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PrivGait: An Energy-Harvesting-Based
Privacy-Preserving User-Identification

System by Gait Analysis
Weitao Xu , Wanli Xue, Qi Lin, Guohao Lan , Xingyu Feng, Bo Wei , Chengwen Luo ,

Wei Li , Senior Member, IEEE, and Albert Y. Zomaya , Fellow, IEEE

Abstract—Smart space has emerged as a new paradigm that
combines sensing, communication, and artificial intelligence tech-
nologies to offer various customized services. A fundamental
requirement of these services is person identification. Although a
variety of person-identification approaches has been proposed,
they suffer from several limitations in practical applications,
such as low energy efficiency, accuracy degradation, and pri-
vacy issue. This article proposes an energy-harvesting-based
privacy-preserving gait recognition scheme for smart space,
which is named PrivGait. In PrivGait, we extract discrimina-
tive features from 1-D gait signal and design an attention-based
long short-term memory (LSTM) network to classify differ-
ent people. Moreover, we leverage a novel Bloom filter-based
privacy-preserving technique to address the privacy leakage
problem. To demonstrate the feasibility of PrivGait, we design a
proof-of-concept prototype using off-the-shelf energy-harvesting
hardware. Extensive evaluation results show that the proposed
scheme outperforms state of the art by 6%–10% and incurs low
system cost while preserving user’s privacy.
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I. INTRODUCTION

ASMART space is a physical environment that is embed-
ded with sensors, actuators, and smart devices [1].

Leveraging sensing and communication technology provides
proactive and augmented services to users based on contextual
information. Smart spaces can greatly improve productiv-
ity, energy efficiency, and make daily life more convenient.
Some common examples of smart spaces include smart home,
smart building, and smart airport. Person identification is a
prerequisite function for smart space to provide customized
applications because it is hard to associate the corresponding
context to a given person without knowing his/her identity. For
example, without knowing who is in the room, a smart build-
ing application is unable to offer user-specific applications,
such as adjust room brightness or temperature [2].

Gait recognition has recently emerged as a promising solu-
tion to identify people by analyzing their walking patterns.
Compared to other biometrics, such as face [3] and finger-
print [4], gait-based approaches can identify different people
continuously and unobtrusively. Based on the hardware used,
gait recognition systems can be classified into four categories:
1) camera based [5]; 2) radio based [2]; 3) floor sensor based [6],
[7]; and 4) wearable sensor based [8], [9]. Although extensive
works have been done in each subcategory, some approaches
still have limitations in practical application. For example,
camera-based approaches need line-of-sight (LOS) view and
are subject to high privacy concern. Radio-based approaches
are susceptible to environmental changes [2], [10]. In floor
sensor-based approaches, a number of sensors such as geophone
sensor [6], [7] need to be installed on the floor. Unfortunately,
the unavailability of such sensors on most building floors limits
their wide application in real-world environments.

Thanks to the prevalence of sensor-equipped wearable
devices, such as smartphone and smart watch, wear-
able sensors-based approach has become the most promis-
ing technology, and the most widely used sensor is
accelerometer [11]–[13]. However, the major challenge of
accelerometer-based gait recognition is the continuous sam-
pling accelerometer will quickly drain the battery of wearable
devices. Energy constraint has long been identified as the
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bottleneck of IoT systems, especially for on-body wearable
devices, such as smart clothing and smart shoes, because
of their limited onboard resources. A recent vision is to
use a kinetic energy harvesting (KEH) device to replace the
accelerometer to sense user’s context [14]–[18]. KEH is a
technology that converts kinetic motions, such as walking
and running, into energy. A number of prior works have
demonstrated that the harvested voltage signal of KEH when
the user is walking reflects his/her walking patterns. For
example, KEH-Gait [14], [15] is a state-of-the-art energy-
harvesting-based gait recognition system for wearable devices.
The authors demonstrated that the output voltage signal of
energy harvesting can be directly used for gait recogni-
tion and they can achieve significant power saving by not
sampling accelerometer. Ma et al. [17] also designed an
energy-harvesting-based smart shoe called SEHS to recognize
different people based on the harvested signal.

Although these systems have demonstrated the feasibility of
using KEH signal for gait recognition, there are two limita-
tions in practical application, namely, accuracy and privacy. In
terms of accuracy, both KEH-Gait [14], [15] and SEHS [17]
are based on sparse representation-based classification (SRC)
whose performance will decrease when the number of users
increases. Therefore, these systems cannot be used to accurately
identify a large number of people in a smart space. Privacy is
an important but often overlooked issue in many IoT classi-
fication systems. Due to the limited processing capability of
wearable devices, the collected gait data are usually uploaded
to a server or edge device for further processing. However, it
poses severe privacy issues because an adversary (e.g., internal
attacker) can perform “reverse engineer” on the data to obtain
important personal information. The privacy issue will exacer-
bate for gait data because gait analysis has been widely used
in clinical evaluation and a person’s gait signal can reflect
his/her health condition [19]. Unfortunately, in existing gait
recognition systems, the raw gait data or extracted features
are uploaded to a server directly, which poses high privacy
concerns.

