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A generalised analytical framework for active earth pressure on retaining
walls with narrow soil

FENGWEN LAI�, NINGNING ZHANG†, SONGYU LIU‡ and DAYU YANG§

Active earth pressure on retaining structures supporting a narrow column of soil cannot be properly
analysed using Coulomb’s theory. Finite-element limit analysis (FELA) shows that the soil forms
multiple failure surfaces if the soil column is sufficiently narrow. This paper proposes a framework for
active earth pressure estimation for narrow soils by combining an arched differential element method
and a sliding wedge method. The analytical framework considers both soil friction and cohesion, soil
arching effects and shear stress between adjacent differential elements. The solution obtained is
validated against experimental data and FELA results. Through parametric studies, the effects on the
active earth pressure of the aspect ratio, soil friction, soil cohesion andwall–soil interface roughness are
examined. To facilitate the use of the proposed framework in design, a modified active earth pressure
coefficient and an application height of active thrust are provided.

KEYWORDS: analytical approach; earth pressure; finite-element limit analysis; limit equilibrium methods;
narrow soil; retaining structure; retaining walls; soil arching

INTRODUCTION
As a common type of geotechnical infrastructure, retaining
walls have been widely constructed to maintain the stability
of soils behind the retaining structures. When designing a
retaining wall, of concern is determining the active earth
pressure exerted by the retained soil. The traditional
Coulomb and Rankine earth pressure theories have been
used widely to estimate the active earth pressure on retaining
walls; to improve the accuracy of those theories in design,
several analytical approaches based on limit equilibrium
theory have also been proposed, such as the differential
element method (Paik & Salgado, 2003), the slice method
(Zhu & Qian, 2000) and the slip line method (Liu & Wang,
2008). Most of these approaches assume that (a) the rupture
of the backfill behind awall involves only one slip surface and
(b) the failure body is a single intact triangular thrust wedge.
However, in some practical cases (e.g. highways in mountai-
nous terrain, backfilled stopes, twin adjacent excavations,
excavation near basement walls, excavation near pile groups),
as shown in Fig. 1, a retaining wall has to be constructed near
an existing structure, thereby limiting the width of the soil
behind it. Consequently, the assumed single triangular thrust
wedge cannot theoretically form in shape and size, and more
than one slip surface is likely to form in the narrow soil
behind the retaining wall.
It is essential to understand experimentally the underlying

load transfer mechanisms in narrow backfills behind

retaining walls. Extensive experimental studies (Frydman &
Keissar, 1987; Take & Valsangkar, 2001; O’Neal & Hagerty,
2011) have revealed the non-linear distribution of active earth
pressure on retaining walls with narrow granular backfills,
which was attributed to the soil arching effect as proposed by
Terzaghi (1943). However, because of the complexities
involved, the relevant laboratory research has developed
comparatively slowly and insufficiently, focusing mostly on
purely frictional soils and with very little testing of cohesive
soils.
Numerical modelling is a powerful tool for studying the

failure mechanism of retained soils and the problem of earth
pressure, effectively overcoming the practical difficulties of
repeating experimental tests. It can facilitate efficient incor-
poration of wall movements in the modelling process (Fan &
Fang, 2010; Li et al., 2017), but the displacement-based
finite-element method used for continuum materials and the
discrete-element method for granular materials are relatively
time-consuming. Instead, the recently developed computer-
aided finite-element limit analysis (FELA) (Sloan, 2013) can
handle extremely complex boundaries with high efficiency.
Benefiting from this advantage, FELA has been used to
interpret the failure mechanism of retaining walls with
narrow backfill (Chen et al., 2019), and the present study
also uses the FELA technique to observe the number and
shape of slip surfaces in narrow soil.
Analytical approaches have prevailed, benefitting from

their advantage of allowing load transfer mechanisms (e.g.
soil arching) and failure mechanisms (e.g. number and shape
of slip surfaces) to be considered in designs. Frydman &
Keissar (1987) suggested the slip line method to determine
the earth pressure/thrust on retaining walls with narrow soil;
this method estimates relevant centrifuge results satisfac-
torily, but its complexity limits its wider practical use. To
improve the applicability of analytical approaches in narrow
retained soils, researchers have presented two representative
limit equilibrium methods with relatively simple formu-
lations – namely, the sliding wedge method (Greco, 2013)
and the horizontal differential element method (Chen et al.,
2017). The first method allows complex failure mechanisms
with multiple slip surfaces, but it cannot consider properly
the principal stress rotation caused by the soil arching effect

� Institute of Geotechnical Engineering, Southeast University,
P. R. China; also Faculty of Civil Engineering and Geosciences,
Delft University of Technology, the Netherlands
(Orcid:0000-0002-9045-0659).
† Institute of Geomechanics and Underground Technology, RWTH
Aachen University, Germany (Orcid:0000-0003-3425-8926).
‡ Institute of Geotechnical Engineering, Southeast University,
P. R. China (Orcid:0000-0002-8135-3806).
§ Institute of Geotechnical Engineering, Southeast University,
P. R. China (Orcid:0000-0002-5811-5690).

Manuscript received 27 September 2021; revised manuscript
accepted 30 September 2022.
Discussion on this paper is welcomed by the editor.

1

Lai, F. et al. Géotechnique [https://doi.org/10.1680/jgeot.21.00305]

Downloaded by [ TU Delft Library] on [22/11/22]. Copyright © ICE Publishing, all rights reserved.

http://orcid.org/0000-0002-9045-0659
http://orcid.org/0000-0002-9045-0659
http://orcid.org/0000-0003-3425-8926
http://orcid.org/0000-0002-8135-3806
http://orcid.org/0000-0002-5811-5690
https://doi.org/10.1680/jgeot.21.00305


(Handy, 1985). By contrast, the differential element method
addresses this limitation by discretising the thrust wedge into
a number of horizontal elements, but it also has certain
limitations: (a) horizontal shearing stresses between adjacent
elements are always neglected during the integration of
horizontal soil elements, which may lead to overestimated
earth pressure/thrust (Cao et al., 2020); (b) a lateral stress
ratio at the wall using the average vertical stress across a given
differential element instead of the real vertical stress on the
wall has to be introduced to estimate the lateral earth
pressure, thereby resulting unavoidably in some deviations
from reality (Paik & Salgado, 2003); and (c) this method is
typically restricted to soils with one slip surface.

The existing analytical approaches were proposed mainly
for cohesionless soils, so they cannot be used properly for
cohesive soils, such as clays and silts, which are common
types of retained soil. Therefore, the objective herein is to
propose an analytical framework for determining the active
earth pressure on retaining walls with narrow cohesive–
frictional soil by way of an overall consideration of soil
cohesion, soil arching, horizontal shearing forces between
adjacent differential elements and complex failure patterns.
The aim of this analytical framework is to introduce a novel
method – the arched differential element (ADE) method – to
tackle directly the principal stress rotation induced by soil
arching and consider the horizontal shearing forces between
adjacent elements. The ADE method requires only simple
mechanical equilibrium equations to solve for the lateral
earth pressure, without the need to introduce the lateral stress
ratio that is required in the horizontal differential element
method (Paik & Salgado, 2003). The principles of the sliding
wedge method are also used to allow for multiple failure
surfaces. Overall, the present analytical framework is a
generalised one that calculates more accurately the earth
pressure exerted by narrow soil behind a retaining wall,
benefitting from the artful combination of the sliding wedge
method and the ADE method.

