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a b s t r a c t

The influence of doping with the 5d transition metal W has been studied in the quaternary (Mn,Fe)2(P,Si) 
based giant magnetocaloric compounds, which is one of the most promising systems for magnetic re-
frigeration. It is found that W substitution can separately decrease the Curie temperature TC and retain the 
thermal hysteresis ∆Thys at an almost constant level (∼5 K) for Mn0.6Fe1.27-xWxP0.64Si0.36 (x ≤ 0.02). Low- 
content W doping conserves the good magnetocaloric effect (MCE) without an obvious degradation. For 
x ≤ 0.02 the average magnetic entropy change |∆Sm| amounts to 11.4 Jkg−1K−1 for an applied magnetic field 
change of 2 T and the adiabatic temperature change ∆Tad amounts to 3.9 K for an applied magnetic field 
change of 1.5 T. The occupancy of substitutional W atoms is determined by XRD experiments and DFT 
calculations. Our studies provide a good strategy to further optimize the MCE of this material family.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The hexagonal Fe2P-tpye (Mn,Fe)2(P,Si) based magnetocaloric 
materials (MCMs) demonstrate an excellent giant magnetocaloric 
effect (GMCE) under low applied magnetic fields (e.g. 2 T) as a result 
of the strong magnetoelastic coupling [1,2]. Different promising 
application scenarios such as magnetic refrigeration [3], magnetic 
heat pumps [4,5] and thermomagnetic generators [6,7] have been 
proposed based on this material system because it is rare-earth free, 
contains no toxic elements, is commercially cheap and has a tun-
able TC.

Different optimization strategies have been applied to further 
control the GMCE performance of (Mn,Fe)2(P,Si) based MCMs, such 
as tuning the metal-metal or nonmetal-nonmetal ratios [8,9], che-
mical pressure engineering (substitutional/interstitial doping) in-
cluding doping with light elements (Li, B, C, N, F, S) [10–12], 3d 
transition metal elements (V, Co, Ni, Cu, Zn) [13–15], 4d transition 
metal elements (Zr, Nb, Mo, Ru) [16–19] and other elements (Al, Ge, 
As) [1,20–22], and nano-structuring [23]. However, the alloying with 
doping elements simultaneously tunes TC (towards higher TC for Li, 
B, C, Al, Ge, Zn and Zr; towards lower TC for N, F, S, V, Ni, Co, Cu, Ge, 
Nb, Mo and Ru) and changes ∆Thys (which is detrimental to the 
cooling/heating efficiency) [24]. In several cases, like B, V, Nb and 

Mo, doping can result in a shift from the first-order magnetic tran-
sition (FOMT) with a finite ∆Thys to the critical point between the 
FOMT and second-order magnetic transition (SOMT) with a negli-
gible ∆Thys, while F doping makes the FOMT stronger with a larger 
∆Thys. The aim for the design of the MCMs is to simultaneously tune 
TC, control ∆Thys to a low value and maintain the GMCE performance. 
Considering the design of active magnetic regenerator (AMR) beds 
based on MCMs [25], once the optimal candidate compound (pure 
Mn-Fe-P-Si quaternary alloy) is identified it is crucial to find a simple 
strategy to regulate TC and maintain the GMCE property without 
degradation.

Here we report that the 5d transition element W has successfully 
been introduced into Fe-rich Mn0.6Fe1.27-xWxP0.64Si0.36 (x = 0.00, 0.01, 
0.02, 0.03, 0.04, 0.05) materials. The thermodynamic, magnetic, 
crystallographic and microstructural properties have been in-
vestigated. It is found that a low content of W doping (x ≤ 0.02) can 
decrease TC, while keeping ∆Thys constant and conserving the GMCE 
properties. However, for higher W contents (x ≥ 0.03) the GMCE is 
continuously weakened due to the formation of an Fe3W3C based 
impurity phase, as observed in X-Ray Diffraction (XRD) and Scanning 
Electron Microscopy (SEM). Combined XRD experiments and Density 
Functional Theory (DFT) calculations identified that the W atoms are 
introduced in the main phase as substitutional element on the 3 g 
(Fe) site. The underlying mechanism is discussed in terms of the 
competition between the exchange interaction and covalent 
bonding. Our present study makes it possible to further optimize the 
magnetoelastic coupling in (Mn,Fe)2(P,Si) based MCMs by W 
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substitution, which reinforces its potential for magnetic cooling/ 
heating applications.