To overcome the above two problems, we design a gait
recognition as a service model for smart space, which is named
PrivGait. To improve accuracy, PrivGait leverages a novel fea-
ture extraction method to extract discriminative features from
1-D gait signal. To address privacy issue, PrivGait applies a
novel differentially private Bloom filter [20] on the extracted fea-
tures. The primary advantage of the adopted privacy preserving
technology is that it can provide a better tradeoff between utility
and privacy than other privacy preserving approaches. Finally,
we design an attention-based long short-term memory (AT-
LSTM) classification model to obtain the identity of the users
based on the processed features, which do not reveal users’
private information but are still distinguishable for different
persons. As we will show in the evaluation, the proposed
system achieves privacy preserving by sacrificing recognition
accuracy slightly (about 0.3%–1%). The designed gait recog-
nition scheme can be used as a fundamental service in a smart
space to provide identity information. In summary, we make
the following contributions in this article.

1) We design a gait recognition as a service model for
smart space, which features energy-harvesting-based

wearables, novel feature extraction approach, privacy-
preserving technique, and deep learning technology. The
proposed framework can be easily integrated into smart
space to enable high-level user-specific applications.

2) We provide a proof-of-concept implementation using
off-the-shelf energy-harvesting hardware. We collect 24
subjects’ gait data in a typically indoor environment.
The data set has been made public available to facilitate
research on KEH-based gait analysis.1

3) Extensive evaluation is conducted to evaluate the
performance of our scheme. Evaluation results show
that PrivGait protects user’s privacy by sacrificing accu-
racy slightly. But PrivGait still outperforms state-of-the-
art energy-harvesting-based gait recognition systems by
6%–10%. The energy consumption profile demonstrates
that PrivGait incurs low system cost on our prototype.

The remainder of this article is organized as follows.
Section III provides an overview of the designed gait recogni-
tion as a service model. Section IV describes the design details
of the system and Section V presents the evaluation results.
Then, Section II discusses related work before concluding this
article in Section VI.

II. RELATED WORK

Gait Recognition: The research on gait recognition can be
categorized into four classes: 1) camera based; 2) wireless
radio based; 3) floor sensor based; and 4) wearable sensor
based. Camera-based approaches can achieve high accuracy,
but they violate user’s privacy especially when they are used in
offices and homes. Moreover, their results are highly affected
by external factors, such as occlusions, distance, and light-
ing conditions. Gait recognition based on wireless signal has
attracted extensive attention in the past few years, such as
WiWho [2] and WifiU [21]. However, radio-based approaches
are susceptible to environmental changes. In comparison, both
floor sensor-based and wearable sensor-based approaches can
reflect the dynamics of gait more directly and faithfully.

In floor sensor-based approaches, a number of sensors need
to be installed on the floor. Such sensors can measure people’s
walking pattern when people walk on the floor [6], [7], [22].
For example, Pan et al. [6], [7] proposed to use the vibration
signal induced by people’s footstep to identify different peo-
ple. The advantage of floor sensor-based approaches lies in
its unobtrusive data collection. But the unavailability of sen-
sors on current building floors limits their wide application in
real-world environments. In wearable sensor-based approaches,
Ailisto et al. [12] conducted the first study on accelerometer-
based gait recognition. Recently, with the popularity of wearable
devices, many wearable devices-based gait recognition systems
have been designed. For example, Lu et al. [13] developed a gait
authentication system for mobile phone users. Xu et al. [11]
proposed a context-aware gait recognition system on smart
watch. It solves the problem of gait recognition when the user
is performing different activities, such as walking upstairs,
walking with hand in pocket, etc.

Our work differs from all of the above prior works in
two aspects. First, we consider the privacy problem of a

1https://github.com/xuweitao005/Gait-dataset
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gait recognition system. Second, in order to improve recog-
nition accuracy, we adopt novel feature extraction approaches
and design the attention-based LSTM model. The results
show that our system can improve recognition accuracy by
6%–10% compared to KEH-Gait [14] and SEHS [17], which
are state-of-the-art KEH-based gait recognition systems.

Apart from gait recognition, many person-identification
systems based on user’s activities or behaviors are also
proposed. For example, in SonicDoor [23], the authors
installed three ultrasonic sensors on a door to identify differ-
ent people. SenseTribute proposed by Han et al. [24] utilized
on-object sensors to identify different people. SenseTribute is
based on the observation that different people interact with
objects (e.g., knock a door) in different manners.

KEH-Based Sensing: Recently, researchers have started to use
energy harvesters as self-powered sensors to address the energy
consumption issue of accelerometer-based systems. Instead of
consuming power, energy-harvesting-enabled IoT devices can
generate power from user’s motions, though the available power
is still limited by the current technology. Different energy-
harvesting prototypes have been designed to sense a variety
of contexts. To name a few, Lan et al. [16] proposed to use
the energy-harvesting signal to detect different transportation
modes, such as bus, train, and ferry. The intuition is that the
energy-harvesting device will be subjected to different vibration
patterns when the user takes different vehicles. Xu et al. [14],
[15], and Ma et al. [17] both used KEH signal for gait recognition,
and they used the same classifier in their systems SRC. Our
evaluation results show that PrivGait outperforms these two
systems. Moreover, our system incorporates privacy-preserving
technique to protect user’s privacy.

Privacy Preserving in IoT: Privacy is an important but
often overlooked issue in many IoT classification systems.
Due to the energy constraints of IoT systems, complicated
cryptographic-based methods are no longer the top prior-
ity options, such as fully homomorphic encryption, and
deterministic and order-preserving encryption. Instead, more
lightweight encryption primitives and privacy preserving meth-
ods [25]–[27], such as differential privacy-based noise addition
and privacy preserving sparse coding, are emerging and con-
sidered. However, noise addition methods cannot be general-
ized well, and additional privacy calibration is always required.
In this article, we adopt another category of lightweight “cryp-
tographic” method: Bloom filter encoding. The Bloom filter
encoding has been used in many areas such as patient medi-
cal information matching [28]. It can convert the data from raw
domain to the binary but remaining the data utility like relative
string distance. Xue et al. [20] made the Bloom filter encod-
ing more generalized, which can be applied on sequence data
instead of string or category data only. We adopt the Bloom
filter encoding as the privacy-preserving conversion module to
encode the data feature to binary data to prevent the potential
privacy leakage. Our results show that the accuracy only drops
slightly after applying the privacy preserving technique.