The present work is organised as follows. First, FELA
models are created to identify the complex active failure
mechanisms of the narrow soil behind the wall. Based on
that, the calculation model combining the ADE method and
the sliding wedge method is established. The active earth

pressure, σw, the active thrust Ea and its application height zs
are formulated considering soil arching, the horizontal
shearing force and multiple slip surfaces. The proposed
analytical framework is validated against previously pub-
lished results and numerical solutions, and the influences of
key design parameters on σw, Ea and zs are discussed. Finally,
simplified design equations are proposed for practical use.

ACTIVE FAILURE MECHANISMS
Problem definition and FELA model details
FELA is a numerical approach used for limit analysis,

combining classical plasticity theorems with finite-element
discretisation. Using FELA programs, typical stability
problems in geotechnical engineering can be solved quickly,
even under complex geometric loading and boundary
conditions (Sloan, 2013). In the present study, the
state-of-the-art FELA program Optum G2 (Krabbenhoft
et al., 2015) is used to obtain the general failure modes of
narrow retained soils. In Optum G2, the true collapse load is
determined by narrowing the upper bound (UB) and lower
bound (LB) plasticity solutions using second-order cone
programming.
The active response of narrow soil was studied numerically

by means of the problem defined in Fig. 2. Two vertical rigid
retaining walls with height H were used to support the
homogeneous cohesive–frictional soil with width B. The
backfill material in the numerical model was selected as
clayey fill with unit weight, γ, cohesion, c, and friction angle,
ϕ (Table 1). The clayey backfill under drained conditions was
simulated using an elastic, perfectly plastic Mohr–Coulomb
(MC) model. The roughness of the wall–soil interface is
characterised by a roughness factor μ such that the interface
friction angle δ is given by tan δ= μtanϕ (Sheil &
Templeman, 2022). From the MC failure criterion, the
shear strength of the interface satisfies

τw ¼ μτs ¼ μ cþ σw tan ϕð Þ ¼ tan δ aþ σwð Þ ð1Þ
where a= ccotϕ; τw and τs are the shear strengths of the
wall–soil interface and the retained soil, respectively; and σw
is the normal stress on the interface (the lateral earth pressure
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Fig. 1. Examples of retaining walls with narrow soils/backfills: (a) Rankine/Coulomb failure plane in backfills of semi-infinite space; (b) montane
highway; (c) backfilled stope; (d) twin adjacent excavations; (e) excavation near basement; and (f) excavation near pile group
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on the wall). Herein, μ is also defined as a reduction factor of
interface strength.
It is known that FELA inherently employs an associated

flow rule that may be unrealistic for soils. However, although
previous work (Schmüdderich et al., 2022) has confirmed
that the influence of the flow rule (associated or non-
associated) on the earth pressure problem may be larger
than expected, the present work uses the FELA technique
mainly to identify the failure modes for narrow soils.
Therefore, the use of associated plasticity is acceptable
for numerical observations because the shear band for
non-associated material tends to be somewhat more localised
than for associated material (Tschuchnigg et al., 2015). The
influence of the flow rule on active earth pressure will be
discussed further below.
To obtain an active soil failure induced by translational

wall movement, the right-side wall was fully fixed, and the
left-side wall was allowed to translate only horizontally by
prescribing displacements on it. Moreover, the bottom of the
soil domain was restrained in both the horizontal and vertical
directions, while the top was free. An adaptively refined mesh
was generated automatically in FELA to observe the failure
modes; during the iterations, an initial mesh with 5000
elements was increased to a final mesh with 10 000 elements
after automatic adaptivity.

Observations: shape and number of slip surfaces
Figure 3 presents the FELA observations of the failure

mechanism of retaining walls with narrow soil. In Fig. 3(a),

three distinct failure mechanisms can be observed: (a) if
B/H� 0·6, only one triangular thrust wedge with the slip
surface initiating from the left-side translational wall base to
the backfill surface is present, and the failure mode is referred
to as M1; (b) if B/H=0·4, the slip surface intersects with the
right-side wall forming a trapezoidal thrust wedge, and this is
denoted as the M2 failure mode; (c) if B/H� 0·2, more than
one slip surface forms in the narrower backfill space – the
first slip surface initiates from the bottom left corner and is
reflected by the boundary walls to form more slip surfaces;
this mode is defined as M3.
It is well known that soil cohesion plays a vital role in earth

pressure problems of retaining structures and determining the
plastic yielding zone. However, it has little effect on the shape
and numberof final slip surfaces of retainingwallswith narrow
backfills, as demonstrated in Fig. 3(b). In Fig. 3(c), all the
scenarios studied in the narrow soil have the M3 failure mode,
irrespective of the variation of soil friction angle. This is also
seen with the change of roughness factor, except for the fully
rough wall–soil interface (μ=1) where only one slip surface
forms (Fig. 3(d)). The shapes of the slip surfaces appear to
straighten froma slight archwith both increasing friction angle
(Fig. 3(c)) and decreasing roughness factor (Fig. 3(d)). It can
also be seen that the sliding angle of the slip surface (α) is
relevant mainly to the friction behaviour of backfill materials.
Based on the cases presented in Fig. 3, Table 2 gives the

number of slip surfaces induced in narrow cohesive–frictional
soils and the corresponding failure mode of more cases
covering an extended combination of B/H, ϕ and μ. The
influence of soil cohesion – which is negligible as demon-
strated in Fig. 3(b) – is not included in Table 2, from which it
can also be found that multiple slip surfaces form frequently
in a narrower soil column in an active limit state.
The sliding angle can be predicted well using Coulomb’s

theory (Wang, 2000), as

α ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2ϕþ tan ϕ

tan ϕþ δð Þ

s
þ tan ϕ

 !
ð2Þ

To verify this, equation (2) is used to draw a planar initial
slip surface shown by a dashed line with angle α, and a better
overlap between the real and predicted slip surfaces can be
observed in Fig. 3. Thus, the failure patterns are identified
geometrically: M1 for B/H� cotα and M2 or M3 for
B/H, cotα.

Lateral
displacement

Translational
wall (rigid)

Stationary
wall

No adaptive mesh
refinement

(10 000 elements)

B B B

H H H

γ = 18·5 kN/m3

φ = 30�
μ = 0·65
ν = 0·30
K0 = 0·50

E0= 12·0 MPa
c = 5·0 kPa

(a) (b) (c)

Fig. 2. Finite-element limit analysis under plane-strain condition: (a) numerical model; (b) mesh with no adaptive refinement; and (c) adaptively
refined mesh

Table 1. Model parameters of cohesive–frictional soil adopted in
FELA

Soil parameter Value Reference

Unit weight, γ: kN/m3 18·5 Data from Chen
et al. (2016)Young’s modulus, E0: kPa 12 000

Poisson’s ratio, ν 0·30
Cohesion, c: kPa 5·0
Friction angle, ϕ: degrees 30·0
Wall–soil interface roughness

factor, μ: degrees
0·65

Earth pressure coefficient at
rest, K0

0·50
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According to the FELA observations, the shape and
number of slip surfaces of narrow cohesive–frictional soils are
governed by the aspect ratio, soil friction angle and wall–soil
interface friction angle, and are barely affected by soil
cohesion. Moreover, the results confirm that multiple slip
surfaces (M3) form frequently in narrow soils under active
thrust conditions for B/H, cotα, which has to be considered
for the routine design of retaining walls with narrow backfills.
Note that although FELA is very fast and efficient for

studying the earth-pressure problem, geo-engineers always
desire an equally important analytical solution. Therefore, a
generalised and design-oriented analytical framework is
proposed in the following, which can be used efficiently in
the design of retaining walls with narrow cohesive–frictional
soils. The FELA results serve as a basis for establishing a
sound calculation model and in turn provide validation in the
case of cohesive–frictional materials.

