Inductively, we obtain that
w,q ∈ Hk(R;C) for any k ∈N, giving smoothness and boundedness of w, q , and all deriva-
tives.

With the stability analysis in [91], Section 5.1, we conclude that, except for the simple
eigenvalue 0, all eigenvalues are to the left of the imaginary axis with real part bounded by

λ∗(ε). We further remark that in (2.20) it has already been noted that dX̂
dξ

is an eigenvector to
the eigenvalue 0. �

In what follows, we need a regularizing effect of the semigroup (P ±∞
st )t≥0 of Lemma A.3

in the first component.

LEMMA A.6. For Y (0) = (w(0), q(0))t ∈ HC we write

Y±∞(t, ·) := (w±∞(t, ·), q±∞(t, ·))t := P ±∞
st Y (0).

Then, it holds that w±∞, q±∞,

√
t∂ξw±∞
1+√

t
∈ L∞([0,∞);L2(R;C)) with

‖w±∞‖L∞([0,∞);L2(R;C)) + ‖q±∞‖L∞([0,∞);L2(R;C)) +
∥∥∥∥
√

t∂ξw±∞
1 + √

t

∥∥∥∥
L∞([0,∞);L2(R;C))

≤ C
∥∥Y (0)

∥∥
HC

,

where C < ∞ is independent of Y (0).

PROOF. First, assume Y (0) = (w(0), q(0))t ∈ (C∞
c (R;C))2. Then, by construction

(A.13) ∂tY±∞ −L#±∞Y±∞ = 0,

which implies

∂
j
t

(
L#±∞

)k
Y±∞ = (

L#±∞
)j+k

Y±∞ = P ±∞
st

(
L#±∞

)j+k
Y (0) for all j, k ∈ N0

and hence (L#±∞)kY±∞ ∈ C∞([0,∞);HC) for any k ∈ N0. The coercivity/dissipativity esti-
mate (A.9) of Lemma A.3 then yields w±∞ ∈ C∞([0,∞);Hk(R)) for any k ∈ N0.

Having established qualitative regularity for regular initial data, we next prove a priori
estimates. Indeed, by testing (A.13) it follows that

1

2

d

dt
‖Y±∞‖2

HC
− (

L#
0Y±∞, Y±∞

)
HC

= 0,

so that with (A.9) of Lemma A.3 we deduce that

1

2

d

dt

∥∥Y(t, ·)∥∥2
HC

+ κ
∥∥Y(t, ·)∥∥2

HC
+ εZν

∥∥∂ξw(t, ·)∥∥2
L2(R;C) ≤ 0.
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Integrating in time yields

(A.14)

1

2

∥∥Y±∞(t, ·)∥∥2
HC

+
ˆ t

0

(
κ
∥∥Y±∞

(
t ′, ·)∥∥2

HC
+ εZν

∥∥∂ξw±∞
(
t ′, ·)∥∥2

L2(R;C)

)
dt ′

≤ 1

2

∥∥Y (0)
∥∥2
HC

.

To obtain a pointwise bound in time on ‖∂ξw±∞(t, ·)‖2
L2(R)

, observe that from (A.8b) and
(A.13) it follows that

∂t∂ξw±∞ − ν∂3
ξ w±∞ − f ′(0)∂ξw±∞ + s∂2

ξ w±∞ + ∂ξq±∞ = 0.

Testing with t∂ξw±∞ gives with

Re
(
∂2
ξ w±∞(t, ·), ∂ξw±∞(t, ·))L2(R;C) = 1

2
Re

ˆ
R

∂ξ

∣∣∂ξw±∞(t, ξ)
∣∣2 dξ = 0

and

Re
(
∂ξq±∞(t, ·), ∂ξw±∞(t, ·))L2(R) ≤ ν

2

∥∥∂2
ξ w±∞(t, ·)∥∥2

L2(R;C) + 1

2ν

∥∥q±∞(t, ·)∥∥2
L2(R;C)

that

t

2

∥∥∂ξw±∞(t, ·)∥∥2
L2(R;C) +

ˆ t

0
t ′
(

ν

2

∥∥∂2
ξ w±∞

(
t ′, ·)∥∥2

L2(R) − f ′(0)
∥∥∂ξw±∞

(
t ′, ·)∥∥2

L2(R)

)
dt ′

≤ t

2ν

ˆ t

0

∥∥q±∞
(
t ′, ·)∥∥2

L2(R;C) dt ′ + 1

2

ˆ t

0

∥∥∂ξw±∞
(
t ′, ·)∥∥2

L2(R;C) dt ′.