III. SYSTEM OVERVIEW

Overview: Fig. 1 shows the architecture of the designed
gait recognition as a service model for smart space. The

Fig. 1. Gait recognition as a service framework.

proposed model consists of three layers: 1) sensing layer;
2) edge layer; and 3) application layer. The sensing layer
refers to various devices that can collect user’s gait data
for identification. We assume that these wearable devices are
equipped with KEH technique to collect user’s gait signal. This
assumption is reasonable because there have been many KEH-
equipped wearables in the IoT market, such as AMPY [29]
and energy-harvesting-based smart shoe [30]. Although these
wearable devices usually have limited processing capability,
some simple signal preprocessing techniques can be performed
in this layer to improve data quality and reduce transmis-
sion overhead. In this article, the filtering, feature extraction,
and privacy-preserving technology will be run in this layer.
As demonstrated in Section V-K, these operations incur low
system cost on our prototype. The sensing layer will upload
the processed data to edge layer, which will perform computa-
tionally expensive tasks. Different from cloud computing, edge
computing can gather and process data in real time, allowing
them to respond faster and more effectively. In this article, the
deep learning model will run in edge layer to obtain user’s
identity. Because we apply privacy-preserving technique, the
uploaded data will not reveal any private information of users.
Finally, the identity information is transmitted to the applica-
tion layer to enable customized applications such as access
control.

Example Scenario: Suppose Jack is a manager of a com-
pany. In the morning, when he approaches the entrance of his
company, the wearable devices on his body (e.g., smart shoe
and smart watch) record his walking patterns for a few sec-
onds and sends the data to an edge device. The edge device
can be a local server or simply a router with programming
capability. Next, the edge layer employs an AT-LSTM model
to classify the uploaded gait data and knows the person is
Jack. The gait recognition result is then sent to the application
layer to enable a number of applications set by Jack or building
manager. For example, he can walk through the access control
system directly without swiping the access card because his
identity has already been identified by his walking patterns.
The lamp and fan in his office are adjusted to his preference
automatically before he enters the office. After he enters the
office, a smart speaker will play his favorite music. He enjoys
these seamless services that are enabled by the designed gait
recognition as a service framework.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 24,2022 at 14:04:41 UTC from IEEE Xplore.  Restrictions apply. 
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Attack Model: The gait identification system is vulnera-
ble to user spoofing attacks. For instance, an attacker may
mimic the walking style of the target and try to spoof the
system. Therefore, the adversary model considered in this arti-
cle focuses on impersonation attacks. We assume the presence
of two types of impersonation attacks.

1) Passive Adversary: The passive adversary tries to spoof
the system by using his own walking pattern.

2) Active Adversary: The active spoofing attacker knows
the identification scheme and will try his best to imitate
the walking pattern of the genuine user to spoof the
system.

The main goal of our system is to detect spoofing attacks.
In fact, there are many other possible attacks to such iden-
tification system. We discuss these possible attacks and
corresponding solutions.

1) Replay Attack: An adversary first records a measurement
trace from another person, and then replays the data trace
to fool the system. This attack can be easily detected by
the method in [31].

2) MITM Attack: The attacker can eavesdrop the commu-
nication between the wearable device and cloud with
the aim of modifying or inserting fake messages. This
attack can be solved by using an encryption algorithm.
In our system, we use a modern symmetric encryption
algorithm advanced encryption standard (AES) [32] with
256-bit key.

3) Video Analysis: Further potential threats include deriving
the walking patterns by studying a video of the target’s
gait through computer vision techniques. We believe this
is a potential vulnerability of unknown severity and leave
it as future work.

IV. SYSTEM DESIGN

Below, we will present the design details of PrivGait. Fig. 1
provides an overview of PrivGait, which consists of sig-
nal preprocessing, feature extraction, privacy preserving, and
classification.

A. Signal Preprocessing

When the user is walking, a KEH-equipped wearable device
will record his or her gait signals. KEH device, however, is
not originally designed for accurate motion recording. The
recorded signals, therefore, contain much noise that need to
be filtered out. In this article, we use the Savitzky–Golay (SG)
filter to remove noise and smooth data. The adoption of the SG
filter is based on the following two observations. First, the SG
filter is a low-pass filter well adapted for data smoothing. It
is able to follow the underlying slow-moving features of peo-
ple’s walking, while providing a controllable reduction in the
bandwidth of high-frequency fluctuations and noise. Second,
the SG filter is a linear algorithm that can be easily imple-
mented in resource-constrained wearable devices. There is a
tradeoff between noise suppression and signal distortion. As
the frequency of most people’s walking is less than 10 Hz [11],
the cutoff frequency of the SG filter is set to 10 Hz. The cutoff
frequency of the SG filter is determined by two parameters N

Fig. 2. Signal preprocessing.