PROPOSED ANALYTICAL FRAMEWORK
Calculation model
To consider the complex failure mechanisms of narrow

retained soils, a calculation model comprising an upper
plugging zone ‘cdef’ with no internal visible shear bands
and a lower sliding zone ‘abfe’with one or more internal shear
bands is proposed (Fig. 4). The lower zone allows one or more
planar slip surfaces as determined by the sliding wedge
method, while the ADE method is used in the upper zone
to consider the principal stress rotation induced by the soil
arching effect. The interaction between the upper and lower
zones requires only imposing the uniform vertical stress
obtained from the base of the upper zone on the top of the

B/H
=0·1
(M3)

φ = 20�
(M3)

φ = 25�
(M3)

φ = 30�
(M3)

φ = 35�
(M3)

φ = 40�
(M3)

μ = 0·2
(M3)

μ = 0·4
(M3)

μ = 0·6
(M3)

μ = 0·8
(M3)

μ = 1·0
(M3)

B/H
=0·2
(M3)

B/H = 0·4
(M2)

B/H = 0·6
(M1)

B/H = 0·8
(M1)

c/γH
= 0·00
(M3)

c/γH = 0·027

φ = 30�
μ = 0·65
(δ = 21�)

B/H = 0·2

c/γH
= 0·05
(M3)

c/γH
= 0·10
(M3)

c/γH
= 0·15
(M3)

c/γH
= 0·20
(M3)

Base model
parameters:

α α

αα

(a) (b)

(c) (d)

Fig. 3. Failure modes of narrow cohesive–frictional soils under various influencing factors: (a) aspect ratio B/H; (b) dimensionless soil cohesion
c/γH; (c) soil friction angle ϕ; and (d) wall–soil interface roughness factor μ

Table 2. Number of slip surfaces formed in narrow cohesive–frictional
soils

B/H ϕ:
degrees

δ= ϕ/5 δ=2ϕ/5 δ=3ϕ/5 δ=4ϕ/5 δ= ϕ

0·1 20 5 4 3 2 1
25 4 4 3 2 1
30 4 4 3 2 1
35 4 4 3 2 1
40 4 3 3 2 1

0·2 20 3 2 2 2 1
25 2 2 2 2 1
30 2 2 2 2 1
35 2 2 2 1 1
40 2 2 2 1 1

0·4 20 1 1 1 1 1
25 1 1 1 1 1
30 1 1 1 1 1
35 1 1 1 1 1
40 1 1 1 1 1

0·6 20 1 1 1 1 1
25 1 1 1 1 1
30 1 1 1 1 1
35 1 1 1 1 1
40 1 1 1 1 1

0·8 20 1 1 1 1 1
25 1 1 1 1 1
30 1 1 1 1 1
35 1 1 1 1 1
40 1 1 1 1 1

Note: darkest shade=M1, one slip surface with triangular thrust
wedge.
Middle shade=M2, one slip surface with trapezoidal thrust wedge.
Lightest shade=M3, multiple slip surfaces.
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lower zone, as will be explained fully below. The calculation
model involves the following basic assumptions: (a) the narrow
soil is homogeneous, isotropic and cohesive–
frictional, following the MC failure criterion; (b) the soil
mass retained by the two vertical rigid walls is in a limit
equilibrium state; (c) the wall displacement is sufficiently large
to mobilise fully the strength of the wall–soil interface; (d) all
the slip surfaces that develop from both the left-side and
right-side boundaries are planar and have an identical sliding
angle α as predicted by Coulomb’s theory (equation (2)) with
respect to the horizontal dotted lines inside the soil mass
(Fig. 4); (e) the full tension cut-off criterion (i.e. negative earth
pressure is fully cut off) is used to account for the effect of soil
cohesion on the earth pressure, which implicitly means that a
crack may form between the wall and the uppermost part of
the soil, hence zero earth pressure in the tension zone.
In Fig. 4, H0 is the height of the upper plugging zone, and

Hnk is the height of the kth (from top down) of n slip surfaces
involved in the lower sliding zone. The geometrical relations
give

Hnk ¼ B tan α; k [ 1; . . . ; n

H0 ¼ H � nB tan α

(
ð3Þ

For retaining structures, the direction of minor principal
stress rotates as induced by soil arching and wall friction, and
the major principal stress involved is normal to it, as observed
in Fig. 5(a) from the FELA results in the upper zone. Such
rotation trajectories of minor principal stress have been
described approximately as elliptic, catenary, parabolic, or
circular arc shaped curves (Handy, 1985; Paik & Salgado,
2003; Xie & Leshchinsky, 2016). Of these, the circular arc
trajectory is widely accepted because of its ease of mathemat-
ical description and its better approximation of principal stress
rotation (Fig. 5(a)), while the major principal stress involved is
applied normal to the circular arc. Therefore, a circular arc
curve is used to describe the rotation trajectory of minor
principal stress in the proposed framework. More details of
minor principal stress rotation in retained soils can be found in
Paik & Salgado (2003) and Xie & Leshchinsky (2016).

Upper plugging zone
Figure 5(b) shows further the rotation trajectory of minor

principal stress in the theoretical aspect. Accordingly, the

rotation trajectory of minor principal stress can be concep-
tualised as an arched element. Inspired by this concept, the
soil domain in the upper zone can be discretised into a finite
number of ADEs (see Fig. 5(c)). From a mechanical
perspective, only major and minor principal stresses act on
the upper and lower boundaries of ADEs. It follows that the
horizontal shear stress in soil can inherently be considered in the
arched element, which, however, is always neglectedwhen using
the horizontal differential element method (Chen et al., 2017).
A force analysis model of the arched soil layer element

(ACC′A′) with thickness dz at depth z is established in
Fig. 5(d). The width B of the element can be expressed as

B ¼ 2RAC cos θw ¼ 2RA′C′ cos θw ð4Þ
where both RAC andRA′C′ are the radii of the minor principal
stress trajectory, and θw is the angle of the minor principal
plane on the wall with respect to the horizontal (π/2� θw
corresponds to the rotation angle of the major/minor
principal stresses).
The angle θw in soils can be obtained using

θw ¼ arctan
N � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1ð Þ2 � 4Ntan2δ

q
2 tan δ

2
4

3
5 ð5Þ

where N is the ratio of major to minor principal stress and θw
is required to be within π/2. The MC failure criterion gives

N ¼ σ01 þ a
σ03 þ a

¼ tan2 45°þ ϕ

2

� �
ð6Þ

For the detailed formulation process of θw, refer to Tu &
Jia (2014). Fig. 5(a) and equation (5) show that the angle θw
is governed by the soil friction angle and the wall–soil
interface friction angle and is independent of the wall depth
z. The same applies to RAC and RA′C′ from equation (4).
It is assumed that within a specific arched element, the

vertical stress σiv at an arbitrary point i on the upper boundary
arc AC increases linearly with relative buried depth ΔzAi:

