

Delft University of Technology

A Parasitic Resistance Extraction Tool Leveraged by Image Processing

Dias, Diogo ; Goes, Joao ; Costa, Tiago

DOI
10.1109/ISCAS48785.2022.9937879
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS)

Citation (APA)
Dias, D., Goes, J., & Costa, T. (2022). A Parasitic Resistance Extraction Tool Leveraged by Image
Processing. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS)
(pp. 1585-1589). (Proceedings - IEEE International Symposium on Circuits and Systems; Vol. 2022-May).
IEEE. https://doi.org/10.1109/ISCAS48785.2022.9937879
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISCAS48785.2022.9937879
https://doi.org/10.1109/ISCAS48785.2022.9937879

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

A Parasitic Resistance Extraction Tool
Leveraged by Image Processing

Diogo Dias
Department of Electrical and Computer Engineering

School of Science and Technology
NOVA University of Lisbon

CTS/UNINOVA
Almada, Portugal

Email: das.dias@campus.fct.unl.pt

João Goes
Department of Electrical and Computer Engineering

School of Science and Technology
NOVA University of Lisbon

CTS/UNINOVA
Almada, Portugal

Email: jg@uninova.pt

Tiago Costa
Department of Microelectronics

Faculty of Electrical Engineering, Mathematics & Computer Science
Delft University of Technology

Delft, Netherlands
Email: T.M.L.daCosta@tudelft.nl

Abstract—Most academic and commercial tri-dimensional (3D)
parasitic resistance extraction EDA/CAD tools rely on finite ele-
ment methods (FEM) and are mainly suited to digital circuitry. In
analog and mixed-signal (AMS) circuits, such as power converters
and radio-frequency analog front-ends, the layout structures used
for the metal interconnections become much more diversified and
complex. This paper proposes an EDA/CAD tool, based on an
innovative methodology for 3D parasitic resistance extraction,
leveraged by image processing techniques and algorithms. Some
practical examples are shown to demonstrate the attractiveness
of the proposed tool. Moreover, since our tool efficiently works in
the domains of 2D image processing, if an extensive database of
layouts is provided and enough training is carried out, advanced
deep-learning techniques can be straightforwardly employed,
speeding up parasitic resistance extraction in highly complex
AMS layouts.

I. INTRODUCTION

Post-layout verification EDA/CAD software tools have
growing importance as the semiconductor technology nodes
shrink down, allowing for increasingly power efficient and
optimized integrated circuit layout designs [1], [2]. Most AC
and DC Voltage drop and electromigration (EM) analysis soft-
ware tools take advantage of 2D and 2.5D meshing software
to perform electric analysis on the several metal structures in
each layer. Using finite element methods (FEM), the electric
potential difference and extracted parasitic resistance between
nodes are calculated [3], [4]. These tools are usually opti-
mized for the verification of power and/or ground nets of
digital integrated circuitry [5]–[8]. In analog circuit layouts,
more complicated metal structures are present, and the power
transferred on dedicated signal lines require IR Voltage drop
verification on signal transferring interconnects. As the circuit
area increases, the computation time for these EDA/CAD tools
also increases, sometimes requiring several hours to complete
an extraction.

In this work, it is presented a new methodology leveraged
by Image Processing techniques in order to extract the central
paths for layer interconnections and VIAs on which parasitic
resistances are mapped upon. The methodology is integrated
in a software tool aiming to provide a layout debugging
tool generalized towards analog and/or digital circuits. A
comparison between this tool and other referenced existing
tools is summarized in Table I.

TABLE I
FEATURE COMPARISON - REFERENCED TOOLS VS. THIS TOOL.

Feature Tools
[4] [5]–[8] This Work

Automatic
Netlist Extraction 3 3/7 3

DC EM Simulation
(Current Density Mapping) 3 3 7/3

DC IR-Voltage Drop Simulation 3 3 3
AC Simulation 7 3 7

Easy to Use 3 7 3
Geometry Feature Extraction A A B

Legend: A - Polygon fragmentation methods using mesh structures (FEM);
B - Image processing methods for geometry pre-processing.

II. APPLICATION DESCRIPTION

The application follows a simple flow of use and operation,
making easier the job of the AMS layout engineer and thus
accelerating the full inspection of the layout under verification.

A. User Guide

The import, management, visualization and modification of
the ”.GDS” file is handled in the application by use of the
dedicated Python™ library gdspy (release version 1.6.9) [9].
In order to build the ”Input PAD Locations” file, one must
first observe the layout of the cell, block or entire system to

978-1-6654-8485-5/22/$31.00 ©2022 IEEE 1585

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

IS
C

A
S)

 |
97

8-
1-

66
54

-8
48

5-
5/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
C

A
S4

87
85

.2
02

2.
99

37
87

9

Authorized licensed use limited to: TU Delft Library. Downloaded on November 24,2022 at 09:21:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Application flow of operation.

chose the GDSII coordinates of each input PAD. The software
tool’s supported operations are:

1) Import the ”.GDS” layout file;
2) Visualize the layout file;
3) Import the necessary technology files for the resistance

analysis;
4) Run DC resistance distribution analysis;
5) Visualize resistance distribution analysis’ resulting

coloured heat-map.

