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SUMMARY

This thesis addresses the problem of object detection with automotive radar sensors in the
field of intelligent vehicles with special attention to vulnerable road users: pedestrians,
cyclists, and motorcyclists. It is not the goal of this work to improve the hardware design
or signal processing algorithms of the radar sensors themselves, but to take the output of
these sensors as “given”, and to propose various ways to use them for road user detection.
To facilitate the reading, a brief introduction to the operating principles of radar sensors and
their advantages and limitations is first given. Subsequently, the thesis discusses automotive
radar based detection of road users based on three different types of radar data.

First, the thesis investigates radar based detection of road users using a commercial
automotive radar sensor that outputs the widely used 2+1 dimensional (range, azimuth, and
the plus one is the Doppler or velocity dimension) point cloud of radar targets. This data
is then used in a sensor fusion approach that combines stereo camera and radar data. The
system is used in a specific pedestrian detection scenario: the goal is to detect darting out
pedestrians, i.e., pedestrians approaching the road from behind a parked vehicle while being
partly or fully occluded. Instead of simply fusing the two sensors, a so-called occlusion
aware sensor fusion is proposed to account for the occlusions caused by the parked vehicles.
Results show that the inclusion of the radar sensor is beneficial in this task, as darting out
pedestrians are detected earlier than when using the camera alone. This is in part due to a
unique property of radar signals: they are able to propagate under the parked vehicle and
reach the pedestrian even if the pedestrian is completely occluded. In addition, taking the
occlusion information into account is shown to also help to better evaluate such scenarios.

The thesis then explores how the previously used point cloud can be better utilized by
augmenting it with a lower level of radar data, called the radar cube. The radar cube is a
3D data matrix with three axes: range, azimuth, and Doppler (i.e., relative radial velocity
measured by the radar). Unlike the point cloud which provides a single velocity for a
point, the radar cube provides the full velocity distribution (i.e., Doppler vector) at each
2D range-azimuth position. Such distribution can capture class-specific modulations of an
object’s main velocity caused by its moving parts, e.g., swinging limbs or rotating wheels,
rather than a single estimated velocity. A novel neural network is proposed that fuses the
2+1D radar point cloud with this radar cube. Extensive experiments are conducted to show
that the incorporation of such low-level data indeed helps in the task of multi-class road user
detection.

Finally, the thesis investigates data from next-generation automotive radars. These
radars provide elevation information in addition to range, azimuth, and Doppler velocity
data, resulting in a 3+1D (three spatial and one Doppler dimension) point cloud. Their
point clouds also tend to have higher density compared to the 2+1D radars, so they are
becoming more similar to LiDAR point clouds. Therefore, the thesis presents experiments
with the application of a 3D object detector to radar point clouds, rather than applying
it to LiDAR point clouds, as done previously. Then, rather than comparing it with radar
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based benchmarks, the performance of the trained detector is compared with the same
detector using a dense high-end 64-layer LiDAR sensor as input. The results show that
object detection on high-end 64-layer LiDAR data still outperforms that on 3+1D radar data,
but the addition of elevation information and integrating sequential radar scans helps close
the gap. To facilitate this experimental study and support further research on this topic,
the novel View-of-Delft (VoD) automotive dataset is introduced. It contains 8693 frames
of synchronized and calibrated 64-layer LiDAR-, (stereo) camera-, and 3+1D radar- data
acquired in complex, urban traffic. It consists of 123106 3D bounding box annotations of
both moving and static objects, including 26587 pedestrian, 10800 cyclist and 26949 car
labels.

At the same time, the three introduced approaches not only differ in the type of radar data
used, but also present three different use cases for automotive radars in a vulnerable road
user detection pipeline. The thesis first presents a high-level fusion of stereo camera and
radar sensors using the 2+1D point cloud. Then, an approach is presented that semantically
segments the 2+1D point cloud into the classes of pedestrians, cyclists, and cars by exploiting
the radar cube. Such a segmented point cloud (i.e., a list of points with class information)
can be a useful input for mid-level fusion. Finally, it is shown that it is possible to regress
3D bounding boxes (i.e., bounding boxes with position, size, and orientation) for multiple
classes using only a single radar sensor which provides 3+1D radar point clouds. Such
bounding boxes can serve as input to a high-level fusion aimed at 3D object detection. In
addition, the ability to retrieve these bounding boxes without other sensors can increase the
redundancy of a vulnerable road user detection pipeline, since the failure of another sensor
does not necessarily mean the failure of detection.

The thesis is concluded by discussing its findings and making suggestions for future
work both inside and outside of the research field of road user detection.
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SAMENVATTING

Dit proefschrift behandelt het probleem van objectdetectie met auto-radarsensoren op het
gebied van intelligente voertuigen met speciale aandacht voor kwetsbare weggebruikers:
voetgangers, fietsers en motorrijders. Het is niet het doel van dit werk om het hardwareont-
werp of de signaalverwerkingsalgoritmen van de radarsensoren zelf te verbeteren. In plaats
daarvan neemt dit proefschrift de output van signaalverwerkingsalgoritmen als gegeven
en stelt verschillende manieren voor om ze te gebruiken voor detectie van weggebruikers.
Om het lezen voor de lezer te vergemakkelijken, wordt eerst een korte inleiding gegeven
in de werkingsprincipes van radarsensoren en hun voordelen en beperkingen. Vervolgens
bespreekt het proefschrift autoradargebaseerde detectie van weggebruikers op basis van drie
verschillende soorten radargegevens.

Ten eerste onderzoekt het proefschrift op radar gebaseerde detectie van weggebruikers
met behulp van een commerciële auto-radarsensor die de veelgebruikte 2+1 dimensionale
(bereik, azimut, en de plus één is de Doppler- of snelheidsdimensie) puntenwolk van
radardoelen uitvoert. Deze gegevens worden vervolgens gebruikt in een sensorfusie-aanpak
die stereocamera- en radargegevens combineert. Het systeem wordt gebruikt in een specifiek
voetgangersdetectiescenario: het doel is om wegschietende voetgangers te detecteren, d.w.z.
voetgangers die de weg naderen van achter een geparkeerd voertuig terwijl ze gedeeltelijk
of volledig zijn afgesloten. In plaats van simpelweg de twee sensoren te fuseren, wordt
een zogenaamde occlusiebewuste sensorfusie voorgesteld om rekening te houden met de
occlusies veroorzaakt door de geparkeerde voertuigen. De resultaten tonen aan dat het
opnemen van de radarsensor gunstig is bij deze taak, omdat wegschietende voetgangers
eerder worden gedetecteerd dan wanneer alleen de camera wordt gebruikt. Dit komt mede
door een unieke eigenschap van radarsignalen: ze kunnen zich onder het geparkeerde voertuig
voortplanten en de voetganger bereiken, zelfs als de voetganger volledig is afgesloten.
Bovendien blijkt dat het in aanmerking nemen van de occlusie-informatie ook helpt om
dergelijke scenario’s beter te evalueren.

Het proefschrift onderzoekt vervolgens hoe de eerder gebruikte puntenwolk beter kan
worden benut door deze uit te breiden met een lager niveau van radargegevens, de zoge-
naamde radarkubus. De radarkubus is een 3D-gegevensmatrix met drie assen: bereik, azimut
en Doppler (d.w.z. relatieve radiale snelheid gemeten door de radar). In tegenstelling tot de
puntenwolk die een enkele snelheid voor een punt biedt, biedt de radarkubus de volledige
snelheidsverdeling (d.w.z. Doppler-vector) op elke 2D-afstand-azimutpositie. Een dergelijke
distributie kan klassespecifieke modulaties van de hoofdsnelheid van een object vastleg-
gen, veroorzaakt door de bewegende delen, bijvoorbeeld zwaaiende ledematen of roterende
wielen, in plaats van een enkele geschatte snelheid. Er wordt een nieuw neuraal netwerk
voorgesteld dat de 2+1D-radarpuntenwolk combineert met deze radarkubus. Er worden
uitgebreide experimenten uitgevoerd om aan te tonen dat het incorporeren van dergelijke
low-level data inderdaad helpt bij het opsporen van weggebruikers in meerdere klassen.
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Ten slotte onderzoekt het proefschrift gegevens van autoradars van de volgende generatie.
Deze radars bieden hoogte-informatie naast afstands-, azimut- en Doppler-snelheidsgegevens,
wat resulteert in een 3+1D (drie ruimtelijke en één Doppler-dimensie) puntenwolk. Hun
puntenwolken hebben meestal ook een hogere dichtheid in vergelijking met de 2+1D-radars,
dus ze gaan steeds meer lijken op LiDAR-puntenwolken. Daarom presenteert het proefschrift
experimenten met de directe toepassing van een 3D-objectdetector op radarpuntenwolken,
wat meestal wordt toegepast op LiDAR-puntenwolken.

In plaats van deze te vergelijken met op radar gebaseerde benchmarks, worden de
prestaties van de getrainde detector vergeleken met dezelfde detector met behulp van een
hoogwaardige 64-laags LiDAR-sensor als invoer. De resultaten laten zien dat objectdetec-
tie op hoogwaardige 64-laags LiDAR-gegevens nog steeds beter presteert dan op 3+1D-
radargegevens, maar de toevoeging van hoogte-informatie en het integreren van sequentiële
radarscans helpt de kloof te dichten. Om deze experimentele studie te vergemakkelijken
en verder onderzoek over dit onderwerp te ondersteunen, wordt de nieuwe View-of-Delft
(VoD) automotive dataset geïntroduceerd. Het bevat 8693 frames van gesynchroniseerde en
gekalibreerde 64-laags LiDAR-, (stereo)camera- en 3+1D-radargegevens die zijn verkregen
in complex stadsverkeer. Het bestaat uit 123106 3D-begrenzingskader-annotaties van zowel
bewegende als statische objecten, waaronder 26587 voetgangers-, 10800-fietsers- en 26949
autolabels.

Tegelijkertijd verschillen de drie geïntroduceerde benaderingen niet alleen in het type
radargegevens dat wordt gebruikt, maar presenteren ze ook drie verschillende gebruiksscena-
rio’s voor autoradars in een detectiepijplijn voor kwetsbare weggebruikers. Het proefschrift
presenteert eerst een fusie op hoog niveau van stereocamera- en radarsensoren met behulp
van de 2+1D-puntenwolk.

Vervolgens wordt een benadering gepresenteerd die de 2+1D-puntenwolk semantisch
segmenteert in de klassen voetgangers, fietsers en auto’s door gebruik te maken van de
radarkubus. Zo’n gesegmenteerde puntenwolk (d.w.z. een lijst met punten met klasse-
informatie) kan een nuttige input zijn voor fusie op het middenniveau.

Ten slotte wordt aangetoond dat het mogelijk is om 3D-begrenzingsvakken (d.w.z. be-
grenzingsvakken met positie, grootte en oriëntatie) voor meerdere klassen te regresseren met
slechts één enkele radarsensor die 3+1D-radarpuntenwolken levert. Dergelijke begrenzings-
vakken kunnen dienen als input voor een fusie op hoog niveau gericht op 3D-objectdetectie.
Bovendien kan de mogelijkheid om deze begrenzingsvakken op te halen zonder andere
sensoren de redundantie van een detectiepijplijn voor kwetsbare weggebruikers vergro-
ten, aangezien het falen van een andere sensor niet noodzakelijk het falen van de detectie
betekent.

Het proefschrift wordt afgesloten met het bespreken van de bevindingen en het doen
van suggesties voor toekomstig werk, zowel binnen als buiten het onderzoeksveld van
weggebruikersdetectie.
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1
INTRODUCTION

Truly self-driving cars are expected to hit the markets in ten to twenty years
- and that is true regardless of the current date.

Dariu M. Gavrila
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2 1 INTRODUCTION

T HE promise of truly self-driving cars and the benefits expected from them have been
widely discussed for over a decade now. Both traditional car manufacturers or suppliers

(e.g., Daimler, Ford, Bosch, Continental), and new players in the industry (e.g., Tesla, Lucid
Motors, Waymo, Comma.ai, Lyft, Aimotive) have invested large sums [1] in the development
of self-driving capabilities. Meanwhile, researchers from institutes all around the world
have also turned their attention to the challenges of self-driving. Robotics and pattern
recognition conferences and journals are filled with research papers on scene understanding,
object detection and classification, path planning, sensor fusion and control in the domain of
intelligent vehicles [2]. In addition, self-driving vehicles have become a topic of discussion
for the average citizen [3] - something that rarely occurs with new technologies.

For a discussion with such a broad audience with diverse backgrounds, it was imperative
to have a common taxonomy: what exactly do we mean when we talk about self-driving
vehicles? In 2018, the Society of Automotive Engineers (SAE) proposed a system with
six different levels [4], which has since been widely accepted and used. The levels are as
follows. At Level 0 (L0, manual driving), the vehicle lacks any type of driving automation
technology. At Level 1 (L1, driver assistance), some automotive systems provide assistance
with acceleration, braking, or steering, such as adaptive cruise control. Level 2 (L2, partial
driving automation) vehicles not only assist with, but also provide partial automation of
the above functions in certain scenarios. At Level 3 (L3, conditional driving automation),
the vehicle takes over all driving tasks independently under certain conditions. However,
the driver must be available to take control from the automation at any time if necessary.
Level 4 vehicles (L4, high driving automation) have continuous and complete control over
all driving tasks. They can autonomously carry passengers, who do not need to be ready to
take over the control. Nevertheless, Level 4 systems are usually limited to certain conditions
(e.g., only good weather or daytime) and operational areas (e.g., designated routes, cordoned
yards, or other geographic boundaries). Finally, Level 5 (L5, full driving automation) means
that the vehicle can operate independently and universally in any weather condition without
geographic boundaries.

The extraordinary interest from various distinct groups in society is likely due to the
promised and/or expected benefits of a fully self-driving (L5) vehicle. In general, the most
frequently visioned benefits [5][6][7] fall into three main categories: safety, comfort, and
financial. Perhaps the most widely accepted argument for the introduction of self-driving
cars is the issue of traffic safety. The World Health Organization (WHO) estimates that
about 1.3 million road traffic fatalities happen every year [8]. Of these, more than half
are vulnerable road users (VRUs): pedestrians, cyclists or motorcyclists who can easily be
injured and killed in a road environment dominated by cars. In another study, the National
Highway Traffic Safety Administration reported that the “critical reason” for 94% of crashes
in the United States between 2005 and 2007 was attributed to the driver [9]. If the role of the
driver is eliminated or reduced through the deployment of intelligent vehicles, this number
could theoretically be lowered, saving thousands of lives each year. On the other hand, this
prediction assumes that the self-driving stack itself does not introduce new sources of errors
of the same magnitude. Truly self-driving cars are expected to have fewer accidents than
human drivers because of two aspects. First, a major advantage of an algorithm performing
similarly to a human driver (even if it is not better) is that it never gets tired, distracted, or
falls asleep, all three of which are common causes of accidents [9]. Second, a fully equipped
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self-driving vehicle could drive better than a human in some aspects. For example, while
the average human reaction time in response to visual stimuli is about 250 ms [10], the
reaction time of an algorithm can be significantly lower than this with optimized hardware
and software implementation. Another advantage of computer-controlled vehicles is the
additional source of information that comes from non-visual sensors, such as LiDAR or
radar, and from communication with the infrastructure. In other words, such a vehicle,
with its LiDAR or radar sensors, might be able to see in the dark or in other poor visibility
conditions, and know the exact next maneuvers of other cars by communicating with them -
capabilities that are impossible for a human driver.

Another often discussed promise of self-driving cars is the additional comfort they could
bring into our lives. If truly self-driving, L5 vehicles become widely available, we will
no longer have to worry about parking, as our ride could be summoned and discarded on
demand, and in the meantime park itself in a remote parking lot. They could also provide
the luxury of sleeping, relaxing or working during a commute or a road-trip instead of the
exhausting task of driving. A most welcome added convenience would be the increased
freedom and mobility of people who for some reason cannot drive themselves, e.g., the blind,
disabled, children, or paralyzed citizens. Moreover, such systems would eliminate the need
of “designated drivers” after parties and other events.

Last, but not least, there are financial motivations for developing a driverless system.
A Level 4 or 5 vehicle is a “dream come true” for fleet operators and logistics companies,
as it would eliminate or drastically reduce spending on driver salaries. Moreover, such
vehicles could also be operated day and night without mandated or health-related breaks,
further increasing efficiency and profit of the company. In the meantime, while this would be
beneficial to the companies mentioned above, it is also clear that such a transformation of the
transportation industry would also mean significant layoffs and a shift in the job market in
related fields such as cab, bus, and lorry drivers, raising concerns for our society as a whole.

Of the three main arguments (i.e., safety, comfort, and financial), two only fully emerge if
the car is truly and fully self-driving: financial and comfort. Nevertheless, truly self-driving,
Level 5 cars do not yet exist, and there is no consensus on when development will reach that
point: predictions range from couple years to 75 years [11], while some say such vehicles
will never exist [11]. The situation is different when it comes to safety. Safety related benefits
can be achieved even without full self-driving capabilities and are already being realized
today in L2 and L3 vehicles. That is, by applying algorithms developed for self-driving
while the primary driver is still a human, we can detect potential hazards (e.g., possible
collision with another car, cyclist, or an emerging pedestrian) and trigger alarms, initiate
emergency braking, or even take evasive maneuvers. Doing so can save lives and reduce
the number of injuries right now or in the near future, without having to solve every single
potential driving situation, or in other words, to reach Level 5, true self-driving.

To achieve this, the first step in a self-driving pipeline is perception: we need to know
exactly where and how other road users (parked or moving cars, pedestrians, cyclists, etc.)
are in relation to the ego-vehicle. This is crucial to assess whether a situation is dangerous
and to plan further steps. Intelligent vehicles have three main types of sensors to perceive the
world: cameras, LiDARs and radar sensors. All three have advantages and disadvantages,
and no clear winner sensor (or combination of sensors) has yet emerged.
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1.1 SCOPE OF THIS THESIS

T He topic of this thesis is perception in intelligent vehicles with radar sensors. More
specifically, my goal is to detect the presence, location, and orientation of other road

users using automotive radars, with a particular focus on vulnerable road users. To this end,
after introducing the reader to the basics, advantages and disadvantages of radars, I present
three different use cases of a radar sensor in a pipeline for detecting vulnerable road users,
using three different radar data representations. I conclude the thesis by commenting on
the future of road user detection, pointing out remaining questions, and discussing whether
radar sensors have a legitimate place in an intelligent vehicle of the future.

As we will see in the following chapters, the basic operating principles of radar are
straightforward and were established decades ago [12]. However, I will also show that the
exact implementation of a radar based perception system is a complex task in terms of both
hardware and software. Both aspects can still be improved and are therefore still widely
researched topics today. In this thesis, I do not aim to improve on the low-level sensing
aspect of radars, neither by developing new hardware solutions (e.g., different antenna
arrays) nor by improving on-board or off-board signal processing algorithms (e.g., new
peak-finding or direction-of-arrival regression algorithms). Instead, I take the output of such
automotive radars as a “given”, discuss their format, advantages and disadvantages, and
make recommendations on how best to use them. In other words, the scope of this work is
not to improve the quality of radar sensing, but to suggest approaches to exploit the readily
available output of these sensors in the area of vulnerable road user detection in intelligent
vehicles.

1.2 THESIS OUTLINE AND CONTRIBUTIONS

T HIS section provides an overview of the following chapters and then discusses their
main contributions individually.

To properly understand both the opportunities and challenges of using such a radar sensor
in an intelligent vehicle, we must first discuss the basic operating principles, capabilities,
and limitations of automotive radars. To this end, Chapter 2 introduces the reader to the
fundamentals of automotive radars and describes the different types of radar data that will
be used for perception tasks in the following chapters: 2+1D radar point clouds, the concept
of radar cube, and 3+1D point clouds. Subsequently, in Chapter 3 I give a brief overview of
the related literature by collecting and categorizing the most important works.

Chapter 4, 5, and 6 differ in what type(s) of radar data of the aforementioned three are
used to tackle their addressed perception task. Conventional, commercially available radars
output a 2+1D point cloud, which has two spatial dimensions (range and azimuth), and one
for Doppler, see Chapter 2. Chapter 4 introduces a method that uses such a point cloud to
detect pedestrians in a specific scenario where the pedestrian approaches the road while
being partially or fully occluded by a parked vehicle (also called “darting out”). Chapter
5 also uses the exact same radar sensor. However, in addition to the standard 2+1D point
cloud, this time it is combined with a lower level of radar data, called the radar cube to detect
road users of multiple classes. It is shown that this additional low-level data is beneficial
and should be made available to researchers and developers where possible. Chapter 6 also
deals with multi-class road user detection, but uses another radar data format that is not yet
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widely available: the 3+1D radar point cloud. This means that in addition to the usual range,
azimuth, and Doppler dimensions, the radar used in this chapter can also give the elevation
angle (i.e., height) of the reflections, see Chapter 2. In other words, instead of the spatially
two dimensional, planar point cloud used in the previous chapters, Chapter 6 uses a spatially
three dimensional point cloud, somewhat like the point clouds provided by LiDAR sensors.

At the same time, Chapter 4, 5, and 6 not only differ in the type of radar data used,
but also present three different use cases for automotive radars in a vulnerable road user
detection pipeline. Chapter 4 presents a high-level fusion system for stereo camera and radar
sensors. Chapter 5 introduces a novel approach that semantically segments the 2+1D point
cloud into the classes of pedestrians, cyclists, and cars. Such a segmented point cloud (i.e.,
a list of points with class information) can be a useful input for mid-level fusion. As the
third use case, in Chapter 6, it is shown that it is possible to regress 3D bounding boxes
(i.e., bounding boxes with position, size, and orientation) for multiple classes using only a
single radar sensor. Such boxes can serve as input to a high-level fusion aimed at 3D object
detection. In addition, the ability to retrieve these boxes without other sensors can increase
the redundancy of a vulnerable road user detection pipeline, since the failure of another
sensor does not necessarily mean the failure of detection.

Finally, in Chapter 7, the thesis and its results are concluded, unanswered questions are
discussed, and suggestions for future work are made, first for the three individual use cases
and their possible connections, then for the application of radars with goals other than road
user detection, or not in intelligent vehicles. To conclude the chapter, thoughts about the
future of point cloud sensors are shared.

The three research related chapters, Chapter 4, 5, and 6, and their contributions are
described in more details as follows.

DETECTION OF DARTING OUT PEDESTRIANS WITH FUSION OF CAM-
ERA AND RADAR
In Chapter 4, a high-level fusion approach of stereo camera and 2+1D radar is presented,
with the goal of detecting darting out pedestrians as early as possible. Since such scenarios
are often complicated by occlusions (e.g., by parked vehicles), the proposed fusion method
takes information on what areas are occluded as an input. The contributions of this chapter
are as follows. First, I propose a generic (i.e., not unique to radar and camera) occlusion
aware multi-sensor Bayesian filter for object detection and tracking. Second, I apply the
proposed filter as a radar and stereo camera based system for pedestrian detection and
tracking on challenging darting out scenarios. I show that both incorporating occlusion
information and the radar sensor into the model helps to detect darting out pedestrians earlier.
Third, to facilitate future exploration of these scenarios, I share my dataset with the research
community, containing more than 500 relevant scenarios with camera, radar, LiDAR, and
odometry data.

MULTI-CLASS ROAD USER DETECTION USING THE 3D RADAR CUBE
Chapter 5 addresses the problem of detecting multiple classes of road users purely by radar.
The often mentioned sparseness of the radar point cloud makes this task challenging, since
fewer points on an object represent less information. To address this problem, many existing
approaches first cluster radar targets to create object proposals. Then, cluster-level features
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are extracted to gain more information about the classes of objects, and then these clusters
are classified as a whole. However, this “cluster-then-classify” pipeline is prone to clustering
errors. In this chapter, I instead introduce a “classify-then-cluster” pipeline and tackle the
lack of information by exploiting a lower level of radar data, the radar cube.

My contributions are twofold. First, I propose a radar based, single-frame, multi-class
(pedestrian, cyclist, car) moving road user detection method which exploits both target and
low-level radar data using a custom-designed CNN. The method provides not only classified
radar targets, but also object proposals through a class-specific clustering. Second, using
a large-scale, real-world dataset, I show that my method is capable of detecting road users
with higher performance than the state of the art, both in target-wise (target classification)
and object-wise (object detection) metrics using only a single frame of radar data.

MULTI-CLASS ROAD USER DETECTION USING THE 3+1D
RADAR POINT CLOUDS
The point clouds of the next generation, 3+1D radars have higher density and the additional
height dimension compared to the 2+1D radars, making them more similar to LiDAR point
clouds (see Figure 6.1 for a visual comparison). Therefore, in Chapter 6, I first experiment
with the direct application of a 3D object detector to radar point clouds, which is usually
applied to LiDAR point clouds. Then, I compare the performance of the trained detector
with the same detector using a dense high-end 64-layer LiDAR sensor as input for a real
challenge.

The contribution of this chapter is threefold: First, I examine road user detection with
3+1D radar by applying PointPillars [13], a state-of-the-art multi-class 3D object detector
commonly used for LiDAR. I investigate the significance of different features of the 3+1D
radar point cloud in an ablation study, including Doppler, RCS (Radar Cross Section), and
the elevation information that the traditional 2+1D automotive radars, such as the one used
in the previous chapters cannot provide. Second, I compare radar based to LiDAR based
detection by training and testing on the same traffic scenes. I show that currently point cloud
based detection on dense LiDAR still outperforms detection on radar. However, I also find
that the performance gap can be reduced when radar data includes elevation information,
and when multiple radar scans are temporally integrated. Additionally, the detection benefits
from Doppler measurements, which are unique to radar. Third, I publish the View-of-Delft
(VoD) dataset, a novel multi-sensor automotive dataset for multi-class 3D object detection,
consisting of calibrated and synchronized LiDAR, camera, and radar data recorded in real-
world traffic situations. The View-of-Delft dataset is the largest dataset to date containing
3+1D radar recordings with ∼20 times as many annotated frames as the Astyx dataset [14],
and it is the only publicly available one containing camera, radar, and 64-layer LiDAR data
at the same time. Although the experiments in Chapter 6 focus on radar-only methods, the
dataset is also suitable for sensor fusion, camera-only, or LiDAR-only methods due to this
sensor arrangement, and could be useful for researchers interested in testing their algorithms
in cluttered urban traffic.
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INTRODUCTION TO AUTOMOTIVE

RADARS

He’s got a radar lock on us!

Hollywood in Top Gun
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T HIS chapter is intended to provide a brief introduction to the subject of automotive
radars, including their operating principles, capabilities, advantages and disadvantages.