Fig. 3. Extract features from gait signal. (a) Red circles represent the
locations of key points. (b) Bottom figures are two examples of extracted
descriptors.

and M [33]

fc ≈ N + 1

3.2M − 4.6
. (1)

One may notice that different combinations of N and M
can obtain the same cutoff frequency. Based on the study by
Schafer [33], the above formula becomes more accurate with
larger M and N. Therefore, we use N = 1553 and M = 50,
which results in 10 Hz cutoff frequency. Fig. 2 compares the
signal with and without SG filter. We can see that the gait
signal becomes more smoothing after filtering.

B. Feature Extraction

Conventionally, gait-based recognition systems are based on
template or statistical features, such as mean, median, and vari-
ance [34]. But we find that these features do not work well for
a KEH-based gait recognition system because of two reasons.
First, as mentioned above, the KEH technology is not origi-
nally designed for precise motion tracking purpose. Although
filtering can remove noise, the recorded signal is still not as
precise as the accelerometer-based gait recognition system as
stated in KEH-Gait [14], [15]. Moreover, despite the fact that
different people have distinct walking styles, the overall shapes
or patterns of different people’s gait signals are similar. So the
template or statistical features cannot reflect the key difference
of different people’s walking patterns. Instead, in the proposed
system, we adopt a novel feature extraction approach that can
extract fine-grained and discriminative features for different
subjects.

In the computer vision community, scale-invariant feature
transform (SIFT) is a popular feature detection algorithm to

Authorized licensed use limited to: TU Delft Library. Downloaded on November 24,2022 at 14:04:41 UTC from IEEE Xplore.  Restrictions apply. 
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detect and describe local features in images [35]. SIFT, how-
ever, only works for 2-D image. To overcome this limitation,
Xu et al. [11] transformed it to apply for 1-D signal. In
this article, we adopt the feature extraction method proposed
in [11]. Below, we briefly describe the process of this method.

We first divide the time-series gait signals into consecutive
windows with nonoverlap. The window size is set to 1.3 s
because most people’s gait cycle varies from 0.8 to 1.3 s [11].
So a window of size 1.3 s can capture a complete gait cycle of
most people. Suppose the 1-D gait signal in a window is x(t).
The first step of the feature extraction method is to identify
locations and scales of features that can be repeatably detected
from multiple gait cycles of the same person. To this end, we
first define the scale space of a gait signal as a function L(t, δ),
which can be obtained from the convolution of a variable-
scale Gaussian G(t, δ) L(t, δ) = Gδ(t, δ) ∗ x(t), where ∗ is the
convolution operation and Gδ(t, δ) is the zero-mean Gaussian
function with variance δ2

Gδ(t, δ) = 1√
2π

exp

(−t2

2δ2

)
. (2)

Next, we need to calculate D(t, δ), the difference of two
nearby scales that is separated by a constant multiplication
factor of ν for the detection of stable keypoint locations in
scale space

Dν(t, δ) = (G(t, νδ) − G(t, δ)) ∗ x(t)

= L(t, νδ) − L(t, δ). (3)

Then, the DoG responses of the input 1-D gait signal x(t) can
be expressed as E(t, δ) = (a ∗ Dν

δ )(t). The next step is to find
the locations of keypoints, which can be done by finding the
extrema of E(t, δ). Instead of searching E(t, δ) continuously,
the method proposed by Xu et al. finds extrema in a κ-layer
pyramid based on the following discrete series:

E[t, i] = E
(

t, νi−1δ0

)
for i = 1, 2, . . . , κ (4)

where t is the sampling timestamp, i is the layer index, and
δ0 is the base scale. To detect the local maxima and minima,
each point in E(t, i) is compared to its eight neighbors. If it is
larger or smaller than all of their neighbors, the extremum in
E(t, i) is regarded as a feature keypoint. Finally, the descriptor
function �(t, δ) is obtained by calculating the gradient, which
contains ρ points sampled uniformly around t

�(t, δ) = ∇
( (

v1, v2, . . . , vρ

)
∥∥v1, v2, . . . , vρ

∥∥
2

)

where vi = (a ∗ Gδ)

(
t + i − ρ + 1

2

)
. (5)

The feature descriptors extracted from the above methods
present two advantages. First, these features are more dis-
criminative than traditional statistical features. Second, in gait
recognition, one of the challenges is that the same person will
walk in different speeds at different times. However, the fea-
ture descriptors used in our system are invariant to changes in
amplitude induced by different walking speed. The changes in
amplitude caused by different walking speed means the mag-
nitude is multiplied by the same constant. It can be canceled

Fig. 4. Adding sequence information into Bloom filter.

by the normalization of the vector. Additionally, the gradi-
ent values will not be affected by speed change, as they are
calculated from differences.

In our system, the length of the feature vector is empirically
set to 17 (i.e., ρ = 17). Fig. 3 illustrates two feature extractors
from time-series gait signal of the same person. Although it
is generally agreed that deep learning approaches can use the
raw gait signal as input directly and hence, relax the burden of
manual feature extraction, we find that our system can achieve
higher accuracy by using more discriminative features (see
Section V-H).

C. Privacy Preserving

As mentioned earlier, most gait recognition systems pose
privacy issues. This is because the malicious attacker can
obtain critical information from the raw gait signal or extracted
features, for example, the health status of the walker [36].
Besides, the gait information itself can be used as the per-
sonally identifiable information, which emphasizes that gait
data require significant protection. Thus, allowing not-fully-
trusted party/server (e.g., honest-but-curious server) access the
gait information without privacy protection will cause severe
privacy concerns.