2. Experimental procedure

The off-stoichiometric bulk Mn0.6Fe1.27-xWxP0.64Si0.36 (x = 0.00, 
0.01, 0.02, 0.03, 0.04, 0.05) MCMs were synthesized by solid-state 
chemical reaction, and the synthesis method is described in a pre-
vious paper [12]. To remove the so-called “virgin effect” a pre- 
cooling process in liquid nitrogen was chosen [26]. Zero-field dif-
ferential scanning calorimetry (DSC) measurements were performed 
in a commercial TA-Q2000 DSC calorimeter (10 K/min), and in-field 
DSC characterization in a home-built Peltier cell-based instrument 
were carried out to derive the calorimetric ΔSm and ΔTad [27,28]. 
XRD patterns were collected at a PANalytical X-pert Pro dif-
fractometer with Cu Kα radiation and processed using Fullprof’s 
implementation of the Rietveld refinement method [29]. The tem-
perature-dependent magnetization (M-T) and field-dependent 
magnetization (M-H) curves were measured in a superconducting 
quantum interference device (SQUID, Quantum Design MPMS 5XL) 
magnetometer. Scanning electron microscopy (SEM) with energy- 
dispersive X-ray spectroscopy (EDX) was carried out on a JSM- 
IT100LA (JEOL) microscope to study the morphology and composi-
tion. To determine the W content within the matrix, as shown in Fig. 
S1 (Supporting Information), Electron Probe Micro Analysis (EPMA) 
measurement for x = 0.05 sample was conducted with a JEOL JXA 
8900 R microprobe using an electron beam with energy of 10 keV 
and beam current of 200 nA employing Wavelength Dispersive 
Spectrometry (WDS). DFT calculations were performed via the 
Vienna Ab Initio simulation package (VASP) [30,31]. The projected 
augmented wave (PAW) method [32,33], was employed with the 
generalized gradient approximation of Perdew-Burke-Ernzerhof 
(PBE) as the exchange correlation functional [34]. The Methfessel- 
Paxton method [35] of the second order with a smearing width of 
0.05 eV was used. In all calculations a 2 × 2 × 1 supercell was relaxed 
on a k-grid of 5 × 5 × 11 with an energy cut-off of 400 eV. A force 
convergence of 0.1 meV/Å and an energy convergence of 1 μeV were 
ensured. To determine the site preference of W, the formation en-
ergies for each possible doping site were calculated as 

µ µ= + +E E E( )f d s p W , where Ed and Ep are the energies of the 
doped and the pure compounds, while μW and μs are the chemical 
potentials of W and the substituted atoms.

3. Results and discussion

The specific heat as a function of temperature measured by zero- 
field DSC is shown in Fig. 1a. The observed endothermic and exo-
thermic peaks indicate the presence of a FOMT. The significant de-
crease in peak height for high content W doping (x ≥ 0.04) could be 
ascribed to the compositional variations. The inset shows that TC 

continuously decreases upon W doping, while ∆Thys remains almost 
constant at a relatively low value of about 5 K for x ≤ 0.04 and then 
rapidly increases to 14.6 K for x = 0.05. As shown in Fig. 1b, the M-T 
curves in an applied field of 1 T present a sharp FOMT, that is con-
served for low W contents (x ≤ 0.02). For higher W contents (x ≥ 0.04) 
the GMCE performance is expected to degrade as a result of the 
increase in ∆Thys, the decrease in magnetization and the passivated 
FOMT. The inset clearly shows that the saturation magnetization 
(Ms) at 5 K decreased from 150.0 (x = 0.00) to 133.2 (x = 0.05) Jkg−1K−1 

due to the substitution with non-magnetic W. The derived dM/dT 
indicates that for low W doping (x ≤ 0.02) the TC shift is 13.6 K/at% W 
and that ∆Thys retains its very low level (below 4 K) upon W doping. 
It is worth to note that the obtained ∆Thys from magnetic mea-
surement is remarkably lower than that obtained from DSC as a 
result of the lower sweeping rate (2 K/min for M-T versus 10 K/min 
for DSC measurements) [36]. This very low value for ∆Thys is 

beneficial for the reversibility of the cooling/heating cycles 
[18,37,38]. The observation of a well-defined TC shift with a constant 
∆Thys is rare for (Mn,Fe)2(P,Si) MCMs, compared with other sub-
stitutional/interstitial element doping elements in the form of: light 
elements (B, C, N, F, S) [11,12], 3d transition metal elements (V, Co, 
Ni, Cu, Zn) [13–15], 4d transition metal elements (Zr, Nb, Mo, Ru) 
[16–19] and other elements (Al, Ge, As) [1,20–22]. The difference 
between doping with W and doping with other elements could be 
ascribed to its unique outer electron configuration (6s24f145d4). The 
relatively high energy level of the 5d electrons may weaken its hy-
bridization with metallic and non-metallic elements. As illustrated 
in Fig. 1d, to further evaluate the GMCE properties after W doping, 
the |∆Sm| in different field changes is calculated from the Maxwell 
relation = µ