Although this topic could make up the content of several university courses, it is not my goal
to discuss it in detail here. Instead, I would like to give an overview of the signal processing
steps involved and their consequences, sufficient to understand the results of this thesis
and/or to help someone conduct similar research.

For more information on the fundamentals of radar sensors, I refer the reader to [12].
For a more detailed discussion on automotive radars specifically, I recommend [15], which
provides excellent and detailed material on the subject.

Radar sensors are widely used in aerospace [16][17][18], remote sensing [19] and traffic
control [20], but have also been used in the automotive industry for decades [21], long before
the introduction of on-board camera or LiDAR sensors. One of the main reasons for this is the
fact that most automotive radars can measure an object’s distance, direction and relative radial
velocity simultaneously, see Figure 2.1. This is a unique feature among sensors, i.e., LiDAR
or a camera require multiple frames and some kind of tracking to estimate the speed of an ob-
ject. Radar, on the other hand, does this instantly with a single measurement. In the following,
I will discuss the basics of radars and how such simultaneous measurement is performed.

The term “radar” is an acronym for Radio Detection and Ranging [12]. As the full name
implies, a radar is capable of detecting objects and determining their ranges or distances
using radio waves. The basic principle of these sensors is quite straightforward. They emit
a radio signal that may be reflected by objects they encounter. A fraction of this reflected
signal can travel back to the radar sensor’s location. The propagation time of the signal
between transmission and reception is proportional to the range of the object. Although
radars are primarily designed to measure this distance, the received reflection may also
contain information about the direction, speed, and reflectivity of the object [12].

One of the most characteristic differences between radars and cameras or LiDARs is
that while all sensors use electromagnetic waves, the frequencies of these waves differ
significantly. See Figure 2.2 for an overview of the wavelengths and frequencies used by
the three sensors in the electromagnetic wave spectrum. While cameras and LiDARs use
frequencies near the visible spectrum, radars work with microwaves. From left to right,
we see increasing wavelengths and decreasing frequencies. Immediately following the
ultraviolet range is what is known as the visible spectrum. This is what humans can see, and
normally cameras operate in this range as well, sometimes extending into the infrared range.
After the visible spectrum comes the mentioned infrared spectrum. LiDAR sensors operate
in this range, just outside the visible spectrum. If one takes a photograph of a LiDAR sensor
with a camera, sometimes the laser beams can be seen in the captured image, which are not
visible to the naked eye. After the infrared spectrum comes the microwave spectrum, and this
is where a typical automotive radar operates (between 20-80 GHz). Note that the frequency
is orders of magnitude smaller and the wavelength orders of magnitude larger than those of
the other two sensors. As we will see later in this chapter, this drastic difference in operating
wavelengths is the reason for some of the key advantages (and some disadvantages) that
radar has over camera and LiDAR.

There are two main types of radar sensors [12]. Pulse radars transmit signals in the form
of short pulses and then wait a short time for reflections from the illuminated targets. The
time interval between transmission of the pulse and its reception is then used to determine
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Figure 2.1: Overview of radar based perception. Most automotive radars (in the ego-vehicle, white) can report the
other road users’ distance r, azimuth α, and relative radial velocity vrel. However, they cannot measure the tangential
velocity vt and thus the true velocity v. Some new-generation radars can also provide elevation information, which
is neglected in this figure for simplicity.

Figure 2.2: Comparison of typical operating wavelengths and frequencies of camera, LiDAR, and radar sensors.
Radars use lower frequencies and longer wavelengths than the other two sensors. Original image is from [22].
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Figure 2.3: Examples of frequency (FM) modulated signals (bottom) generated by a sinusoidal carrier signal
(middle) modulated by different modulation signals (top) in frequency modulation.

the target’s range. Pulse radars are excellent for measuring the exact distance of objects,
especially at longer distances. Also, because they transmit in pulses, they are more difficult
to detect and/or “jam”. For this reason, pulse radars are often used in military applications,
especially for monitoring airspace. However, they are not able to instantly measure the
velocities of the objects. In contrast, continuous wave (CW) radars transmit the signal
without interruption, i.e., continuously. A good example of continuous wave radars is
the “radar gun”, which is used by the police to measure the speed of passing vehicles by
pointing the sensor at them. Since its signal is transmitted continuously, a conventional
continuous wave radar cannot measure the distance of objects because there is no reference to
measure the time delay. However, a special kind of CW radars, called Frequency Modulated
Continuous Wave (FMCW) radar, is able to solve this problem.

Both pulse and continuous wave radars are “active”, that is, they emit their own illumi-
nation signal. In contrast, “passive” radars use illumination from the environment, such as
commercial broadcast and communications signals. In theory, with densely deployed illumi-
nators along roads (in other words, “street lights” for radars), radars in intelligent vehicles
could operate in a receiver-only, passive fashion, which could alleviate inference problems
[23]. However, this would require considerable investment and modification of infrastructure
systems. Thus, passive radars in the automotive sector will remain at the experimental level
for the time being, and I will not discuss them further in this thesis. Instead, since the
vast majority of automotive radars are active, and in particular, use Frequency Modulated
Continuous Waves (FMCW), I will focus on this category in this introduction, and I also use
such radars in the following chapters.

FMCW radars are continuous wave radars, meaning they also transmit their radio
signal continuously. However, the frequency of the signal is periodically modulated with a
modulation function. One iteration of this periodic modulation is called a chirp. The simplest
type of modulation functions (also called modulation signals) are linear, meaning that the
frequency changes at a constant rate. See Figure 2.3 for examples of such signal modulations.
In the top row I show the modulation signals that determine how the signal frequency changes.
In the middle I show the so-called carrier signal, which is often a sinusoidal waveform with
a frequency between 20-80 GHz. In the bottom row are the frequency modulated signals. It
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can be seen that the waves of the final, frequency modulated signal become denser when the
modulation signal has higher values. In a sense, by modulating the frequency of the signal,
a “time stamp” is injected into the signal. We will see later that this makes it possible to
measure the distance of objects with continuous wave transmission.

As mentioned earlier, most automotive radars are FMCW radars that can simultaneously
measure the distance, direction, and speed of objects. Interestingly, all of these measurements
are derived from the radar’s accurate ranging capability. In the following, I will discuss these
measurements individually, starting with distance.

2.1 MEASUREMENT OF DISTANCE

F OR simplicity, suppose a single radar and a single object in an otherwise completely
empty room, see Figure 2.4, top left. The radar emits a single chirp, which is then

reflected by the object. Again, for simplicity, I assume a linearly modulated signal whose
frequency increases at a constant rate during the chirp. The transmitted signal (also called
TX) and the received signal (also called RX) could be plotted on a time-frequency diagram
as shown in Figure 2.4, top right. With time, the frequency of the chirp transmitted increases,
and after a while the chirp received also appears. It is the exact copy of the transmitted one,
but it is delayed in time as it had to reach the object’s location and then propagate back to the
sensor. Note that if the object is located at d distance from the sensor, the signal’s traveled
distance is exactly 2 · d. Let us define τ as the time it took the radio signal propagating with
the speed of light to cover this distance. Given τ, calculating d would be trivial, see Eq. (2.2).
However, it is challenging to accurately measure τ in automotive scenarios because the
objects are orders of magnitude closer than in aerospace applications (meters vs. kilometers),
and thus the time delays to be measured are significantly shorter. Furthermore, as mentioned
before, with CW radars there is no clear time reference to be used to measure τ as we
transmit continuously, not in pulses. To address this, FMCW radars exploit the frequency
modulation of the transmitted signal.

For this, I will introduce a signal processing unit, which we call a mixer, see Figure
2.5. The mixer takes two sinusoidal signals as inputs and combines them to produce a third
signal. In this case, the frequency of the output signal is the difference of the two input
frequencies and its phase is the difference of the two input phases. We call the output signal
intermediate frequency signal or IF signal for short. Let us apply this mixer to the previously
described TX and RX signals, see Figure 2.4, bottom right. Note that the third signal, the IF
signal appears in the frequency-time diagram only as a horizontal line. This is because the
difference between the frequencies of the two signals is constant, i.e., w1 − w2 is always the
same. Even better, this constant frequency contains valuable information. That is, if S is the
slope of the chirp, then this frequency (often referred to as beat frequency or fb) is:

fb = S · τ. (2.1)

In other words, the frequency of the IF signal is proportional to the time it takes the radio
wave to reach the object and return. Recall that τ is the time it takes the radio wave to travel
the distance d to the object twice at the speed of light c:

τ =
2 · d

c
. (2.2)
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Figure 2.4: Overview of distance measurement of a single object located at distance d in front of the radar sensor.
The radar emits an TX chirp which is reflected by the object. The two signals are then combined to form what is
called an IF signal (see also Figure 2.5). The frequency of the IF signal, fb, can be determined using the Fourier
transform and is proportional to the distance of the object, see Eq. (2.3).

Figure 2.5: Overview of a frequency mixer. Such a mixer takes two sinusoidal input signals (TX and RX) and
combines them to produce a third output signal, the IF signal. The IF signal is also sinusoidal and its frequency and
phase are the difference between the frequencies and phases of the two input signals.
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Then, we can use Eq. (2.1) to derive d from fb and the slope of chirp S :

d =
fb · c
2 · S

. (2.3)

Since the slope S is fixed when the radar is parameterized, we only need to measure fb.
To obtain the frequency of a constant signal, we can use the Fourier transform. The resulting
graph shows a high peak at the frequency we are looking for, see Figure 2.4, bottom left.

In summary, to determine the distance of a single object, we transmit a chirp and receive
its reflection. If we then combine the two signals (both with changing frequency), we get a
third signal called IF signal which has a constant frequency. If we subject this signal to a
Fourier transform, we obtain the so-called beat frequency, which is directly proportional to
the distance. An overview of this pipeline is given in Figure 2.4. In practice, these signals
are discrete, and thus, Fast Fourier Transform (FFT) is used. This step is often referred to as
“Range FFT”.

The maximum distance dmax that a radar can cover is an important parameter of the
sensor. An object at this distance will yield an IF signal with the highest frequency the radar
must be able to successfully sample, i.e., have a higher sampling rate:

Fs > f (IFdmax ) =
2 · S · dmax

c
, (2.4)

where f (IFdmax ) is the frequency of that IF signal, and Fs is the sampling rate of the radars
analog to digital converter (ADC) unit. Thus, the furthest distance at which an object can be
detected by the radar system is given as:

dmax =
Fs · c
2 · S

. (2.5)

Note that so far we have only talked about the distance of a single object, not its direction.
The object can be in any direction within the field of view of the sensor at the measured
range. I will discuss direction estimation in Section 2.3.

Of course, having only one object in front of the radar sensor is not a realistic scenario.
Therefore, we need to consider what happens when there are multiple objects in the scene.
Multiple objects will reflect the TX chirp multiple times with different time delays, assuming
they are at different distances from the sensor. This results in several different constant
frequencies (or “tones”) in the IF signal. If one subjects such an IF signal to a Fourier
transform, it yields a frequency spectrum that has several peaks (i.e., different fb-s), each
corresponding to the range of a perceived object. Radars’ capability to distinguish these
objects in the frequency spectrum is called range resolution. It is important to note that
the term resolution does not refer to the accuracy of the range measurement, but how close
objects can be separated, or in other words, “resolved”. If two objects are too close to each
other in terms of distance, the radar system will not be able to separate their fb peaks from
each other, and therefore will not be able to recognize them as separate objects. Due to the
principle of Fourier transform, two signals with constant frequency can be resolved only if
their frequency difference is greater than the reciprocal of the observation time. In our case
this means:

δ f >
1
Tc

(2.6)
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This means the resolution improves with longer observation times, i.e., with longer chirp
length Tc. Using Eq. (2.1) and Eq. (2.2) we can express the minimal distance needed to get
δ f as:

δd > dres =
c

2 · S · Tc
=

c
2 · B

(2.7)

where B = S · Tc is the frequency range swept by the chirp.
Note that both dmax and dres are inversely proportional to the slope S of the chirp (in the

case of linear modulation), see Eq. (2.7) and Eq. (2.5). This is unfortunate because while
we would like to maximize the maximum detection range dmax, we would like to minimize
the resolution dres. This trade-off also exists in automotive radars and is the reason that
short-, medium-, and long-range radars are often used side by side, giving increasing range
but degrading resolution respectively. In some cases, a single automotive sensor can be
configured in multiple ways to suit the current use case. In this thesis, I use short-range
radars and settings, since this is what our main scenario, the detection of road users in urban
settings, requires.

2.2 MEASUREMENT OF VELOCITY

N OW we discuss how FMCW radars can measure the velocity of an object simultaneously
with its distance. First, we need to emphasize that radars can only measure the radial

velocity of objects (i.e., motion along the vector from the sensor to the object) and not
the tangential velocity component (i.e., motion perpendicular to that vector) as shown in
Figure 2.1. Therefore, in this section I discuss only the measurement of radial velocity and
also explain why the direct measurement of tangential velocity is impossible with radar.

The (radial) velocity is basically the change in distance over time as the object comes
closer or moves farther away to/from the sensor. In the radar-related literature, it is often
referred to as the range rate because it is the rate at which the range of the object changes.
Such change in the distance also changes the roundtrip travel time of the radio signal by a
small amount of δτ. Thus, if we could measure the moved distance or δτ, the velocity could
be calculated. However, radar measures range so frequently that the change in the range (i.e.,
displacement of the object) during that time period is not significant, and thus fb would be
identical.

Therefore, we need to find another way to derive velocity from this small change in
distance. Recall that the mixer we presented subtracts the two frequencies of the two input
signals, but it also subtracts their phases.

For a static, standing object (i.e., zero radial velocity) the IF signal contains a constant
frequency. Let us consider what happens if the object moves along the radial direction. In
this case the return time τ will change a bit, i.e., RX arrives later if the object moved further,
and arrives earlier if the object moved closer to the sensor.

In Figure 2.6, I plot the RX and IF signals of a static object in gray and the RX and IF
signals of a moving object in blue. Note that the two IF signals have the same frequency,
i.e. the objects are so close to each other in range that it is impossible to distinguish them.
However, the phases of the two IF signals are completely different. Therefore, the phase is
sensitive to small changes in distance, and thus, to velocity.

To fully understand the principles of velocity measurement, we need to recall some
properties of the Fourier transform. Remember that the Fourier transform converts a signal
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Figure 2.6: TX , RX, and IF signals of an object in its original position (grey), and after its distance changed slightly
because of its movement (blue). While the frequency of the IF signal of the moved object is identical to that of the
original, its phase differs significantly. This shows that the phase of the IF signal is sensitive to small changes in
distance, i.e. motion. Source of image: [15].
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from the time domain to the frequency domain, for example, a sinusoidal signal is converted
to a single peak in the frequency domain. However, the output of the transform is actually a
complex number. Each value is a so-called phasor with an amplitude and a phase value. The
phase of the peak corresponds to the initial phase of the sinusoid.

Now that we know that phase is sensitive to small motions and that we can obtain the
phase of the IF signal via Fourier transform, let us conclude how the radial velocity is
measured. We transmit two chirp signals sequentially that are reflected from the moving
object at slightly different distances. The frequencies of the IF signals, and thus the perceived
distance of the objects will be identical. However, the phases of the signals will be different.
This difference is proportional to the change in distance during a chirp and thus allows the
speed of the object to be derived. Observing the phase over a period of time will again
result in a periodic signal. Applying the Fourier Transform on this signal (often called the
“Doppler FFT”) will provide the rotation frequency of the phasor (or phasors in case of
multiple objects), which can be used to derive the object’s radial velocity. Without deriving
the exact formula, the velocity is given by:

v =
λ · ω

4 · π · Tc
, (2.8)

where λ is the wavelength of the carrier signal, and ω is the phase difference measured
between consecutive chirps. For detailed calculations, please refer to [15]. It is important
to note that since velocity measurement is performed by phase difference, there will be
ambiguity in the process. For unambiguous measurements, the phase difference ω has to be
smaller than 180°or π, otherwise the rotation direction of the phasor cannot be determined,
in other words, the system cannot decide if an object is incoming or moving away. This puts
a limit on the maximum velocity vmax that a radar system with a given configuration can
measure:

vmax =
λ · π

4 · π · Tc
=
λ

4 · Tc
. (2.9)

Velocities with greater absolute value than vmax “overflow” the measurement interval
and reappear at the other (negative or positive) end of the velocity range. In other words,
objects approaching/moving away too fast relative to the radar sensor may be detected as
moving away/approaching respectively, resulting in significant measurement and tracking
errors. Therefore, selecting an appropriate configuration for the radar that matches the use
case is also crucial for the velocity measurements.

Remember that radars can only measure the radial velocity of object, not the tangential
velocity. This is caused by the fact that the velocity is measured by the change in distance
from the sensor. A tangentially moving object does not change its distance from the radar,
and therefore does not induce changes in the perceived IF signal. Also, it is important to
know that radars measure the relative velocity vrel of objects, not their absolute velocity.
With a static sensor (e.g., aerospace, speed control, and traffic monitoring), these values
are the same. However, if the radar sensor itself is moving, which is often the case in
automotive applications, the sensor’s own motion (often called ego-motion) must be taken
into account. More precisely, by accounting for the motion of the sensor that comes from both
the translational and rotational movement of the ego-vehicle, we can get the compensated or
absolute radial velocity, a signed scalar value denoted by vr. This processing step is called
ego-motion compensation, and often performed for automotive related tasks.
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Figure 2.7: Angle estimation with automotive radars. A single antenna is not sufficient to determine the direction
of an object because it can be anywhere on an arc at distance d from the sensor (left). With multiple receiver
antennas (RX antennas), the object is detected at slightly different distances (right). These differences can be
used to determine the direction. Note that a small change in the azimuth angle has a large effect on the distance
difference around 0° and a significantly smaller effect around 90° because of the sin(α) dependency. Therefore,
angle estimation in front of the sensor (|α| ∼ 0°) is more accurate than at the sides of the field of view (|α| ∼ 90°).

2.3 MEASUREMENT OF DIRECTION

A FTER distance and velocity, we now discuss how the direction of objects relative to the
sensor, i.e., their azimuth or elevation angle is measured with radars. As mentioned

before, the measurement of direction is also derived from the ranging capabilities of radars.
Direction measurement cannot be made with a single antenna because the object could be in
any direction on a circle (or sphere in three dimensions) with the measured distance radius,
see Figure 2.7, left. In aerospace or marine applications, this challenge is often solved with
a rotating directional antenna [18], since the delay caused by rotation is not problematic
due to the relatively large distances involved. However, reaction time is more crucial in
automotive applications, as objects are significantly closer. Therefore, most automotive
radars do not use rotating or moving parts. Instead, a single sensor usually contains multiple
antennas arranged in a grid. Each of these antennas performs the same task as described
earlier: measuring the distance of nearby objects. However, depending on the direction of
the objects, some antennas report a greater measured range than others, which allows us to
determine the actual location of the object with triangulation, see Figure 2.7. Note that while
the figure presents the regression of a single direction or angle in the horizontal plane, called
azimuth, the same principle applies to the angle of elevation when one sets up the antennas
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in a two dimensional grid instead of a single line.
The distance between antennas in an automotive radar is limited by the size of the sensor

itself. In other words, the antennas are usually close together. This means that the difference
in distance between the object and the individual observing antennas is small. Therefore,
similar to velocity measurement, it is often estimated by measuring the phase difference of
the signals. This means, however, that angle measurement, like velocity measurement before
it, is also ambiguous outside a certain angular interval. Objects leaving this angular interval,
in which an unambiguous measurement is possible on one side, are detected as returning on
the other side. This can also lead to considerable measurement and decision errors and must
be taken into account.

In Figure 2.7 (right), one can also see that the difference in the measured distances
between the object and the antennas depends on sin(α). Because of the derivative of the
sine wave, this means that a small change in the azimuth angle has a large effect on the
distance difference around 0° and a significantly smaller effect around 90°. Therefore, a
consequence of this measurement approach is the fact that the angle estimate in front of the
sensor (|α| ∼ 0°) is most accurate and deteriorates at the sides of the field of view (|α| ∼ 90°).
This heterogeneous angular accuracy must also be anticipated in any object detection and
tracking system using radars.

In practice, the direction estimation is a rather complex signal processing pipeline, often
involving “virtual antenna arrays” and the use of super resolution algorithms to further
improve the performance [24][25].

We must mention that because radar signals have larger wavelength than other sensors
(see Figure 2.2), it can more easily “bounce” or reflect on objects, e.g. walls, or even the side
of other cars, which further complicates direction estimation. In other words, the observed
direction of an object could be incorrect if the radar signal was reflected on the way to the
object or on the way back to the sensor. This phenomenon and its consequences will be
discussed in more details later.

2.4 DIFFERENT TYPES OF RADAR DATA

T HE previous sections gave a brief introduction to the topic of automotive or FMCW
radars. It was shown that such sensors are capable of measuring the distance, direction,

and relative radial velocity of nearby objects. Now we will discuss the various data formats
in which radars can provide this information to users.

2.4.1 2+1D RADAR POINT CLOUD
Conventional automotive radars output a sparse point cloud of reflections. These reflections
or points are also called radar targets. Each point has two spatial dimensions, range r and
azimuth α, and a third dimension referred to as Doppler, which is the radial velocity vrel of
the target relative to the ego-vehicle [26]. I will refer to this type of sensors as 2+1D radars
in this thesis, as they provide two spatial dimensions, plus one dimension is for Doppler.
Each point is defined in this 2+1D space and is given a reflectivity RCS value. Since the
points in the point cloud are often called radar targets or targets, the features associated with
these points (i.e., range r, azimuth α, Doppler vrel, and reflectivity RCS) are often referred to
as target-level features.
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Figure 2.8: Demonstration of the output of a conventional 2+1D radar sensor. The same point cloud is projected
onto the camera image (left) and shown in bird’s-eye view (right). Note how the linear structure of the walls and
sidewalk (i.e., the curbside) is visible. Such sharp changes in elevation are often visible for the radar. The cyclist
was manually highlighted with a red ellipse in both views. The road user has only two radar targets on him. This
sparsity of 2+1D automotive radars is one of the major bottlenecks in radar based road user detection.

See Figure 2.8 for an example of the output of such a radar. The image on the right
shows the points or targets from the top-down view. The image on the left shows the same
targets projected to the camera image. The linear structure of the street, walls and sidewalk
(i.e., the curbside) is clearly visible in the top view. Such sharp changes in elevation are often
visible for the radar, as they reflect its emitted waves easier (see Section 2.6 for a detailed
explanation). Note that for each point only one direction angle is given, namely the azimuth.
Hence, these points are distributed in a horizontal plane in front of the sensor. In other words,
each point in the camera view is projected at the same height above the ground, since we do
not know their elevation. This, however, does not mean that they originate from the same
height. In fact, the radar target can be located along a vertical arc (i.e., different elevation
angles) at that range and azimuth angle. The density of these point clouds is rather sparse
compared to a LiDAR sensor: usually the number of targets per frame varies between 100
and 200. For example, in Figure 2.8 I have marked a cyclist with red circles in both views.
Note that there are only two points on the road user. As we will see later in this thesis, the
low number of points on nearby objects is often considered one of the major bottlenecks in
radar based road user detection.

2.4.2 RADAR CUBE
As described earlier in the discussion of the principles of FMCW radars, the extraction
of points from the analog signals involves several peak finding steps, e.g., in the output
of the range-, Doppler-, or Angle-FFT. Peak finding algorithms often include thresholds
that must be properly configured. Such steps also filter out additional information in the
form of nearby, smaller peaks. Many works [27][28][29][30] instead focus on “lower level”
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Figure 2.9: Overview of the radar cube. The radar cube is a three dimensional matrix with range, azimuth, and
velocity axes. The value of a cell represents the reflectivity in that range/azimuth/Doppler bin. A road user may
have multiple moving parts at the same spatial position (i.e., range and azimuth coordinates), e.g., swinging limbs.
The column at its range/azimuth coordinate is called the Doppler vector and contains the signature of this complex
motion.

radar data to eliminate as much of the thresholding/information loss as possible. Additional
information can reveal patterns that are helpful in classifying objects.

The radar cube is a representation of such low-level radar data. It is a three dimensional
data matrix with axes corresponding to range, azimuth, and velocity (also called Doppler).
The value of a cell (i.e., an element in the matrix) represents the measured radar reflectivity
in that range/azimuth/Doppler bin. Unlike target-level data, which contains a single velocity
value (i.e., vrel) for each radar target location, the radar cube provides the full velocity
distribution (often called the Doppler vector) at multiple 2D range-azimuth locations. Such
distributions can capture modulations of an object’s main velocity caused by its moving
parts, e.g., swinging limbs or rotating wheels, and have been shown to be a valuable feature
for object classification [31][32]. A visual explanation of the radar cube and an example of a
Doppler vector of a pedestrian is given in Figure 2.9.

Typically, radar cube features are used by first creating 2D range azimuth or range
Doppler projections, or by aggregating the projected Doppler axis over time into a Doppler-
time image [29][30]. I will refer to features derived from the radar cube or its projections
as low-level. Low-level data is also commonly used for classification tasks (i.e., without
determining the location of the object), especially using Doppler-Time images [27][28][29].
A disadvantage of such low-level radar data is the lower range and azimuth resolution than
those provided by radar targets and the fact that radar phase ambiguity is not yet accounted
for, since advanced range interpolation and direction-of-arrival estimation have not yet been
performed. In addition, the use of the full radar cube requires the transmission and on-board
processing of a significantly larger amount of data than a point cloud representation, which
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is difficult to accomplish in a production vehicle. In my experiments, for example, the
average radar cube message occupied ∼ 21 times more memory than the radar point cloud
representation of the same scene.

2.4.3 3+1D RADAR POINT CLOUD
Thanks to recent improvements in radar technology, next generation automotive radars
also determine the elevation of an object in order to correctly locate the object in three
dimensional space. That is, unlike conventional automotive radars, 3+1D radars have three
spatial dimensions: range r, azimuth α, and elevation θ, while still providing Doppler vrel as
the fourth dimension. I will refer to these type of sensors as 3+1D radars in this thesis, as
they provide three spatial dimensions plus one for Doppler.

While it is not necessarily a result of the additional elevation dimension provided, these
next generation radars also tend to provide a denser point cloud than before [14]. With
the additional elevation information and increased density, 3+1D radar point clouds are
somewhat reminiscent of LiDAR point clouds. See Figure 2.10 for a comparison of 2+1D
and 3+1D radar point clouds. The 3+1D radar point cloud is more dense, and includes height
for each point. Therefore, the shape of objects can be more precisely determined.