To address this problem, we adopt the Bloom filter-based
privacy preserving approach proposed in [20]. The selected
feature is hashed and fed into Bloom filter bins before
uploaded o the server. After hashing, there will only be binary
bits (“0” or “1” s) in the Bloom filter data structure instead of
raw features. Because the hash (e.g., SHA-256) is a one-way
function, the Bloom filter result cannot be reversed to recon-
struct the users’ gait data or select features. The challenge
here is to remain the key useful information while Bloom fil-
ter encoding. This is done by following the adding-sequence
information step in [20].

The feature records used to fed into the classifier (e.g.,
LSTM model) are first processed and transferred into Bloom
filter data. The hash function apparently cannot hold all the
original information since there is information loss while
mapping from original feature space (floating point data) to
Bloom filter space (binary data). In order to remain as much
information as possible, we convert the floating point features
to string data by adding two neighbors to each floating point
(round to two decimals) as illustrated in Fig. 4. Then, each
new element is appended a timestamp (2 bits) before hash
mapping into the final Bloom filter result. In Fig. 4, we use
two hash functions; thus, each element in the intermediate data
type will be put into two places (turn the original “0” to “1”).
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Fig. 5. Attention-based LSTM model.

The final Bloom filter results are fed into the classifier instead
of original feature data.

However, the hash in Bloom filter also comes with false
positive events (collisions), i.e., it happens that two different
elements maybe hash mapped into one “bin” in the Bloom
filter with a possibility [false positive rate (fp)]. The fp can be
estimated via the equation from [37]

fp =
(

1 − (1 − 1

n
)kp

)k

=
(

1 − e−kp/n
)k

(6)

where k represents for the number of hash functions, n rep-
resents for the Bloom filter length, and p is cardinality of the
key. Thus, we can control the fp to a very low rate such as
0.01 to avoid the collision with a high possibility. Our exper-
iments illustrate the collision that rarely (never) occurs in our
experimental setting.

Most importantly, this adapted Bloom filter data struc-
ture can also hold the set-based distance between the raw
feature data and the projected Bloom filter data (the proof
can be referred in [20]). Therefore, sufficient information is
still remained for the classifier and the evaluation result in
Section V-E shows that the accuracy only drops slightly after
using this technique. This step is performed before uploading
the data to an edge or cloud server, ensuring there is no privacy
leakage problem. Moreover, the adapted Bloom filter, which
only use hash functions and limit temporary storage (to store
the Bloom filter results), will not involve much overhead to
our system’s efficiency as we will demonstrate in Section V-K.

D. Attention-Based LSTM Classification

After the data are uploaded to an edge or cloud server, an
attention-based LSTM model will be performed on the data
to obtain user’s identity. LSTM is a popular neural network
based on the recurrent neuron network (RNN) [38], [39]. We
adopt the LSTM network because it is well adapted for the
sorting, analysis, and forecasting of time-series data. The stan-
dard LSTM, however, cannot detect which part is necessary
for the recognition of fine-grained gait features. To address
this drawback, we design an attention system that can catch
the main information of the input gait features. The attention

Fig. 6. t-SNE projection of six different subjects.

scheme is used to simulate how human brain thinks, that is,
give high attention to important information, and assign low
attention to unimportant information.

As shown in Fig. 5, the designed AT-LSTM model consists
of four layers: 1) input layer; 2) hidden layer; 3) attention
layer; and 4) output layer. As discussed in Section IV-B, we
extract a number of discriminative features from a segment
of gait signal. Therefore, these extracted features will be used
as the input of the first layer. Then, after we feed these fea-
tures into the LSTM network, we can get a series of hidden
states {h1, h2, . . . , hn}. Next, the output of the hidden layer is
used as an input of the attention layer. Different feature vec-
tors have different weights because they are extracted from
different locations of the gait signal and they carry different
levels of information about user’s walking pattern. So if we
suppose the feature importance vector is ut, we can obtain the
normalized weights αt for each feature vector by

ut = tanh(Wht + b) (7)

αt = exp
(
uT

t u
)

∑
t exp

(
uT

t u
) (8)

where W and b are two parameters determined in the train-
ing process. Next, the weighted sum for every hidden state
ht is then determined, with its corresponding weight αt:
v = ∑

t atht. Finally, to get the probabilities of each class, we
enter v in the output layer with softmax activation. The testing
signal identity is the class that has the highest probability. The
loss function used in the designed network is cross-entropy.

The number of neurons in the input layer, hidden layer, and
output layer is 17, 200, and 24, respectively. The designed
network is trained on the features extracted from user’s gait
data in order to minimize the loss function by gradient descent.
The loss is reached with repeated training and repair until the
loss reaches convergence. The calculated error is optimized by
the AdamOptimizer algorithm. In deep learning, the dropout
strategy is widely used to enhance the generalization of a
machine learning model and prevent overfitting. The dropping
out rate of the proposed system is empirically set to 20%,
which means we randomly select 20% of the neurons and drop
them. To visualize the results, we plot t-distributed stochastic
neighbor (t-SNE) project of six different subjects’ gait data in
Fig. 6. It is evident that the designed AT-LSTM model can
differentiate different people’ gait signals effectively.
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Fig. 7. Prototype and data collection. (a) Prototype. (b) Indoor walking path.

V. EVALUATION

A. Goals, Metrics, and Methodology

In this section, we conduct extensive evaluation to inves-
tigate the performance of PrivGait. The goals of evaluation
are threefold: 1) to evaluate the performance of the proposed
gait recognition system in different conditions; 2) to analyze
the impact of privacy preserving technology on recognition
accuracy; and 3) to compare our system with state-of-the-art
KEH-based gait recognition system KEH-Gait [14].

