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ARTICLE INFO ABSTRACT

Keywords: The simultaneous modulation of joint torque and stiffness enables humans to perform large repertoires of
Joint stiffness movements, while versatilely adapting to external mechanical demands. Multi-muscle force control is key for
Musculoskeletal modeling joint torque and stiffness modulation. However, the inability to directly measure muscle force in the intact
Calibration

moving human prevents understanding how muscle force causally links to joint torque and stiffness. Joint
stiffness is predominantly estimated via joint perturbation-based experiments in combination with system
identification techniques. However, these techniques provide joint-level stiffness estimations with no causal
link to the underlying muscle forces. Moreover, the need for joint perturbations limits the generalizability and
applicability to study natural movements. Here, we present an electromyography (EMG)-driven musculoskeletal
modeling framework that can be calibrated to match reference joint torque and stiffness profiles simultaneously
via a multi-term objective function. EMG-driven models calibrated on <2 s of reference torque and stiffness
data could blindly estimate reference profiles across 100 s of data not used for calibration. Model calibrations
using an objective function comprising torque and stiffness terms always provided less feasible solutions than
an objective function comprising solely a torque term, thereby reducing the space of feasible muscle-tendon
parameters. Results also showed the proposed framework’s ability to estimate joint stiffness in unperturbed
conditions, while capturing differences against stiffness profiles derived during perturbed conditions. The
proposed framework may provide new ways for studying causal relationships between muscle force and joint
torque and stiffness during movements in interaction with the environment, with broad implications across
biomechanics, rehabilitation and robotics.

Electromyography

1. Introduction underlying musculoskeletal forces (Lloyd and Besier, 2003). In this
context, muscle-tendon units (MTUs) are predominantly modeled using

Human movement results from the interaction between the neuro- Hill-type muscle formulations, based on parameters that vary non-
musculoskeletal system and the environment (Winter, 2009). The coor- linearly across individuals. However, for the same person, and for the
dinated activity of all muscles spanning a joint largely defines net joint same combination of joint angle and torque profiles, different model

torque and joint stiffness (Cop et al., 2021), thereby enabling versatile parameters could potentially result in different muscle force and joint
navigation and adaptation to external mechanical demands (Valero-

Cuevas, 2016). The ability to determine the muscle force profiles
underlying a given movement is crucial to understand how joint torque
and stiffness are modulated to enable large repertoires of movements.
However, it is currently not possible to directly measure muscle force
in the intact moving human in vivo (Herzog, 2017).
Electromyography (EMG)-driven musculoskeletal models (or EMG-
driven models) are valuable computational tools to study movement’s

stiffness solutions (Cop et al., 2021). Therefore, robust identification of
MTU parameters on a subject-specific basis is necessary to understand
how muscles contribute to modulate joint stiffness during movement.
EMG-driven model parameters are commonly identified to best fit
experimental joint torques (Falisse et al., 2016). However, it is unclear
to what extent Hill-type muscle models with torque-only-identified
parameters would enable estimation of joint stiffness (Perreault et al.,
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2003; Hu et al., 2011). Human joint stiffness is predominantly studied
via system identification methods, which require the mechanical per-
turbation of biological joints (Kearney and Hunter, 1990; van de Ruit
et al., 2021). However, the required joint perturbation inherently alters
normative neuromuscular function and limits the repertoire of move-
ments, as well as the range of human populations, that can be studied
in the first place (Klomp et al., 2013). Moreover, joint-perturbation-
based system identification methods provide estimations of joint-level
stiffness with no direct link to the underlying muscle forces.

First, we propose a new EMG-driven model that can be calibrated
at the joint torque and stiffness levels simultaneously during dynamic
ankle joint rotations. We hypothesize this will improve joint stiffness
estimation with respect to torque-only calibrated models. Moreover,
we hypothesize torque-and-stiffness calibrated models reduce the MTU
parameter solution space with respect to torque-only calibrated models,
thereby leading to realistic MTU force solutions, i.e., explaining joint
stiffness and torque simultaneously. Second, we assess the ability of the
proposed modeling framework to estimate joint stiffness in unperturbed
conditions, while capturing differences against joint stiffness profiles
derived during conventional perturbed conditions.

This study provides a framework to study how muscle force results
in joint torque and stiffness modulation during dynamic movements in
perturbed and unperturbed conditions. Removing the need for joint per-
turbation would enable, for the first time, the ability to study the neural
control of joint stiffness in natural, unaffected biological systems, while
facilitating translation to clinical settings, where joint-perturbation
requirements cannot always be met (Sartori et al., 2015).