Figure 2.10: Example frame from a 2+1D radar (A), and from a 3+1D radar (B, from the Astyx Dataset [14]).
Circles are radar reflection points projected into camera view, colored by their measured relative radial speed.
Ground Truth bounding boxes are also plotted.

In this thesis, I have chosen to use N+1D terminology to indicate what type of radar
sensor is being discussed at the moment, where N is the number of spatial dimensions
provided by the radar, and the +1 stands for the Doppler dimension (if given). This was to
avoid adding to the confusion already present in the literature. For example, 3+1D radars are
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also often referred to as 4D radars [33] [34], because they have a total of four dimensions.
However, there are papers that refer to these sensors as 3D radars, and to their output as 3D
point clouds, e.g. [14][35]. On the other hand, calling conventional 2+1D radars “2D radars”
can also be confusing, because some radars (often called scanning radars) return neither
elevation nor Doppler values [36], effectively providing an actual two dimensional output.
With the N+1D terminology used in this thesis, I aim to unambiguously clarify this issue
and what type of sensors I am referring to.

2.5 ADVANTAGES OF RADAR SENSORS

I N the field of perception in intelligent vehicles, radar sensors have several advantages
over camera and LiDAR sensors. One of the most important, as mentioned earlier, is the

fact that radars can simultaneously measure the position and velocity of objects - something
no other sensor can do. This can be exploited in various ways, such as predicting future
positions, estimating current orientation, or even classifying an object in the scene based on
its velocity profile, as we will see in Chapter 5 and 6.

Another advantage is that in contrast to camera, radar is an active sensor. That is, it relies
on its own radiation source to illuminate the scene. This means that, unlike camera, radar is
not affected by lighting conditions of the scene. In other words, radars can see in the dark,
just like LiDARs.

As shown in Figure 2.2, the radar operates in a different, lower frequency range than
the other two sensors’. This also means that its operating wavelength is longer. This has
several consequences, some of which are beneficial. For example, a radio wave with a longer
wavelength propagates more easily in unclean air, such as rain, snow, smoke, or fog. In other
words, it is more robust to adverse weather conditions [37][38].

This longer wavelength has other consequences as well. For example, such waves are
more easily reflected from common flat objects on the roads, such as walls, road surfaces,
or sides of vehicles. This phenomenon is often refereed to as multipath propagation, and it
makes it possible to indirectly observe areas of the scene (e.g., behind a corner, behind a
parked car) that are not in the line of sight and therefore cannot be observed by the camera,
LiDAR, or even the naked eye [39][40].

Finally I should mention two benefits that are key in a production vehicle both for the
manufacturer and for a potential customer: price, and the placement (i.e., location, visibility,
and design) of the sensor. A decent radar sensor development kit is available to research
groups for a few hundred USD. Mass production of such sensors reduces the cost to a
fraction of that [39]. In contrast, LiDAR sensors cost at least an order of magnitude more
than that [41]. Such a significantly lower price is an attractive factor in the automotive
industry, where manufacturing costs are critical.

The possible locations and design constraints of a sensor are also important as they
influence the aesthetics and aerodynamics of the car. Since most automotive radars have no
moving parts, they occupy limited volume. In contrast, most LiDAR sensors are so-called
scanning LiDARs, which have to rotate to cover their field of view, and thus require extra
space. This often results in the placement of the sensors on the roof, hampering the design
of the vehicle. Further, moving parts can affect durability and increase the maintenance
cost of a sensor. In addition to their price and aesthetics, this is another reason why there is
currently no production vehicle on the market with a rotating LiDAR sensor. There are also
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Figure 2.11: Demonstration of the possible placement of sensors in an intelligent vehicle. The scanning LiDAR
sensor requires space to rotate to cover its field of view. Therefore, they are often placed on the roof of research
vehicles or robot taxis. Radar sensors, on the other hand, can penetrate the plastic material of the bumper and can
therefore be mounted (and hidden) almost anywhere on the vehicle.

LiDAR sensors with few or no moving parts, often referred to as solid state LiDARs [42].
While these have limited resolution and field of view compared to their scanning pairs, they
take up no more space than an automotive radar. However, radars have another advantage
that facilitates their integration. Because of the longer wavelength mentioned earlier, radar
waves can penetrate plastic materials that are often used in vehicle bumpers. In other words,
radars, unlike LiDARs, do not require a window to function and can be hidden inside the
chassis. Such a window is an obvious design limitation, but also something that must be kept
clean for proper operation. See Figure 2.11 for a comparison of the placement of a high-end
LiDAR sensor and a radar sensor in our research vehicle. While the rotating LiDAR must
be placed on top and kept clear of blocking objects such that it can rotate freely, the radar
behind the bumper is not visible at all to the observer.

In fairness, the LiDAR sensor used in our research vehicle and shown in the Figure 2.11,
a Velodyne HDL-64, is relatively old. Since its debut, smaller rotating LiDARs have been
introduced to the market, typically with a more practical, shorter cylinder shape, from both
Velodyne and other manufacturers, such as Ouster. However, the claims of this section are
still valid: these sensors have moving parts, and are larger, heavier, less cost-efficient, and
more limited in possible placement than a radar sensor.

2.6 DISADVANTAGES OF RADAR SENSORS

O F course, radar sensors also have some disadvantages that must be anticipated when
they are used in an intelligent vehicle.

First of all, most radar sensors provide point clouds of the environment, similar to LiDAR
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or a stereo camera setup. The more valid points such a point cloud has, the more complete
the picture it gives of the scene, including other road users. Unfortunately, this is not a strong
side of radars: a conventional 2+1D radar outputs 100-200 points in a scan with 10-20 Hz,
and even a next-generation 3+1D radar provides only a few times more than that. In contrast,
as shown in Chapter 6, a high-end LiDAR sensor with 64 layers provides two orders of
magnitude more points for the same area with similar refresh rates. The sparsity of radar
point clouds is a serious bottleneck that will be addressed in multiple ways in this thesis.

Another limitation of radar comes from its longer operating wavelength. These signals
are specularly reflected by the surfaces of objects, unlike visible and laser light beams that
scatter in all directions. This means that only a fraction of the transmitted waves returns to
the radar receiver [35]. Therefore, radar based perception is more sensitive to the shape of
the objects than LiDARs. For example, a corner of a car may reflect part of the illuminating
radar signal back to the sensor, while the flat side of the car reflects the signal but away
from the sensor. Radar devices are also sensitive to the material of the illuminated object.
That is, depending on the material, the radar signal may be reflected or partially penetrate
through the medium reached. For example, objects made of metal, water (or water-filled),
and rocks, in descending order, are good reflectors, while wood or plastic are poorly detected.
While this property can sometimes be useful as a classification feature, it generally requires
special attention and complicates development. For the reasons mentioned above, the points
returned in each scan are not only sparse but also irregularly distributed, i.e., they do not
follow a predefined scan pattern like LiDAR point clouds, resulting in a less consistent 3D
image of the environment.

Next, the aforementioned bouncing property of radar signals, which is caused by the
specular reflection discussed above and could make indirect observations possible, can be
a disadvantage as well. That is, if a radar target is not known to have been reflected on
a surface, its reported position will be incorrect. Such reflected and therefore incorrectly
located radar targets are often referred to as “ghost targets” and create clutter in the point
cloud. For example, consider an ego-vehicle following another car on a straight road, see
Figure 2.12. The radar of the ego-vehicle can detect the car ahead directly or via a reflection
on the guardrail. In the latter case, the detected car is erroneously located on the other side
of the road. A real life example of such ghost targets is given in Figure 2.13. The side of
the parked vehicle in front of the ego-vehicle acts as a “mirror” for the radar sensor. In this
specific case, the reflected targets actually originate from the ego-vehicle itself. Note that
there could be multiple of these indirect reflections between the actual target and the sensor,
which further complicates the situation. Removing ghost targets is a growing research topic,
see e.g. [43]. An interesting result of this phenomenon is the fact that 3+1D radars providing
elevation information often report points below the road surface. This is caused by reflections
that originate above the ground but are reflected somewhere on the road before returning to
the radar sensor. See Figure 2.10 for an example. The cars in the distance have radar targets
on them, but also below the ground.
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Figure 2.12: Illustration of ghost detections. The ego-vehicle (red) is equipped with a radar sensor. The radar can
detect the car in front (yellow) directly (orange arrow) but also via a reflection on the guardrail (blue arrows). In
the latter case, the radar will erroneously report the detected car to be also on the other side of the road (dimmed
yellow). Such reflected and therefore incorrectly located radar targets are often called ghost targets.

Figure 2.13: Real world examples of ghost targets. On the left, targets are projected into the camera view. On the
right is a top view of the scene with the stereo camera point cloud. Notice that the targets are farther away from the
ego-vehicle (bottom of top view) than the parked car. This is because the radar signal is reflected off the large flat
slide of the parked car, and the radar sensor is detecting the ego-vehicle itself. The colors of the targets indicate the
outcome of the classification algorithm presented in Chapter 5. Namely, blue targets have the car, red targets have
the cyclist class assigned to them.
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The man who does not read good books is no better than the man who can’t.

Mark Twain
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R OAD user detection is a critical step for any level of vehicle automation from Level
2 and up. Intelligent vehicles have multiple sensors to cope with this task: cameras

[44][45][46], LiDARs [13][47], and radars [48][49][50] are used in the literature. Fusing
different sensors, e.g. radar with camera [51] or LiDAR with camera [52][53], can further
increase reliability and bring redundancy to such systems. In this chapter, I focus on radar
based machine perception and review the most important related work, which I categorize
based on the type of radar data used. I then discuss the various possibilities and use cases for
which Doppler has been used in the literature. This is followed by an overview of publicly
available radar datasets. Detection of occluded pedestrians about to cross the road (i.e.,
“darting”) is a special edge-case in the scope of general road user detection in intelligent
vehicles. Nevertheless, this is one of the most difficult cases, causing far too many fatalities.
Since the detection of such pedestrians is also the topic of one of the following chapters, I
devote a separate section to methods dealing with occluded or darting pedestrians. Finally,
this chapter concludes with related work on two topics that are not necessarily part of
road user detection, but are nonetheless critical to successful implementation: tracking and
environment modeling.

3.1 2+1D RADARS

C ONVENTIONAL 2+1D automotive radars have been used for multi-class road user
detection in various ways, such as using clustering algorithms [54][55], convolutional

neural networks (CNNs) [39][49][56], or point cloud processing neural networks [50][57].
The sparsity of the point cloud provided by 2+1D radars is one of the largest bottlenecks of
the radar perception domain. Researchers attempted to overcome this challenge and obtain
more information in various ways, e.g.: by merging multiple frames over time [39][50],
using multiple radars [58], or fusing radar with other sensor modalities [59][60][61][62].

Many road user detection methods start by clustering the radar targets into a set of
object proposals based both on their spatial (r, α) and radial velocity (vr) features. Then,
cluster-level features (i.e. statistical features describing the whole cluster) are extracted
from each clusters. Finally, each object proposal (and their radar targets) is classified based
on these features by a classification algorithm. In [55], radar targets are first clustered
into objects by DBSCAN [63]. Then, several cluster-wise features are extracted, e.g. the
variance/mean of vr and r. The performance of various classifiers (Random Forest, Support
Vector Machine (SVM), 1-layer Neural Network, etc.) were compared in a single-class
(pedestrian) detection task. [54] also uses clusters calculated by DBSCAN as the base of
a multi-class (car, pedestrian, group of pedestrians, cyclist, truck) detection, but extracts
different features, e.g., deviation and spread of α. Afterwards, Long Short-Term Memory
(LSTM) and Random Forest classifiers were compared for the classification step. Falsely
merged clusters were corrected manually to focus on the classification task itself. The same
authors showed a method [64] to incorporate a priori knowledge about the data into the
clustering. [65] also aims to improve the clustering with a multi-stage approach. [66] follows
the work of [54] for clustering and classification, but tests and ranks further cluster-wise
features in a backward elimination study.

While clustering based methods are widely used, it is often noted [50] [64] that the
clustering step is error-prone. Objects can be mistakenly merged or split apart. Finding
suitable parameters (e.g. radius and minimum number of points for DBSCAN) is challenging
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as the same parameters must be used for all classes, although they have significantly different
spatial extension and velocity profiles. For example, a larger radius is beneficial for cars, but
could falsely merge pedestrians and cyclists. Another challenge of clustering based methods
is that small objects may not have enough reflections to extract meaningful statistical features,
e.g. variance. For example, both [54] and [55] set DBSCAN’s minimum number of points
to form a cluster larger than one, which means that single standing points are thrown away.

To address these challenges, there is a trend to classify each target individually instead
of in clusters. Encouraged by the results achieved with semantic segmentation networks on
point-clouds from LiDAR or stereo camera setups, e.g. Pointnet++ [67], researchers have
tried to apply the same techniques to radar data. However, the output of a single 2+1D radar
sweep is often too sparse. To overcome this, they used multiple frames [50] or addressed
large road users (cars) only [57].

In general, most existing methods using 2+1D radars do not regress 2D or 3D bounding
boxes for the detected objects. Instead, they perform semantic or instance segmentation of
the sparse point cloud, i.e. they assign a class label (and potentially an object id) to each
radar target individually [49][50][55][68][69][70].

3.2 RADAR CUBE

L OW-LEVEL radar data has been used for road user classification, especially for pedestri-
ans. For example, a walking pedestrian’s Doppler-time image contains a characteristic

walking gait pattern [31][32]. This is beneficial to exploit if the radar sensor is stationary,
e.g. in surveillance applications [27][28][29]. Doppler-time features were also used in auto-
motive setups. [30] applies a CNN-LSTM network on Range-Doppler and Doppler-Time
spectrograms of 0.5-2 seconds to classify pedestrian, group of pedestrians, car, and cyclist
classes. [71] pointed out that a long multi-frame observation period is not viable for urban
driving, and proposed a single-frame usage of low-level data. Their method still generates
object proposals with DBSCAN similar to [54][55], but extracts for each cluster the corre-
sponding area in a 2D Range-Doppler image, which is then classified using conventional
computer vision steps. In [56], the full radar cube is used as a multi-channel image input
to a CNN network to classify cars, pedestrians, and cyclists. The study only addresses a
single-object classification task, i.e. location is not fetched.

3.3 3+1D RADARS

G IVEN the limited availability of 3+1D radar sensors, only a handful of studies in the
literature have used them. [72] introduced a deep learning-based method to generate

the 3+1D radar point cloud from lower-level radar data. Similarly, [26] also described a
signal processing pipeline to obtain 3+1D radar point clouds and showed real-life qualitative
examples of such a point cloud in highway scenarios. [73] introduced a continuous-time
calibration tool for 3+1D radar and monocular camera. [43] used a modified Pointnet
network to classify ghost targets in a 3+1D radar point cloud using the LiDAR point cloud
as supervision. In [33] a 3+1D radar classification dataset was introduced along with a new
neural network designed for this classification task.

Even fewer works used 3+1D radars for object detection tasks. In [74] the authors
applied such a sensor to build a static 3D occupancy map of highway and parking lot scenes
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after filtering out dynamic targets. Afterward, the map is semantically segmented by image
segmentation networks into the street, curbstone, fence, barrier, or parked car classes. Before
the work in Chapter 6, the only publicly available automotive detection dataset that contains
3+1D radar data was the Astyx dataset [14]. Despite the small size of the dataset (∼500
frames), the authors have successfully used it to perform 3D car detection by fusing radar
and camera with the AVOD fusion network [75]. Furthermore, they also compared this
radar-camera fusion with LiDAR-camera fusion, although the LiDAR sensor had only 16
layers. Finally, [35] used the combination of two spatially separated low-resolution 3+1D
radars to detect vehicles by a novel neural network called RP-net, containing several Pointnet
layers. To the best of my knowledge, 3+1D radars have neither been used for multi-class
road user detection before, nor have they been compared to high-end LiDAR sensors.

3.4 THE USE OF DOPPLER

A S introduced in Chapter 2, radars, unlike cameras and LiDARs, are capable to directly
measure relative radial velocity (often called the Doppler) of objects by the Doppler

effect. It is interesting to look at the literature from the point of view of how this unique
property of radars was used. The most trivial use of Doppler is to distinguish static and
dynamic objects in the environment after ego-motion compensation. E.g., while some
research only keeps static radar targets [74][76][77][78], others use the Doppler information
to keep only moving reflections to detect dynamic objects [30][39][40][49]. After first
clustering the radar point cloud to generate object proposals, basic statistical properties
(mean, deviation, etc.) of the velocity spectrum can be used for classification [54][55]. [50]
presented in an ablation study that adding Doppler as an input channel to a Pointnet++
network significantly improves semantic segmentation. [49] showed that the (relative)
velocity distribution contains valuable class information which can be exploited for multi-
class road user detection. With multiple radar targets originating from the same object, it is
also possible to regress the 2D velocity vector (and thus, orientation) of the object using the
targets’ measured radial velocities as samples at different azimuth angles, as [79] showed for
cars and [80] for bikes. Thus, it has been shown that the Doppler dimension can be beneficial
in 3D object detection in two ways: 1) classification, as classes may have distinct velocity
patterns [49][50], and 2) in orientation estimation, as the general velocity (moving direction)
of an object is highly correlated with its orientation [79][80]. Despite its advantages, in the
few works that used a 3+1D radar sensor, Doppler was either ignored [75], used to filter
static radar targets [74], or used as an additional input channel in a point cloud processing
network without ego-motion compensation [35]. Although Doppler has been shown to be
beneficial for multi-class road user detection using conventional 2+1D automotive radars,
3+1D radars have only been used for single-class (vehicle) detection in the literature [35].

3.5 RADAR DATASETS

R ECENTLY, several automotive datasets containing radar data have been published for
various tasks, such as localization [81][82], object classification [33], or scene under-

standing with a stationary radar sensor [83]. In this section, I focus on detection datasets
that contain realistic recordings from a moving ego-vehicle. Both the RadarScenes [84]
and CRUW [85] datasets contain 2+1D radar and camera data and have a large number
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of annotations for all three main classes: cars, pedestrians, and cyclists. CRUW contains
low-level radar data in the form of range-azimuth images and provides only the 2D BEV
position and class of annotated objects. RadarScenes, on the other hand, provides radar data
in the form of processed 2+1D radar point clouds. Similar to CRUW, RadarScenes does not
have 2D BEV or 3D bounding box annotations. Instead, the authors chose to label each radar
target individually. Targets originating from static road users (e.g., parked cars) were not
assigned to a class, but were labeled as static. Unfortunately, neither RadarScenes nor CRUW
provides LiDAR data. The RADIATE dataset [36] contains radar, camera, and LiDAR data
along with 2D BEV bounding box annotations for all three classes. It was collected using
a mechanically rotating 2D radar, which provides a 360° dense image of the environment,
but does not output Doppler or elevation information. The Zendar dataset [86] provides
Synthetic Aperture Radar (SAR) data using a 2+1D radar. While the SAR technique is a
well-known method to acquire additional information and resolution about static objects, it is
less applicable in dynamic object detection. Unfortunately, the dataset only has annotations
for the car class. The nuScenes dataset [87] contains data from all three sensor modalities,
and they provide a large number of 3D bounding box annotations. However, the output of
the equipped 2+1D radar sensors is considered too sparse for radar-only detection methods
by some in the research community [26][84], and the used LiDAR sensor has only 32 layers.
Finally, the Astyx dataset [14] is the only one to use a 3+1D radar, and it also contains
data from a camera and a 16-layer LiDAR. Unfortunately, its limited size (∼500 frames)
and highly imbalanced classes (e.g., only 39/11 pedestrians/cyclists annotations) make it
ill-suited for multi-class object detection research.

3.6 DARTING OUT PEDESTRIANS

I N this section, I discuss camera-, radar-, and fusion based methods for pedestrian detection,
with a focus on darting out scenarios and occluded pedestrians.

3.6.1 CAMERA BASED APPROACHES

Cameras are often used for pedestrian detection as they provide rich information while
being relatively inexpensive. In recent years, convolutional neural networks (CNNs) and
deep learning methods [45][46] dominate in this field. The problem of occlusion is widely
recognized, e.g., many benchmarks define separate metrics for different levels of occlusion
[46][88]. For an overview of camera based methods that consider occlusions, see [89].
Several approaches aimed to explicitly account for occlusions by learning a set of component
detectors and fusing their results to detect partially occluded pedestrians [90][91][92][93].
More recently, researchers proposed special loss functions [94][95] or top-down approaches
[96] to jointly estimate the state of close-by pedestrians occluding each other, especially in
challenging, crowded scenes. Other methods introduced hard negative mining to increase the
occlusion tolerance of networks [97], or proposed to explicitly collect more training data of
partially occluded pedestrians [46] to address the problem. However, none of these methods
used a global environment model to describe the occlusions that may affect the number and
attributes of detections, e.g., result in no/fewer detections behind cars. See Section 3.7 for
more details about environment modeling.
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3.6.2 RADAR BASED APPROACHES
[98] presented a tracking method using track-before-detection and particle filtering. The
system was also tested in scenes of the pedestrian entering and exiting an occluded region
behind a car. The radar was able to provide measurements even in the occlusion. However,
the occlusion itself was not considered, and although they compared the performance to a
camera based detection system, no fusion occurred. In [99], a binary classification system
of pedestrians and static objects was presented that uses low-level radar data as input and
extracts hand-crafted features. The system was evaluated using darting out scenarios, but no
sensor fusion was used, nor was occlusion investigated as a possible source of information.
[39] exploited that radar signals often “bounce” off large flat surfaces. They showed that it
is possible to detect moving road users outside the direct line-of-sight with reflected radar
measurements by using building facades or parked vehicles as relay walls. In [100], the
authors explicitly addressed the detection of fully occluded, darting out pedestrians with
radar. They designed an experimental setup with a static radar sensor in an indoor area
(the pedestrian was behind a corner) and an outdoor area (the pedestrian was behind a van).
Movement of the occluded pedestrian is then classified by clustering into different behavior
types, such as walking towards, walking out of it, and walking inside the occluded region.
None of these methods considered occlusion as a source of information, and none of them
compared or fused camera and radar sensors to detect darting out pedestrians in realistic
environments, i.e., from a moving ego-vehicle.

3.6.3 FUSION BASED APPROACHES

S ENSOR fusion was extensively researched to provide more robust perception solutions
either via model-based (mathematical, e.g., Kalman or particle filters, evidence mod-

eling) [51][101][102], or data-driven approaches (e.g., with neural networks) [103][104]. In
this subsection, I focus on fusion systems that use radar, with particular attention to whether
and how these systems address occluded pedestrians. In [29], LiDAR and radar were fused
to detect pedestrians in a static experimental setup. First, a binary occlusion map of the
scene was created by detecting occluding objects with LiDAR. This map was then used to
select which sensors to use for detection: both sensors for unoccluded regions, and purely
radar for occluded regions, exploiting its multipath property. In [102], all three sensors were
combined in a multi-class system for detecting moving objects, including pedestrians, in
an intelligent vehicle setup using an occupancy grid representation. The LiDAR was used
as the main sensor to detect moving objects, while camera and radar were mainly used for
classification. The influence of occlusions was not considered. None of the fused systems
found were developed for use in intelligent vehicles to address darting out scenarios, or
considered occlusion as a source of information beyond helping sensor selection.

3.7 ENVIRONMENT MODELING

M ODELING occluded areas in the environment is often done in bird’s-eye view (BEV). A
common approach is to aggregate range measurements from radar or LiDAR sensors

into a 2D occupancy grid and then project “shadows” behind the extracted objects [105][106].
For automated driving applications, creating an environment model with information from on-
board camera sensor(s) can lead to a faster process (i.e., it does not need to be accumulated)
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and provides more information about the nature of the occluding object (e.g., whether it is a
car) due to the rich texture information. In [40], the goal was to explicitly model only the
occlusions caused by (parked) vehicles. To this end, 2D detections in the image plane were
fetched from the car, bus, truck, and van classes from the Single Shot Multibox Detector
(SSD) [107]. Depth (i.e., distance from the ego-vehicle) was estimated by projecting the
bounding boxes into the stereo point cloud and taking the median distance of the points from
the camera inside the box, resulting in “2.5D” detections (i.e., they are lines in bird’s-eye
view). Areas behind these detections were considered occluded, creating a binary map.
While this solution resulted in fast processing time and contributed to earlier detection
of darting out pedestrians in the experiments, it also had some drawbacks. By assigning
a single distance to the entire occluding vehicle, parts of the vehicle closer/farther than
that distance are incorrectly considered “regular” unoccluded/occluded (but still walkable)
regions. However, a pedestrian cannot be physically present in either of these halves.
Modeling occlusion with a bounding box also has limitations in width and height, e.g., a
pedestrian may be more visible behind the shorter parts of a car than behind its tallest point,
but these two cases are treated identically.

An alternative camera based approach to creating a more accurate occlusion model
that is still computationally efficient may be to use stixels [108]. Stixels are rectangular
column-wise group of pixels based on disparity information with the goal of reducing the
complexity of the stereo point cloud. Since the original publication [108], researchers have
integrated class information [109] and later instance information into stixels [110]. The
latter are referred to as Instance Stixels and could be a well suited input for an occlusion
model because they follow the shape of an occluding car (both in depth and width/height)
and are still computationally efficient to compute and process. In addition, the same Instance
Stixels representation can also serve as input to a road user detection and tracking system by
providing the location and height of the object, e.g., a pedestrian or cyclist.

3.8 TRACKING

R OAD users are often tracked with Kalman Filters both in camera based [111] and radar
based [30] detection systems. Kalman filters can only model linear motion. Situations

with possibly non-linear motion dynamics, e.g., a pedestrian who may or may not stop at the
road side, can be handled by using an “extended” Kalman Filter, or by switching between
multiple linear motion models with a switching dynamic system [111]. Another commonly
used method for pedestrian tracking is the particle filter [98][112][40][113] which estimates
the posterior distribution over the state space using a set of weighted particles. Analogous to
Kalman Filters for single-object tracking, probability hypothesis density (PHD) filters can
be used to jointly estimate the non-constant number of targets and their states [114].

Unlike Kalman Filters, a particle filter can handle non-linear motion dynamics, and can
represent arbitrary, potentially multi-modal distributions. To satisfy our use case (detecting
and tracking a road user), a filter should not only track an object of interest (e.g., a pedes-
trian), but also report a probability that it is present in the scene. [112][115] give solutions
to incorporate this existence probability into particle filters.
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4
DETECTION OF DARTING OUT

PEDESTRIANS WITH FUSION OF
CAMERA AND RADAR

There are relatively few things that kill people that
are young other than car accidents and suicide.