σiv ¼ σ0v þ γΔzAi ð7Þ
where ΔzAi ¼ RAC sin θi � sin θwð Þ is the relative buried depth
between points A and i; θi is the rotation angle of minor
principal stress at point i; and σ0v is the vertical stress on the
wall.
Considering the MC failure criterion in combination with

Mohr’s circle for plane stress (Fig. 6), the vertical stresses σiv
and σ0v can be converted into the major principal stresses σi1
and σ01 using

ðσi1 þ aÞCi
1 ¼ σiv þ a ð8Þ

ðσ01 þ aÞC1 ¼ σ0v þ a ð9Þ
where

Ci
1¼ sin2 θi þ cos2θi

N
ð10Þ

C1¼ sin2 θw þ cos2θw
N

ð11Þ

Substituting equations (8) and (9) into equation (7) gives
σi1 as

σi1 ¼
C1

Ci
1

σ01 þ
aC1 þ γðsin θi � sin θwÞRAC

Ci
1

� a ð12Þ

d

e f

c

α

α

α

α

B
a b

Upper
plugging zone:
cdef

Lower
sliding zone:
abef

H0

H1

H

Hn(n–1)

Hn(n)

Fig. 4. Calculation model composed of upper plugging zone and lower
sliding zone
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For an arched element, only the normal stress σi1 is
imposed on the upper and lower boundaries AC and A′C′,
while the normal and tangential stresses are exerted on the
lateral boundaries AA′ and CC′. It follows that the vertical
force acting on the upper boundary arc AC can be obtained
by integrating σi1sinθi along the trajectory as

FAC
z ¼ 2

ðπ=2
θw

σi1sinθiRACdθi ð13Þ

Substituting equation (12) into equation (13) yields

FAC
z ¼ C2RACσ

0
1 þ f θið Þjπ=2θw

ð14Þ
where C2 and f θið Þjπ=2θw

are

C2 ¼ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N � 1

r
ln

1þ cos θw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þ=Np

1� cos θw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þ=Np

" #
ð15Þ

f θið Þjπ=2θw
¼2
ðπ=2
θw

C1aþ γ sin θi � sin θwð ÞRAC

Ci
1

� a

" #
RAC sin θidθi

¼2γR2
AC

π 1� ffiffiffiffiffi
N

p� �
2 1�Nð Þ �Nθw � ffiffiffiffiffi

N
p

arctan
ffiffiffiffiffi
N

p
tan θw

� �
1�N

� �

� γ sin θwC2R
2
AC

C1
� a cos θwRAC

ð16Þ

Similarly, the vertical force acting on the lower boundary
arc A′C′ can be given as

FA′C′
z ¼ C2RA′C′ðσ01 þ dσ0

1
Þ þ f θ′ið Þjπ=2θw

ð17Þ
and herein f θ′ið Þπ=2θw

¼ f θið Þjπ=2θw
because RA′C′ =RAC .

Because of the symmetry, the vertical forces on the lateral
boundaries AA′ and CC′ can be determined as

FAA′
z ¼ FCC′

z ¼ τwdz ð18Þ
and the total gravity of the arched element can be expressed
as

G ¼ γBdz ð19Þ
According to the vertical equilibrium of one arched soil

layer element, the following governing equation can be
established

FA′C′
z � FAC

z þ FAA′
z þ FCC′

z ¼ G ð20Þ
Substituting equations (4), (14) and (17)–(19) into

equation (20) leads to

dσ0
1

dz
þ 4C3 cos θw tan δ

C2B
σ01 þ

ð4C3μc� 2γBÞ cos θw
C2B

¼ 0 ð21Þ
where

C3 ¼ cos2 θw þ sin2θw
N

ð22Þ

Considering σ0
1
= 0 at z=0, the major principal stress on

the interface for an ADE at depth z can be obtained as

σ01 ¼
C5

C4
e�C4z � 1
� � ð23Þ

where

C4 ¼ 4C3 cos θw tan δ
C2B

ð24Þ

C5 ¼ ð4C3μc� 2γBÞ cos θw
C2B

ð25Þ

Mohr’s stress circle gives

σuw ¼ C3ðσ01 þ aÞ � a ð26Þ
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Fig. 5. Calculation model in upper plugging zone: (a) numerical observation principal stress rotation; (b) conceptualisation of arched element
along rotation trajectory; (c) discretising narrow soils into arched elements; and (d) force analysis on the arched element

τ' τ

τf

τw

c

O
O'

BA
i

PB

Pi PC

PA

C

a = c cotφ

σu
w

σu
w

σ0
v

σ0
v σ i

vσu
w

τw

τw

τw

σw

σ0
1

σ i
1

σ0
3 σ3

σ0
3

σ0
3

σ0
1

σ0
1θw

θi

δ

φ

σ

Fig. 6. Mohr circle for stress at various points

LAI, ZHANG, LIU ANDYANG6

Downloaded by [ TU Delft Library] on [22/11/22]. Copyright © ICE Publishing, all rights reserved.



and the active earth pressure against the wall in the upper
plugging zone can be determined by substituting equation
(23) into equation (26) to give

σuw ¼ C3C5

C4
e�C4z � 1
� �þ a C3 � 1ð Þ ð27Þ

Lower sliding zone
Figure 4 presents a calculation model for the lower sliding

zone, obtained by imposing a vertical resultant force Fz that
can be discretised into the average uniform vertical stress σ̄v0
on the top to correlate with the upper plugging zone.
Therefore

σ̄v0 ¼ σ̄vjz¼H0
¼ Fz

B
ð28Þ

is defined in the model.
Based on the sliding wedge method, Fig. 7 shows the force

analysis of the sliding zone with one slip surface (n=1).

The dotted and solid lines represent the hypothetical and real
slip surfaces, respectively. The equilibrium equations for the
active thrust wedge W11 at arbitrary depth z can be
established using the sliding wedge method:

Thus, the resultant force on the wall for wedge W11 can be
solved for as

E11 ¼ cos δ σv0B1 þ G11 � C11ð Þ sin α� ϕð Þ � C12cosϕ½ �
cos α� ϕ� δð Þ ð30Þ

where G11 ¼ γB1h11=2, C11 ¼ μch11, C12 ¼ ch11=sinα, B1 ¼
h11=tanα, h11 ¼ zþ Btanα�H and H0 ¼ H � B tan α.

Figure 8 shows the force analysis of the sliding zone with
two slip surfaces (n=2). Similarly, the equilibrium conditions
for the forces on wedges W21 and W22 are

Equation (31) makes it possible to solve for the resultant
forces on the wall for wedges W21 and W22 as

where G21 ¼ γB2h21=2, C21 ¼ uch11, C22 ¼ ch21=sinα, B2 ¼
h21= tan α, h21 ¼ zþ B tan α�H, G22 ¼
γ Bh21 þ Bh22=2� B2h21=2ð Þ, C23 ¼ μc h21 þ h22ð Þ, C24 ¼
ch22=sinα, h22 ¼ B=tanα and H0 ¼ H � 2B tan α.