S dH( )m
H M

T H0
0 for different W contents. Interestingly, 

the |∆Sm| for x ≤ 0.02 samples remains almost constant without de-
gradation at values: for x = 0.00, 0.01 and 0.02 the values of |∆Sm| are 
respectively 7.4(11.2), 7.7(11.6) and 6.5(11.4) Jkg−1K−1 for a magnetic 
field change of ∆μ0H = 1(2) T. However, for x ≥ 0.04 the FOMT char-
acter degrades and the |∆Sm| value then gradually reduces for 
x = 0.04 and 0.05 to respectively 4.8(9.7) and 2.3(4.7) Jkg−1K−1 for 
∆μ0H = 1(2) T. The calorimetric ∆Sm and ∆Tad have been derived for 
W doped samples by in-field DSC measurements. Note that the data 
from the Maxwell relation are shown for heating and cooling and the 
data from the in-field DSC only for heating. As illustrated in Fig. 1e, 
the |∆Sm| from specific heat measurements is in good agreement 
with ones obtained from the Maxwell relation and the magnetiza-
tion data for ∆μ0H = 1 T. Meanwhile, the determined ∆Tad, which is 
another essential parameter for magnetic cooling/heating applica-
tions, also presents a conserved value of ∆Tad with a shift in TC for 
x ≤ 0.02, in comparison with the undoped system. As shown in 
Fig. 1 f, for x = 0.00, 0.01 and 0.02 the ∆Tad values respectively reach 
2.5(3.9), 2.6(4.2) and 2.1(3.6) K for ∆μ0H = 1(1.5) T. Thus, the ∆Tad 

values for x ≤ 0.02 are well conserved without remarkable degrada-
tion in low field changes. These ∆Tad values are superior to the ones 
observed for magnetostructural NiMnIn(V) based Heusler alloys 
with ∆Tad ≈ 1.8 K for ∆μ0H = 1 T [39] and the ones observed for all-d- 
metal NiCoMnTi(B) based Heusler alloys with ∆Tad ≈ 1.1 K for ∆μ0H 
= 1 T [38], which also show a good GMCE performance (measured at 
the same equipment). Note that all above ∆Sm and ∆Tad values ob-
tained from in-field DSC are collected at relative low field variations 
(less than 2 T), which suggests that these low W doped candidate 
materials could be applicable for the current Nd-Fe-B permanent 
magnets sources. Therefore, W alloying can not only tune the TC shift 
without influencing ∆Thys, but also conserves the well-constructed 
GMCE properties.

To better understand the relationship between structure changes 
and the performance, XRD patterns in the paramagnetic (PM) state 
(110 °C) have been refined to extract the crystallographic informa-
tion. As presented in Fig. 2a the fit for the x = 0.05 sample indicates 
the presence of a cubic Fe3W3C based impurity phase (Fd-3 m; space 
group 227). All refined XRD patterns can be found in Fig. S2
(Supporting Information). Early studies reported that Mn/Fe based 
carbides can even be produced in pure Mn-Fe-P-Si alloys, where the 
carbon source could originate from hydrocarbons during sealing the 
quartz tubes [40]. The ternary Fe-W-C phase diagram indicates that 
this Fe3W3C based compound can be formed above 1000 °C [41–43]. 
In Fig. 2b the obtained fraction of (Mn,Fe)3Si (impurity 1) (Fm-3m) 
[44] and Fe3W3C (impurity 2) based impurity phases shows that W 
doping significantly reduces (Mn,Fe)3Si from 6.2 (x = 0.00) to 0 
(x = 0.05) wt%, while Fe3W3C starts to appear from x = 0.03 and keeps 
increasing with the W concentration. As indicated in Fig. 2c it is 
observed that the c/a ratio linearly increases for x ≤ 0.02. The fluc-
tuations for higher concentrations could be ascribed to a competi-
tion between impurity 1 and 2. It is worth to note that for this 
hexagonal ferromagnet the c/a ratio is closely associated to the 
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Fig. 1. (a) Specific heat derived from DSC experiments for Mn0.6Fe1.27-xWxP0.64Si0.36 (x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05) materials upon heating and cooling. The inset is the 
changes of TC

heating, TC
cooling and ∆Thys as function of the W content. (b) Isofield M-T curves for different alloys at 1 T. The inset shows the corresponding M-H curves at 5 K. (c) 

Derived dM/dT curves for different W contents. (d) Calculated absolute ∆Sm values. (e) Comparison of absolute ∆Sm between the Maxwell calculation and calorimetric DSC 
measurements under low field changes. (f) Derived ∆Tad values for low W contents. Note that solid and open symbols are for ∆μ0H = 1.0 and 1.5 T, respectively.