2. Methods
2.1. Subjects

Five healthy volunteers (age range: 23-30 years, 1 woman) with
no self-reported history of neurological or ankle impairments partic-
ipated in this study. The Natural Sciences and Engineering Sciences
Ethics Committee of the University of Twente approved the experi-
mental procedures (reference number: RP 2018-59) and all subjects
provided written informed consent. The experiments complied with the
Declaration of Helsinki.

2.2. Protocol

A single axis dynamometer (MOOG, Nieuw-Vennep, The Nether-
lands) was used to perturb and measure subjects’ right ankle joint angle
and torque at 2048 Hz (van ’t Veld et al., 2021). The dynamometer’s
encoder provided an indirect measure of the ankle angle by measuring
the position of the footplate. Similarly, a torque sensor placed between
the footplate and the dynamometer’s actuator served as indirect mea-
sure of ankle torque. The right ankle’s axis of rotation in the sagittal
plane was visually aligned to the actuator’s axis of rotation before the
start of the experiment. The chair and footplate were adjusted to allow
for a knee flexion angle of 45° and an initial ankle flexion angle of 0°,
i.e., neutral position, respectively. Subjects were instructed to follow a
sinusoidal ankle angle target (amplitude: 0.15 rad, frequency: 0.6 Hz)
displayed on a monitor, while small pseudo-random angular perturba-
tions (amplitude: 0.03 rad, switching time: 0.15 s) were applied. The
dynamometer was controlled via an admittance controller, mimicking
a rotational inertia-spring-damper system (inertia: 1 kg m?, damping:
2.5 N m s/rad, stiffness: 60 N m/rad). Consequently, ankle torques of
approximately + 10 N m were required to move the dynamometer’s
footplate through the specified angle profile. Additionally, four subjects
also performed the same tracking task, i.e., sinusoidal ankle angle
target (amplitude: 0.15 rad, frequency: 0.6 Hz), without being applied
any angular perturbations by the dynamometer, i.e., unperturbed trial.
Fig. 1 provides an overview of the experimental setup.
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Fig. 1. Experimental setup. The subject was seated on an adjustable chair with their
right foot attached to the dynamometer. The dynamometer perturbed and measured
subject’s right ankle joint angle and torque during a joint angle tracking task. A monitor
provided real-time visual feedback on the angle target (in red) and the subject’s ankle
angle (in blue). EMGs of five leg muscles were recorded using disc-shaped Ag/AgCl
electrodes in a bipolar configuration. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

EMGs were recorded (2048 Hz) using a 32-channel amplifier (Porti,
TMSi, Oldenzaal, The Netherlands) and disc-shaped Ag/AgCl electrodes
(inter-electrode distance: 24 mm) in a bipolar configuration. Electrodes
were placed following SENIAM guidelines (Hermens et al., 2000) on
tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lat-
eralis, and peroneus longus. Three maximum voluntary contraction
(MVQ) trials of approximately 5 s per muscle group were performed
at the start of the experiment to normalize the EMGs. Each MVC
trial targeted all recorded muscles and comprised the following tasks:
isometric ankle dorsiflexion, plantar flexion, and eversion from a seated
position, and standing calf raise.

2.3. Data processing

Data processing was performed using MATLAB R2021a (The Math-
works Inc., Natick, MA, USA). EMG signals were band-pass filtered
using a zero-lag second-order Butterworth filter (cutoff frequencies: [20
300] Hz), full-wave rectified, and low-pass filtered (cutoff frequency:
3 Hz) using a zero-lag second-order Butterworth filter. The resulting
envelopes were normalized by the MVC and resampled at 1024 Hz. In
the remainder of the manuscript these normalized EMG envelopes will
be referred to as “muscle excitations”. Measured joint torques and joint
angle were low-pass filtered using a zero-lag fourth order Butterworth
filter (cutoff frequency: 80 Hz) and resampled at 128 Hz. Processed
joint torques and angles will be referred to as reference joint torque
and angle profiles.

Reference joint stiffness profiles were obtained applying the Short
Data Segments system identification algorithm (Ludvig and Perreault,
2012; Esteban et al., 2019) on the joint torque and angle data measured
by the dynamometer. This method uses input and output data across an
ensemble of task repetitions, i.e., realizations, to estimate joint stiffness
at each time point (van de Ruit et al., 2021). Specifically, the input data
were the joint angular displacements due to the external perturbations,
and the output data were joint torques measured in response to these
perturbations. Reference joint stiffness profiles were filtered using a
moving average window of 20 samples.