Figure 9 shows the force analysis of the sliding zone with
three slip surfaces, from which the equilibrium conditions for
the resultant forces on the wall for wedgesW31,W32 andW33
can be expressed as

E11 þ C12 þ R11 tan ϕð Þ cos α� R11 sin α ¼ 0

C11 þ E11 tan δþ C12 þ R11 tanϕð Þ sin αþ R11 cos α� G11 � σv0B1 ¼ 0

(
ð29Þ

H0

C11+ E11tanδ
C12+ R11tanφ

σv0

H1

B1

B

α

α αE11 R11

G11
h11

H

z

σv0

(a) (b)

Fig. 7. Calculation model in sliding zone for n=1: (a) geometric
configuration; (b) forces acting on wedge W11

E21 þ C22 þ R21 tan ϕð Þ cos α� R21 sin α ¼ 0

C21 þ E21 tan δþ C22 þ R21 tanϕð Þ sin αþ R21 cos α� G21 � σ̄v0B2 ¼ 0

E22 þ C22 þ R21 tan ϕð Þ cos αþ C24 þ R22 tan ϕð Þ cos α� R21 sin α� R22 sin α ¼ 0

C23 þ E22 tan δþ C24 þ R22 tanϕð Þ sin αþ R22 cos α� C22 þ R21 tan ϕð Þ sin α� R21 cos α� σ̄v0ðB� B2Þ � G22 ¼ 0

8>>>><
>>>>:

ð31Þ

E21 ¼ cos δ σv0B2 þ G21 � C21ð Þ sin α� ϕð Þ � C22cosϕ½ �
cos α� ϕ� δð Þ

E22 ¼ cos δ σv0Bþ G22 þ G21 � C23 � C21ð Þ sin α� ϕð Þ � C24cosϕþ E21cos α� ϕþ δð Þ½ �
cos α� ϕ� δð Þ

8>>>><
>>>>:

ð32Þ

E31 þ C32 þ R31 tan ϕð Þ cos α� R31 sin α ¼ 0

C31 þ E31 tan δþ C32 þ R31 tanϕð Þ sin αþ R31 cos α� G31 � σv0B3 ¼ 0

E32 þ C32 þ R31 tan ϕð Þ cos αþ C34 þ R32 tan ϕð Þ cos α� R31 sin α� R32 sin α ¼ 0

C33 þ E32 tan δþ C34 þ R32 tanϕð Þ sin αþ R32 cos α� C32 þ R31 tan ϕð Þ sin α� R31 cos α� σ̄v0ðB� B3Þ � G32 ¼ 0

E33 þ C34 þ R32 tan ϕð Þ cos αþ C36 þ R33 tan ϕð Þ cos α� R32 sin α� R33 sin α¼0

C35 þ E33 tan δþ C36 þ R33 tanϕð Þ sin αþ R33 cos α� R32 cos α� C34 þ R32 tan ϕð Þ sin α� G33¼0

8>>>>>>>><
>>>>>>>>:

ð33Þ
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The resultant forces on the wall for the wedges can be
obtained by solving equation (33)

where G31 ¼ γB3h31=2, B3 ¼ h31= tan α, C31 ¼ μch31, C32 ¼
ch31=sinα, G32 ¼ γ Bh31 þ Bh32=2� B3h31=2ð Þ, C33 ¼

H0

H1

H2

B

B

H

z

h21

h22

σv0 σv0 σv0

α

α

C22+ R21tanφ

C23+ E22tanδ

C21+ E21tanδ

C22+ R21tanφ

C24+ R22tanφ

R21

B2

G21

G22

R22

E22

E21

R21

α

α

α

(a)

(b)

(c)

Fig. 8. Calculation model in sliding zone for n=2: (a) geometric configuration; (b) forces acting on wedge W21; (c) forces acting on wedge W22

H

H0

h31

h32

h33

H33
E33

C35 + E33tanδ

C31 + E31tanδ

C36 + R33tanφ
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C33
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R31
E31

B3
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B

H32

H31

z

B

α

α

α

α

α

σv0
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(a) (d)

(b)
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Fig. 9. Calculation model in sliding zone for n=3: (a) geometric configuration; (b) forces acting on wedge W31; (c) forces acting on wedge W32;
(d) forces acting on wedge W33

E31 ¼ cos δ σv0B3 þ G31 � C31ð Þsin α� ϕð Þ � C32cosϕ½ �
cos α� ϕ� δð Þ

E32 ¼ cos δ σv0Bþ G31 þ G32 � C31 � C33ð Þ sin α� ϕð Þ � C34cosϕþ E31cos α� ϕþ δð Þ½ �
cos α� ϕ� δð Þ

E33 ¼ cos δ σv0Bþ G31 þ G32 þ G33 � C33 � C35ð Þsin α� ϕð Þ � C36 cos ϕþ E32cos α� ϕþ δð Þ½ �
cos α� ϕ� δð Þ

8>>>>>>>><
>>>>>>>>:

ð34Þ
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μc h31 þ h32ð Þ, C34 ¼ ch32=sinα, G33 ¼ γBh33=2, C35 ¼
μc h31 þ h32 þ h33ð Þ, C36 ¼ ch33=sinα, h31 ¼ zþ B tan α�H,
h32 ¼ h33 ¼ B tan α and H0 ¼ H � 3B tan α.
As defined, k is the kth slip surface in the sliding zone with

n slip surfaces from the top down, thus 1� k� n. Using the
recurrence method and combining equations (29)–(34) gives
the resultant forces on the retaining wall for wedges formed
in the sliding zone for all cases
(a) when k= 1

En1 ¼ cos δ σv0Bn þ Gn1 � Cn1ð Þsin α� ϕð Þ � Cn2 cos ϕ½ �
cos α� ϕ� δð Þ

ð35Þ
where Gn1 ¼ γBnhn1=2, Cn1 ¼ ahn1tanδ, Cn2 ¼ chn1=sinα,
Bn ¼ hn1= tan α and hn1 ¼ zþ B tan α�H
(b) when k� 2

where

Xk
i¼1

Gni ¼ γB
Xk�1

i¼1

hnið Þ þ hnk
2

 !
ð37Þ

hnk ¼ B tan α ð38Þ
All the formulas for the resultant cohesion on the wedges

illustrated in Figs 7–9 are summarised as follows

C21 ¼ μch21

C23 ¼ a h21 þ h22ð Þ tan δ
C24 ¼ ch22= sin α

C31 ¼ μch31

C33 ¼ μc h31 þ h32ð Þ
C35 ¼ μc h31 þ h32 þ h33ð Þ
C36 ¼ ch33= sin α

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð39Þ

Again, using the recurrence method gives

Cn 2k�1ð Þ ¼ μc
Pk
i¼1

hnið Þ

Cn 2nð Þ ¼ chnn=sinα

8><
>: k [ 1; nð Þ ð40Þ

Substituting equations (37), (38) and (40) into equation
(36) gives

In the above analyses, using the sliding wedge method
gives the formulas for the resultant forces on thrust wedges in
retained soil with any number of slip surfaces. Subsequently,

the finite-difference theorem must be used to solve for the
lateral active earth pressure on the retaining wall in the lower
sliding zone, as shown in Fig. 10. The lower sliding zone is
divided into m inclined slices of equal thickness Δz; the ith
soil slice is abbreviated as Pi�1Pi, where the subscript i is the
slice number. If the active thrusts exerted by soil slices P0Pi�1
and P0Pi are Ei–1

a and Ei
a, respectively, then the active thrust

ΔEi
a on soil slice Pi�1Pi can be expressed as

ΔEi
a ¼ Ei

a � Ei�1
a ð42Þ

where Ei
a ¼ EnkðziÞ, zi ¼ iΔz and Δz ¼ H �H0ð Þ=m.