Kay Redfield Jamison

This chapter is based on  A. Palffy, J. F. P. Kooij, and D. M. Gavrila, “Occlusion aware sensor fusion for early
crossing pedestrian detection,” IEEE Intelligent Vehicles Symposium, pp. 1768–1774, 2019 [40], and  A. Palffy,
J. F. P. Kooij, and D. M. Gavrila, “Detecting darting out pedestrians with occlusion aware sensor fusion of radar
and stereo camera,” Accepted to IEEE Transactions on Intelligent Vehicles, 2022..
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4.1 INTRODUCTION

A BOUT 23% of the 1.35 million traffic fatalities world-wide involve pedestrians [8].
Automated driving has the potential to significantly reduce these traffic deaths, yet

the sensor-based detection and tracking of pedestrians from a moving vehicle remains
challenging. Pedestrians have a wide variation in appearance, can quickly alter their course,
and can step onto the road at pretty much any location.

Intelligent vehicles can use multiple sensors to cope with this task: cameras [44][45][46],
radars [48][49][50] and LiDARs [47][13]. Fusing different sensors, e.g., camera with radar
[51] or camera with LiDAR [52], can increase the reliability and redundancy of such systems.
In this chapter, I consider the fusion of a (stereo) camera with a radar. These are low-cost
sensors with complementary strengths that are well established in driver assistance context
on the market. Cameras provide color/texture information at a fine horizontal and vertical
resolution. Radar sensors provide accurate depth information, can directly measure the radial
velocities and are more robust to adverse weather and lighting conditions.

Pedestrian sensing is often complicated in urban scenarios by occlusions, such as by
parked vehicles. A substantial 26% of the accidents with crossing pedestrian analyzed
in [116] involved some form of visual occlusion. In fact, this case is so important that
the consumer advocacy group Euro NCAP designates a special test scenario for it, titled
“Running Child from Nearside from Obstruction” [117]. This case of a pedestrian darting
out [118] is illustrated in Figure 4.1. It is particularly dangerous because neither a human
driver nor the pedestrian have initially a clear, direct view of the other. Similarly, in an
automated driving setting, a parked vehicle would block direct line-of-sight from the sensors
of the ego-vehicle to the pedestrian. However, the extent of this blockage depends on the
sensor’s type and on the size and shape of the occlusion.

A camera may see the upper body of a pedestrian behind a passenger car, while a person
behind a larger vehicle, such as a truck or a van may be invisible to the sensor. On the
other hand, commercially available 2+1D radars, which provide two spatial dimensions
(range and azimuth) and one dimension for Doppler (radial velocity), are often able to detect
the reflections of a pedestrian even in complete occlusion due to multipath propagation
[99][39]. That is, the reflected radar signal may “bounce” off other parked cars or the ground
beneath the occluding vehicle and reach the ego-vehicle’s sensor even if there is no direct
line-of-sight. Such indirect reflections are weaker and occur less frequently than direct
ones[99], but they could still provide valuable information about a potentially darting out
pedestrian.

Since both camera and radar sensors are affected by occlusions, their fusion preferably
requires an occlusion model that describes how many detections to expect from each sensor
in the differently occluded areas of the scene (e.g., to expect fewer detections behind cars). In
addition, the occlusion model could also provide information about the expected properties
of such detections, e.g., that the visible part of a partially occluded pedestrian may be smaller
than an unoccluded one. The stereo camera is a suitable sensor to create this occlusion model
because it provides rich and dense textural and depth information that can help accurately
detect and model the occluding vehicle itself.

In this chapter, I present a Bayesian occlusion aware sensor fusion system designed to
detect darting out pedestrians. I show that incorporating an occlusion model into such a
sensor fusion system helps to detect darting out pedestrians earlier; thus precious time is
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Figure 4.1: Darting out scenario: a pedestrian steps out from behind a parked car (blue) which blocks the line-of-
sight of the ego-vehicle (white). I propose to detect such pedestrians with the fusion of stereo camera and radar in
an occlusion aware way, i.e., first building an occlusion model of the environment and then expecting fewer and
different detections (e.g. shorter visible parts of the pedestrian) from the occluded regions (O) than from the visible,
unoccluded ones (V).

gained to initiate emergency braking or steering, if needed. While I consider the fusion of
(stereo) camera and radar, the framework is suitable to integrate other sensors, e.g., LiDAR.

The chapter is structured as follows. In Section 4.2, I present my generic occlusion aware
Bayesian multi-sensor fusion filter. Details of how this filter was implemented with radar
and stereo camera sensors, and applied to darting out scenarios are discussed in Section 4.3.
Section 4.4 describes the dataset that was created and used for this work. In Section 4.5, I
present my experiments and results, which are discussed in-depth in Section 4.6. Finally,
Section 4.7 concludes the chapter. For an overview of relevant works, please refer to Section
3.6.
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Figure 4.2: Overview of my pipeline. Sensor data is processed to get the pedestrian detections and the occlusion
model (Pre-processing). Future states of the object in the filter are predicted, and then their likelihood are updated
with the detections considering the occlusion model (Filtering). The estimated existence probability and state
of the object are calculated, which information can be used in subsequent applications (Post-processing). Blue/red
dashed boxes mark camera/radar specific steps that are described in Section 4.3.

4.2 PROPOSED APPROACH
4.2.1 OVERVIEW AND CONTRIBUTIONS
The goal of this chapter is to fuse radar and stereo camera (Figure 4.2, blue and red dashed
rectangles) by incorporating occlusion information to detect darting out pedestrians. To this
end, I propose a generic Bayesian filter to fuse these sensors in an occlusion aware manner.
This estimates not only the 2D position and velocity of an object’s center on the ground
plane (i.e. BEV), but also the probability that the object of interest (i.e., a pedestrian) is
present in the scene. The used state space will be discussed in details in Subsection 4.2.2.

First, in a prediction step, I define the prior distribution of the filter given previous mea-
surements (Figure 4.2, Predict step). The distribution of predicted positions and velocities
are defined for three cases: a new object entering the scene, an object leaving the scene, and
finally a tracked object remaining in the scene. Please refer to Subsection 4.2.3 for details.

After the prediction step, the new detections are fetched from each sensor (Figure 4.2,
Pre-processing) and incorporated in the update step (Figure 4.2, Update step), which is
discussed in details in Subsection 4.2.4. I assume conditional independence of the sensors
given the true state of the object, thus I can perform the update with their set of detections
individually whenever they arrive, even if the sensors operate asynchronously at different
frame rates. I describe here the update in a generic way and define sensor specific details,
e.g. measurement models, later in Section 4.3.

When updating with any of the sensors, its K detections (as determined by its measure-
ment model) are fed into the filter. This updates the likelihood of the hypotheses in two ways.
First, the likelihoods of measuring K detections with this sensor are calculated. Since the
number of detections depends on the position of the object, I can incorporate information
from an occlusion model here. That is, my system adjusts the expected number of detec-
tions to the visibility of a position and expects more/less detections at unoccluded/occluded
locations, see Figure 4.1. Second, I also consider the unique capabilities of the sensors. That
is, I estimate the likelihood of the attribute of the detection based on the estimated state
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of the object. Here I could use, for example, the velocity measurement of a radar or the
classification confidence of a camera. I can also evaluate the size of the visible part of a
pedestrian given its assumed occlusion condition.

The occlusion model can be retrieved from a single or from a combination of sensors,
or from an independent source. In this chapter, it will be provided by the stereo camera, see
Section 4.3.

Finally, after the filtering, the object’s probability of existence and state (i.e., 2D BEV
center location and velocity) can be estimated and used in subsequent processing steps,
e.g., in predicting future positions or evaluating the dangerousness of the scene (Figure 4.2,
Post-processing).

My contributions are as follows.

1. I propose a generic occlusion aware multi-sensor Bayesian filter for object detection
and tracking.

2. I apply the proposed filter as a radar and stereo camera based pedestrian detection
and tracking system on challenging darting out scenarios. I show that incorporating
occlusion information and the radar sensor into my model helps to detect darting out
pedestrians earlier while keeping the number of false alarms low when the pedestrian
stays behind the car.

3. I share my dataset1 containing more than 500 relevant scenarios with camera, radar,
LiDAR, and odometry data.

This work builds upon our previous conference publication [40], where we initially
proposed an occlusion aware Bayesian filter for darting out pedestrians based on stereo
camera and radar. This work features an improved sensor measurement model (incorporation
of additional attributes besides location, see Subsections 4.3.2 and 4.3.3). Among others,
the occlusion extent is now more accurately represented by a height profile derived from
instance segmentation rather than by a bounding box derived from an object detector (see
Section 3.7). In terms of validation, this work features a significantly enlarged dataset and
added experimentation.

4.2.2 STATE SPACE AND NOTATIONS
Now I discuss the mathematical formulation of my proposed generic occlusion aware, multi-
sensor Bayesian filter without sensor related specifics. Let the space T consist of a 2D
(lateral and longitudinal) position and velocity, and a binary flag marking if the tracked object
(e.g., a pedestrian) exists. Let h be a state vector in T (vectors are written in boldface):

T : R × R × R × R × {0, 1}, (4.1)
h ∈ T , h = (x, v,E), (4.2)

where x = (x, y) and v = (vx, vy) are the object’s 2D BEV position and velocity vectors on
the ground plane, and E represents the existence probability. I.e., E = 1 means there is a
pedestrian in the scene and E = 0 represents its absence.
1The dataset is freely available at https://intelligent-vehicles.org/datasets/ to academic and non-profit organizations
for non-commercial, scientific use.

https://intelligent-vehicles.org/datasets/
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I define a Bayesian filter for detection and tracking which estimates the posterior state
distribution P(ht |Z1:t) given all measurementsZ1:t. The filter operates on-line, integrating
new measurements into a posterior using Bayes’ theorem:

P(ht |Z1:t) ∝ P(Zt |ht) · P(ht |Z1:t−1), (4.3)

where Zt is the set of all sensor detections at current time t. Here the prior distribution
P(ht |Z1:t−1) for time t is obtained by applying a state transition probability on the previous
posterior, and integrating over the previous state ht−1 following the Chapman-Kolmogorov
equation:

P(ht |Z1:t−1) =
∫

P(ht |ht−1) · P(ht−1|Z1:t−1)dht−1. (4.4)

I am thus required to define the state transition distribution P(ht |ht−1) for the filter’s
prediction step, and measurement likelihood function P(Zt |ht) for the update step, which
I will derive in the following subsections. Note that the posterior contains the expected
existence probability of a pedestrian in the scene:

P(Et |Z1:t) =
x

P(ht |Z1:t)dxtdvt. (4.5)

4.2.3 PREDICTION STEP
The state transition distribution is factorized into two terms:

P(ht |ht−1) = P(Et |ht−1) · P(xt, vt |Et,ht−1). (4.6)

The first term estimates the object presence flag E. A new object can appear with a probability
of pn. Unlike pn, ps(ht−1), the probability that an object stays in the scene depends on the
previous state ht−1, because the position of the object affects the probability that it will
suddenly leave the region of interest. Using these, I can determine the probability of E given
the previous state ht−1 for entering (new), not present and not entering, staying, and leaving
objects respectively:

P(Et = 1|Et−1 = 0,ht−1) = pn, (4.7)
P(Et = 0|Et−1 = 0,ht−1) = 1 − pn, (4.8)
P(Et = 1|Et−1 = 1,ht−1) = ps(ht−1), (4.9)
P(Et = 0|Et−1 = 1,ht−1) = 1 − ps(ht−1). (4.10)

In case an object is present (Et = 1), the values of x and v are distributed as follows for
entering and staying objects respectively:

P(xt, vt |Et = 1,Et−1 = 0,ht−1) = pe(xt, vt), (4.11)
P(xt, vt |Et = 1,Et−1 = 1,ht−1) = P(xt, vt |xt−1, vt−1).

For this last term, I use a constant velocity dynamic model similar to [111], with a normally
distributed acceleration noise a ∼ N(0,Σa):

vt = vt−1 + a∆t, (4.12)

xt = xt−1 + vt−1∆t +
1
2

a∆t2. (4.13)
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Figure 4.3: Transition of states. Et = 0 denotes the lack of object, and Et = 1 denotes the presence of an object with
the configuration of xt , vt at timestamp t.

Through the introduction of the binary flag E, the full state transition can be regarded as a
state machine, see Figure 4.3.

4.2.4 UPDATE STEP
Now I describe the likelihood P(Zt |ht). I follow the common assumption of conditional
independence for the sensors, thus the single-sensor update step described here can be applied
independently to each. The sensor s returns K detections at once: Z = {z1, . . . zK}. Each
detection zk contains a 2D BEV location and some additional attributes: zk = [zpos, zattr]. To
include occlusion awareness, my measurement model introduces several auxiliary variables,
with conditional dependencies as shown in the graphical model of Figure 4.4. These variables
and their distributions will be introduced in the next paragraphs, where I first distinguish
between the expected number of detections, which differentiates my occlusion aware from
the naive approach, and then the likelihood term for a single measurement zk.

Detection rates The total number of detections (K) is the sum of foreground (KF) and
background (KB) detections: K = KF + KB. If I consider detections as conditionally in-
dependent events occurring during a fixed interval, it is natural to model the number of
foreground (true positive) and background (false positive) detections with two Poisson
distributions. Let us denote the corresponding detection rates with λF(x,E) and λB for the
foreground and background detections respectively. The values of KB, KF follow Poisson
distributions, KB ∼ Pois(λB) and KF ∼ Pois(λF), with scalar parameters λB and λF . The
total number of detections K is then also Poisson distributed:

P(K|λB, λF) = Pois(λB + λF). (4.14)
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I distinguish between my novel occlusion aware filter by the way it determines the value
of the foreground detection rate, as opposed to the naive approach. In the proposed Occlusion
Aware Filter (OAF) approach, the number of foreground detections depends both on the
object’s presence and location. A benefit of Poisson distributions is that I can incorporate
the occlusion information here with a spatially dependent rate parameter, i.e., more true
detections are expected if the pedestrian is unoccluded (i.e. visible) than if the pedestrian is
occluded:

λF =

λF
unocc i f x ∈ V,
λF

occ i f x ∈ O,
(OAF) (4.15)

where λF
unocc, λ

F
occ indicate the expected detection rates in unoccluded (V), occluded (O)

areas respectively, see Figure 4.1. The extent of these areas will be determined by the
implementation-specific environment occlusion model.

In contrast, a naive (i.e., not occlusion aware) filter assumes that λF is constant, targeting
the more typical unoccluded case:

λF = λF
unocc. (naive approach) (4.16)

The occlusion aware filter behaves the same as a naive one in unoccluded cases, but in
occluded positions it adapts its expected rate λF .

Measurement likelihood Derived from the properties of Poisson distributions, the num-
ber of false and true positive detections given K are distributed as Binomial distributions
parametrized by the ratio of λB and λF . Thus, the probability of a detection zk being
foreground/background is (given K number of detections):

P(ηk = 1|λB, λF) =
λF

λF + λB , (4.17)

P(ηk = 0|λB, λF) =
λB

λF + λB , (4.18)
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where the binary flag ηk denotes if the kth detection zk comes from the tracked object,
i.e., is a true positive detection. Since every detection is conditioned on E and ηk latent
variables, I have to define the likelihood function P(zk |E, x, v, ηk) for the following cases:
(E = 1, ηk = 1), (E = 1, ηk = 0), (E = 0, ηk = 0), which stand for the true positive and for
the false positive cases, with and without a present pedestrian, respectively.

Unlike [40], in which we only considered location of detections, here I compose this like-
lihood function with two parts: a spatial component (i.e., likelihood of detection’s location)
and an attribute component (likelihood of such a detection at that location). I assume that
true positive (foreground) detections are spatially distributed around the object’s position
x described by some distribution LF(zpos|x), and that false (background) detections are dis-
tributed as described by some distribution LB(zk). Similarly, I define the attribute likelihood
functions, AF(zattr |x, v) and AB(zattr) for true and false detections, but also conditioned on
velocity. Then:

P(zk |E = 1, x, v, ηk = 1) = LF(zpos|x) · AF(zattr |x, v),

P(zk |ηk = 0) = LB(zpos) · AB(zattr). (4.19)

Finally, the complete likelihood of a single measurement is:

P(zk |E, x, v, λB, λF)=P(zk |E, x, v, ηk = 1)·P(ηk = 1|λB, λF)

+ P(zk |E, x, v, ηk = 0) · P(ηk = 0|λB, λF). (4.20)

Since all K detections are conditionally independent given x and E, and λB and λF are
determined through position x and areas V plus O, the full measurement likelihood becomes:

P(Zt |ht) = P(K|λB, λF) ·
K∏

k=1

P(zk |ht, λ
B, λF). (4.21)

4.3 IMPLEMENTATION

F IRST, I describe how the Bayesian filter was implemented with a particle filter. Then,
I discuss how the attribute likelihood function was implemented for the two sensors. A

summary of the model parameters is given in Table 4.1.

4.3.1 PARTICLE FILTERING
For inference, I use a particle filter to represent the posterior distribution in my model by a
set of samples (i.e., particles). Unlike, say, a multiple-model Kalman Filter, it is straight-
forward to include information about occlusion in the particle filter, i.e. particles in occluded
areas are treated differently than those in unoccluded areas, and to represent uniform initial
uncertainty over the bounded occlusion region. Furthermore, such a system is easy to scale
for the available hardware resources by changing the number of particles.

To include the existence probability in the filter, I follow [112]. Of N particles, the first
one (index 0) will represent all hypotheses with non-present pedestrian, called the negative
particle. The remaining N − 1 = Ns particles (called the positive ones) represent the cases of
a present pedestrian:

Et = 0→ w(0)
t , (4.22)

Et = 1→ (h(i)
t ,w

(i)
t ) f or i = 1 . . .Ns. (4.23)
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Parameter Short description In my experiments

ps(h(i)
t ) Probability for a ped. to stay 0.95 in ROI

pn Probability of an entering ped. 0.2
pe(ht) Distrib. of ht for an entering ped. Uniform in ROI
λF

unocc Exp. # of detections (unoccluded) 1/1.5 for cam./rad.
λF

occ Exp. # of detections (occluded) 0.1/0.3 for cam./rad.
λB Exp. # of background detections 0.05/0.1 for cam./rad.
LB(zpos) Spatial likelihood (background) Uniform in ROI
LF(zpos|x) Spatial likelihood (foreground) Eq. (4.32), Eq. (4.34)
AB(zattr) Attribute likelihood (background) Eq. (4.33), Eq. (4.36)
AF(zattr |x, v) Attribute likelihood (foreground) Eq. (4.33), Eq. (4.36)
Σcx,Σrx std. dev. used in LF 0.2 m, 0.3 m
ΣF

ch,Σ
F
rv std. dev. used in AF 0.7 m, 0.8 m/s

ΣB
ch,Σ

B
rv std. dev. used in AB 1.5 m, 3 m/s

Wspeed Exp. distrib. of particle speeds N(p,Σw)
Wdir Exp. distrib. of particle orientation Uniform in ±22.5°

Table 4.1: List of model parameters and their experimental value settings.

where h(i)
t = [x(i)

t , v
(i)
t ,E

(i)
t = 1] is the state of the ith particle, w(i)

t is the weight assigned to
it, and E(i)

t = 1 marks that these Ns particles represent hypotheses of a present pedestrian.
Thus, the estimated probability of a non-present/existing pedestrian given all detections is
the normalized weight of the first particle/summed weights of all the others, see Eq. (4.5):

P(Et = 0|Z1:t) = w(0)
t , P(Et = 1|Z1:t) =

Ns∑
i=1

w(i)
t . (4.24)

To obtain the estimated state of the pedestrian, I use the weighted average of the particles
along the hypothesis space:

h̃t = [̃xt, ṽt, Ẽ] =
Ns∑
i=1

w(i)
t · h

(i)
t , (4.25)

where x̃t = (x̃t, ỹt) is the estimated position, ṽt = (̃vx,t, ṽy,t) is the estimated velocity vector of
the pedestrian, and Ẽ is the estimate of the pedestrian being present, see Eq. (4.24).

INITIALIZATION
Particles’ positions are initialized uniformly across the Region of Interest (ROI). Their
velocity is drawn from normal distribution Wspeed ∼ N(p,Σw) around slow walking pace
p = 1 m/s and their orientation is drawn from a uniform distribution Wdir between ±22.5°,
where 0° is the orientation perpendicular to the movement of the ego-vehicle, pointing
towards the road.
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PREDICTION STEP
The input of the prediction step are Ns uniformly weighted particles representing the present
pedestrian, and one particle representing the Et = 0 hypothesis.

Predicted variables are marked with ^ sign. First, I estimate the next weight of the
negative particle as follows:

P(Et = 0|Z1:t−1) = ŵ(0)
t =

wnp

wnp + wp
, (4.26)

where wp, wnp are the cumulative weights of present, and not present predicted states using
Eq. (4.7) - Eq. (4.10):

wp = pn · w
(0)
t−1 +

Ns∑
i=1

(ps(h(i)
t ))w(i)

t−1, (4.27)

wnp = (1 − pn) · w(0)
t−1 +

Ns∑
i=1

(1 − ps(h(i)
t ))w(i)

t−1. (4.28)

Afterwards, I sample Ns new positive particles, which are either a mutation of an existing
particle moved by the dynamic model, or a completely new (entering) one, see Eq. (4.11).
An existing particle stays in the scene with probability ps(h(i)

t ), or is replaced by a new one
with probability of 1 − ps(h(i)

t ):

h(i)
t−1 →

ĥt
(i)
∼ P(ht |h(i)

t−1) if moved particle,

ĥt
(i)
∼ pe(ht) if new particle.

(4.29)

All weights of the predicted positive particles are then set uniformly:

ŵ(i)
t =

1 − ŵ(0)
t

Ns
∀ i = 1 . . .Ns. (4.30)

UPDATE STEP
Particles are updated by new detections using the measurement likelihood Eq. (4.21):

w(i)
t ∝ ŵ(i)

t · P(Zt |ĥt
(i)

). (4.31)

Details of the attribute likelihood calculations are discussed later in Subsection 4.3.2 and
4.3.3. After the update, all weights are renormalized. To avoid sample degeneracy, I resample
the positive particles if the Effective Sample Size (ESS) drops below a threshold [119].

4.3.2 USE OF STEREO CAMERA DATA
The camera sensor data is used for two purposes: 1) to update the filter with camera based
pedestrian detections and 2) to update the occlusion model, see Figure 4.2, top. For both
tasks, I use the Instance Stixel representation [110]. Stixels [108] are rectangular upright
sticks in the 3D space, perpendicular to the estimated ground plane. With the extension of
[110], each stixel has the following parameters: a 3D position of their bottom, a height, a
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class label (among others: car, bus, truck, person, sky) and an instance id. In this way, objects
of interest (pedestrians and occluding vehicles) are represented by a loose set of stixels
connected by their class and instance information. Unlike the bounding box representation
used in [40], these stixels better describe the shape and extent of objects in both bird’s-eye
and camera perspectives (e.g., varying visible height of cars) while keeping the processing
load low. For a visual introduction to stixels I refer the reader to Figure 4.1. Qualitative
examples of Instance Stixels can be seen in Figure 4.7. First I filter the stixels to keep only
those from the relevant classes: pedestrian stixels as input for the particle filter and vehicle
stixels (i.e. from car, truck, and bus classes) to update the occlusion model.

UPDATE OF THE OCCLUSION MODEL
The stixels of vehicles that are close enough (i.e., at least one of their stixels is in ROI)
are fitted with a bird’s-eye view 2D rectangle to model the position and extent of the
parked vehicles. The fitting is done with plausible minimum widths and lengths to avoid
unrealistically small car assumptions. I consider the projected region behind the farther end
of these car models as occluded as shown in Figure 4.1 and 4.7. I also store the set of stixels
for each car to calculate the height of the occlusion for later use, see below.

UPDATE OF THE FILTER
The pedestrian stixels are grouped by their instance id. Then, the average 2D BEV position
of the stixels and their largest height range in meters (i.e., the difference between the
lowest and highest stixels ends) are computed to create a pedestrian detection for the filter:
z = [zpos, zattr = zheight]. The position zpos is then used in the spatial component, which is
modeled with a normal distribution, with standard deviation Σcx:

LF(zpos|x(i)
t ) = N(zpos|x(i)

t ,Σcx). (4.32)

The height zheight is used to calculate the attribute likelihood AF(zattr |x(i)
t , v

(i)
t ). I consider the

likelihood of observing a pedestrian with visible zheight at the location x(i)
t of each particle,

given the current occlusion model. First, I compute the expected observable height h̃(i)
t for

each occluded particle by looking up the car stixel with the most similar angle to it, see
Figure 4.1. Then, the height of this stixel is scaled by the distance of the particle to get how
tall objects would be occluded by the stixel/parked car at the particle’s location. Afterwards,
the expected observable height h̃(i)

t is the difference between the occluded height and the
expected height of a pedestrian mheight. For example, behind a tall van I expect to see no part
of a pedestrian (̃h(i)

t = 0), while at an unoccluded location the full height of the pedestrian
should be visible h̃(i)

t = mheight. Finally, I model both AF(zattr |x(i)
t , v

(i)
t ) and AB(zattr) as zero

mean normal distributions with standard deviations ΣF
ch and ΣB

ch:

dheight = zheight − h̃(i)
t ,

AF(zattr |x(i)
t , v

(i)
t ) = N(dheight |0,ΣF

ch), (4.33)

AB(zattr) = N(dheight |0,ΣB
ch).

4.3.3 USE OF RADAR DATA
Radar data is solely used as an input to my pedestrian detection filter. For an overview
of radar specific steps, see Figure 4.2, bottom. The equipped radar outputs a sparse point



4.4 DATASET

4

47

cloud of reflections called radar targets. Each point has two spatial dimensions, range r
and azimuth α, and a third dimension referred to as Doppler, which is the radial velocity
vrel of the target relative to the ego-vehicle. First, I perform ego-motion compensation for
vrel. That is, by eliminating the motion of the sensor that comes from both the translational
and rotational movement of the ego-vehicle I get the compensated radial velocity, a signed
scalar value denoted by vr, describing the ego-motion compensated (i.e., absolute) radial
velocity of the point. In a next step, I filter the reflections based on their RCSand vr, i.e.
I remove targets with very weak reflections or too low velocities to only keep ones that
could potentially originate from a darting pedestrian. I also eliminate radar targets that are
located in the rectangles fitted to the parked cars since a pedestrian cannot be present there,
but the high reflectivity of these cars could yield a moving radar target in case of a faulty
ego-motion compensation. The remaining reflections are considered as detections for the
filter: z = [zpos, zattr = zvel = vr].