1) KEH Prototype: To validate the performance of the
proposed gait recognition service, we have built four proof-
of-concept prototype devices. The KEH device used in the
prototype is PPA 1001 piezoelectric cantilevers produced by
MIDE technology. The PPA 1001 is connected to the analog-
to-digital converters (ADCs) of a TI SensorTag board.2 The
MCU of SensorTag is Cortex-M4 microcontroller and it also
has an onboard 3-axis accelerometer—MPU9250. During data
collection, the accelerometer signal is also recorded for com-
parison purpose. The resonance frequency of PPA 1001 is
tuned to be 20 Hz by adding weights to the piezoelectric
cantilevers. The sampling rate is 128 Hz for both KEH and
accelerometer. The data are stored in internal flash memory
during data collection and imported to laptop via USB after
data collection. The size of our prototype device is 49 × 52
× 104 mm3, and the weight is about 90 g [see Fig. 7(a)].

2) Data Collection: The data collection is conducted in an
indoor environment because our system aims to recognize peo-
ple in a smart space, which is usually an indoor environment.

2SensorTag: https://au.mouser.com/new/texas-instruments/ti-sensor-tag-
kits/.

In total, there were 24 volunteers participating in data collec-
tion, of which 14 of them are males and the rest ten volunteers
are females.3 More details of the gait data set are summarized
in Table I. All participants wore four prototypes on their chest,
waist, head, and hand as shown in Fig. 7(a). The floor plan
and walking path are shown in Fig. 7(b). During data collec-
tion, they were asked to walk for two loops at their normal
speed. The data set has been made public available.

3) Metrics: The proposed gait recognition system can also
be used for authentication purpose based on the classification
result. That is, we can choose one or multiple users as genuine
users and treat the others as illegal users. If the identification
result belongs to the genuine users, the authentication result is
“accept,” otherwise, it is “reject.” Therefore, we use the follow-
ing three evaluation metrics that are commonly used in prior
gait recognition or authentication works [14], [15], [40], [41].

1) Recognition Accuracy: It means the number of correct
classifications over the total number of classifications.

2) False Acceptance Rate (FAR): It refers to the possibility
that our system incorrectly classifies an illegal user to be
a genuine user (i.e., accept an attacker’s authentication
request).

3) False Rejection Rate (FRR): It represents the possibility
that our system incorrectly recognizes a genuine user as
an attacker (i.e., reject a genuine user’s authentication
request).

Baseline: We compare PrivGait with KEH-Gait [14], which
is state-of-the-art KEH-based gait recognition systems. Note
that KEH-Gait uses sparse representation-based classification
(SRC). Therefore, we use SRC to represent the accuracy of
KEH-Gait in the rest of evaluation. We randomly divide the
whole data set into three parts: 1) training set; 2) validation
set; and 3) test set. The training set is used to train the model
and occupies 60% of the whole data set. The validation set
is used to tune the hyperparameters and occupies 20% of the
whole data set. The test set is used to test the performance
of the model on new data and accounts for 20% of the whole
data set. In the evaluation, we let W denote the length of
the window size (e.g., 1 and 2 s). We plot the average and
95% confidence level of the results obtained from ten runs.
Since the whole data set is collected from four different body
locations, it can be divided into four subdata sets: 1) hand
data set; 2) waist data set; 3) chest data set; and 4) head data
set. Unless otherwise stated, the model is trained and tested
on the whole data set without partitioning it into four parts.
Therefore, the accuracy indicates the overall performance of
four different locations. To investigate the impact of different
locations, we also analyze the accuracy of each independent
data set. In this case, the model is trained and tested on each
subdata set. The results can be found in Section V-G.

B. Impact of Parameters

In the first experiment, we evaluate the impact of important
parameters, including learning rate and number of iterations
in training. The learning rate is a hyperparameter that controls

3Ethical approval for carrying out this experiment has been granted by the
corresponding organization (Approval Number HC15304 and HC17008).
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TABLE I
DATA SET INFORMATION

Fig. 8. Impact of parameters on accuracy. (a) Impact of learning rate.
(b) Impact of iterations.

how much we are adjusting the weights of the neuron network
with respect to the loss gradient. The number of iterations
determines how fast our proposed system can achieve stable
accuracy. Fig. 8(a) and (b) shows the impact of different learn-
ing rate and number of iterations evaluated on our data set.
We can see that the best learning rate on the data set is 0.002.
Meanwhile, from Fig. 8(b), we can see that the proposed clas-
sification system can achieve stable and high accuracy quickly
within 80 iterations.

C. Impact of Preprocessing

As mentioned in Section IV-A, the energy-harvesting signal
contains much noise because energy harvester is not designed
for precise motion tracking purpose. To eliminate the impact
of noise, we use a S-G filter to smooth the signal. In this
experiment, we evaluate the effectiveness of the signal pre-
processing step. We calculate the accuracy of our system with
and without preprocessing and plot the results in Fig. 9. We
can see that the signal preprocessing step help improve the
recognition accuracy by 2.6%–6%.

Fig. 9. Impact of preprocessing on accuracy.

Fig. 10. Impact of sampling rate on accuracy.