2.4. EMG-driven musculoskeletal modeling

This work extends the Calibrated EMG-Informed Neuromusculoskele-
tal Modeling Toolbox (CEINMS) we previously developed (Pizzolato
et al., 2015; Durandau et al., 2017). We introduce a new algorithm to
calibrate EMG-driven model parameters both at the joint stiffness and
torque levels simultaneously. Moreover, we extend previous Hill-type
muscle model formulations (Sartori et al., 2015) to allow for stiffness
estimation accounting for MTUs’ pennation angle. For an extensive
description of the standard EMG-driven modeling formulation via Hill-
type muscle models, the reader is referred to Lloyd and Besier (2003),
Sartori et al. (2015). The EMG-driven modeling pipeline (Fig. 2) is
outlined below.
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Fig. 2. Diagram of the EMG-driven model (A) and the model calibration (B). (A) EMG-driven model (Section 2.4): the “Activation dynamics” block maps experimental muscle
excitations (Section 2.2) into muscle-tendon unit (MTU) activations. The “MTU kinematics” block maps ankle plantar-dorsiflexion angle into MTU length and moment arms.
The “MTU dynamics” block estimates MTU force and stiffness employing a Hill-type muscle model driven by MTU activation and length with an elastic tendon that uses a
Wijngaarden-Dekker-Brent optimization (Brent, 1973) to find the roots of the equilibrium equation between muscle fiber force and tendon force. The “Joint torque and stiffness
computation” block projects MTU force and stiffness onto the joint level via the MTU moment arms to obtain estimates of joint torque and stiffness. (B) Model calibration: Four
parameters per MTU, namely optimal fiber length, tendon slack length, maximum isometric force, and shape factor, are adjusted to best track input reference joint torque and
stiffness profiles using the EMG-driven model described in (A). Optimal fiber length and tendon slack length were limited to vary + 5% of their initial value, the maximum isometric
force was scaled with a strength coefficient € (0.3, 2.5) (the MTUs of gastrocnemius lateralis and gastrocnemius medialis, as well as peroneus longus and peroneus brevis, shared
the same strength coefficient), and the shape factor could take values € (-3, 0). A simulated annealing optimization routine is used to adjust MTU parameters until the difference
between reference (plots in black) and estimated (plots in blue) joint torque and joint stiffness profiles is minimized. The weights of the contributions of joint torque and stiffness,
a and p, respectively, can be tuned to obtain a closer fit to the joint torque or joint stiffness profile. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Activation dynamics. Contrary to previous work (Lloyd and Besier, and the tendon’s stiffness, K’, (Cop et al., 2021):
2003; Pizzolato et al., 2015), muscle excitations, defined as the normal-
ized EMG envelopes in this study, are mapped into MTU activations (a)
without an intermediate muscle fiber twitch model:

K= (kmt ki )

where, based on the work of Jenkins and Bryant (2020), Ke”(l) is com-

Au __
a= H (€)) puted in a generalized way, i.e., considering pennation angle, as:
oA —
where u is the experimental muscle excitation, and A € (-3, 0) is the e
shape factor. Five experimental leg muscle excitations were mapped m_ OF (a1, 0", ¢)
into seven muscle-tendon unit (MTU) activations, i.e., the EMG of the €1 01;’; )
peroneus longus muscle was used to drive the modeled peroneus longus AF™(a, 1", &™) F™(a, ", 5™)
) . = = 7 ot p4 —2 7 7 sin2¢
and peroneus brevis MTUs, and the EMG of the tibialis anterior was oI cos™ ¢ Im

used to drive the modeled peroneus tertius (i.e., a dorsiflexor) MTU.

MTU kinematics. Joint angles are mapped into MTU length and mo-
ment arms using a set of multi-dimensional B-splines (Sartori et al.,
2012a).

MTU dynamics. MTU force, F™*, is computed as a function of MTU
length, velocity, activation, and pennation angle:

FMt = F"(af (") f,(0") + £,(") + 0"d) cos ¢ @

where F™%* is the muscle’s maximum isometric force, f,(I"), f,(@™),
and f, p(f ™) are generic dimensionless active force-length, force-velocity,
and passive force-length relationships, respectively, /" and " are the
muscle fiber’s normalized length and velocity, respectively, d = 0.1
is a damping factor to avoid model singularities when muscles are
inactive (Millard et al., 2013), and ¢ is the muscle fiber’s pennation
angle.

MTU stiffness, K™, is computed as the series arrangement of the
equivalent muscle fiber’s stiffness in the tendon’s line of action, K;j],

where FJ7 and [}, are the force and length, respectively, of the muscle

fiber along the direction of the tendon’s line of action, F” and /" are

the force and length, respectively, of the muscle fiber along its axis. K’

is computed as:

K = dF'(") _ ldF’(e)
dir T It de

)

where F'(I') is the non-linear tendon force as a function of tendon
length I’, and F'(e) is the tendon force as a function of tendon strain e
(e=1" /l; — 1, where l; is the tendon slack length).