The position zpos is then used in the spatial component and modeled with a normal
distribution analogous to the camera, with standard deviation Σrx:

LF(zpos|x(i)
t ) = N(zpos|x(i)

t ,Σrx). (4.34)

In addition to the spatial distribution, the radar also has an attribute likelihood component
AF(zattr |x(i)

t , v
(i)
t ). I consider the likelihood of observing a radar reflection with the measured

radial velocity zvel given the location and velocity of each particles. Let us define los =
x(i)

t − xradar as the line-of-sight vector pointing from the radar to the particle. I calculate the
expected radial velocity ṽ(i)

r,t as the particle’s velocity v(i)
t ’s projection to this vector (i.e., its

radial component):

ṽ(i)
r,t =

los · v(i)
t

∥los∥
. (4.35)

Finally, I model both AF(zattr |x(i)
t , v

(i)
t ) and AB(zattr) as zero mean normal distributions with

standard deviations ΣF
rv and ΣB

rv:

dvel = zvel − ṽ(i)
r,t ,

AF(zattr |x(i)
t , v

(i)
t ) = N(dvel|0,ΣF

rv), (4.36)

AB(zattr) = N(dvel|0,ΣB
rv).

4.4 DATASET

T HE dataset was captured by our prototype vehicle [120] in Delft, the Netherlands. I
recorded the output of a Continental 400 radar mounted behind the front bumper (2+1D:

range, azimuth, Doppler, ∼13 Hz, ∼100 m range, ∼120° field of view), an IDS stereo camera
(1936 × 1216 px, ∼10 Hz, 35 cm baseline) mounted on the windshield, a Velodyne HDL-64
LiDAR (64 layers, ∼10 Hz) scanner on the roof, and the ego-vehicle’s odometry (Spatial
Dual GNSS/INS/AHRS sensor and wheel odometry fused via an Unscented Kalman Filter,
∼30 Hz). All sensors were jointly calibrated following [121]. While the LiDAR data is not
used in this chapter, it will be made available for future work.

The dataset contains 501 recordings, each with a length between 8-20 seconds. In each
recording, the ego-vehicle approaches or passes (at least) one parked vehicle with a pedestrian
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Figure 4.5: Examples of darting out pedestrians from the dataset.

behind it. All recordings were performed in a real environment, with driving speeds suitable
for the environment (mean: 4.0 m/s, std.: 0.57 m/s). The pedestrian either steps out from
behind the parked vehicle (“darting” or “walking” sequences) or remains there (“staying”
sequences). Participants were instructed which action to perform next, but were free to
choose their walking speed during darting, or their activity (imitating e.g. phone call, bagging
groceries, slight movement) during staying recordings. See Figure 4.5 for examples of darting
out pedestrians. Fifteen subjects with different heights participated in the experiment (mean:
178 cm, standard deviation: 8.5 cm). In total, more than 100 different parked vehicles were
used as occlusion, ranging from passenger cars (partial occlusion) to vans (full occlusion).

The resulting dataset contains 249 walking and staying 252 sequences. For each sequence,
I manually annotated its type (darting or staying), the pedestrian’s height, the occluding
vehicle’s type (car or van) and some environment conditions (e.g., harsh lighting, leaves on
the ground, etc.). I have also marked the first timestamps where a) the head, b) the body
center, c) one of the feet, and d) the entire body of the pedestrian is visible, see Figure 4.6.
This allows a temporal alignment of the sequences and a better understanding of the visual
occlusion in the case of different occluding vehicles.
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Figure 4.6: Example of annotated frames on a walking out sequence. I marked the first frames where (a) the
pedestrian’s head, (b) the body center, (c) one of the feet, and (d), full body is visible.

4.5 EXPERIMENTS

I N my experiments, I investigate how the fusion of stereo camera and radar sensors, and
the incorporation of occlusion information help to detect darting out pedestrians. For this

purpose, I compare the following methods: naive camera, naive fusion, OAF camera, and
OAF fusion, where “naive”/“OAF” stands for naive/occlusion aware filtering. The naive cam-
era and naive fusion are methods that use only the camera/both sensors to update the filter
in a naive way, see Eq. (4.16). Similarly, OAF camera and OAF fusion use only camera/both
sensors to update, but in an occlusion aware way, i.e., they are “occlusion aware filters”, see
Eq. (4.15). All four methods above use Instance Stixels (IS) as camera based pedestrian detec-
tions to update the filter, while OAF camera and OAF fusion also use Instance Stixels to model
the occlusions. To study the benefits of the improvements introduced in this chapter, I com-
pare the methods above with the fusion method from our previous publication [40]: OAFSSD

fusion. This is also an occlusion aware filter fusing both sensors, similar to OAF fusion,
but it uses the output of the Single Shot Detector (SSD) instead of Instance Stixels (IS) as
camera based method. Further, in contrast to the other methods, OAFSSD fusion does not use
the attribute likelihood components introduced in Subsection 4.3.2 and 4.3.3, only the spatial
component. Note that unlike IS, SSD provides detections as bounding boxes, not involving
the height profile of the cars. Hence, the height related attribute likelihood component would
not be possible to calculate with SSD. An overview of the compared methods is given in
Table 4.2. Both the “Filtering” and the “Post-processing” module from Figure 4.2 (including
the presented application example) run at a processing speed of over 500 Hz for all methods
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(a) (b) (c) 

Figure 4.7: Camera views (top left), stixel images (bottom left) and top views (right) of the scene at consecutive
timestamps using OAF fusion. Vehicle/pedestrian stixels are shown with green/white colors (bottom left). Vehicle
stixels are also shown as short green lines on the top view, representing the outlines of the detected parked cars.
Occlusion (greyish areas) is calculated as the “shadow” of these cars. Initially, the particles (blue to red, for small
to high relative weights) have higher density and weights in occluded regions (a) and converge on the pedestrian’s
position after being detected first by the radar (magenta star, (b)) and then by the camera sensor (yellow ‘x’, (c)).
All views are cropped for easier visibility. Orange arrows connect corresponding objects in different views.

with 1000 particles in an optimized Python based implementation using the Robot Operating
System (ROS) on a high-end system PC (64 GB RAM, TITAN X (Pascal) GPU, Intel Xeon
CPU E5-1560 CPU). This brings a negligible overhead compared to the camera based detec-
tion modules (off-the-shelf implementation of SSD and IS, including the occlusion model)
running around 14 Hz, and the radar related pre-processing steps running at over 200 Hz.

The framework has a set of parameters and distributions that should be tuned to the
characteristics (type, accuracy, noise, etc.) of the user’s sensors. A brief overview of these
can be found in Table 4.1. In this research, the parameters were empirically tuned on the
distinct dataset used in [40] and during in-vehicle experiments, and visually validated on the
first few sequences of the new dataset. ROI was defined as a 4.5 m wide, 14 m long rectangle
in front of the ego-vehicle. For the camera, I use λF

unocc = 1 because detection is reliable in
this range in unoccluded regions. λF

occ is set to 0.1 for occluded locations. Few false positives
occur in the ROI, so λB is set to 0.05. For radar, I set λF

unocc = 1.5 for unoccluded positions,
since multiple reflections are often received from the same pedestrian. In occlusions, I set
λF

unocc = 0.3 as I still expect some reflections due to the multipath propagation. An average
rate of λB = 0.1 is expected for radar, as false positives occur more often than with camera
due to e.g. incorrect ego-motion compensation.

4.5.1 ESTIMATED EXISTENCE PROBABILITY IN DANGEROUS SITUA-
TIONS

In my first experiment, I ran the methods on all walking sequences and recorded the reported
existence probabilities as in Eq. (4.5). The sequences were temporally aligned by marking
the first moment when the pedestrian’s body center was visible as t = 0, see Figure 4.6.
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Figure 4.8: Estimated probabilities of a pedestrian being present, averaged over all walking sequences, with standard
deviation around the mean for fusion methods. t = 0 is the first moment when the pedestrian’s body center was
visible. The addition of radar results in earlier detection than using the camera alone.
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Figure 4.9: Histogram of the gained reaction times. Time difference is calculated between the moments naive
camera and OAF fusion reaches the threshold P(Et = 1|Z1:t) = 0.5. For clarity, here I only show the sequences
where both methods reach the threshold within the time window of [−1 s, 0.5 s].
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Method Radar
Camera
based

method

Occlusion
awareness

Attribute
likelihood
component

naive camera ✗ IS ✗ ✓
OAF camera ✗ IS ✓ ✓
naive fusion ✓ IS ✗ ✓
OAFSSD fusion[40] ✓ SSD ✓ ✗
OAF fusion (proposed) ✓ IS ✓ ✓

Table 4.2: Overview of the compared methods with their sensor whether they use radar, type of camera based
method (IS: Instance Stixels, SSD: Single Shot Detector), whether they are occlusion aware, and whether they
implement the attribute likelihood components.

Then, for each timestamp, and for each method, I calculate the mean estimated probability
by averaging over all walking sequences as in [40], see Figure 4.8. In general, the inclusion
of radar helps to detect the pedestrian earlier. I.e., any chosen threshold of probability is
reached earlier by the three fusion methods (naive fusion / OAF fusion / OAFSSD fusion)
using both sensors, than by the methods using only the camera. For example, on average,
the threshold P(Et = 1|Z1:t) = 0.5 is reached 0.26 seconds earlier by OAF fusion than by
naive camera. When examining only smaller occluding vehicles (i.e., cars), this time gain
increases to 0.30 s. In contrast, for sequences with a van as an occlusion, the measured gain
is only 0.12 s.

The previously discussed threshold of P(Et = 1|Z1:t) = 0.5 is reached 0.15 seconds
earlier by the proposed occlusion aware fusion OAF fusion than by the naive method naive
fusion. OAF fusion also reports higher probabilities at all times when the pedestrian is
occluded (t < 0). OAFSSD fusion reaches the same threshold later than OAF fusion by 0.06
seconds, but still earlier than naive fusion.

I also examine the sequences individually, and calculate the time difference between the
reported probabilities of naive camera and OAF fusion to be over 0.5. A histogram of the
gained reaction times can be found in Figure 4.9. In the large majority (∼ 68%) of dangerous
scenarios OAF fusion gains some additional reaction time over naive camera.

In Figure 4.7, I show an example of a walking scene to demonstrate how OAF fusion
behaves when there has been no prior detection, and then when first the radar and then the
camera has detected the pedestrian.

4.5.2 DISTINGUISHING DANGEROUS AND NON-DANGEROUS
SCENARIOS

Similar to [44] I classify the scene into two classes: c = darting (there is a darting pedes-
trian, dangerous scenario) or c = non-darting (there is no pedestrian, or he/she is not
darting). To do this, I estimate the probability P(Et = 1|Z1:t) of a present pedestrian of any
kind (staying or darting) by Eq. (4.24). I also estimate whether the assumed-to-be present
pedestrian darts out creating a dangerous scenario P(c = darting|Z1:t,E = 1) based on the
estimated state of the pedestrian h̃t, see Eq. (4.25). The pedestrian is assumed to be darting
if he/she is already on the road in front of the ego-vehicle: x̃t > dangerousPos (axis is
perpendicular to the movement of the ego-vehicle, increases towards the road), or he/she
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Figure 4.10: Estimated probabilities of a darting pedestrian, averaged over all walking (a) and staying (b) sequences,
with standard deviation around the mean for fusion methods. t = 0 is the first moment when the pedestrian’s body
center was visible for walking scenes, and the last moment when the occluding vehicle was visible for staying
scenes. For walking scenes (a), the addition of radar results in earlier detection than using the camera alone. For
staying scenes (b), all methods reports slightly increased, but still small probabilities of danger (i.e. darting) before
the passing.

has a lateral velocity component large enough to assume he/she will be on the road later:
ṽx,t > dangerousSpeed. Similarly, I assume that the pedestrian will not dart out if he/she
is far enough from the road: x̃t < sa f ePos, or their lateral velocity is close to zero/point-
ing away from the road: ṽx,t < sa f eSpeed. Probabilities for values between these limits
(dangerousPos > x̃t > sa f ePos and dangerousSpeed > ṽx,t > sa f eSpeed) are linearly
interpolated. I evaluate the probability of darting based on these two conditions (spatial and
velocity) independently, and then take the maximum of the two values for safety. Finally, the
probability of a present, darting pedestrian is calculated by multiplying the two probabilities:
P(Et = 1, c = darting|Z1:t) = P(Et = 1|Z1:t) · P(c = darting|Z1:t,E = 1). In the staying
scenarios, the pedestrian’s body center was not always visible during the recording as the
pedestrian may have remained hidden completely. Hence, unlike for walking scenes, I
marked the last moment the occluding vehicle was still visible as t = 0, to represent the
moment when the ego-vehicle passes the occluding, parked vehicle. For each timestamp,
I average the probability of a darting pedestrian P(Et = 1, c = darting|Z1:t) for walking and
staying scenes separately, see Figure 4.10. For the walking cases, the fusion methods (naive
fusion, OAF fusion and OAFSSD fusion) report higher probabilities of a darting pedestrian
earlier, see Subfigure 4.10a. When evaluating the non-dangerous staying scenarios, all
methods report a small, but moderately increased probability of a darting pedestrian in the
moments before the occluding vehicle and the staying pedestrian are passed, and significantly
decreased probabilities after the drive-by, see Subfigure 4.10b.

4.6 DISCUSSION

T HE benefits of including radar in darting out pedestrian detection has been shown in Sub-
section 4.5.1, where all fusion methods reacted earlier than the methods using only the

camera. Such an earlier detection may mean additional reaction time in case of a dangerous
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situation. One cause is that radars can often detect pedestrians behind parked vehicles, as their
reflected radar signal may be able to propagate under the occluding vehicle and reach the sen-
sor. Some of the gains could also be the result of cases when the camera was not able to detect
the already visible pedestrian (e.g. caused by harsh lighting), but the radar was. The radar is
mounted on the front of the ego-vehicle, as is common in the industry, see Figure 4.1. This
could provide a slightly better viewing angle and also contribute to the earlier detections.

Vans tend to be taller than passenger cars and therefore occlude/hide the darting out
pedestrian longer. Hence, it would be intuitive that in sequences with vans as occluding
vehicles, radar would assist detection more. However, the opposite is the case: reaction time
gained was significantly greater for smaller occluding vehicles such as cars than for vans
(0.30 s vs 0.12 s for threshold P(Et = 1|Z1:t) = 0.5). My hypothesis is that this non-intuitive
result may have been caused by the length of these vehicles. I suspect that radar signals have
to bounce multiple times or in different angles under longer vehicles (i.e. vans), which may
reduce or eliminate the reflections. If this assumption is true, it may be beneficial to also
estimate the length of the parked vehicle and explicitly include it in the fusion pipeline (i.e.,
expect fewer reflections behind longer vehicles).

The benefits of occlusion awareness become clear when we compare the naive methods
(naive camera, naive fusion) with their occlusion aware pairs (OAF camera, OAF fusion).
For example, OAF fusion reports a higher probability of a pedestrian being present than naive
fusion at all times when the pedestrian is occluded (t < 0). The reason for this is twofold.
First, OAF fusion is occlusion aware, and thus it “acknowledges” that parts of the scenes
are occluded and cannot be properly observed, leading to uncertainty. That is, the absence or
low number of detections from these areas is not considered hard evidence for the absence of
a pedestrian, unlike in naive methods, e.g. naive fusion. Instead, particles behind occlusions
are weighted higher compared to the unoccluded particles to represent this uncertainty,
resulting in higher a priori awareness to these locations even before any detections occur,
see Figure 4.7, left. Similarly, this elevated a priori awareness of an occlusion aware method
is also observable between OAF camera and naive camera for t < 0 moments. Such
“caution” resembles the behavior of a human driver approaching highly occluded regions
where pedestrians might be. Second, detections originating from these occluded regions are
valued more than in the naive methods, because the number of detections received better fits
the expectations in Eq. (4.17). As a result, the likelihoods are higher for the same detections
than when processed by a naive method, e.g. naive fusion, see Eq. (4.21).

The occlusion aware fusion approach presented in this chapter, OAF fusion, responded
earlier to darting out pedestrians than its older version OAFSSD fusion from [40]. The reason
for this, I believe, is twofold. First, as described in Section 3.6, the occlusion model used
by OAFSSD fusion was often inaccurate. A more accurate model of the occlusions (see Sub-
section 4.3.2) helped to better evaluate measurements in this study. Although this occlusion
model was created using stixels, this improvement could also be achieved using other meth-
ods to obtain more accurate occlusion information. Second, this work introduced the concept
of attribute likelihood components. More specifically, for camera based detections, even
small patches of detections were accepted as reasonable, valid measurements if they matched
the occlusion model. This was also supported by the decision to use instance segmentation
as input instead of standard object detection, since the former tends to provide more partial
detections, which suits my use-case. In the case of radar, the attribute component meant
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comparing expected and observed radial velocities. This filters out unrealistic radar targets,
which could originate from other road users or simply from noise. On the other hand, radar
detections that matched the prior expectations of the object’s motion were highly valued
and increased the probability earlier. It is noteworthy, however, that OAFSSD fusion still
responded earlier than naive fusion, suggesting that even its simpler, SSD based occlusion
model benefited more than the attribute likelihood components and the use of stixels as cam-
era based detection. This means that, depending on the application and available resources,
using a simpler occlusion model (i.e., SSD instead of IS) could be satisfactory with the
benefit of reduced computational load.

In the second experiment, I presented an example application of my methods to distin-
guish dangerous and non-dangerous situations. For scenes where the pedestrian remains
behind the car (i.e. not in danger), the estimated probabilities somewhat increase during
the drive-by, but remain small. This observed increase can be explained by the way the
particles are initialized with a walking speed and an movement orientation pointing to the
road, which intentionally introduces a bias towards the darting hypothesis. Such increase
in uncertainty about whether the sighted pedestrian will dart out is similar to the reaction
of a human driver, who, having noticed a pedestrian in a similar situation, would also slow
down/be more cautious for safety reasons. The occlusion aware fusion methods (OAF fusion
and OAFSSD fusion) show further increased caution due to perceived occlusions in the scene,
which increase a priori uncertainty by design. OAF fusion, however, shows lower estimated
probabilities for all t < 0 timestamps than OAFSSD fusion, again suggesting that the new
occlusion model based on Instance Stixels is superior to the one based on SSD, and follows
the shape of the occlusions more closely.

All filters depend heavily on the quality of the inputs, especially from the camera, where
I expect “high-end” detections (e.g. pedestrian instance stixels) from an off-the-shelf module,
even under occlusion. The quality of camera based detections also affects the reliability
of the filter over the occlusion model. Common errors arise from radar targets that are
incorrectly reported as moving by the radar due to poor ego-motion estimation, and from
camera based detections that mistake vertically shaped objects (e.g., trees) for pedestrians.

The proposed system can be further improved in several ways. For example, an additional
use of the occlusion model would be to adjust the expected background noise for the radar.
That is, instead of uniform distribution, it might be beneficial to increase the expected noise
near parked vehicles with highly reflective metallic chassis, and decrease it in uncluttered
regions.

Integrating additional sensors, (e.g., LiDAR) into the framework is straightforward. In
particular, replacing or supporting the 2+1D radar used in this chapter with a 3+1D radar
similar to that used in [122] could be interesting for three reasons. First, the elevation
information and increased density of the radar point cloud could be used in a more advanced
pedestrian classification step, as shown in [122]. Second, the elevation information could be
further used in this particular use case by filtering the radar targets based on their elevation
angle, leaving only those that are received from below the parked, occluding vehicle - as
these targets could be the result of multi-path propagation. This step would help filter out
false positive radar reflections that originate from the chassis of parked cars and not from
occluded pedestrians. Third, in [122] the 3+1D radar has been shown to be capable of
detecting both moving and parked vehicles. As such, it could contribute directly to the
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occlusion model and reduce or even eliminate the need for the camera sensor.
To generalize the filter for other road users, one has to adjust the prior velocity and RCS

values, e.g., faster and more reflective targets should be expected from a cyclist. For the cam-
era based detectors (IS, SSD), the expected class of object has to be changed. Multiple road
users can also be tracked with the filter by modifying the state estimation step in Eq. (4.25)
to expect more than one peak in the particle distribution. Consideration of objects other than
vehicles as occlusions, e.g., walls, is also possible, and the observed visible height should be
treated as in this study. However, the type of occlusion must be considered for radar, since
multipath propagation is not possible if the occlusion has no space under it, such as walls.

Finally, I did state estimation in this research and showed quantitative benefits of both
fusion and occlusion awareness. However, extending the scope to trajectory prediction, the
gained reaction times detecting/predicting dangerous situations could be even greater.

4.7 CONCLUSIONS AND FUTURE WORK

I N this chapter I proposed a generic occlusion aware multi-sensor Bayesian filter to detect
occluded crossing pedestrians. To facilitate my and future research of these scenarios, I

published a dataset of more than 500 relevant scenarios with stereo camera, radar, LiDAR,
and odometry data. I applied the proposed filter to camera and radar data using this dataset,
and provided techniques to account for the unique characteristics of these sensors. My results
show that both the inclusion of radar sensor and occlusion information is beneficial for this
use case, as pedestrians are detected earlier in dangerous walking scenarios. For example, the
threshold of 0.5 for the estimated existence probability of a pedestrian in the scene is reached
on average 0.26 seconds earlier by my occlusion aware fusion than by a naive camera only de-
tector, and 0.15 seconds earlier than by the method that fuses the two sensors in a naive way.

I also showed in an application example of my filter that it can distinguish between
dangerous and non-dangerous situations, which is necessary to avoid false alarms. In this
task, too, the inclusion of the radar proved to be beneficial.

Future work may include a more precise expected distribution of background noise, im-
proved scene classification by extending the scope for trajectory prediction, and the inclusion
of further sensors, more particularly a 3+1D radar as discussed Section 4.6.
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5
MULTI-CLASS ROAD USER

DETECTION USING THE 3D
RADAR CUBE

Information is a source of learning. But unless it is organized, processed, and available to
the right people in a format for decision making, it is a burden, not a benefit.

William Grosvenor Pollard

This chapter is based on  A. Palffy, J. Dong, J. F. P. Kooij, and D. M. Gavrila, “CNN Based Road User Detection
Using the 3D Radar Cube,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1263–1270, 2020. [49].
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5.1 INTRODUCTION

A S discussed in Subsection 2.4.1, most commercially available radars output a 2+1D
point cloud of reflections called radar targets in every frame (also called scan, or

sweep). Each radar target has the following features: range r and azimuth α, Radar Cross
Section RCS (i.e. reflectivity), and radial speed. The latter can be provided relative to the
ego-vehicle, i.e. as relative radial velocity vrel, or after ego-motion compensation, i.e. as
absolute radial velocity vr (see Section 2.2 for details). These features are often called target-
level. Since a single reflection does not convey enough information to segment and classify
an entire object, many radar based road user detection methods [54][55][66] first cluster
radar targets by their target-level features, see Section 3.1. Clusters are then classified as a
whole based on derived statistical features (e.g., mean, variance of r, vr, RCS of contained
radar targets), and the same class label is assigned to all radar targets in the cluster. See
Figure 5.1 for an overview of a traditional radar based detection pipeline.

A disadvantage of these pipelines is that object segmentation and classification perfor-
mance depend on the success of the initial clustering step, which is often noted [50][64] that
to be error-prone, see Figure 5.2. For example, objects can be mistakenly merged (Figure 5.2,
A) or split apart (Figure 5.2, B). Finding suitable parameters (e.g., radius and minimum num-
ber of points for DBSCAN [63] clustering algorithm) is challenging as the same parameters
must be used for all classes, although they have significantly different spatial extension and
velocity profiles. For example, a larger radius is beneficial for cars, but could falsely merge
pedestrians and cyclists. Another challenge of clustering based methods is that small objects
may not have enough reflections to extract meaningful statistical features, e.g., variance. For
example, both [54] and [55] set DBSCAN’s minimum number of points to form a cluster
larger than one, which means that single standing points are thrown away (Figure 5.2, C).

Various methods [30][31][32] instead explore using the low-level radar cube extracted
from an earlier signal processing stage of the radar. Further examples were discussed in
Section 3.2. The radar cube is a 3D data matrix with axes corresponding to range, azimuth,
and velocity (also called Doppler), and a cell’s value represents the measured radar reflectivity
in that range/azimuth/Doppler bin, see Subsection 2.4.2. In contrast to the target-level data,

Figure 5.1: Overview of the traditional radar based road user detection pipeline. The target list is first clustered
into clusters, which are considered as object proposals. Then, cluster-wise features are extracted and used in
classification, assigning a single class label to the whole cluster. In other words, the cluster is classified as a whole.
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Figure 5.2: Challenging cases for cluster-wise classification methods. A: Objects may be clustered together (red
circle). B: Large objects may be split up into several clusters. C: Object with only one reflection. Radar targets are
shown as dots, colored green/blue for pedestrian/car ground truth class.

the radar cube provides the complete speed distribution (i.e., Doppler vector) at multiple 2D
range-azimuth locations. Such distributions can capture modulations of an object’s main
velocity caused by its moving parts, e.g., swinging limbs or rotating wheels, and were shown
to be a valuable feature for object classification [31][32]. Commonly radar cube features
are computed by first generating 2D range-azimuth or range-Doppler projections, or by
aggregating the projected Doppler axis over time into a Doppler-time image [29][30]. I will
call features derived from the 3D cube or its projections low-level. A downside of such
low-level radar data is the lower range and azimuth resolution than the radar targets, and
that radar phase ambiguity is not yet addressed, since no advanced range interpolation and
direction-of-arrival estimation has taken place.

Method Basis Features Classes Time window

Prophet [55] † clusters target single 1 frame (50 ms)
Schumann [54] † clusters target multi 2 frames (150 ms)
Prophet [71] clusters both single 1 frame
Schumann [50] targets target multi 0.5 s
Angelov [30] targets low multi 0.5-2 s
RTCnet (proposed) targets both multi 1 frame (75 ms)

Table 5.1: Overview of the most closely-related methods. †: marks methods selected as baselines.

A detailed overview of radar based methods for object detection using 2+1D radar point
clouds was given in Section 3.1, while in Section 3.2 the methods using low-level data were
discussed in detail. Here I provide only an overview of the most relevant methods in Table
5.1 with their basis of classification (cluster-wise or target-wise), level of features (target or
low), number of classified classes, and the required time window to collect suitable amount
of data. None of the found methods avoids error-prone clustering for classification and
operates with a low latency for urban driving (i.e., one or two radar sweeps (75 − 150 ms))
at the same time.