D. Impact of Sampling Rate

After determining important hyperparameters, we now
investigate the impact of sampling rate on recognition accu-
racy. The aim of this experiment is to study the relationship
between recognition accuracy and the consumed power by
sampling KEH, as the power consumption is directly related
to the sampling rate. We downsample the data from original
128 to 10 Hz and calculate the recognition accuracy of dif-
ferent sampling rates. As shown in Fig. 10, the classification
accuracy increases as the sampling rate grows. This is easy to
understand because the more measurements are sampled, the
more information is available, and thus, enabling more accu-
rate classification. However, after the sampling rate is greater
than 30 Hz, we find that the accuracy starts to level off. The
results indicate that to achieve high recognition accuracy, a
sampling rate of 30 Hz is sufficient. Therefore, we use 30-Hz
sampling rate in the rest of the evaluation. Note that the win-
dow size used in this experiment is 1 s and later, we will
show the accuracy can be further improved by using larger
window size.

E. Impact of Privacy Preserving

The adoption of privacy preserving will decrease the recog-
nition accuracy, but can provide a good tradeoff between
privacy and utility. As mentioned in [20], different parameters
be used to provide privacy protection for different applica-
tions, and they provide different levels of utility and privacy
tradeoff. In this experiment, we tried different combinations of
parameters and found the following combination that achieves
the best performance: the length of Bloom filter m = 500,
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Fig. 11. Impact of privacy preserving on accuracy.

Fig. 12. KEH signal versus accelerometer signal.

neighbor size b = 10, neighbor distance d = 0.03, and the
number of hash Nhash = 2. For the detailed explanation of
these parameters, refer to [20]. Fig. 11 plots the accuracy of
different window sizes before and after applying the privacy-
preserving technology. We can see that by using fine-tuned
parameters, the accuracy only drops slightly (about 0.3%–1%).
The results suggest that we can preserve user’s privacy by sac-
rificing accuracy slightly. Moreover, from Fig. 11, we notice
that the accuracy degradation decreases when the window size
increases from 1 to 5 s. In particular, we can see the accu-
racy of window size of 4 and 5 s is close to each other. This
is because we use a specially designed Bloom filter in our
system, which can reserve the set-based distance between the
raw feature data and the projected Bloom filter data. Therefore,
the impact of privacy preserving on recognition accuracy is
minimized with more data collected (i.e., larger window size).
In the following evaluations, the accuracy is obtained based
on the data processed by privacy-preserving technique.

F. KEH Versus Accelerometer

In this experiment, we investigate whether the proposed
system can achieve comparable accuracy in comparison with
the accelerometer signal. We vary the window size from 1 to
5 s and the results are plotted in Fig. 12. We can see that the
recognition accuracy of using voltage signal is slightly lower
than that of using raw accelerometer signal. This is because
the original purpose of KEH is not designed for precise motion

Fig. 13. Accuracy of different locations.

tracking. But we find that the recognition accuracy is improved
significantly when the window size increases. This is because
more knowledge can be gathered to identify the subject with
more measurements (e.g., longer window size). In practical
applications, the window size W trades off security and user
experience, and it can be tailored to satisfy various security
requirements. For example, a larger W makes the system more
accurate, but it requires users to walk for a longer time (i.e.,
sacrifice user experience).

G. Accuracy of Different Locations

As mentioned in Section V-A2, we collected data from
four different body locations: 1) hand; 2) waist; 3) chest;
and 4) head. We now evaluate the accuracy of different loca-
tions. The purpose of this experiment is to understand which
body part has the best performance. For each location, we
only use the data collected from this location to train and test
the model. To be specific, the whole data set is divided into
four subsets based on the location they are collected from:
1) hand data set; 2) waist data set; 3) chest data set; and
4) head data set. Then, we use each subset to train and test
the model, respectively. Finally, we can obtain the accuracy
of these four body locations. From the result in Fig. 13, we
can see that different locations produce different accuracy. The
device on waist achieves the highest accuracy while the device
hold in hand has the lowest accuracy. This is because the torso
(trunk of the main body) is more responsible for the human
gait than the arms, since the movement of the arms is pri-
marily for maintaining balance and can be changed without
having a major impact on people’s regular walking [9]. Several
previous studies also studied the impact of different locations.
For example, Zhang et al. [9] found that pelvis can achieve
better performance than wrist, leg, and arm, but their com-
bination can significantly improve accuracy. Primo et al. [42]
studied the impact of hand and pocket. Their results suggested
that we can achieve higher accuracy by holding device in the
hand than putting it in the pocket.

H. Comparison With State of the Art

We now evaluate whether the proposed system outperforms
state-of-the-art KEH-based gait classification algorithms (i.e.,
SRC). We also evaluate the accuracy with and without feature

Authorized licensed use limited to: TU Delft Library. Downloaded on November 24,2022 at 14:04:41 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: PrivGait: ENERGY-HARVESTING-BASED PRIVACY-PRESERVING USER-IDENTIFICATION SYSTEM 22057

Fig. 14. Comparison with other classification methods.

Fig. 15. Impact of number of users on accuracy.

extraction to demonstrate the advantage of extracting discrim-
inative features. We perform the comparison on the collected
data set and the results are shown in Fig. 14. We can see
that our system consistently achieves the best performance.
It is 2%–4% more accurate than AT-LSTM without extracting
features, and 6%–10% more accurate than SRC. The improve-
ment comes from two aspects. First, we apply a novel feature
extraction method to extract discriminative features. Second,
we design an attention scheme-based LSTM model to further
improve the recognition accuracy. The attention mechanism
tries to mimic the human’s perception process, which focuses
attention selectively on parts of the input signal to obtain more
details while suppressing other useless information. Therefore,
it can further improve accuracy based on the extracted features.