B. File Import

For the application to operate there are three necessary files
that must be imported:

1) Rule Files: contain technology-specific physical param-
eters. The considered PDK is the open-source Skywater
130 nm fabrication process [10].

2) circuit’s ”Layout Mask File”: Only GDSII geometry files
(”.GDS”) are supported for import.

3) metal ”Input PAD Locations File”: application-specific
text files (.TXT) containing the x, y coordinates of the
sites of contact between a voltage supply source and the
integrated circuit.

The x and y 2D coordinates are unit-less (’meter-less’) - they
must be inserted in the GDSII file coordinate system.

III. METHODS & ALGORITHMS

The methodologies for point-to-point resistance extraction
presented in this section rely on Image Processing and Graph
Theory as tools that allow for the calculation of the electric
current paths assumed inside metal layers of any shape,
allowing for the extraction of central paths even for metal
layers containing multiple slots (metal openings). The flow of
operation of the tool is presented in Figure 1.
A. Netlist Extraction

The tool supports automatic netlist extraction from the
imported ”.GDS” file. Taking advantage of the functionalities

Fig. 2. Image Skeleton (in grey) of a Metal 1 (in white) interconnect with
open slots (background in black). 0◦ segment (blue); 45◦ segment (yellow);
90◦ segment (green); 135◦ segment (red).

of the Python™ programming language and the gdspy library,
the several polygons structures that are on the same layer and
intersect each other are joined in a single polygon.

On the resulting GDSII library, the several netlists featured
in the imported ”.GDS” file are extracted by checking which
polygons placed in two successive metal layers intercept the
same VIA geometric element.

B. Path Extraction

The gdspy library supports the translation of the GDSII
library geometries to ”.SVG” image format, and the PythonTM

library svglib [11] allows for the translation of ”.SVG” format
to RGB ”.PNG” image formatting. The extraction of the
central paths for each metal structure in the GDSII library
is separated in two processes involving image processing
algorithms:

1) Central Points Extraction: By computing the Image
Skeleton (represented by the grey pixels in Figure 2) of the
image of each metal layer polygon, recurring to the Guo-Hall
Thinning Algorithm [12], the central pixels are obtained and
furthermore converted into 2D GDSII coordinates.

2) Width Extraction: For each pixel belonging to the central
path that is extracted using the thinning algorithm, four line
segments (presenting angles of 0◦, 45◦, 90◦, and 135◦) are
built, connecting the nearest borders of the metal structure
being processed while intercepting each pixel - as also repre-
sented in Figure 2. For each point, the lengths of these four
line segments represent the widths of the metal polygon in
four different directions, and the assumed metal width is the
minimum detected width (1).

W (x1) = min{W1,W2,W3,W4} (1)

where: (see Figure 2) W1 - length of 0◦ segment; W2 - length
of 45◦ segment; W3 - length of 90◦ segment; W1 - length of
135◦ segment; W (x1) - width of the metal interconnect at
coordinates x1.

The conversion of coordinates and width from pixel units
to GDSII library units is done by performing a linear domain
transformation by using the GDSII layer and its respective
image bounding boxes (rectangular boundaries).

C. Current Drifting Graph

After importing the input PAD locations file, an inner-layer
connectivity graph through out the pixels belonging to the cen-
tral path of each metal layer is built, interpreting each central

1586

Authorized licensed use limited to: TU Delft Library. Downloaded on November 24,2022 at 09:21:01 UTC from IEEE Xplore. Restrictions apply.

(a) Example of a series resistance computation
on a inner-layer graph connection set.

(b) Example of a inner-layer graph connection
set featuring a parallel resistance path with 3
parallel path union nodes as well.

Fig. 3. Inner-layer graph connection set examples.

Fig. 4. Inter-layer graph connection example.

path associated pixel as a graph node. Parallel processing is
employed in this task [13] for each node that branches out
of a path, to address all parallel nodes ”simultaneously”. The
graph, exemplified in Figure 3, is constituted by two types
of ending nodes: parallel path union nodes (ending nodes
featuring neighbour ending nodes) and final nodes (ending
nodes featuring no neighbour nodes).

An inter-layer connectivity graph, exemplified in Figure 4 is
also built for connections established through the VIAs layers,
in which the central point of each VIA polygon is interpreted
as an input PAD location for the layer to which the connection
is done. For each input PAD specified by the user in the input
PAD locations file a set of inner and inter-layer graphs will
be created.