The combination with (2.21b) and (A.14) yields that there exists a constant C < ∞ such that

ess-sup
t≥0

√
t

1 + √
t

∥∥∂ξw±∞(t, ·)∥∥L2(R;C) ≤ C
∥∥Y (0)

∥∥2
HC

.

The statement of the lemma now follows by density of (C∞
c (R;C))2 in HC. �

PROOF OF PROPOSITION 2.8(d). We loosely follow the approach in [2], Section 3.2,
Proposition 3.5. First observe that by Lemma A.5 and Lemma A.6 the operator R#P ±∞

st �# ∈
L(HC) is compact for any t > 0. This compactness implies thanks to [2], Proposition 3.4,
that for every t ≥ 0 the operator P #

st�
# − P ±∞

st �# is compact as well. By estimate (A.10) of
Lemma A.3 and the Neumann series, we recognize that the operator P ±∞

st �# has no spectrum
outside the disc {μ ∈ C : |μ| ≤ e−κt‖�#‖L(HC)}. Now, since P #

st�
# is a compact perturbation

of P ±∞
st �#, the spectrum of P #

st�
# in{

μ ∈ C : |μ| > e−κt
∥∥�#∥∥

L(HC)

}
only contains point spectrum σp(P

#
st�

#) (cf. Definition 2.7 and [52], Theorem 2.2.6). Using
[74], Chapter 2, Theorem 2.4, we infer that

σp
(
P #

st�
#)⊆ {0} ∪ {

eλt : λ ∈ σp
(
L#�#)}⊆ {

μ ∈C : |μ| ≤ emax{−κ,λ∗(ε)}t},
where we have used Proposition 2.8(cii) in the last inclusion and that

σp(L#�#) = σp(L#) \ {0}
since 0 is not an eigenvalue of L#�#. Altogether, we have

σ
(
P #

st�
#)⊆ {

μ ∈ C : |μ| ≤ emax{−κ,λ∗(ε)}t∥∥�#∥∥
L(HC)

}
because ‖�#‖L(HC) ≥ 1.
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Now, let max{−κ,λ∗(ε)} < −ϑ < 0. Since the spectral radius limn→∞‖(P #
st�

#)n‖
1
n

L(HC)

of P #
st�

# meets

lim
n→∞

∥∥(P #
st�

#)n∥∥ 1
n

L(HC) = lim
n→∞

∥∥P #
stn�

#∥∥ 1
n

L(HC)

and

lim
n→∞

∥∥(P #
st�

#)n∥∥ 1
n

L(HC) = lim
n→∞ max

{|μ| : μ ∈ σ
(
P #

st�
#)}≤ emax{−κ,λ∗(ε)}t∥∥�#∥∥

L(HC),

we have ‖P #
stn�

#‖
1
n

L(HC) ≤ e−ϑt for t and n large enough. Thus there exists Cϑ < ∞ such
that (2.24) holds true. �

PROOF OF PROPOSITION 2.8(e). Suppose that Y ∈ H is real-valued. Then

�#,0Y
(2.23)= 1

2πi

‰
|λ|=r

Xλ dλ = r

2π

ˆ 2π

0
Xreiτ e

iτ dτ where Xλ := (
λ idH −L#)−1

Y.

From the equation

λXλ −L#Xλ = Y where |λ| = r,

and because the coefficients of L# are real (cf. (2.17)), it follows that

λXλ −L#Xλ = Y.

Because r > 0 is chosen sufficiently small we have λ ∈ ρ(L#) (cf. Definition 2.7(a)) and it
follows due to uniqueness Xλ = Xλ. Hence,

�#,0Y = r

2π

ˆ 2π

0
Xreiτ e

−iτ dτ = r

2π

ˆ 2π

0
Xre−iτ e

−iτ dτ = r

2π

ˆ 0

−2π

Xreiτ e
iτ dτ

= r

2π

ˆ 2π

0
Xreiτ e

iτ dτ = �#,0Y.

By (2.23) also �#Y = �#Y , that is, �#,0,�# : H → H are well defined and the estimates of
the operator norms are trivial, too. �
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