Fig. 2. (a) Refined XRD pattern (PM state) for the Mn0.6Fe1.22W0.05P0.64Si0.36 sample. (b) Fraction of impurity phases for different W contents. (c) Derived c/a ratio and unit-cell 
volume V for different W contents. (d) Calculated Ef for different site-occupation models of W doped (Mn,Fe)2(P,Si) based materials.
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strength of the magnetoelastic coupling [45–47]. The increase in c/a 
ratio (c axis expands and ab plane shrinks) indicates the weakened 
magnetic exchange interactions between the magnetic Mn/Fe atoms, 
which consequently lead to a reduction in TC. The continuous in-
crease in unit-cell volume indicates that the W atoms enter the 
matrix substitutionally, reflecting the bigger atomic covalent radius 
for W (r = 1.62 Å) in comparison with Fe (r = 1.32 Å) [48].

For highly ordered crystalline materials the precise atomic oc-
cupancy is indispensable for its own physical functionalities, for 
example the correlation between the ordering and GMCE 
[11,12,38,49,50]. Although X-ray diffraction cannot resolve the oc-
cupancy of Mn/Fe, the heavy element W can be clearly distinguished 
from Fe/Mn. It is found that W is located at the 3 g site rather than 
the 3 f site. In Fig. 2d the Ef obtained from DFT calculations for dif-
ferent site-occupation models of W doped (Mn,Fe)2(P,Si) materials is 
shown. The data clearly indicate that W prefers to occupy the sub-
stitutional 3 g(Fe) site. The non-magnetic W substitution for Fe will 
dilute the magnetic moments, which is in good agreement with the 
reduced magnetization indicated in Fig. 1b and found in the DFT 
calculations. The TC

cooling, TC
heating, ∆Thys, lattice parameters a and c, c/ 

a ratio, unit-cell volume V and phase fractions (impurity 1 and 2) for 
the Mn0.6Fe1.27-xWxP0.64Si0.36 (x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05) 
materials are summarized in Table 1.

As shown in Fig. 3, microstructural information has been ob-
tained by applying SEM measurements. In Fig. 3a the microstructure 
for the x = 0.01 sample does not show W-based impurities but only 
cracks/holes/SiO2 which are frequently generated for this quaternary 
alloy system [51]. Note that the trace amount of SiO2 might be in-
duced from the raw Si powder. In Fig. 3b it is clearly found that in the 
compound with x = 0.05 a dendritic-shaped W-based impurity phase 
is randomly distributed within the matrix with an average diameter 
of several μm (inset). This concomitant W-based impurity is detri-
mental to the mechanical properties. The EDX point scanning is 
applied to further establish the chemical composition of the dif-
ferent phases. The main phase is determined as Mn0.73(5)Fe1.38(6) 

P0.56(2)Si0.33(1)Wx (W below the detection limit). To determine the 
content of doped W within the matrix, EPMA measurements were 

applied. The chemical composition for the matrix phase of the 
x = 0.05 sample is found to be Mn0.65(2)Fe1.30(4)P0.60(1)Si0.43(7)W0.021(1). 
The lower concentration of the W dopant in main phase is expected 
to result from a limitation in the maximum W doping content for the 
higher W doped samples (x  >  0.02). This is in agreement with the 
XRD results of the variation in unit-cell volume with the W doping 
content in Fig. 2c. Compared with the composition of the cubic W- 
based impurity ((Fe2.4W3Mn0.5P0.1Si0.9)Cx) extracted from SEM-EDX, 
the corresponding impurity composition for x = 0.05 sample is 
quantified from EPMA as Fe2.7W3Mn0.5P0.1Si1.2C1.2.