Accordingly, the active earth pressure on retaining walls
distributed in a sliding zone can be calculated using

σlwi ¼
ΔEi

a

Δz
ð43Þ

To calculate Ei
a on soil slice P0Pi at arbitrary depth z in the

sliding zone, a hypothetical calculation model is presented in
Fig. 11. Each inclined soil element comprises two postulated
slip surfaces, which according to the studied active failure
mechanism are assumed to be extended in the form of
reflections. It follows that equations (35) and (41) can be used
directly to obtain Enk(zi) at arbitrary depth z in the sliding
zone.
Finally, the variable σ̄v0 (or Fz) acting on the top of the

sliding zone can be determined using σuw¼σlwi at z=H0. The
solutions for the earth pressure in the upper and lower zones
can be given using the ADE method and the sliding wedge
method, respectively.

Active thrust and height of application point
Determining the magnitude and application point of

active thrust is fundamental because without them, it is
impossible to assess the stability of the retaining wall system
against overturning. The magnitude of active thrust on a
retaining wall with narrow cohesive–frictional soil can be
calculated using

Ea ¼
ðH0

0
σuwdzþ

Xm
i¼1

σlwiΔz ð44Þ

which can be rewritten in a dimensionless form as

Ka ¼ 2Ea

γH2 ð45Þ

where Ka is defined as the active thrust coefficient (the active
earth pressure coefficient in the framework of Coulomb’s
theory).

Enk ¼ cos δ
cos α� ϕ� δð Þ

σv0Bþ γB z�H þ k � 1
2

� �
B tan α

� �
� a 2z� 2H þ 2k � 1ð ÞB tan α½ �

	 

sin α� ϕð Þ

�c
B cos ϕ
cosα

þ Enðk�1Þ cos α� ϕþ δð Þ

8>><
>>:

9>>=
>>; ð41Þ

Enk ¼
cos δ σv0BþPk

i¼1 Gni � Cn 2k�3ð Þ � Cn 2k�1ð Þ
� �

sin α� ϕð Þ � Cn 2kð Þ cos ϕþ En k�1ð Þcos α� ϕþ δð Þ
h i

cos α� ϕ� δð Þ ð36Þ
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The height zs from the application point of active thrust to
the wall base is given by calculating the moment about the
wall base

zs ¼
ÐH0
0 σw H � zð ÞdzþPm

i¼1 σwi H �H0 � i � 0�5ð ÞΔz½ �Δz
Ea

ð46Þ
In the proposed framework, the input variables are c/γH, ϕ,

μ and B/H, while the output variables are σw (the earth
pressure at any wall depth), Ea (or Ka) and zs.

COMPARISON AND VALIDATION
Purely frictional soil

For validation, the proposed solutions are compared
with results from previously reported centrifuge tests,

finite-element modelling and analytical solutions in terms
of σw/γH on retaining walls supporting purely frictional
backfills (B/H=0·235) (Fig. 12(a)). Frydman & Keissar
(1987) conducted several groups of centrifuge tests at 43·7g in
narrow granular soils to measure the active earth pressure on
retaining walls, which can be used as the benchmark for
comparison; also, they used stress characteristic solutions
and Janssen’s silo formula (Janssen, 1895) for comparison.
Based on the prototype dimensions of the centrifuge test in
Frydman & Keissar (1987), Fan & Fang (2010) provided
numerical solutions for the active earth pressure against
retaining walls with B/H=0·235. Furthermore, considering
one, two and three planar slip surfaces, Greco (2013)
presented analytical solutions using only the sliding wedge
method without considering load transfer mechanisms (e.g.
soil arching, horizontal shearing forces).
Figure 12(a) shows that the proposed solutions agree well

with the results from centrifuge tests, finite-element model-
ling and stress characteristic solutions and so are highly
accurate for predicting σw/γH on retaining walls with narrow
backfills. The difference between the proposed analytical
solutions and those due to Greco (2013) indicates that
considering load transfer mechanisms in narrow soils behind
retaining walls is necessary for calculating accurately the
earth pressure on awall with limited backfill space. Although
Janssen’s solution matches the proposed solution well in the
upper plugging zone, there are significant variations in the
lower sliding zone; this is mainly because Janssen’s solution
cannot consider some significant factors (e.g. slip surface,
horizontal shear force) and so is preferable for estimating
at-rest pressure, as noted by Frydman & Keissar (1987).

Cohesive–frictional soil with non-associativity or associativity
To date, there are no reported tests or measured data for

retaining walls with narrow cohesive–frictional soil, so the
proposed analytical framework for calculating earth pressure
was further compared and verified with numerical solutions
using the FELA model parameters given in Table 1.
However, an immediate comparison between analytical
results and FELA solutions with the associated flow rule
(ψ= ϕ) is somewhat unconvincing because ψ= ϕ may be
unrealistic for soils, and the soil dilation angle ψ may
influence the earth pressure. To consider the non-associated
flow rule (ψ= ϕ) in the FELA model as much as possible,
the so-called Davis approach (Davis, 1968) with the reduced
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O
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i  + 1
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Fig. 10. Division of the thrust plane in sliding zone into m slices and
relevant force distribution
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Fig. 11. Method of solving earth pressure distribution in sliding zone based on finite-difference theory: (a) discretisation by assumed slip surfaces
for n=3; (b) calculation model for k=1; (c) calculation model for k=2; (d) calculation model for k= 3
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strength parameters as input (c*= 4·33 kPa, ϕ*= 26·6°) is
considered as an alternative to remedy the aforementioned
problem. To understand the significance of the flow rule
more thoroughly, displacement-based finite-element model-
ling results considering non-associated plasticity are also
presented here. Note that the full tension cut-off criterion was
used in all the numerical models performed, which is in line
with the proposed framework.
Figure 12(b) shows comprehensive comparisons of the

normalised active earth pressure σw/γH exerted by cohesive–
frictional soils on retaining walls. As can be seen, the
finite-element modelling results following the non-associated
flow rule fit well with those of LB-FELA following the
associated flow rule in the upper plugging zone, while there is
a small gap in the lower sliding zone. The lower soil dilation
angle yields higher active earth pressure values in the lower
zone, and the Davis approach also reflects a similar effect.
However, the comparison shows that the impact of the
dilation angle is not as significant as expected for the active
earth pressure in narrow soils, which is also supported by the
finite-element modelling results. Note that the finite-element

model simulation with the non-associated flow rule exhibited
numerical instability, hence the oscillating curve of earth
pressure with depth; such numerical oscillations are a
consequence of the non-associated flow rule. The compari-
son in Fig. 12(b) confirms that this drawback can be
remedied to some extent with a simple modification of the
FELA model with the Davis approach.
As can also be seen, the solutions from the proposed

analytical framework for cohesive–frictional soils agree well
with the LB-FELA solutions, thereby supporting the validity
of the proposed analytical framework in cohesive–frictional
soils. Moreover, the comparison indicates that the proposed
analytical framework can characterise well the effect of soil
cohesion on the active earth pressures on a retaining wall
with a limited backfill space.