In this chapter I propose a radar based, multi-class moving road user detection method,
which exploits both expert knowledge at the target-level (accurate 2D location, addressed
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Figure 5.3: Inputs (radar cube and radar targets, top), main processing blocks (RTCnet and object clustering, bottom
left), and outputs (classified radar targets and object proposals, bottom right) of my proposed method. Classified
radar targets are shown as colored spheres at the sensor’s height. Object proposals are visualized by a convex hull
around the clustered targets on the ground plane and at 2 m.
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phase ambiguity), and low-level information from the full 3D radar cube rather than a 2D
projection. Importantly, the inclusion of low-level data enables classification of individual
radar targets before any object clustering; the latter step can benefit from the obtained class
scores. At the core of the method is a Convolutional Neural Network (CNN) called Radar
Target Classification Network, or RTCnet for short. See Figure 5.3 for an overview of the
method’s inputs (radar targets and cube) and outputs (classified targets and object proposals).

The proposed method can provide class information on both radar target-level and object-
level. Target-level class labels are valuable for sensor fusion operating on intermediate-
level, i.e., handling multiple measurements per object [40][123]. The proposed target-level
classification is more robust than cluster-wise classification where the initial clustering step
must manage to separate radar targets from different objects, and keep those coming from
the same object together, see Figure 5.2. The object-level class information output provides
instances that are both segmented and classified (object detection), which is valuable for
high-level (i.e., late) sensor fusion. While traditional methods must perform clustering with
a single set of parameters for all classes, my approach enables use of class-specific clustering
parameters (e.g. larger object radius for cars).

5.1.1 CONTRIBUTIONS
The main contributions of the chapter are as follows.

1. I propose a radar based, single-frame, multi-class (pedestrian, cyclist, car) moving
road user detection method, which exploits both target-level and low-level radar data
by a specially designed CNN. The method provides both classified radar targets and
object proposals by a class-specific clustering.

2. I show on a large-scale, real-world dataset that the method is able to detect road users
with higher than state-of-the-art performance both in target-wise (target classification)
and object-wise (object detection) metrics using only a single frame of radar data.

5.2 PROPOSED METHOD

I N this research, I combine the advantages of target-level (accurate range and azimuth
estimation) and low-level data (more information in speed domain) by mapping the radar

targets into the radar cube and cropping a smaller block around it in all three dimensions
(Subsection 5.2.1). RTCnet classifies each target individually based on the fused low-level
and target-level data. The network consists of three parts (Subsection 5.2.2). The first
encodes the data in spatial domains (range, azimuth) and grasps the surroundings’ Doppler
distribution. The second is applied on this output to extract class information from the
distribution of speed. Finally, the third part provides classifications scores by two fully
connected layers (FC). The output is either multi-class (one score for each class) or binary.
In the latter case, an ensemble voting (Subsection 5.2.3) step combines the result of several
binary classifiers similarly to [124]. A class-specific clustering step (i.e. the radar targets’
predicted class information is used) generates an object list output (Subsection 5.2.4). See
Figure 5.4 for an overview of the method. The software of my pipeline is available on our
website1.

1https://github.com/tudelft-iv/RTCnet

https://github.com/tudelft-iv/RTCnet


5

64 5 MULTI-CLASS ROAD USER DETECTION USING THE 3D RADAR CUBE

Figure 5.4: Overview of the pipeline. A block around each radar target is cropped from radar cube. RTCnet has
three parts. I. encodes range and azimuth dimensions. II. extracts class information from the speed distribution. III.
provides scores based on II. and target-level features. Ensembling assigns a class label to each radar target. The
class-specific clustering provides object proposals.

5.2.1 PRE-PROCESSING
First, a single frame of radar targets and a single frame of the radar cube (low-level data)
is fetched. Each radar target’s speed is compensated for ego-motion similarly to [54]. As I
only address moving road users, radar targets with low compensated (absolute) velocity are
considered as static and are filtered out. Then, corresponding target-level and low-level radar
data are connected. That is, I look up each remaining dynamic radar target’s corresponding
range/azimuth/Doppler bins, i.e. a grid cell in the radar cube based on their reported range,
azimuth and (relative) velocity (r, α, vrel). Afterwards, a 3D block of the radar cube is
cropped around each radar target’s grid cell with radius in range/azimuth/Doppler dimensions
(L, W, H). This block is a region descriptor, containing the Micro-Doppler information of
the neighboring cells. Since the radar cube is not compensated for ego-motion, it is crucial
to use the relative radial velocity vrel for connecting target- and low-level features. Note that
not the full depth in velocity of the cube is cropped, just a part around the main velocity of
the target. After this step, target-level radial velocities are compensated for ego-motion, i.e.,
I use vr, not vrel. See “Pre-processing” part in Figure 5.4.

5.2.2 NETWORK
RTCnet consists of three main modules as seen in Figure 5.4, marked as I, II, and III. The
first two are convolution steps to process the cropped low-level data, while the final fully
connected layers also consider the high-level features to calculate the classification scores.

DOWN-SAMPLE RANGE AND AZIMUTH DIMENSIONS

The first part’s aim is to encode the radar target’s spatial neighborhood’s Doppler distribution
into a tensor without extension in range or azimuth. In other words, it transforms the 1×W ×
L×H sized data to a C×1×1×H sized tensor (sizes are given as Channel×Azimuth×Range×
Doppler), where C was chosen as 25. To do this, it contains two 3D convolutions (Conv)
with the kernel sizes of 6×3×3×3 and 25×3×3×3 (padding is 1). Both convolutional layers
are followed by a maxpool (MP) layer with the kernel sizes of 6× 2× 2× 1 and 25× 2× 2× 1
with 0 padding to down-sample in the spatial dimensions. Technically, the first module of the
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network can be skipped if both L and W = 1, i.e., I could use only the Doppler vector of the
exact spatial bin containing the target. However, I found using an extended radius beneficial.

PROCESSING THE DOPPLER DIMENSION
The second part of the network operates on the output of the first which is a 25×1×1×H sized
tensor. The aim of this module is to extract class information from the speed distribution
around the target. To do this, I use three 1D convolutions along the Doppler dimension with
the kernel size of 7 and output channel sizes of 16, 32, 32. Each convolution is followed by a
maxpool layer with the kernel size of 3 and stride of 2, which halves the length of the input.
The output of this module is a 32 × 1 × 1 × H/8 block.

SCORE CALCULATION
The output of the second module is flattened and concatenated to the target-level features
(r, α, vr, RCS), and fed into the third one. I use two fully connected layers with 128 nodes
each to provide scores. The output layer has either four nodes (one for each class) for
multi-class classification or two for each of the binary tasks. In the latter case, ensemble
voting is applied, see next subsection.

5.2.3 ENSEMBLE CLASSIFYING
With four output nodes, it is possible to train the third module to perform multi-class
classification directly. I also implemented an ensemble voting system of binary classifiers
(networks with two output nodes). That is, aside training a single, multi-class network, I
followed [124] and trained One-vs-All (OvA) and One-vs-One (OvO) binary classifiers for
each class (e.g. car-vs-all) and pair of classes (e.g. car-vs-cyclist), 10 in total. The final
prediction scores depend on the voting of all the binary models. OvO scores are weighted by
the summation of the corresponding OvA scores to achieve a more balanced result. Although
I experimented with ensembling multi-class classifiers trained on bootstrapped training data
as well, it yielded worse results.

5.2.4 OBJECT CLUSTERING
The output of the network (or voting) is a predicted class label for each target individually.
To obtain proposals for object detection, I cluster the classified radar targets with DBSCAN
incorporating the predicted class information, i.e. radar targets with bike/pedestrian/car
predicted labels are clustered in separate steps. As metric, I used a spatial threshold γxy on
the Euclidean distance in the x, y space (2D Cartesian spatial position), and a separate speed
threshold γv in velocity dimension as in Prophet [55] or [65]. The advantage of clustering
each class separately is that no universal parameter set is needed for DBSCAN. Instead, I
can use different parameters for each class, e.g. larger radius for cars and small ones for
pedestrians (Figure 5.2, A and B). Furthermore, swapping the clustering and classification
step makes it possible to consider objects with a single reflection, e.g. setting MinPoints to
one for pedestrian labeled radar targets (Figure 5.2, C). A possible drawback is that if a subset
of an object’s reflections are misclassified (e.g. a car with multiple targets, most labeled car
and some as cyclist), the falsely classified targets (i.e. the cyclist ones) will be mistakenly
clustered into a separate object. To address this, I perform a filtering on the produced object
proposals, calculating their spatial, (radial) velocity, and class score distribution distances
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(scores are handled as 4D vector, and I take their Euclidean distance after normalization). If
two clusters have different classes and are close enough in all dimensions (see parameters in
Subsection 5.4.2), I merge the smaller class to the larger (i.e. pedestrians to cyclists and
cars, cyclists to cars) given that the cluster from the larger class has more radar targets.

5.3 DATASET

T HE real-world dataset contains ∼ 1 hour of driving in urban environment with our
demonstrator vehicle [120]. I recorded both the target-level and low-level output of our

radar, a Continental 400 series mounted behind the front bumper. I also recorded the output
of a stereo camera (1936 × 1216 px) mounted on the wind-shield, and the ego-vehicle’s
odometry (filtered location and ego-speed).

Annotation was fetched automatically from the camera sensor using the Single Shot
Multibox Detector (SSD) [107] trained on the EuroCity Persons dataset [46]. Distance is
estimated by projecting each bounding box into the stereo point cloud computed by the
Semi-Global Matching algorithm (SGM) [125], and taking the median distance of the points
inside each. In a second iteration, mislabeled ground truth were manually corrected, e.g.
cyclist annotated as pedestrian. See Figure 5.5 for an overview of the annotation process.

The training set contains more than 30/15/9 × 103 pedestrian/cyclist/car instances
respectively (one object may appear on several frames), see Table 5.2. Figure 5.9 shows the
distribution of radar targets in the training set distance-wise. To further extend the training
dataset, I augmented the data by mirroring the radar frames and adding a zero-mean, 0.05
std Gaussian noise to the normalized r and vr features. Training and testing sets are from
two independent driving (33 and 31 minutes long) which took place on different days and
routes. Validation set is a 10% split of training dataset after shuffling.

Pedestrians Bikers Cars

Number of instances 31300 15290 9362
Number of radar targets 63814 45804 30906
Avg. number of radar targets per instance 2.04 3.00 3.30
Instances with only one radar target 12990 3526 2878

Ratio of instances with one radar target 41.5% 18.8% 37.6%

Table 5.2: Number of instances from each class in my training set. Many road users have only one radar reflection,
which is not enough to extract meaningful statistical features via clustering.
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Figure 5.5: Demonstration of the annotation pipeline. Annotations were automatically fetched from the camera
sensor by projecting the detections of the Single Shot Multibox Detector (SSD) [107] to the stereo point cloud. On
the left, top view of the radar point cloud is shown with two road users (red: cyclist, green: pedestrian) automatically
detected and annotated. On the right, the same scene is projected into the camera view for visualization. In a second
iteration, the automatically labeled targets were manually reviewed using this annotator tool.

5.4 EXPERIMENTS

I compared the proposed method, RTCnet with binary bagging (from now on, referred to
as RTCnet) to two baselines in two experiments to examine their radar target classification

and object detection capabilities.
In the first experiment, I examined their performance in classification task, using a

target-wise metric, i.e. a true positive is a correctly classified target [50]. For cluster-wise
methods (the baselines) the predicted label of a cluster is assigned to each radar target inside
following [50]. Furthermore, I also performed an ablation study to see how different features
benefit the method in this classification (adaptation in brackets). RTCnet (no ensemble) is
a single, multi-class network to see if ensembling is beneficial. RTCnet (no RCS) is identical
to RTCnet, but the RCS target-level feature is removed to examine its importance. Similarly,
in RTCnet (no speed) the absolute speed of the targets is unknown to the networks, only the
relative speed distribution (in the low-level data) is given. Finally, RTCnet (no low-level)
is a significantly modified version as it only uses target-level features. That is, the first
and second convolutional parts are skipped, and the radar targets are fed to the third fully
connected part directly. Note that in contrast to RTCnet (no speed), RTCnet (no low-level)
has access to the absolute speed of the target, but lacks the relative speed distribution. Object
clustering is skipped in the first experiment.

In the second experiment, I compare the methods in object detection task, examining
the whole pipeline, including the object clustering step. Predictions and annotations are
compared by their intersection and union calculated in number of targets, see Figure 5.6. A
true positive is a prediction that has an Intersection Over Union (IoU) bigger than or equal
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Figure 5.6: Object-level metric. Intersection and Union are defined by number of radar targets. Intesection
Union ≥ 0.5

counts as a true positive. In this example, there is a true positive cyclist and a false positive pedestrian detection.

to 0.5 with an annotated object. Further detections of the same ground truth object count
as false positives. All presented results were measured on moving radar targets to focus on
moving road users.

5.4.1 BASELINES
I selected Schumann [54] as a baseline because it is the only multi-object, multi-class
detection method found with small latency, see Table 5.1. As no other research handled
multiple classes, I selected Prophet [55] as my second baseline, which is a single-class
pedestrian detector, but the negative training and testing set contained cars, dogs, and cyclists.
I re-implemented their full pipeline (DBSCAN clustering and cluster-wise classification)
and trained their algorithms with my training set. Optimal DBSCAN parameters are sensor
specific (depending on density, resolution, etc.), thus I optimized the threshold in spatial
dimensions γxy (0.5 m−1.5 m, step size 0.1 m) and the threshold in velocity γv (0.5−1.5 m/s,
step size 0.1 m/s) on the validation set for both baselines independently. I used the same
metric as in the object clustering. Both baselines have features describing the number
of static radar targets in the cluster. I also searched for an optimal speed threshold vmin

(0−0.5 m/s, step size 0.1 m/s) for both to define these static radar targets. All reported results
for baselines were reached by using their optimal settings, see Table 5.3. MinPoints was
set to two as in Prophet [55] (increasing it further would exclude almost all pedestrians, see
Table 5.2). In Schumann [54] the authors used manually corrected clusters (i.e. separating
objects falsely merged by DBSCAN) to focus on the classification. I did not correct them
to examine real-life application possibilities. I implemented a Random Forest classifier
with 50 trees for both baselines, as Prophet [55] reported it to be the best for their features.
Schumann [54] also tested LSTM, but used several frames aggregated as input.

5.4.2 IMPLEMENTATION
I set L = W = 5, H = 32 as the size of the cropped block. Speed threshold to filter out static
objects is a sensor specific parameter and was set to 0.3 m/s based on empirical evidence.
Table 5.3 shows the DBSCAN parameters for both baselines and for the class-specific
clustering step. The thresholds to merge clusters during object clustering were set to 1 m
spatially, and 0.6 for scores. The velocity threshold is 2 m/s for pedestrian to cyclist, and
1.2 m/s for pedestrian/cyclist to car merges.

I normalized the data to be zero-mean and have a standard deviation of 1 feature-wise for
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Method γxy γv MinPoints vmin

Prophet [55] 1.2 m 1.3 m/s 2 0.4 m/s
Schumann [54] 1.3 m 1.4 m/s 2 0.4 m/s
Class-specific (peds.) 0.5 m 2.0 m/s 1 −

Class-specific (cyclists) 1.6 m 1.5 m/s 2 −

Class-specific (cars) 4.0 m 1.0 m/s 3 −

Table 5.3: Optimized DBSCAN parameters for the two baselines, and for the class-specific clustering for each class.

Method Pedestrian Cyclist Car Other Avg.

Prophet [55] 0.61 0.58 0.34 0.91 0.61
Schumann [54] 0.67 0.68 0.46 0.92 0.68
RTCnet (no low-level) 0.56 0.63 0.33 0.90 0.61
RTCnet (no speed) 0.66 0.63 0.36 0.91 0.64
RTCnet (no RCS) 0.71 0.66 0.48 0.91 0.69
RTCnet (no ensemble) 0.67 0.65 0.47 0.89 0.67
RTCnet 0.71 0.67 0.50 0.92 0.70

Table 5.4: Target-wise F1 scores per class (best in bold). RTCnet outperforms the baselines on average. The
ablation study shows benefits of ensembling and using low-level data.

r, α, vr, RCS, and for the whole radar cube. At inference time, variance and mean values
calculated from training data are used. I used PyTorch [126] for training with a cross-entropy
loss (after softmax) in 10 training epochs. Inference time is ∼ 0.04 s on a high-end PC
(Nvidia TITAN V GPU, Intel Xeon E5-1650 CPU, 64 GB RAM), including all moving radar
targets, the 10 binary classifiers and the ensembling.

5.4.3 RESULTS
TARGET CLASSIFICATION

I present the results of the target classification experiment in Table 5.4. Target-wise F1 scores
for all classes and their macro-average are given for each method. RTCnet outperformed
the two cluster-wise baselines reaching an average F1 score of 0.70. Schumann [54] has
slightly better results on cyclists than RTCnet (0.68 vs 0.67), but performed significantly
worse on pedestrians (0.67 vs 0.71) and cars (0.46. vs 0.50). The ablation study showed that
removing each feature yields worse results than the complete pipeline, but the one without
reflectivity information (RTCnet (no RCS)) comes close with an average of 0.69. Removing
the low-level features (RTCnet (no low-level)) decreased the performance significantly to an
average of 0.61. The multi-class (single) network RTCnet (no ensemble) outperforms the
baselines on the car class, but performs worse on cyclists. Ensemble voting brings significant
improvement on all classes. Example of correct and incorrect target classifications are shown
in Figure 5.7 and 5.8 for all road user classes. In Figure 5.9 I show how the classification
performance (target-wise F1 score) changes over distance (with 5 m bins) for each class,
along with the number of radar targets in the training set. Although most annotation fall
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.7: Examples of correctly classified radar targets by RTCnet, projected to image plane. Radar targets with
pedestrian/cyclist/car labels are marked by green/red/blue. Static objects and the class other are not shown.

(a) (b) (c) (d)

Figure 5.8: Examples of radar targets misclassified by RTCnet, caused by: flat surfaces acting as mirrors and
creating ghost targets (a), unusual vehicles (b), partial misclassification of an objects’ reflections (c), and strong
reflections nearby (d).
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Figure 5.9: Target-wise F1 scores (lines) and number of targets in training set (bars) as a function of distance from
ego-vehicle.

Pedestrian Cyclist Car Avg.

Prophet [55] 0.48 0.50 0.23 0.40
Schumann [54] 0.54 0.60 0.31 0.48
RTCnet (proposed) 0.61 0.59 0.47 0.56

Table 5.5: F1 scores object-wise (best score in bold). RTCnet outperforms the baselines on average.

into the 5 − 20 m range, the network performs reasonably beyond that distance, especially
for the larger objects (cyclist, car). I trained One-vs-All classifiers both for RTCnet and
Schumann [54] for each road user class, and plotted their performance on receiver operating
characteristic (ROC) curves in Figure 5.10. The varied threshold is cluster-wise for Schumann
[54] and target-wise for RTCnet. My method has a larger area under the curve of all classes.

OBJECT DETECTION
The results of the second experiment are shown in Table 5.5. RTCnet reached slightly worse
results on cyclists than Schumann [54] (0.59 vs 0.60), but significantly outperformed it
on pedestrians (0.61 vs 0.54), cars (0.47 vs 0.31), and on average (0.56 vs 0.48). Figure
5.11 shows how Schumann [54] and RTCnet handled two real-life cases from Figure 5.2.
Examples of both correct and incorrect object detections by RTCnet are shown in Figure
5.13. A link to a video of the results can be found on our website2.

2http://intelligent-vehicles.org/publications/

http://intelligent-vehicles.org/publications/
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Figure 5.10: ROC curves of road user classes by my method and Schumann [54]. Each curve is calculated by
changing the decision threshold of a One-vs-All binary classifier.

5.4.4 DISCUSSION
My method outperformed the baselines in target classification mainly due to two reasons.
First, the classification does not depend on a clustering step. This decreases the impact of
cases shown in Figure 5.2 and allows to handle objects that contain a single radar target (a
common occurrence, especially for pedestrians, see Table 5.2). Second, I included low-level
radar data, which brings information on the speed distribution around the radar target. To
demonstrate that this inclusion is beneficial, I showed that only using target-level data and
only the third module of the network (RTCnet (no low-level)) caused a significant drop
in performance from 0.70 to 0.61 average F1 score. I examined the effect of removing
absolute speed from the data too with RTCnet (no speed). While the performance dropped,
my network was still able to classify the radar targets by the relative speed distribution
around them. The results of RTCnet (no low-level) and RTCnet (no speed) prove that the
relative velocity distribution (i.e. the low-level radar data) indeed contains valuable class
information. Interestingly, excluding RCS value did not have a significant impact on the
performance. Based on my experiments, an ensemble of binary classifiers results in fewer
inter-class miss-classifications than using a single multi-class network. However, inference
is of course significantly faster using a single network instead of 10.

Note that even VRUs in occlusion (see Figure 5.7a, 5.7b, 5.7g) are often classified cor-
rectly caused by the multipath propagation of radar [40]. This, and its uniform performance
in darkness/shadows/bright environments makes radar a useful complementary sensor for
camera. Typical errors are shown in Figure 5.8. Radar is easily reflected by flat surfaces (e.g.
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side of cars) acting like mirrors, creating ghost targets. E.g. in Figure 5.8a our ego-vehicle
was reflected creating several false positives. Figure 5.8b is an example of hard to categorize
road users. Many errors come from the confusion of car and cyclist caused by the similarity
of their Doppler signature and reflectivity, see Figure 5.8c. Figure 5.8d shows that a strong
reflection nearby can mislead the classifier. Since the proposed method does not throw away
single targets in a clustering step, it has to deal with more noise reflections than a cluster-wise
method. However, the results in other class suggest that it learned to ignore them.

The combination of my network and the clustering step outperformed the baseline
methods in the object detection task. This is mainly because by swapping the clustering and
classifying steps, classes can be clustered with different parameters. That is a significant
advantage of my pipeline, as instead of finding a single set of clustering parameters to
handle each class, I can tune them separately to fit each, see Table 5.3. This is especially
useful in pedestrian and car classes, which are smaller/larger than the optimal spatial radius
γxy = 1.2−1.3 m found for the baselines. However, this radius fits bicycles well, which results
in good performance on the cyclists class for Schumann [54] both on target-level and object-
level. Figure 5.11 shows two examples. DBSCAN falsely separated the car and the bus into
several clusters, but merged the pedestrians into a single one using the optimized parameters,
which caused Schumann [54] to fail. My method managed to classify each radar target
individually and cluster them correctly (i.e. keep the vehicles in a single cluster, but separate
the pedestrians) using the class-specific clustering parameters. Although I used DBSCAN in
this work, we can expect this advantage to stand using different types of clustering. Figure
5.12 shows an other example where multiple objects from different classes were successfully
detected and clustered. In Figure 5.13a I show a single mis-classified radar target, probably
reflected by the speed bump. The resulting false positive pedestrian detection is trade-off
of setting MinPoints to one for pedestrians. As mentioned, cyclists and cars are often
confused. This is especially true if several cyclists ride side-by-side, see 5.13a, since their
radar characteristics (extension, speed, reflectivity) are car-like. Both errors usually occur
for a single frame only, and can be alleviated by a temporal filtering and tracking system.
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Figure 5.11: Challenging cases for clustering, camera and top view. DBSCAN falsely split the car and the bus but
merged the pedestrians into a single cluster, making Schumann [54] (top) fail. My method (bottom) managed to
classify the radar targets and cluster them correctly using class-specific parameters. Yellow marks other class.

Figure 5.12: Correctly classified and clustered radar targets from multiple classes (green for pedestrian, blue for
car). The height of the bounding boxes is predefined and is aimed only for visualization.
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(a) (b)

Figure 5.13: Examples of correct and incorrect object detections of my method. A mis-classified radar target
triggered a false positive pedestrian detection on (a). Bicycles moving side-by-side at the same speed are detected
as a car on (b) because they have radar characteristics (speed, extension, reflectivity) similar to a car.

5.5 CONCLUSION OF THE CHAPTER

I N this chapter, a radar based, single-frame, multi-class road user detection method was
proposed. It exploits class information in low-level radar data by applying a specially

designed neural network to a cropped block of the radar cube around each radar target and
the target-level features. A clustering step was introduced to create object proposals.

In extensive experiments on a real-life dataset I showed that the proposed method
improves upon the baselines in target-wise classification by reaching an average F1 score of
0.70 (vs. 0.68 Schumann [54]). Furthermore, I demonstrated the importance of low-level
features and ensembling in an ablation study. I showed that the proposed method outperforms
the baselines overall in object-wise classification by yielding an average F1 score of 0.56 (vs.
0.48 Schumann [54]).

Future work may include a more advanced object clustering procedure, e.g., by training a
separate head of the network to encode a distance metric for DBSCAN. Temporal integration
and/or tracking of objects could further improve the method’s performance and usability.
Finally, extending the proposed framework to incorporate data from additional sensor
modalities (e.g. camera, LiDAR) is worthwhile.
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6
MULTI-CLASS ROAD USER

DETECTION USING THE 3+1D
RADAR POINT CLOUD

Roads? Where we’re going, we don’t need roads.

Dr. Emmett Brown in Back To The Future

This chapter is based on:  A. Palffy, E. Pool, S. Baratam, J. F. P. Kooij, and D. M. Gavrila, “Multi-class Road
User Detection with 3+1D Radar in the View-of-Delft Dataset,” IEEE Robotics and Automation Letters, vol. 7 , nr.
2, pp. 4961-4968, 2022
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6.1 INTRODUCTION

I N recent years, developments in both radar technology and proposed algorithms have
enabled the use of 2+1D radars for road user detection [49][50][54][56][57]. The methods

presented in Chapter 4 and 5 are also good examples of such applications.
Despite these improvements, the sparsity of point clouds provided by traditional auto-

motive radars is still a bottleneck in object detection research. Due to their small number
of points, it is challenging to regress accurate 2D bird’s-eye view (BEV) bounding boxes,
especially for smaller objects such as pedestrians. Furthermore, the lack of elevation in-
formation (i.e., the height of the points) makes it nearly impossible to infer the height and
vertical offset of objects, i.e., to regress 3D bounding boxes. Hence, unlike LiDAR based
detectors, most 2+1D radar based object detection methods do not regress bounding boxes
either in 2D (BEV) or in 3D, but instead perform semantic or instance segmentation of the
2+1D radar point clouds [49][50][55][68][69][70]. Bounding box regression on sparse radar
point clouds remains challenging since the objects usually only have a few points on them,
providing little spatial information on the exact location and extent of the true bounding box.