R(x1, x2) =
ρ

MTH

||(x1, x2)||
W (x2)

(2)

where : ρ - metal layer resistivity [Ωm]; MTH - metal layer
thickness [m]; x1 - previous node; R(.) - resistance between
successive nodes; [Ω]; W (.) - nodal metal width [m]; ||x1, x2||
- euclidean distance between successive node coordinates x1
and x2.

D. Resistance Mapping

In this section, the methods used in point-to-point parasitic
resistance extraction are presented. The resistance value be-
tween each point of a connection is always attributed to the fi-

Fig. 5. Distributed resistance mapping example of a straight strip belonging
to metal 1

nal node of each connection, and a color code is attributed to it.
Lower resistance values will be coloured with ”colder” colours
closer to the minimum resistance value (coloured in dark blue),
while higher resistance values will be coloured in ”hotter”
colours converging towards the maximum resistance value of
the layout (coloured in dark red), as observed in Figures 5, 6
and 7. The series resistance between two successive nodes of
the connectivity graph is given by (2). Depending on whether
there are parallel current paths or not in the interconnect, two
different approaches are used:

1) Series Resistance Mapping: Using Dijkstra’s Shortest
Path Algorithm [14] the single shortest path between the input
PAD associated node and the ending-nodes of the connectivity
graph of the metal structure is obtained. This guarantees that,
in the case of multiple possible paths extracted between the
referred nodes, only the lowest resistance one is considered for
each end-node, neglecting possible parallel resistance paths.
The series parasitic resistance between the input point coordi-
nates (xi) and each point of the central path (xn) is obtained
through (3). This method is represented in Figures 3a and 5.

R(xi, xn) =

size{PN}∑
i=1

R(xPN{i}, xPN{i+1}) (3)

where : PN is the set of nodes that constitute a path between
the input node xi and the ending node xn.

2) Parallel Resistance Mapping: As a first step, for each
one of the parallel path union nodes (exemplified in Figure 3b),
the series parasitic resistance is calculated between the input
node and the node itself (R(xi, xN)) and its neighbouring end-
nodes (R(xi, xSN{k})). The equivalent parallel resistance for
each of the referred nodes is afterwards computed using the
inverse of the sum of the corresponding conductances - as
represented in equation (4).

Rp(xi, xn) =
1

1
R(xi,xn)

+
∑size{SN}

k=1
1

R(xi,xSN{k})

(4)

where: SN is the set of neighbour end-nodes of the xn node.

In a second step, the resistance map is constructed from the
input node towards the parallel path interception nodes (with
the resistance at ending-nodes being the maximum possible
resistance values in between them). In a third and final step,

1587

Authorized licensed use limited to: TU Delft Library. Downloaded on November 24,2022 at 09:21:01 UTC from IEEE Xplore. Restrictions apply.

(a) Resistance heat-map for a single input
PAD in Metal 1.

(b) Resistance heat-map for multiple (9 -
nine) input PADs in Metal 1.

Fig. 6. Resistance heat-map of a testing layout mask. Warmer colours encode
a higher resistance; Cooler colours encode a lower resistance.

the series resistance is mapped between each parallel path
interception node towards each final end-node.

The resistance of each VIA is of course also taken into
account in the starting resistance value in inter-layer intercon-
nections.

IV. RESULTS

The proposed EDA/CAD tool has been tested on simple 2D
and 3D layouts. The obtained results for simpler netlist layouts
and more complex layouts featuring multiple open slots on the
metal structure, as shown in Figure 6 and Figure 7, present
promising and accurate resistance distribution results for a tool
relying on image processing techniques rather than FEM. The
proposed tool allows for single or multiple input PADs to be
considered in the same netlist, as it is possible to observe
from Figures 6a and 6b. Figure 7 shows that the proposed
tool can help to detect layout problems such as the lack of
enough VIAs by featuring faster approaches to the saturation
resistance value on metal strips with the same shape.

The obtained average computing times for the resistance
map of the layout presented in Figure 7, presenting an area
of 152.1828 µm2 (12.8100 µm × 11.8800 µm), are shown in
Table II - obtained using an Intel(R) Core(TM) i7-6700HQ
CPU with 4 Cores @ 2.60 GHz. Overall, the results obtained
in Table II are quite promising for the light complexity of the
layout, when compared to other referenced tools.

TABLE II
COMPUTING TIME MEASUREMENTS FOR THE LAYOUT EXAMPLE SHOWN

IN FIGURE 7.

Operation Average Computing Time [s] %

Netlist Extraction 0.0432 0.93
Central Paths Extraction 4.0339 86.67

Connectivity Graph Development 0.5591 12.01
Resistance Mapping 0.0182 0.39

Total Computing Time 4.6544 100

Fig. 7. Observation of a faster resistance saturation when establishing a
connection between successive metal layers using less contact VIAs.