PARAMETRIC STUDY
Effect of aspect ratio
Figure 13 plots the distribution of normalised active earth

pressure σw/γH with wall depth z/H for various values of
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Fig. 12. Validation of earth pressure from the proposed analytical framework in: (a) purely frictional soil; (b) cohesive–frictional soil (note: FEM,
finite-element model)
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aspect ratio B/H. For a given B/H and increasing z/H for a
retaining wall with narrow cohesive–frictional soil
(B/H, cotα), σw/γH increases non-linearly in the plugging
zone and piecewise-linearly in the sliding zone, which is
reflected more clearly as follows. There is also a clear increase
in the increment rate of σw/γH when the wall depth changes
from the plugging zone to the sliding zone. In addition,
σw/γH increases linearly with z/H when B/H� cotα (with
semi-infinite space). Therefore, at a given z/H, σw/γH
increases gradually to a constant value with B/H increasing
from 0·1 to a value lower than cotα. This indicates that for a
retaining wall with very narrow backfill, using Coulomb’s
theory with a triangular thrust wedge overestimates greatly
the magnitude of the earth pressure and could result in overly
conservative designs. Fig. 13 also indicates that when
B/H, cotα, for multiple slip surfaces (n� 2, M3) developed
in the sliding zone, a low increment rate of σw/γH is observed
with increasing k at a given n value, this being because the
wall–soil interface transfers more vertical stress as the wall

depth increases (Handy, 1985). All the above observations
show that the direct use of Coulomb’s theory without further
modifications is inappropriate for estimating accurately the
active earth pressure on a retaining wall with narrow soil.

Effect of soil cohesion
Figure 14 presents the effect of the normalised soil

cohesion c/γH on the variation of σw/γH with wall depth
z/H. The increase of soil cohesion causes an observable
reduction in σw/γH on the retaining wall at a given z/H. Note
that the evolution law for σw/γH with z/H is the same for
different values of soil cohesion, which can be explained as
follows: (a) the failure mechanisms are associated mainly
with the parameters α and n and are unaffected by the soil
cohesion; (b) in this specific case, the effect of cohesion on
shearing forces in soils considered in the analytical frame-
work varies linearly according to the MC failure criterion.
The effects of c/γH on Ka and zs/H for different values of

the aspect ratio are presented in Figs 15(a) and 15(b),
respectively. As postulated before, the tensile earth pressure
was considered as zero for the calculation. Fig. 15 shows that
with increasing c/γH,Ka decreases linearly and zs/H decreases
non-linearly, and the variation in zs/H is more sensitive for
very narrow geometries. This implies that considering soil
cohesion can yield great savings when designing a retaining
wall with a narrow backfill width. It is also evident that
Coulomb’s solutions neglecting the contribution of cohesion
overestimate the design values of σw/γH, Ka and zs/H.

Effect of soil friction angle
Figure 16 shows the distribution of active earth pressure

exerted by narrow cohesive–frictional soil with wall depth for
various values of soil friction angle ϕ. As given by equation
(2), the heights of the plugging and sliding zones vary with α,
which is closely related to ϕ, thus influencing more notably
the magnitude and distribution of active earth pressure. At
any wall depth, σw/γH decreases as ϕ increases, the main
cause being that higher ϕ yields a stronger soil arching effect.
Fig. 16 also shows that higher ϕ leads to a greater reduction
in the increment rate of σw/γH as k increases in the sliding
zone.
The variations in the active thrust coefficient Ka and the

normalised height of its point of application zs/H with ϕ for
various values of B/H are plotted in Figs 17(a) and 17(b),
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Fig. 15. Effect of soil cohesion under various aspect ratios on: (a) active thrust coefficient; (b) normalised height of application point of active
thrust to wall base
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respectively. As shown in Fig. 17(a), under soil arching, Ka
decreases continuously and parabolically with increasing ϕ.
Meanwhile, Fig. 17(b) shows that increasing ϕ produces a
reduction in zs/H with a range from around 0·25 to 0·3; this is
close to 1/3 as suggested by Coulomb’s theory. In addition,
for higher ϕ, smaller differences in Ka and zs/H can be seen
when satisfying the geometric condition of B/H� cotα,
showing that the effect of ϕ weakens in the case of a
semi-infinite backfill space.

Effect of wall–soil interface roughness factor
Figure 18 shows the active earth pressure distribution

σw/γH exerted by narrow cohesive–frictional soil with wall
depth for various values of roughness factor μ. As can be
seen, σw/γH decreases with increasing μ at a given z/H. This is
because the larger friction force acting on the wall–soil
interface results in a higher rotation angle of principal stress,
further strengthening the soil arching effect on the retaining
wall to transfer more vertical stress of the soil. Note that the
influence of μ on σw/γH in the upper zone is very modest

because the interface friction-enabled reduction in vertical
stress of backfill is a cumulative process from up to down
following an exponential function, as can be seen in Handy
(1985).
Figures 19(a) and 19(b), respectively, present the variations

in active thrust coefficient Ka and normalised height of its
point of application zs/H with μ for various values of B/H. In
Fig. 19(a), with increasing μ, earth thrust reduces. However,
zs/H behaves in an opposite way. Both change laws of Ka and
zs/H are more sensitive for narrower backfill. The effect of μ is
highly complicated: interestingly, a retaining wall with a
rougher interface has a lower earth thrust, but the stability is
better for a wall with a smoother interface.

SIMPLIFIED EQUATIONS FOR DESIGN
In practice, using the proposed analytical framework is not

as practical as is usually desired because its implementation
requires the aid of computer programming. On that basis, a
simplified mathematical correlation with the standard
Coulomb solution is expected, one that can be used
empirically when designing retaining walls with narrow
soils. Based on the proposed framework, a modified factor
of Coulomb’s active earth pressure coefficient (defined as
β=Ka/Ka,Coulomb) and a normalised application height of
active thrust (zs/H ) can be provided.
From Table 2, it is the case that for B/H, cotα, either one

slip surface with a trapezoid thrust wedge (n=1; M2) or
multiple slip surfaces (n� 2; M3) are likely to occur in
narrow soils, whereas it is one slip surface with a triangular
wedge rupture body when B/H� cotα. To make the design
equations usable for retaining walls with narrow soils, B/H
must be smaller than 0·6 according to Table 2. In total, 625
groups of calculated β and zs/H in narrow backfills with
varying aspect ratio (B/H=0·1, 0·2, 0·3, 0·4, 0·5), soil
cohesion (c/γH=0·00, 0·01, 0·02, 0·03, 0·04), soil friction
angle (ϕ=20°, 25°, 30°, 35°, 40°) and roughness factor of
wall–soil interface (μ=0·2, 0·4, 0·6, 0·8, 1) are generated as
the dataset using the proposed framework. On this basis, two
simplified approximations in terms of β and zs/H are then
proposed using curve fitting, as

β ¼ p1 þ p2
B tanϕ

H
þ p3

μB
H

þ p4
cB
γH2 þ p5μ tan ϕ

þ p6μ ð47Þ
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Fig. 17. Effect of soil friction angle under various aspect ratios on: (a) active thrust coefficient; (b) normalised height of application point of active
thrust to wall base
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zs
H

¼ p7 þ p8μ tanϕþ p9
c tanϕ
γH

þ p10
μc
γH

þ p11
B
H

ð48Þ

where p1 to p12 are optimal constant coefficients for the
closed-form approximations, as listed in Table 3.