The latest improvement in automotive radar technology, 3+1D radars may help to
overcome these limitations. As discussed in Subsection 2.4.3, unlike traditional automotive
radars, 3+1D radars have three spatial dimensions: range, azimuth, and elevation, while still
providing Doppler as a fourth dimension. They also tend to provide a denser point cloud
[14]. With the additional elevation information and increased density, 3+1D radar point
clouds are somewhat reminiscent of LiDAR point clouds. Therefore, these radars may be
better suited for multi-class 3D bounding box regression, and it is intuitive to apply object
detection networks developed for LiDAR data to them. Nonetheless, 3+1D radars have
only been used for the single-class car detection task [35][75], not for pedestrian, cyclist, or
multi-class detection tasks.

I see two possible reasons for this. First, the object detection networks regularly used
for LiDAR input were not designed with the Doppler dimension in mind, and it is unclear
how best to incorporate this additional information. Furthermore, the measured Doppler
values depend on the direction in which the object is located, so many data augmentation
techniques often applied to LiDAR point clouds are not suitable for radar ones.

Second, while many datasets contain several thousand 3D bounding box annotations for
multiple classes on LiDAR data [87][88][127], there is a clear lack of datasets with radar
data. In Section 3.5 a detailed overview of publicly available datasets with radar data was
given. To be suitable for multi-class road user detection tasks with radar (either pure radar or
sensor fusion), I argue that an automotive dataset should meet the following requirements:

1. use a next-generation 3+1D radar to provide both elevation and Doppler information,

2. equip high-end sensors from the other modalities as well, i.e., a high definition camera
and a 64-layer LiDAR,

3. provide annotations for the objects that include their extent and orientation (2D BEV
or 3D bounding boxes), and

4. should have reasonable number of annotations for the most important urban road users:
pedestrians, cars, and cyclists.
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Figure 6.1: Example scene from the View-of-Delft (VoD) dataset. The recordings contain camera images, LiDAR
point clouds (shown here as lines of small dots), and 3+1D radar data (shown as large dots), along with accurate
localization information and 3D bounding box annotations (cyclist/pedestrian class labels are colored red/green).
LiDAR and radar points are colored based on their distance from the ego-vehicle.

Name Radar data Camera LiDAR Size Vehicles Pedestrians Cyclists Annotation

RadarScenes (2021) [84] 4×2+1D, front/side mono ✗ 832k frames 326636/3889 128197/1529 61051/268 point-wise
CRUW (2021) [85] 2×2+1D, front/side stereo ✗ 396k frames 23330/- 31980/- 13347/- 2D position
RADIATE (2020) [36] 1×2D, surround stereo 32 layers 3 hours 185810/- 10970/- 499/- 2D bboxes
Zendar (2020) [86] 1×2+1D, front mono 16 layers 4780 frames 11300/- 0/- 0/- 2D bboxes
nuScenes (2019) [87] 5×2+1D, surround 6×mono 32 layers 400k frames 598849/- 217913/- 7331/- 3D bboxes

Astyx (2019) [14] 1×3+1D, front mono 16 layers 546 frames 3087/- 39/- 11/- 3D bboxes
View-of-Delft (2021) 1×3+1D, front stereo 64 layers 8693 frames 27273/429 26587/380 10800/183 3D bboxes

Table 6.1: Comparison of publicly available radar detection datasets with sensors used, type of annotation, and the
number of vehicle (sum of car, truck, and bus), pedestrian, and cyclist annotations (individual annotations/unique
instances, where unique object id is available). Top/bottom sections are datasets with radars providing 2D/3D
spatial coordinates.

Table 6.1 summarizes the most relevant currently available radar detection datasets according
to these requirements, listing their number of cyclist, pedestrian, and vehicle annotations,
the type of those annotations, the sensor modalities used, and whether they have Doppler
data. In conclusion, no existing publicly available dataset satisfies all the requirements. For
example, the only publicly available detection dataset [14] with 3+1D radar data has only
∼500 frames, with fewer than 40 annotations for pedestrians or cyclists, and thus, it is not
suitable for multi-class object detection.

In this chapter, I apply a state-of-the-art object detector (PointPillars [13]), commonly
used for LiDAR 3D data, to such 3+1D radar data. I incorporate the Doppler information,
and explore how it influences the detection performance. Furthermore, I investigate how
elevation information and the use of past radar scans (i.e. temporal information) increase
road user detection performance. I also discuss what kind of data augmentation methods
are applicable to 3+1D radar data. Finally, I compare my best radar based object detection
method with a PointPillars network operating with LiDAR data, and examine the two sensors’
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performance and capabilities as a function of class and distance.
To facilitate the experimental study, I introduce the View-of-Delft1 (VoD) dataset, a

multi-sensor automotive dataset for multi-class 3D object detection, see Figure 6.1.

6.1.1 CONTRIBUTIONS
The main contributions of the chapter are as follows:

1. I examine road user detection with 3+1D radar using PointPillars [13], a state-of-
the-art multi-class 3D object detector commonly used for LiDAR. I investigate the
importance of different features of the radar point cloud in an ablation study, including
Doppler, RCS, and the elevation information that traditional 2+1D automotive radars
cannot provide.

2. I compare radar based to LiDAR based detection by training and testing on the same
traffic scenes. I show that currently point cloud based detection on dense LiDAR still
outperforms detection on radar. However, I also find that the performance gap can
be reduced when radar data includes elevation information, and when multiple radar
scans are temporally integrated. Additionally, the detection benefits from Doppler
measurements, which are unique to radar.

3. I publish the View-of-Delft (VoD) dataset, a novel multi-sensor automotive dataset
for multi-class 3D object detection, consisting of calibrated and synchronized LiDAR,
camera, and radar data recorded in real-world traffic situations with annotations for
both static and moving road users. The View-of-Delft dataset is the largest dataset
containing 3+1D radar recordings with ∼20 times as many annotated frames as the
Astyx dataset [14], and it is the only public dataset containing camera, (any kind
of) radar, and 64-layer LiDAR data at the same time. Although this work focuses
on radar-only methods, the dataset is also suitable for sensor fusion, camera-only,
or LiDAR-only methods due to this sensor arrangement, and could be useful for
researchers interested in cluttered urban traffic.

6.2 METHODOLOGY

T HIS work uses PointPillars [13] as the baseline state-of-the-art multi-class object detector.
While PointPillars is typically trained on LiDAR data, I instead train it on 3+1D radar

point clouds. In this section I detail the available features of the radar input, and describe
how to encode Doppler. I also discuss data augmentation techniques and describe temporal
merging of multiple radar scans.

6.2.1 3+1D RADAR POINT CLOUDS AND DOPPLER ENCODING
The 3+1D radar outputs a point cloud with spatial, Doppler and reflectivity channels for
each scan, giving a total of five features for each point: r range, α azimuth, θ elevation, vrel

relative radial velocity, and RCS reflectivity. Since most point cloud based object detectors
use Cartesian coordinates, I also transform the radar point cloud: p = [x, y, z, vrel, RCS],
where p denotes a point, and x, y, z are the three spatial coordinates with x and y axes pointing

1Named after the famous painting by Johannes Vermeer (pun intended).
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forward and left respectively w.r.t. the vehicle, see Figure 6.3. Compensated radial velocity
is a signed scalar value denoted by vr, describing the ego-motion compensated (i.e. absolute)
radial velocity of the point. To obtain it, I perform ego-motion compensation for vrel by
eliminating the motion of the sensor that comes from both the translational and rotational
movement of the ego-vehicle. Examples of such encoding of Doppler for multi-class object
detection include [49] and [50]. vr was used as additional decoration for the radar points
and it was normalized feature-wise to have zero-mean and unit standard deviation.

6.2.2 ACCUMULATION OF RADAR POINT CLOUDS
I experiment with incorporating multiple radar scans in the object detector similar to what
[87] has been done for LiDAR and [50] for 2+1D radar data. Aside from the advantage of
richer point clouds, merging also provides temporal information, which may help object
detectors not only in localization but in classification as well. Accumulation is implemented
by transforming point clouds from previous scans to the coordinate system of the last scan
and appending a scalar time id denoted by t to each point indicating which scan it originates
from. E.g., a point from the current scan has a t = 0, while a point from the third most recent
scan has a t = −2. The encoder includes this time id as an extra decoration for the radar
points. Note that a “scan” is not the same as a “frame” defined in Section 4.4. While radar
point clouds in the frames are synchronized with the LiDAR sensor, here I merge the last
scans received from the radar independently of other sensors.

6.2.3 DATA AUGMENTATION
Not every data augmentation method used in LiDAR research is directly applicable to radar
point clouds since the vr measured by the radar should remain correlated with the angle
at which the object is observed. The same object with the same kinematics (speed and
direction) would be detected with different velocity measurements at a different azimuth or
elevation angle, i.e., after being translated during augmentation. Similarly, it is not possible
to rotate the ground truth bounding boxes and the points within them locally (around their
vertical axis), as this changes the radial component of the object velocity in an unknown way.
Finally, rotating the radar point cloud around the sensor (e.g., around its vertical axis) does
not affect the measured relative radial velocities. However, this is not true for the ego-motion
compensated radial velocities, since the compensation uses the angles between the motion
vector of the radar and the direction of the objects. Therefore, commonly used augmentation
methods such as translation and rotation of the point cloud or rotation of the ground truth
boxes can even be detrimental in the case of radar point clouds. However, mirroring the
point cloud to the longitudinal axis and scaling are applicable, as the (absolute) observation
angles of radar points do not change. Note that augmentation by scaling is only valid if the
origin is the radar sensor itself.

6.3 DATASET

I N this section, I present the View-of-Delft dataset, including the sensor setup used and
the annotations provided2. The dataset was recorded while driving with our demonstrator

2The VoD dataset, including its annotations for the training and validation sets, is freely available at intelligent-
vehicles.org/datasets/view-of-delft/ to academic and non-profit organizations for non-commercial, scientific use.

http://intelligent-vehicles.org/datasets/view-of-delft/
http://intelligent-vehicles.org/datasets/view-of-delft/
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Figure 6.2: Recording Zone. This figure shows the GPS traces (blue) of the recordings in the urban region of Delft,
the Netherlands.

vehicle [120] through campus, suburb and old-town locations in the city of Delft (The
Netherlands). Recordings were selected with a preference for scenarios containing vulnerable
road users (VRUs), i.e., pedestrians and cyclists. See Figure 6.2 for an overview of the
recording locations.

6.3.1 MEASUREMENT SETUP AND PROVIDED DATA
I recorded the output of the following sensors: a ZF FRGen21 3+1D radar (see Table 6.2 for
specifications, ∼13 Hz) mounted behind the front bumper, a stereo camera (1936 × 1216 px,
∼30 Hz) mounted on the windshield, a Velodyne HDL-64 S3 LiDAR (∼10 Hz) scanner on
the roof, and the ego vehicle’s odometry (filtered combination of RTK GPS, IMU, and wheel
odometry, ∼100 Hz). All sensors were jointly calibrated following [121], with a specially
designed calibration board that can be reliably detected by LiDAR, stereo camera and radar
sensors alike. See Figure 6.3 for a general overview of the sensor setup.

I provide the dataset in synchronized “frames” similar to [88], consisting of a LiDAR
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Figure 6.3: Recording platform. Our Toyota Prius 2013 platform is equipped with a stereo camera setup, a rotating
3D LiDAR sensor, a ZF FRGen 21 3+1D radar, and a combined GPS/IMU inertial navigation system.

range velocity azimuth elevation

Accuracy ≤0.02 m 0.01 m/s 0.15° 0.3°
Resolution ≤0.2 m 0.1 m/s 1.5° 1.5°

Table 6.2: Native accuracy and resolution along the four dimensions of our radar sensor configuration. On-board
signal processing provides further resolution gains.
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Figure 6.4: Overall spatial distribution of cars, pedestrians, and cyclists in the dataset as a log plot. The ego-vehicle
is positioned at (0, 0), looking upwards. Each pixel corresponds to one square meter area. Darkest blue means zero
annotation.



6.4 EXPERIMENTS

6

85

car pedestrian cyclist rider unused
bicycle

bicycle
rack

human
depiction

moped
or scooter motor other

∑
# objects 26949 (21.9%) 26587 (21.6%) 10800 (8.8%) 12809 (10.4%) 24933 (20.3%) 12025 (9.8%) 370 (0.3%) 5403 (4.4%) 629 (0.5%) 2601 (2.1%) 123106
# unique obj 423 (22.6%) 380 (20.3%) 183 (9.8%) 222 (11.8%) 372 (19.8%) 156 (8.3%) 10 (0.5%) 80 (4.3%) 13 (0.7%) 36 (1.9%) 1875
% moving 7.2% 73.2% 96.1% 95.5% 0.7% 0.0% 0.0% 10.7% 59.9% 34.5% 37.4%

Table 6.3: Dataset statistics: number of annotated objects (top), number of unique objects (middle), and percentage
of moving objects (bottom), per class. The ratios compared to the whole dataset are given in brackets. The “other”
column combines the classes ride_other, vehicle_other, truck, and ride_uncertain.

point cloud, a rectified mono-camera image, a radar point cloud, and a transformation
describing the odometry. Timestamps of the LiDAR sensor were chosen as “lead”, and I
chose the closest camera, radar and odometry information available (maximum tolerated
time difference is set to 0.05 seconds). The frames are sequential in time with 10 Hz (after
synchronization) and they are organized into clips with an average length of ∼40 seconds.
The LiDAR and radar point clouds are ego-motion compensated, both for ego-motion
between the capture of LiDAR/radar and camera data, and for ego-motion during the scan
(i.e., one full rotation of the LiDAR sensor). The dataset follows the popular KITTI dataset
[88] both in the defined coordinate systems (see Figure 6.3) and in the file structure. The
main advantage of this choice is that several open-source toolkits and detection methods are
directly applicable to the dataset. In addition to this synchronized version of the dataset, I
also make the “raw” asynchronous recorded data available, including all radar scans at 13 Hz,
and rectified camera images at 30 Hz from both the left and right cameras. This can benefit
researchers seeking richer temporal data for detection, tracking, prediction, or other tasks.

6.3.2 ANNOTATION
Any object of interest (static or moving) within 50 meters of the LiDAR sensor and partially
or fully within the camera’s field of view (horizontal FoV: ±32°, vertical FoV: ± 22°) was
annotated with a 3D bounding box with nine degrees of freedom (9 DoF): its 3D position,
extent, and orientation. Annotation was done by understand.ai (a subsidiary of DSpace) using
the camera images and LiDAR data. To help the annotators work, sequential LiDAR point
clouds were spatially aligned using odometry information, and object annotations were semi-
automatically tracked/propagated to subsequent frames. Note however, that final labels on all
frames were manually tuned and validated. 13 object classes were annotated, see Table 6.3 for
their object count. For each object, we also annotated the level of occlusion for two types of
occlusions (“spatial” and “lighting”) and an activity attribute (“stopped”, “moving”, “parked”,
“pushed”, “sitting”). Furthermore, same physical objects were assigned unique object ids over
frames to make the dataset suitable for tracking and prediction tasks. Annotation instructions
with detailed descriptions of the classes and attributes will be shared along with the dataset.

6.4 EXPERIMENTS

I N the experiments I consider object detection performance on three object classes: car,
pedestrian and cyclist. The spatial distributions of these classes are shown in Figure 6.4.

Unlike [30][49][50][84], I considered both static and moving objects in my experiments. I
split the dataset into a training, validation, and testing set in a ratio of 59%/15%/26% such
that frames from the same clip will only be present in one split. The clips are assigned to

https://understand.ai
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Method Features Entire annotated area In Driving Corridor

Car Pedestrian Cyclist mAP mAOS Car Pedestrian Cyclist mAP mAOS
PP-radar (no elevation) x, y, RCS, vr 32.4 28.8 34.6 31.9 25.1 68.2 44.2 63.6 58.6 50.1
PP-radar (no Doppler) x, y, z, RCS, 35.6 21.3 30.4 29.1 22.1 67.3 31.0 58.7 52.3 41.0
PP-radar (no RCS) x, y, z, vr 33.9 33.1 42.7 36.6 30.3 66.8 45.3 67.2 59.8 55.6
PP-radar x, y, z, RCS, vr 35.9 34.9 43.1 38.0 30.5 74.1 47.8 67.1 63.0 56.8

PP-radar (3 scans) x, y, z, RCS, vr, t 44.4 40.4 54.2 46.3 39.1 78.4 56.9 76.6 70.6 67.1
PP-radar (5 scans) x, y, z, RCS, vr, t 44.8 42.1 54.0 47.0 39.6 78.8 59.2 76.1 71.4 68.2

PP-LiDAR (LiDAR) x, y, z, intensity 75.6 55.1 55.4 62.1 49.4 90.8 71.4 82.5 81.6 70.3

Table 6.4: Results for all tested methods on the entire annotated area and within the “Driving Corridor” only. Top:
Ablation study of radar features. Middle: study of temporal information. Bottom: LiDAR based detector. Bold face
highlights best radar results per section. All class-specific columns involve AP calculated with a 3D IoU (0.5 for
car, 0.25 for pedestrian/cyclist).

splits such that the number of annotations (both static and moving) of the three main classes
(cars, pedestrians, and cyclists) are proportionally distributed among the splits.

I use two performance measures following the KITTI benchmark [88]: Average Precision
(AP) and Average Orientation Similarity (AOS). For AP, I calculate the intersection over
union (IoU) of the predicted and ground truth bounding boxes in 3D, and require a 50%
overlap for car, and 25% overlap for pedestrian and cyclist classes as in [88]. Mean AP
(mAP) and mean AOS (mAOS) are calculated by averaging class-wise results. I report
results for two regions: 1) the entire annotated region (camera FoV up to 50 meters) and 2) a
more safety-relevant region called “Driving Corridor”, defined as a rectangle on the ground
plane in front of the ego-vehicle as [−4 m < x < +4 m, z < 25 m] in camera coordinates.

In the experiments, I will refer to several sensor data and feature combinations: PP-
LiDAR is PointPillars trained on LiDAR data, with the 4 typically used input features:
spatial coordinates and intensity. This method will serve as a baseline for my radar-LiDAR
comparison experiment. PP-radar is also a PointPillars network, but trained on 3+1D radar
data with all 5 features, using spatial coordinates, reflectivity, and Doppler. In contrast,
PP-radar (no X) has the feature X removed and is trained only with 4 features. Finally, PP-
radar (N scans) is a PP-radar using N accumulated radar scans as described in Subsection
6.2.2. The implementation is built on OpenPCDet [128]. All networks are trained in a
multi-class fashion.

6.4.1 ABLATION STUDY: PP-radar
See Table 6.4 for the performances of the various PointPillars networks in the ablation
study, for the entire coverage area and within the “Driving Corridor” region. The results
show that removing the Doppler information (PP-radar (no Doppler)) significantly degrades
performance for the two VRU classes (pedestrian: 34.9 vs. 21.3, cyclist 43.1 vs. 30.4 for the
entire annotated area). Furthermore, it hampers the orientation estimation overall (mAOS:
30.5 vs. 22.1). The results also show that removing either elevation information or RCS
(i.e. PP-radar (no elevation) or PP-radar (no RCS)) hurts the performance (mAP: 38.0 vs.
31.9 vs. 36.6 for the entire annotated area). Finally, I examined whether including radar
targets from previous scans to provide temporal information makes a significant difference. I
trained and evaluated two additional networks using points from the last three and five scans,
respectively, to create PP-radar (3 scans) and PP-radar (5 scans). Adding further scans
increased the overall performance (mAP: 38.0 vs. 47.0 for single/five scans) and improved
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orientation estimation (mAOS: 30.5 vs. 39.6 for single/five scans).
Examples of correct and incorrect detections by PP-radar are shown in Figure 6.7 and

6.8 for all road user classes.

6.4.2 PERFORMANCE COMPARISON: PP-radar VS. PP-LiDAR
I subsequently compare the object detection performance of PP-radar and PP-LiDAR,
see Table 6.4. PP-LiDAR outperformed PP-radar in all three classes by a clear margin
(mAP: 62.1 vs. 38.0). The relative performance gap decreases when I consider only the
“Driving Corridor” region (mAP: 81.6 vs. 63.0). Figure 6.5 provides performance as a
function of distance. See next section for an interpretation of these results. Figure 6.6 shows
performance as a function of required IoU overlap. An interesting trend that can be seen is
that the performance of radar drops off earlier than LiDAR at higher IoU thresholds. This
suggests that radar correctly detects and classifies many objects but has difficulty determining
their exact 3D position, which hampers overall performance.

On average, PP-radar inference took 40% less time than PP-LiDAR inference (7.8 ms
vs. 12.9 ms on average measuring only the feed-forward step).
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Figure 6.5: Performance of PP-LiDAR (dashed, diamond) and PP-radar (solid, circles) over distance for each class
(3D IoU=0.5 for car, IoU=0.25 for pedestrian/cyclist).
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thresholds.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.7: Examples of correctly detected objects by PP-radar projected to the image plane. Car/pedestrian/cyclist
detections are shown as blue/green/red bounding boxes. Dots are radar targets colored by distance from the sensor.

(a) (b) (c) (d)

Figure 6.8: Examples of incorrect detections by PP-radar: (a) merged smaller objects (two pedestrians are detected
as a single cyclist, (b) larger objects split into smaller ones (one cyclist is detected as two pedestrians), (c) strong
reflections and clutter nearby (metal poles and high curbs) and (d) distant objects with too few reflections (far away
pedestrian).
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6.5 DISCUSSION

I N general, object detection performance will be determined by multiple factors: the
number of 3D points lying on a particular object of the target class, their individual

positional accuracy, their spatial configuration and additional attributes (e.g. velocity), their
saliency vs. objects of the non-target class, and lastly, the size of the training set.

All radar based methods using Doppler performed best on the cyclist class. In contrast to
pedestrians, and especially cars, the vast majority of cyclists in the dataset are moving, see
Table 6.3. The circular motion of the wheels and pedalling, plus the highly reflective metal
frame near the center causes a clear and distinctive reflection pattern that radar can more
reliably detect. On the car class the radar methods performed more poorly relative to the
large size of these objects. This can be explained by the few moving cars in the dataset, and
by the fact that many are parked on the other side of the road or canal at larger distances (see
Figure 6.4), and thus have few reflections. Figure 6.5 confirms that nearby cars are detected
better. When focusing on just the safety-critical “Driving Corridor” region in front of the
vehicle, radar performs considerably better for all classes, see Table 6.4. This performance
is more relevant for driver assistance or automated driving.

The comparison of PP-LiDAR and PP-radar showed that the former has clearly higher
overall performance. This can be attributed to the much higher point density of the specific
type of 64-layer LiDAR sensor used (average number of points in the annotated area: LiDAR:
21344, radar: 216). Also the high viewpoint of the LiDAR sensor, on the roof of the car,
benefits object detection performance as there is less pronounced occlusion. The radar sensor
comes, however, with clear advantages in terms of cost and ease of packaging.

Accumulating multiple radar scans was shown to yield substantial performance improve-
ments. This is because of the increased point density, but presumably also because the
past scans provide temporal information, which can help classification (change in Doppler
signature over time is class-specific, e.g., swinging limbs). Thus using multiple scans closes
the relative performance gap to LiDAR somewhat.

Compromising on object detection performance might be acceptable if, as a result of
the much lower point cloud density, embedding on special hardware (with certain memory
and processing limitations) becomes possible. Further improvements of radar resolution and
target extraction (i.e., peak finding), and/or the availability of low-level data (e.g. radar cube
[49]) could further improve object detection.

6.6 CONCLUSION OF THE CHAPTER

I performed an experimental study on multi-class road user detection (PointPillars) on
64-layer 3D LiDAR data and 3+1D radar data. In ablation studies, I showed that the

addition of elevation data (as in a next-generation automotive radar) clearly increases object
detection performance (from 31.9 to 38.0 mAP). Doppler information remains essential for
radar based object detection as its removal would greatly degrade performance (mAP 38.0
vs. 29.1). RCS information helps too (mAP 38.0 vs. 36.6 if removed).

Results indicate that object detection on 64-layer LiDAR data still substantially outper-
forms that on 3+1D radar data, when using the same PointPillars model (mAP 62.1 vs. 38.0).
However, accumulating successive radar scans closes the gap to LiDAR to some degree
(mAP 62.1 vs. 47.0 for five radar scans) especially in the “Driving Corridor” (mAP 81.6
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vs. 71.4 for five radar scans).
For the experimental study, I introduced the View-of-Delft (VoD) dataset, a multi-sensor

dataset for multi-class 3D object detection, consisting of calibrated, synchronized, and
annotated LiDAR, camera, and 3+1D radar data. It is the largest dataset containing 3+1D
radar recordings, suitable to facilitate future research on radar-only, camera-only, LiDAR-
only, or fusion methods for object detection and tracking.
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7
CONCLUSION

There is no real ending. It’s just the place where you stop the story.

Frank Herbert
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T HE preceding chapters have investigated radar based detection of road users and its
potential use cases in intelligent vehicles using three different types of radar data. In

this chapter, I summarize the research and my main results, and finally, I conclude the thesis
with suggestions for future work based on the new questions that arose from my research.

7.1 SUMMARY

F IRST, I present the key methodical and experimental findings of the chapters individually.
Then, I discuss broader topics related to sensor fusion and new radar datasets that

emerged during my research.

DETECTION OF DARTING OUT PEDESTRIANS WITH FUSION OF CAM-
ERA AND RADAR
In Chapter 4 a generic occlusion aware multisensor Bayesian filter was proposed to detect
occluded crossing pedestrians. The proposed method adapts both the expected rate and
properties of detections in different areas according to the visibility of the sensors. I applied
the proposed filter to camera and radar data using a new dataset, and provided techniques
to account for the unique characteristics of these sensors. The results showed that both
the inclusion of radar sensor and occlusion information is beneficial for this use case, as
pedestrians were detected earlier in dangerous walking scenarios. For example, the threshold
of 0.5 for the estimated existence probability of a pedestrian in the scene was reached on
average 0.26 seconds earlier by the proposed occlusion aware fusion than by a naive camera
only detector. It was also shown in an application example of the filter that it can distinguish
between dangerous and non-dangerous situations, which is necessary to avoid false alarms.
In this task, too, the inclusion of the radar was proved to be beneficial.