Transposing the proposed tool from Python™ programming
language into a compiled, low-level programming language
(such as C++™), the timings presented in Table II can be
further reduced. Furthermore, it is expected that migrating
the image processing tasks to a GPU will also lead to great
improvements in its running-time. The tool must be tested on
more complex VLSI layouts to obtain a more comprehensive
measurement on the advantages and disadvantages of the
methodologies used for resistance mapping or voltage drop
analysis presented in this work over other approaches.

V. CONCLUSION

This paper proposed an EDA/CAD tool, based on an in-
novative methodology for 3D parasitic resistance extraction,
leveraged by image processing techniques and algorithms.
Some practical examples of small layouts have been shown to
demonstrate the attractiveness of the proposed tool. Moreover,
since our tool efficiently works in the domains of 2D image
processing, if an extensive database of layouts is provided
and enough training is carried out, advanced deep-learning
techniques can be straightforwardly employed, speeding up
parasitic resistance extraction in highly complex AMS layouts.

VI. ACKNOWLEDGEMENTS

This research work has been supported by XILINX Ireland
and also by FEDER funds through National Funds provided
by FCT - Fundação para a Ciência e a Tecnologia, I.P.,
under the scope of the strategic project of CTS/UNINOVA
(UIDB/00066/2020).

1588

Authorized licensed use limited to: TU Delft Library. Downloaded on November 24,2022 at 09:21:01 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Marković, D., et al., ”The Role of Post-Layout Verification in Micro-
processor Design”, 2004, Proceedings of MIPRO 2004 27th International
Convention, MEET & HGS.

[2] Jain, Bhawana & Khare, Kavita, ”A Comparative Study of Methodologies
to Optimize Post- layout Challenges”, 2015, International Journal of
Computer Applications. 124. 27-30. doi: 10.5120/ijca2015905552.

[3] E. Liu, et al., ”Effective resistance approach for DC analysis of power
grid on through-silicon interposer (TSI),” 2012, IEEE Electrical Design
of Advanced Packaging and Systems Symposium (EDAPS), 2012, pp.
1-4, doi: 10.1109/EDAPS.2012.6469410.

[4] M. Ershov, et al., ”P2P and Rmap - new software tool for quick
and easy verification of power nets,” 2015 37th Electrical Over-
stress/Electrostatic Discharge Symposium (EOS/ESD), 2015, pp. 1-8, doi:
10.1109/EOSESD.2015.7314754.

[5] N. Chang, et al., ”Efficient multi-domain ESD analysis and verification
for large SoC designs,” EOS/ESD Symposium Proceedings, 2011, pp.
1-7.

[6] Y. Shao, Z. Peng and J. Lee, ”Analysis of IR-drop in 3-D IC packaging
using a non-conformal domain decomposition method,” 2012 Asia-Pacific
Symposium on Electromagnetic Compatibility, 2012, pp. 405-408, doi:
10.1109/APEMC.2012.6237966.

[7] M. Ershov, et al., ”EDA software for verification of metal interconnects
in ESD protection networks at chip, block, and cell level,” 2013 35th
Electrical Overstress/Electrostatic Discharge Symposium, 2013, pp. 1-7.

[8] L. Xue and D. Jiao, ”Rapid Modeling and Simulation of Integrated Circuit
Layout in Both Frequency and Time Domains From the Perspective of In-
verse,” in IEEE Transactions on Microwave Theory and Techniques, vol.
68, no. 4, pp. 1270-1283, April 2020, doi: 10.1109/TMTT.2020.2966699.

[9] Gabrielli, L. H. (n.d.) - gdspy 1.6.9 documentation. Retrieved from
https://gdspy.readthedocs.io/en/stable/gettingstarted.html.

[10] Welcome to SkyWater SKY130 PDK’s documentation! - SkyWater
SKY130 PDK 0.0.0-308-gdb2e067 documentation. (n.d.). Retrieved from
https://skywater-pdk.readthedocs.io/en/latest/index.html#.

[11] Svglib. PyPI. (n.d.). Retrieved from https://pypi.org/project/svglib/.
[12] Gramblička, Matúš & Vasky, Jozef. (2016). Comparison of thinning

algorithms for vectorization of engineering drawings. 94. 265-275.
[13] Threading - thread-based parallelism. threading - Thread-based

parallelism - Python 3.10.0 documentation. (n.d.). Retrieved from
https://docs.Python.org/3/library/threading.html.

[14] Dijsktra’s algorithm. GeeksforGeeks. (2021, September 10). Retrieved
from https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-
greedy-algo-7/.

1589

Authorized licensed use limited to: TU Delft Library. Downloaded on November 24,2022 at 09:21:01 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 5
 0
 1

 1

 HistoryList_V1
 qi2base