I. Impact of Number of Users

In order to understand the scalability of the system, we
further investigate the performance of our system when the
number of users changes. We evaluate the accuracy by increas-
ing the number of users from 2 to 24 with a step of 4. The order
of users is chosen randomly. As the results shown in Fig. 15,
the classification accuracy of SRC decreases gradually, indi-
cating that it does not scale well for large group of people.
Although the accuracy of our scheme also drops slightly, we
can see it maintains a relative stable accuracy around 96.7%
in the end. The results suggest that our system is more robust

and scalable in multiuser scenarios. Nevertheless, the accuracy
still drops with increasing number of enrolled users. There
are several methods to address this limitation. First, current
off-the-shelf energy-harvesting hardware can provide 1-D sig-
nal only, but recent advances have made three axis energy
harvesting possible [43]. Therefore, we can use a 3-D energy-
harvesting hardware to achieve higher accuracy. Second, since
most wearable devices are equipped with IMU, which can pro-
vide information about user’s walking patterns, we can use the
IMU sensor signal as a complement to improve the accuracy.
Third, more complex and advanced deep learning technolo-
gies can be used to further improve accuracy, such as transfer
learning.

J. Security Against Spoofing Attack

As a gait recognition system, one important security issue
is that an attacker may spoof the system by mimicking oth-
ers’ walking pattern. The aim of this experiment is to evaluate
the robustness of PrivGait against the spoofing attacker. To
this end, we group the 24 subjects into 12 pairs: in each
pair, one of them is a genuine user and the other is treated
as an attacker. During evaluation, the attacker was instructed
to imitate the walking style of his/her partner. The attacker
physically analyzed the target’s walking style, which can be
achieved conveniently in a real-life environment because gait
cannot be disguised. The gender of the genuine user and
attacker was the same to maximize the attacking ability of
attacker. The result, which is represented by FAR and FRR, is
plotted in Fig. 16. For comparison purpose, we also plot the
result of SRC.

An important point in the mistake trading decision (DET)
is the equivalent error rate (EER) where FAR = FRR. For
example, a 10% EER means 10 of 100 legitimate trials are
wrongly denied and 10 of 100 impostor trials are wrongly
admitted. The crossover (marked as a diamond) of the black
dash line and FRR-FAR curve stands for the location of the
EER. From Fig. 16, we notice that the EER of our system is
6%, which means out of 100 mimicking attack trials, only six
are wrongfully accepted. In comparison, the EER of SRC is
13.5%, indicating that our system is more secure than SRC.
In this experiment, the window size W is set to 1 s. The accu-
racy can be further improved by using larger window size. To
mitigate the threats of false positives, our scheme can be com-
bined with other authentication methods such as two-factor
authentication to further improve the security of smart space.

K. Energy Consumption

In this section, we analyze the energy consumption of the
proposed scheme. PrivGait includes two parts: 1) wearable
device on user’s body and 2) an edge device in the smart
space. The wearable device is used to collect data, extract
features, apply privacy-preserving technology, and upload data
to edge server. Then, on the server’s side, the classification is
performed to obtain user’s identity. The edge device can be
viewed as a powerful computer; therefore, we only focus on
evaluating the energy consumption of PrivGait on resource-
limited wearable devices.
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Fig. 16. Security against spoofing attack.

Fig. 17. Setup of energy profiling.

An illustration of the energy profiling setup is shown in
Fig. 17. We connect the designed prototype to an oscilloscope
through an external resistor. The SensorTag is installed with
the up-to-date version of Contiki OS and the MCU is duty
cycled to save energy. All the unnecessary components of the
system are disabled, such as LED, SPI bus, and onboard sen-
sors. The sampling frequency of the ADC is 30 Hz and the
data are uploaded to a local laptop via BLE. Our measure-
ments show that the sampling rate of 30 Hz leads to a power
consumption of 12.6 µW. If we assume the window size is 1 s
(i.e., we collect gait signal for 1 s), the energy consumption
of the signal processing parts is shown in Table II. We can
see the proposed scheme incurs low energy consumption. As
demonstrated in Fig. 14, we can improve recognition accuracy
by taking more samples. Suppose we ask the user to walk for
5 s, our system consumes approximately 282.25 mJ. The bat-
tery of a SensorTag board is 3 V 225 mAh, which is equivalent
to 2430 J. With 1% budget, a typical battery can support our
system continuously that run for about 87 times. If we further
assume that the user enters the smart space (e.g., his company)
once per day, then our system can run for 87 days.

Many studies [14]–[16] have demonstrated that sampling
KEH is more energy efficient than sampling accelerometer;
therefore, we do not compare the energy consumption of sam-
pling KEH device with sampling 3-axis accelerometer in this
article. Interested readers are encouraged to refer to prior
work [14]–[16].

TABLE II
SYSTEM OVERHEAD

VI. CONCLUSION

This article presents PrivGait, a KEH-based privacy-
preserving gait recognition scheme for smart space. PrivGait
adopts a novel feature extraction approach, privacy-preserving
technology, and deep learning technique to achieve high recog-
nition accuracy while protecting user’s privacy. We design a
proof-of-concept prototype and collect data to evaluate the
performance of PrivGait. The evaluation results show it can
achieve 96.7% recognition accuracy, which is 6%–10% higher
than state of the arts. Security analysis shows that the EER
of our system against an active spoofing attacker is 6%. The
proposed scheme features privacy preserving, high accuracy,
energy efficiency, and nonobtrusiveness. Therefore, it has great
potential in future smart space applications.
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