MULTI-CLASS ROAD USER DETECTION USING THE 3D RADAR CUBE
In Chapter 5, I went from a scene specific, single-class, fusion based object detection task
to generic multi-class (i.e., pedestrians, cyclists, cars) object detection using only the radar
sensor. To do this, a novel, radar based, single-frame, multi-class road user detection method
was proposed. Besides using the 2+1D radar point cloud, it also exploits class information
in low-level radar data by applying a specially designed neural network to a cropped block
of the radar cube around each radar target and the target-level features. Its first part contains
convolutions in the spatial domains (range, azimuth) to capture the Doppler distribution of
the environment in a single column vector. This vector is the input for the second part, where
the layers focus on obtaining correspondences in the velocity distribution by convolutions
along the Doppler dimension. Finally, two fully connected layers provide scores that are
passed to the ensemble voting. A clustering step was introduced to create object proposals
by grouping the classified targets. It was shown in extensive experiments on a real-life
dataset that the proposed method improves upon the baselines in target-wise classification
by reaching an average F1 score of 0.70 (vs. 0.68 by the baseline Schumann [54]). I showed
that the proposed method also outperforms the baselines overall in object-wise classification
by yielding an average F1 score of 0.56 (vs. 0.48 by Schumann [54]). In addition, the
importance of low-level features and ensembling was demonstrated in an ablation study.
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MULTI-CLASS ROAD USER DETECTION USING THE 3+1D
RADAR POINT CLOUD
Chapter 6 addressed the same task as Chapter 5: detecting road users of multiple classes
with only a radar sensor. However, instead of using low-level radar data from a conventional
2+1D radar, this time I used a different data source that is not yet widely available: a
next-generation 3+1D radar. These sensors provide elevation information (i.e., height) for
each point, and they also tend to output a denser point cloud than the 2+1D sensors. Thus,
3+1D radar point clouds are somewhat similar to LiDAR point clouds. Therefore, this
chapter presented an experimental study on the task of multi-class road user detection on
64-layer 3D LiDAR data and 3+1D radar data. Unlike in Chapter 5, in this chapter, the sparse
radar point cloud was not semantically segmented. Instead, I used the higher density and
available elevation information to output the detections in the form of 3D bounding boxes.
In ablation studies, it was shown that the addition of elevation data (as the main difference
between conventional 2+1D radars and 3+1D next-generation automotive radars) clearly
increases object detection performance from 31.9 to 38.0 mAP (mean Average Precision).
Consistent with the findings of Chapter 5 using 2+1D radars, Doppler information remains
essential for radar based object detection using the 3+1D radar as well, since its omission
would greatly degrade performance (mAP 38.0 vs. 29.1). Also, it was shown that the
Radar Cross Section (RCS) information helps too (mAP 38.0 vs. 36.6 if removed). The
results furthermore showed that object detection on a high-end 64-layer LiDAR data still
substantially outperforms that on 3+1D radar data, when using the same PointPillars model
(mAP 62.1 vs. 38.0). However, accumulating successive radar scans closes the gap to
LiDAR to some degree (mAP 62.1 vs. 47.0 for 5 radar scans) especially in the safety critical
“Driving Corridor” (mAP 81.6 vs. 71.4 for 5 radar scans). For the experimental study,
and for the benefit of the intelligent vehicles research field, Chapter 6 also introduced the
View-of-Delft (VoD) dataset, a multi-sensor dataset for multi-class 3D object detection.

ON SENSOR AND DATA FUSION
Chapter 4 introduced a high-level fusion for the specific task of darting out pedestrian
detection. The method uses a stereo camera and a 2+1D radar. However, the fusion itself is
generic, meaning that the addition of new sensors (i.e., camera, radar, or even LiDAR) is
straightforward. The detections of the new sensors should be fed into the filter in a similar
way as the detections of the already integrated sensors. In my opinion, besides the fusion
of the two sensors, there is another fusion related step in this chapter: the incorporation of
occlusion information. Although the occlusion model in this study was provided by the
camera sensor, this was an implementation decision - the model could also be retrieved from
other sensors, other vehicles, or even from smart infrastructure.

The high-level or late-fusion approach had clear advantages in this task, as it allowed
for greater modularity in the pipeline. This made it possible to use off-the-shelf, pre-trained
detectors, e.g., SSD [107] or Instance Stixels [110]. It also allowed the same module to be
used for multiple purposes, e.g., Instance Stixels were used both as camera based pedestrian
detections and as inputs to the occlusion model. Unlike an early fusion model, this modular
high-level fusion model does not require large amounts of training data with all the associated
sensors - a problem that currently seriously limits the field of radar research, as discussed in
Chapter 6.
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In Chapter 5, data from multiple sensors were combined indirectly. The presented
method for detecting road users is based solely on the radar sensor. However, the dataset
used to train and test the detector was automatically pre-annotated by SSD [107], a stereo
camera based detector, which is a fast and inexpensive way to obtain a large amount of
annotated data with reasonable quality. It can be argued that this cross-sensor supervised
training is also related to the topic of sensor fusion, as the information and capabilities of
multiple sensors are used to achieve better overall detection performance. Note that the
annotations obtained in this way were later manually corrected to minimize the likelihood
of bias being transferred from one sensor to the other. For example, the camera detector
often confused bicyclists with pedestrians, especially in hard lighting. Radar, on the other
hand, has the advantage of “seeing” the metal frame of the bicycle and the pedaling motion
as strong discriminators. This results in enhanced detection of cyclists, see e.g., Chapter
5 and 6, which is a less frequently mentioned benefit of radar sensors and could be a key
motivation for fusion systems to incorporate radars.

ON NEW RADAR DATASETS
As discussed in Chapter 6, while many datasets contain several thousand 3D bounding box
annotations for multiple classes on LiDAR and camera data [88][127], there is an obvious
lack of datasets containing radar data, especially along with the other sensor modalities.
This not only complicates the development of novel algorithms for radars, but also the
comparison of the newly proposed methods with the existing state of the art. The lack of
publicly available datasets is therefore one of the major bottlenecks in the development of
radar based applications today.

A good example of this struggle is the fact that each of the previous three chapters
(Chapter 4, 5, and 6) used datasets designed and recorded by our research group, as no
publicly available automotive dataset contained radar data that was suitable for the given use
cases. Creating such datasets is a demanding task and often a serious engineering challenge,
requiring significant human and financial resources from each individual research team.
Publicly available datasets would alleviate this often unnecessary burden.

As a result of this thesis, two datasets containing radar data are published. The first
one focuses on the specific scenario of darting out pedestrians (see Chapter 4) and contains
more than 500 relevant sequences with stereo camera, radar, LiDAR, and odometry data.
Furthermore, the type of sequence (darting or staying), the height of the pedestrian, the
occluding vehicle’s type (car or van), and some environmental conditions (e.g., harsh lighting,
leaves on the ground, etc.) were also annotated to provide some meta information. These
data were suitable for developing an early warning system for darting out pedestrians.

The second dataset published as a result of this thesis is the View-of-Delft (VoD) dataset
presented in Chapter 6. This is a novel multi-sensor dataset for multi-class 3D object
detection in dense urban scenarios, consisting of calibrated, synchronized, and annotated
LiDAR, camera, and 3+1D radar data. It is the largest dataset to date containing 3+1D
radar data, and it is suitable for future research not only on pure radar, camera, and LiDAR
data, but also on sensor fusion methods. For each object of interest, its 3D location and
extent with a bounding box with nine degrees of freedom were annotated, along with its
activity and occlusion information. Furthermore, objects are assigned unique IDs that are
consistent across frames, allowing for object tracking and prediction tasks. In addition to
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the data itself, detailed documentation, a development kit, and a benchmark server were also
provided. Hopefully this contribution will help promote radar and fusion based methods
to improve the safety of vulnerable road users. If the need arises, extension of this dataset
with further recordings is time consuming, but straightforward since the documentation,
annotation instructions, and data processing pipelines are already available.

Unfortunately, the low-level data recorded and used for the research in Chapter 5 could
not be shared due to confidentiality agreements with the manufacturer. This is a common
reason for research groups not releasing their datasets, and again an example of how difficult
it is to obtain radar data to develop new algorithms or compare them to baseline methods.
However, in my view, the chapter contributed to the field of radar datasets in an indirect way
by showing that automatic annotation of radar point clouds based on stereo cameras, while
not ideal, is feasible and provides a quick and inexpensive way to collect large amounts of
training data.

7.2 FUTURE WORK

A LTHOUGH this thesis has provided a step forward for radar based road user detection,
many challenges remain for future research. I first discuss possible future work for

radar based approaches using the research presented in the previous chapters as stepping
stones. Then I present how I envision the future of automotive radars in sensor fusion based
approaches, which is followed by a broader discussion of future work. I conclude the chapter
by sharing my views on the future of 3D sensors in intelligent vehicles.

ON RADAR BASED ROAD USER DETECTION
One way to improve the fusion filter proposed in Chapter 4 is to use its generic property,
i.e., integrating additional sensors - e.g., a LiDAR or additional radars - into the proposed
modular framework is straightforward. In particular, replacing the 2+1D radar used in this
chapter with a 3+1D radar similar to that used in Chapter 6 could be interesting for three
reasons. First, the elevation information and increased density of the radar point cloud could
be used to improve the pedestrian classification step, as shown in Chapter 6. Second, the
elevation information could also be used in this particular use case to filter the radar targets,
leaving only those that are received from below the parked, occluding vehicle - as these
targets could be the result of multipath propagation. And third, the 3+1D radar has been
shown to be capable of detecting both moving and parked vehicles in Chapter 6, and as such
it could contribute directly to the occlusion model. In Chapter 5, the low-level data has been
shown to be beneficial for pedestrian detection, thus it too could be used in an improved
pedestrian classification step for the filter. Furthermore, as discussed in Chapter 2 and 5,
this lower level of radar data contains more information than the radar point cloud. That is,
there may be some reflections here that are too weak to be reported as radar targets in the
point cloud. However, since the reflections originating from the occluded pedestrians are
often weak due to multipath propagation, the weak signals in the radar cube can be highly
valuable for the use case.

For the research presented in Chapter 5, it would be interesting to see how the resolution
both in the spatial and in the Doppler dimensions of this radar cube influences the perfor-
mance. I expect higher classification accuracy but also higher computational load when
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we increase the resolution. On a related note, the resolution and/or signal-to-noise ratio of
the radar cube could be further improved by combining two or even more radar cubes from
multiple radar sensors. The cubes could be interpolated or averaged as a pre-processing
step, or concatenated as channels so that the network learns the merging itself. One of the
distinguishing properties of the proposed approach, RTCnet, is that it enables users to set
different, class-specific clustering parameters for the various road user classes. However,
these parameters are still hand selected. Future work may include a more advanced object
clustering procedure, e.g., by training a separate head of the network to encode a distance
metric for a clustering algorithm, or to regress instance information as well. I expect that this
could lead to better clustering and thus, better object proposals. While the approach was de-
veloped specifically to work with a single frame of radar data, temporal integration, similar to
some of the experiments presented in Chapter 6, could further improve the performance and
usability of the method by increasing robustness, and by exploiting class-specific changes in
the Doppler pattern over time, such as those caused by arm swing or wheel rotation. Finally,
the proposed method provides a semantically segmented radar point cloud, which is an ideal
input for a mid- or high-level fusion system, for example, the system presented in Chapter 4.
Therefore, it would be interesting to test the proposed method as part of a larger fusion system
that includes other modalities, e.g., camera, LiDAR, or other radars, as mentioned above.

In Chapter 6, the LiDAR based detection still outperformed the radar based detection,
However, these results need to be analyzed in terms of price and practicality of the sensors.
Future work could include further comparisons of the radar with other, cheaper sensors,
such as a (stereo) camera or lower resolution LiDAR sensors simulated by artificially
down-sampling the 64-layer LiDAR. The chapter has experimented with the application
of PointPillars to radar data, a widely used point cloud processing network that is most
often applied to LiDAR data. While such an application has been shown to be useful, an
interesting future research would be to determine if networks developed for LiDAR data are
the best choice for radar data. In my opinion, the answer is yes, but with some adjustments.
That is, researchers should pay particular attention to the Doppler channel, the ghost targets
caused by multipath propagation, and non-uniform angular resolution - properties unique
to radar data, see Chapter 2. The discussion of the limited data augmentation opportunities
caused by the Doppler channel in Chapter 6 could be a good example of such radar specific
network research for point cloud processing. As mentioned in Chapter 2, radar signals are
often reflected from flat surfaces such as walls, sides of vehicles, or the road itself. This
can be an advantageous property, as shown in Chapter 4. However, in the case of 3+1D
radar point clouds, it also means that some points will be perceived as being below the road
surface after the radar signal bounces off it. It would be interesting to see if treating these
points separately yields performance gains, e.g., by estimating the road surface with one of
the sensors and estimating the original position of the points by reflecting them above the
ground. Finally, Chapter 5 has shown that the addition of low-level radar data to the 2+1D
radar point cloud significantly improves object detection. Such low-level data is not yet
available from 3+1D radars, primarily because of bandwidth issues. However, it would be
interesting to see if combining the 3+1D radar point clouds with low-level data also provides
such benefits. Note that the radar cube in this case would be four dimensional, not three
dimensional like the one used in Chapter 5, since the elevation dimension is added. Thus, an
extended version of the proposed RTCnet would be required. One possibility would be to use
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the RTCnet as proposed in Chapter 5: by using the radar targets as “anchors” or proposals
and cropping the (now 4D) radar cube around them for classification. Alternatively, one
could use RTCnet to encode the radar cube in a bird’s-eye view representation and merge
it with the encoded pillar-wise features (i.e., the pseudo-image generated by the feature
extraction of PointPillars) using channel concatenation.

To conclude the section and extend the proposed future work beyond the research of
this thesis, we can observe some reoccurring problems via the examples above. First, we
have seen both in the literature and in the three research chapters that the ability of radar to
measure velocity instantaneously is of great use in detecting road users. Ignoring Doppler
can lead to a simpler processing pipeline and easier application of networks developed
for LiDAR data on radar data, as done in e.g. [75], and it also makes data augmentation
more straightforward, as discussed in Chapter 6. Nevertheless, I strongly recommend that
researchers continue to use Doppler information for all radar related research. However,
it is clear that more data augmentation techniques are needed that are compatible with the
concept of radial velocity. Such augmentations should be an important topic for future work.

Another property that is unique to radar is the possibility of indirect observation due to
multipath propagation. While such indirectly received targets can be filtered out [43], they
can also be exploited, as shown in [39] or in Chapter 4. In either case, researchers in the
future should be aware of this property and actively anticipate and address it in their pipeline.

In Chapter 6, it was clearly shown that the elevation information from next generation
radars helps in object detection. Therefore, I expect that 2+1D radars will soon be obsolete.
Such sensors should be used in future research only when absolutely necessary, for example,
for financial reasons.

Lack of datasets is a common challenge in radar research, which has also strongly
influenced the chapters of this thesis, see Section 7.1. In the general area of machine
learning, there is a clear trend: supervised learning is increasingly seen as an approach that is
not scalable in terms of funding or time. As a result, researchers are looking for ways to use
unlabeled data, e.g., with self-supervised camera [129] or LiDAR [130] approaches, or with
cross-sensor supervision provided either by camera for LiDAR [131] or vice versa [132].
Given that there are orders of magnitude less publicly available annotated radar data than
camera or LiDAR data, such “tricks” should be even more important to radar researchers.
There are already some good examples in the literature: for example, a self-supervised 3+1D
radar based scene flow estimation was introduced in [133]. Cross-sensor supervision was
presented in Chapter 5, where I used the stereo camera sensor to annotate both the training
and test sets. The authors of [134] also address scene flow estimation using cross-sensor
supervision from the camera. However, even if (pre-)training of future detectors is done
in some sort of self-/cross-supervised manner, I think manually annotated, high-quality,
multi-modal datasets will always be needed for comparison and evaluation. I encourage
researchers to record and publish such datasets to facilitate our field, similar to the one in
Chapter 6.

Finally, it has become clear in the three preceding chapters that the processed point
clouds of currently available automotive radars do not provide enough information to
individually solve the object detection tasks in an intelligent vehicle at a satisfactory level.
In my opinion, radar researchers therefore still need to find ways to extend this available
information in the near future. One possibility is to use multiple radar sensors, possibly
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with different viewpoints [35]. Another possibility is to gain access to a lower level of radar
data (i.e., the radar cube) that has been shown in Chapter 5 to contain valuable information
for classification tasks. As mentioned earlier, such extended access would be particularly
interesting future work for 3+1D radars. Last but not least, it is also possible to extend the
amount of information by fusing radar with other sensor modalities, as discussed in the
following subsection.

ON SENSOR FUSION
The complementary properties of radar and camera are often exploited [62][85][135] in the
literature. Nevertheless, these radar-camera fusion approaches for 3D object detection still
lag behind methods that use high-end LiDAR on the nuScenes benchmark [87], possibly
because the radar data in the dataset comes from low-quality 2+1D radars [26][84]. As
far as I know, the only published research using 3+1D radars for radar-camera fusion is
[75]. Despite the somewhat disappointing results of those using 2+1D radars and the lack of
fusion approaches using 3+1D radars, I believe that fusion of cameras and next generation
3+1D radars should be an important topic of future work due to the complementary nature
and cost-effectiveness of this sensor setup [41].

In Chapter 4 a late fusion of the two sensors was presented, and it was also shown to have
the advantage of modularity, see Section 7.1. However, such a fusion depends heavily on the
individual performance of each sensor and its pipeline, which may not yet be satisfactory in
the case of radar for general use cases, see Chapter 6. Instead, I suggest that researchers exper-
iment with early or intermediate fusion. Furthermore, because point clouds from 3+1D radars
are beginning to resemble LiDAR point clouds (see Chapter 6) literature on LiDAR-camera
fusion may provide inspiration. However, researchers should consider the still significant
density difference between LiDARs and radars: methods that rely heavily or exclusively on
LiDAR to determine the precise 3D position of objects may not be appropriate for radar.

The leading LiDAR-camera fusion approaches can be classified into three groups: “Point-
Painting”, “Frustum based methods”, and “Pseudo LiDAR based methods”. PointPainting
methods [53][136][137] “paint” the 3D points with features extracted from the camera image,
e.g., color, semantic class scores or semantic features. The mapping between the 2D features
and the 3D points is typically done by projecting the points onto the image. Clearly, such
methods rely heavily on LiDAR for 3D geometric/spatial cues, thus, PointPainting may not
be the best approach for radar-camera fusion.

Frustum based methods use some sort of 2D image based detection to “extract” the
corresponding LiDAR point subset [138][139][140]. The extracted point cloud is then used
to regress a 3D bounding box. A disadvantage of this approach is that it relies heavily on
camera based detections: if an object is not detected in the camera image, no downstream 3D
detection steps are performed. Furthermore, this approach also assumes sufficient availability
of 3D points within the extended frustum - a requirement that radars cannot yet reliably fulfill.

Finally, Pseudo LiDAR based methods [141][142] argue that detection performance is
degraded for distant objects with few LiDAR points, even if these instances are visible in the
camera image. Their solution is to lift image pixels into 3D space, extending the LiDAR
point cloud with further points, and as such, extracting both spatial and semantic cues from
the camera. The problem addressed by these methods is exactly the same as the challenge
caused by the sparsity of 3+1D radar point clouds: there are not enough 3D points (LiDAR
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or radar) available on certain objects of interest to detect them. Therefore, I suggest radar
researchers to develop similar approaches, i.e., to fuse images with the radar point cloud by
reprojecting the pixels into 3D space, thus creating a “Pseudo LiDAR” point cloud.

The potential of such a fusion approach was demonstrated in a recent MSc thesis [143]
supervised by me. In a first stage, Pseudo LiDAR representation of the input monocular
image is generated by a novel network, which takes as input the radar point cloud, as well
as a monocular depth map and a panoptic mask predicted by pre-trained state-of-the-art
networks. In a second stage, the generated Pseudo LiDAR point cloud is appended to the
3+1D radar point cloud. The resulting fused point cloud is then used to train an off-the-shelf
point cloud based object detection network. The results on the View-of-Delft dataset [122]
were promising: the proposed approach significantly outperformed several state-of-the-art
radar-camera fusion methods (proposed fusion vs. best baseline: 53.6 mAP vs. 50.8 mAP)
and yielded comparable performance to a network using LiDAR input when evaluated in the
safety-critical Driving Corridor (80.5 mAP vs. 81.6 mAP).

FUTURE WORK IN A BROADER SCOPE
It is clear that for a fully self-driving car, it is not enough to just detect road users: they also
need prediction of their possible future locations. I believe that such a prediction can benefit
from radar data for several reasons. As discussed in Chapter 2, radars provide velocity
information (also called Doppler) that is clearly a valuable input to the prediction. Further,
we have seen in Chapter 6 that Doppler is also a strong prior for orientation estimation,
which in turn is also critical for estimating future positions. Finally, I see a less direct way to
improve position prediction by radar: intention recognition. As mentioned in both Chapter 5
and Chapter 6, the moving parts, e.g., the swinging limbs of VRUs, have a strong influence
on the Doppler dimension. Regressing the pose and motion of the limbs with radars could
open new possibilities to estimate the intention of VRUs (e.g., whether they will cross or
stop at the curbside) and thus further help to predict their future locations. In my opinion,
these capabilities of radars are currently underutilized, and I hope that my results and the
dataset presented in Chapter 6 will help to promote such research.

Although this work has focused on the use of radar for road user detection, radars in
intelligent cars can also be used for various other use cases, such as free road estimation,
odometry, place recognition, or localization and mapping tasks. The results of this thesis can
benefit such applications as well. For example, the ghost targets discussed in Chapter 2, or
the multipath propagation property exploited in Chapter 4 can influence any radar-related
research. Similarly, regardless of the actual task of a point cloud processing network (e.g.,
detection or place recognition), the discussion of the limitations of data augmentation in
Chapter 6 will be relevant.

As discussed in Chapter 2, radars are commonly used in various applications that are not
related to intelligent cars, but are nevertheless often related to transportation, such as traffic
monitoring, airspace surveillance, security surveillance, or navigation of small unmanned
aerial or ground vehicles (UAVs and UGVs). Applying some of my results to these use cases
is quite straightforward. For example, pedestrian detection using the models proposed in
Chapter 5 or Chapter 6 is possible directly by radars in UGVs such as delivery robots, or by
radars mounted in surveillance stations. In some other cases, with a little extra work, the ideas
from this thesis can be used for entirely new applications. For example, it should be possible
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to detect and/or distinguish birds and drones near airports based on the characteristic motion
of their rotors and wings using the radar cube and a network similar to the ones in Chapter 5.

As someone who has spent five years working on intelligent vehicles, I think fully self-
driving, L5 cars are still a long way off - definitely further than the average citizen tends to
believe. Along the way, we will face unprecedented situations involving multiple disciplines,
not just engineering. One area that I believe will be affected is the study of law. For example,
the question of who is responsible, and to what extent, in the event of an accident involving
a vehicle that partially (i.e., L2, L3) or fully (i.e., L4 or L5) drives itself is complex, and
already causing roadblocks [144]. The owner of the vehicle, the “driver”/passenger, the
manufacturer, the programmer, and the regulatory agencies that tested and then approved the
vehicle for public road use could all be considered responsible. Another area where I think
a lot of research needs to be done is (social) psychology. The acceptance of self-driving
vehicles is anything but trivial and depends heavily on different backgrounds. I expect
for example professional lorry or taxi drivers to organize large-scale protests - a form of
resistance they have historically been good at [145]. Similarly, I expect the behavior of
other road users to change once supposedly self-driving vehicles appear on the road. On
the one hand, people might trust these vehicles too much and, for example, cross the street
without looking. On the other hand, people, especially children, might have less respect for
self-driving vehicles and may “harass” them, for example by jumping in front of them or
taking advantage of their patience - a phenomenon that has already been observed several
times [146]. In any case, I think we have a long way to go before we will really see truly
self-driving, Level 5 cars, and the road ahead is full of unanswered questions and possible
future research topics for many fields.

THE FUTURE OF 3D SENSORS IN INTELLIGENT VEHICLES
In my opinion, currently there is no trivial trend emerging in the industry about which sensor
or combination of sensors is best for driver assistance or self-driving purposes. Some tradi-
tional car manufacturers such as Toyota, Volvo, or Skoda focus on driver assistance, L2 tasks,
and tend to choose the camera with the combination of radar. The radar is mostly used for col-
lision avoidance or automatic cruise control application, instead of being exploited in object
classification and detection. Others, such as Daimler or Audi, already sell cars that in theory,
are L3 compliant, using all three main sensors, including a low-resolution LiDAR. This step
is not without setbacks though, for example, Audi in 2020 decided to abandon its L3 plans
[144], claiming that “currently there is no legal framework for Level 3 automated driving”.
Interestingly, stereo cameras seem to be less popular than in the last decade - possibly caused
by the additional calibration complexity. Many new players in the industry, such as Waymo,
Lyft, or Cruise, have chosen to directly address the challenges of self-driving by building
Level 4 robotic taxi fleets. To that end, they usually limit the area of operation, and have a de-
tailed and often updated 3D map of that area created by LiDAR to help with navigation. This
mapping approach, and the apparent superiority of LiDAR sensors in object detection [87]
are key reasons why high-end LiDAR sensors are more widely used by these companies com-
pared to traditional car manufacturers. Since the vehicles are not intended for end users but to
become part of a fleet, the increased manufacturing costs and design constraints caused by the
choice of LiDAR sensors are less important. Finally, Tesla recently made a controversial de-
cision [147] to completely remove radar from its perception suites and also not use LiDAR in
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its vehicles. This means that Tesla plans to achieve Level 4 and 5 using only camera sensors -
a decision questioned by many in both the industry [147] and the scientific community [148].

In my opinion, radar still has a legitimate place in any modern intelligent vehicle, despite
the advances of other sensors, and will continue to do so in the future. Moreover, it has been
shown in the previous chapters that they can do much more than simple collision avoidance.
Hence, they should be integrated into the object detection pipeline, improving detection relia-
bility with information not available from other sensors (e.g., velocity measurements, indirect
reflections) and bringing increased redundancy to such systems. On the other hand, despite
significant improvements in hardware design and signal processing in recent years, it is clear
that the amount of information provided by an automotive radar sensor is not yet comparable
to the amount of information provided by a high-end LiDAR sensor, see Chapter 6.

Therefore, in my view, there are two paths for the 3D sensor of the future. The first
option is that the density of radar point clouds continues to increase while other benefits, such
as reasonable cost and robustness against adverse weather are maintained. The other option
is that the manufacturing price of LiDAR sensors is significantly reduced without sacrificing
too much in the quality and quantity of the data output. I expect that future LiDAR sensors
will also need to provide velocity measurements to be competitive, using signal processing
techniques from the radar world. In either case, the result will be a sensor that provides a
dense, spatially three dimensional point cloud of the environment, and also provides relative
radial velocity measurements for each point. This means that most of the findings and ideas
from the previous chapters will still be applicable. I am convinced that these sensors of the
future will help improve road safety, and I hope that this thesis will contribute to that end.
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