The comparisons of β and zs/H between the predicted data
from the design equations and the calculated data from the
proposed framework are shown in Figs 20(a) and 20(b),
respectively. As can be seen, the design equations agree well
with the proposed analytical framework, with coefficients of
determination (R2) of up to 90·34% and 91·65%, respectively.

The given design equations consider comprehensively soil
cohesion, soil arching, horizontal shearing forces in narrow
backfills and complex failure patterns. In design practice,
determining β and zs/H is very simple and quick because only
four dimensionless parameters B/H, c/γH, tanϕ and μ are
required as inputs for equations (47) and (48).
As demonstrated in Fig. 20(a), the proposed analytical

solution for narrow retained soils gives lower active earth
pressure values than does the standard Coulomb theory
(β, 1·0), particularly so for some extreme cases with higher
soil strength parameters (soil cohesion and/or friction angle)
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Fig. 19. Effect of wall–soil interface roughness factor under various aspect ratios on: (a) active thrust coefficient; (b) normalised height of
application point of active thrust to wall base

Table 3. Optimal value of constant coefficients for closed-form approximation

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

0·965 0·403 2·338 �25·44 �0·037 �0·771 0·335 0·05 �2·421 �0·291 �0·023
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and/or wall–soil interface roughness factor. These cases
would require careful safety consideration because some
occasional conditions in practice may lead to higher active
pressure – for example, vibrations during construction and
unrealistic estimation of wall friction and soil strength. To
avoid these safety risks, a moderate reduction factor in soil
strength parameters and/or wall–soil interface roughness
factor or a lower bound on the modified factor β (e.g. β≮ 0·5)
may be applied. More importantly, all these possibilities must
be examined thoroughly by means of experiments or field
observations before using the simplified equations in indus-
try, which is clearly beyond the present scope.
Although the simplified design equations have been

presented here, some limitations must be clarified before
putting them into practice. Advocating design based on
extremely low earth pressures from the simplified equations
for retaining walls with limited space requires the walls to
displace outwards (away from the soil), such as in confined
excavations. In addition, even though a full tension cut-off
has been considered in the simplified design equations to
address negative earth pressures, the proposed solutions can
only be used as a lower bound of the earth pressure for a
displacing wall because of the assumptions used in the
derivations. For a rigid wall that does not displace, the at-rest
pressure should be recommended primarily in the case of
some loading conditions such as freezing/thawing cycles,
wetting cycles or vibrations.

CONCLUSIONS
This study has presented a generalised analytical frame-

work for active earth pressure calculations of retaining walls
with limited backfill space considering soil cohesion, soil
arching effect, horizontal shearing forces and complex
failure. The analytical solution combined a newly developed
ADE method and a sliding wedge method. Complex soil
failure (e.g. multiple failure surface) was observed in FELA
models. A full tension cut-off criterion was used to consider
the effect of soil cohesion. Because the proposed framework
involves the load transfer mechanisms and failure mechan-
isms as much as possible, it is more realistic than the
traditional Coulomb earth pressure theory. A series of
parametric studies revealed the effects of aspect ratio
(B/H ), soil strength parameters (c and ϕ) and wall–soil
interface roughness factor (μ) on active earth pressure, active
thrust and its application height. Equations for calculating a
modified active earth pressure coefficient and an application
height of active thrust were provided for using the framework
directly for design under certain conditions. The main
findings are given below.

(a) The failure modes that develop in narrow soils present
various slip surface numbers and shapes depending on
the combined effects of aspect ratio, soil friction angle
andwall–soil interface friction angle, but barely affected
by soil cohesion. For B/H� cotα, one slip surface forms
with a triangular thrust wedge; for B/H, cotα, one slip
surface with a trapezoidal thrust wedge might develop,
and multiple slip surfaces develop as reflections in
backfills with very narrow width.

(b) For one slip surface with a triangular thrust wedge, the
active earth pressure increases linearly with wall depth.
For one slip surface with a trapezoidal thrust wedge and
multiple slip surfaces, the active earth pressure increases
non-linearly in the upper plugging zone and
piecewise-linearly in the lower sliding zone, and it shows
an obvious increase in increment rate when the retained
soil varies from the plugging zone to the sliding zone;

moreover, changes in the increment rate of earth
pressure occur in the sliding zone with the transition of
multiple slip surfaces from top to bottom.

(c) For a given aspect ratio, the higher the soil cohesion and
the soil friction angle, the lower the active thrust and the
height of its application point from the wall base,
indicating the stronger stability against overturning of a
retaining wall system with narrow soil. A larger wall–
soil interface roughness factor helps to reduce the earth
pressure and thrust but may increase the application
height.

Although a more generalised analytical framework has been
proposed, some limitations are still worth investigating further;
for example, some specific cases of retaining walls with
inclined back faces were not considered, nor was the
discrepancy in interfacial behaviour on either side of a
retaining structure built near a rock face. Nevertheless, the
proposed analytical framework provides a basis for conducting
more sophisticated analyses considering the non-linear behav-
iour of the wall–soil interface, various wall movement modes
(e.g. rotation about the base, the top or a combination with
translation) and the inclined angle of retaining wall back faces.
Also, the proposed analytical frameworkoffers good guidance
for the practical design of retaining walls with narrow soils.
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NOTATION
a abbreviation used in derivation process
B width of narrow soil
Bn width of sliding wedge Wn1 at top

C1 to C5 abbreviations used in derivation process
Cnk resultant cohesion along wall–soil interface or slip

surface
c soil cohesion

c* reduced soil cohesion using Davis approach
Ea active thrust
Ei
a resultant active earth pressure exerted by soil slice

Enk resultant earth pressure on retaining wall for
sliding wedges

Fz total vertical force on top of lower zone
FAA′
z and FCC′

z vertical forces on lateral boundaries of arched soil
layer element

FAC
z and FA′C′

z vertical forces on upper and lower boundaries of
arched soil layer element

G gravity of arched soil layer element
Gnk gravity of sliding wedge Wnk

H retaining wall depth
H0 height of non-yielding zone
Hnk height of real slip surface
hnk height of hypothetical slip surface

i ith soil slice
Ka and

Ka;Coulomb

active thrust coefficient from proposed solution
and Coulomb theory

k kth slip surface formed in yielding zone
larcAC arc length of arched soil layer element

m division number of soil slices
N ratio of major to minor principal stresses
n number of total slip surfaces formed in yielding

zone
RAC and RA′C′ radii of minor principal stress trajectory

Rnk force normal to slip surface for sliding wedges
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Wnk number of sliding wedges
z arbitrary wall depth
zs application point of active thrust from wall base
α sliding angle of slip surface
γ unit weight

Δz thickness of soil slice
ΔzAi vertical distance between points A and i

δ wall–soil interface friction angle
θw and θi rotation angles of principal stress on wall and at

any position of element
μ wall–soil interface roughness factor

σ01 and σi1 major principal stresses on wall and at any
position of element

σ03 and σi3 minor principal stresses on wall and at any
position of element

σ0v and σiv vertical stresses on wall and at any position of
element

σ̄v0 average uniform vertical stress on top of lower
zone

σuw and σlw earth pressures in upper and lower zones
σlwi active earth pressure exerted by soil slice of lower

zone
τs and τw shear strengths of retained soil and wall–soil

interface
φ soil friction angle
ϕ* reduced soil friction angle using Davis approach
ψ soil dilation angle
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