For this (Mn,Fe)2(P,Si) based MCM family with a magnetoelastic 
coupling the GMCE properties are controlled by the competition 
between the strong ferromagnetic exchange interaction and cova-
lent bonding, which has been observed experimentally and theore-
tically (known as the so-called “mixed magnetism”) [8,46,47]. For 
the present case, on the one hand, TC is continuous reduced in-
dicating the weakened exchange interactions among the magnetic 
atoms. The decreased intra-layer spacing for low content doping of 
W (x ≤ 0.02) could potentially strengthen the covalent bonding be-
tween metallic – metallic and metallic – nonmetallic atoms due to 
an increase in orbital overlap between the outer electrons. This 
competition could be responsible for the relatively stable GMCE 
(x ≤ 0.02), as presented in Fig. 1e–f. For x ≥ 0.03 the GMCE perfor-
mance is gradually degraded due to the appearance of the cubic 
Fe3W3C based impurity phase. Compared to the related Mo (4d 
transition metal), W doping in (Mn,Fe)2(P,Si) MCMs behaves com-
pletely different. Mo substitution continuously reduces ∆Thys and 
attenuates the GMCE performance [18], while W substitution 
(x ≤ 0.02) conserves ∆Thys at a very low level and maintains the 
GMCE. The difference could be ascribed to the difference in electron 
configuration between Mo ([Kr] 5s14d5) and W ([Xe] 6s24f145d4). 
Although they contain the same number of valence electrons (ev = 6), 
Mo may more easily form an effective p-d hybridization with me-
talloids (P/Si) because its 4d energy level is markedly lower than the 
5d energy level [52], which could lead to a weaker p–d hybridization 
for W. Meanwhile, the microstructural changes among different 

Table 1 
Summary of TC

cooling, TC
heating, ∆Thys, lattice parameters a and c, c/a ratio, unit-cell volume V and impurity fractions for Mn0.6Fe1.27-xWxP0.64Si0.36 (x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05) 

materials. 

Sample Tccooling (K) Tcheating 

(K)
∆Thys (K) a (Å) c (Å) c/a V (Å3) Impurity 1 (wt%) Impurity 2 (wt%)

x = 0.00 326.0 331.0 5.0 6.0277(1) 3.4296(5) 0.5690(1) 107.91(3) 6.2(3) 0
x = 0.01 312.1 317.0 4.9 6.0251(2) 3.4364(1) 0.5704(1) 108.04(1) 2.3(1) 0
x = 0.02 302.6 307.7 5.1 6.0216(1) 3.4432(5) 0.5718(2) 108.12(3) 1.7(2) 0
x = 0.03 301.8 306.7 4.9 6.0234(1) 3.4404(3) 0.5712(1) 108.10(1) 0.9(1) 0.07(3)
x = 0.04 286.2 292.0 5.8 6.0187(3) 3.4460(4) 0.5726(1) 108.10(1) 0.3(1) 0.79(4)
x = 0.05 266.7 281.3 14.6 6.0237(4) 3.4476(4) 0.5723(1) 108.34(1) 0 1.27(5)

Fig. 3. (a) Back-scattered SEM image for the Mn0.6Fe1.26W0.01P0.64Si0.36 alloy. (b) Back-scattered SEM image for the Mn0.6Fe1.22W0.05P0.64Si0.36 alloy at the same magnification as (a). 
The inset shows the enlarged Fe3W3C based impurity phase.
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competitive phases should also affect the influence of W substitu-
tion on the (Mn,Fe)2(P,Si) based MCMs.

4. Conclusions

In summary, the effect of doping with the 5d element W has been 
studied for Fe-rich (Mn,Fe)2(P,Si) based MCMs, and its influence on 
the thermodynamic properties, magnetic properties, crystalline 
structure and microstructure have been investigated. Compared 
with other metallic and non-metallic elements doping on this ma-
terial system, which simultaneously move TC and ∆Thys, it is found 
that low content W substitution (x ≤ 0.02) can only decrease TC 

without influencing ∆Thys. Though W doping does not further im-
prove the MCE performance like other dopant, it is interesting to 
note that compared with the undoped material, low content W 
doping (x ≤ 0.02) conserves the GMCE properties (|ΔSm| and ∆Tad), 
while for higher content W doping (x ≥ 0.03) the corresponding 
properties are continuously weakened due to the formation of a 
Fe3W3C based impurity phase observed in XRD, SEM and EPMA. 
Therefore the 5d W doping (low content) maybe beneficial for de-
signing the AMR bed materials. Combining XRD measurements and 
DFT calculations, the W atoms are found to substitutionally occupy 
the 3 g(Fe) site. The competition between the magnetic exchange 
interactions and covalent bonding among different metallic and 
nonmetallic elements, is expected to be responsible for the observed 
behavior (tunable decrease in TC, constant low value for ∆Thys and 
the conserved MCE upon W doping).
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