Joint torque and stiffness computation. MTU forces are projected into the
joint level to obtain joint torque z:

#mtu

7= Z Fmisy, (6)
i=1

where r; is the moment arm of the ith MTU spanning the joint.
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The net joint (rotational) stiffness, K/, is computed as:

#mtu or.
KJ - Z(KimturiZ _ 0_01 . Fimtu) (7)
i=1
where K" represents the stiffness of the ith MTU spanning the joint,
and 6 is the joint angle.

Model calibration at the joint torque and stiffness levels simultaneously.
The optimal fiber length, tendon slack length, maximum isometric
force, and shape factor of each MTU included in the model are cali-
brated using a simulated annealing optimization routine (Goffe et al.,
1994) that minimizes the following multi-term objective function:

#T'rials #DoF's #Samples —_— 2
_ 1 1 1 (Tt,d,s_Tt,d,s)
Fup = — z - z af & BS54

N, & N, & N, £ Var (T4)
2
J J
(Kr,d,_v - Kt,d,s)
| ————"|+0 ®
Var (KrJd>

where N;, N,, and N, are the number of trials, degrees of freedom
(DoFs), and samples, respectively, used to calibrate the model, « and
p are weights to the contributions to the objective function of the
estimated joint torque and stiffness, respectively, 7, , and K;{ 4 are
reference joint torque and stiffness values, respectively, 7, , ; and K IJ s
are modeled joint torque and stiffness values, respectively, Var (7, ;)
and Var (K ,{ , ) are the variances of reference joint torque and stiffness
profiles, respectively, and p, is a newly introduced penalty factor
that constrains MTUs to operate within a physiological range, i.e., p,
penalizes normalized muscle lengths (/" < 0.5 or [ > 1.5) and negative
tendon strains (I < /%)

#mtu

py= Y, P(s.i)
i=1

- _ (C)]
) MAX, if(I"<05 or [™>15) or I'<l/
P(s,i) = §

0, otherwise

where an arbitrary value of M AX = 1000 was used in this study to
guarantee /" and I’ were always within the aforementioned boundaries.

2.5. Data analysis

Simulations were performed using OpenSim 4.2 (Delp et al., 2007;
Seth et al.,, 2018), and the real-time version of CEINMS (Durandau
et al., 2017).

For each subject, the generic gait2392 OpenSim model (Delp et al.,
1990) was linearly scaled to match their anthropometry. A previously
proposed optimization-based method (Modenese et al., 2016) was used
to identify initial values for MTU’s optimal fiber length and tendon
slack length in such a way that their operating range was preserved,
with respect to the generic gait2392 OpenSim model, after the linear
scaling. Lastly, optimal fiber length, tendon slack length, maximal iso-
metric force and shape factor were further adjusted using our proposed
calibration procedure (Section 2.4) to best fit experimental joint torque
and stiffness simultaneously (Fig. 2).

For each calibration, only one cycle of the tracking task (~1.6 s of
data) was used. For each subject, calibrations using 35 combinations of
a and f (a and g values going from 0 to 1 with a step length of 0.2) were
executed. Due to the stochastic component of the simulated annealing
algorithm (Goffe et al., 1994), the calibrations using each combination
of a and f were repeated five times to assure convergence to the ob-
jective function’s global optimum (8). All calibrations were performed
on a 64-core processor (AMD Ryzen Threadripper 3990X) and 128 GB
RAM workstation, with computation times ranging between 41 and
80 min per calibration. Two calibrated EMG-driven models per subject
were selected: the best fit to the torque and stiffness simultaneously,
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i.e. “Torque and stiffness”, and the calibration with « = 1 and # = 0 that
best matched the experimental joint torque, i.e. the traditional “Torque
only” calibration.

The two selected calibrated EMG-driven models were then used
to estimate joint torques and stiffness using 100 s (approximately 60
cycles) of new, unseen EMGs and joint angles that were not employed
for calibration.

2.6. Validation procedures

The results of the simulations and the input data were segmented
into cycles and time-normalized between 0 and 100% of the cycle.
Three tests were performed.

First test. Validation of the estimated joint torque and stiffness against
reference data for the two calibrated EMG-driven models. The root-
mean-squared error normalized by the root-mean sum (nRMSE) and the
squared Pearson correlation coefficient (+2) were computed to measure
similarities in magnitude and shape, respectively (Sartori et al., 2012b).

Second test. Assessing to what extent a multi-term objective function
(8) can identify EMG-driven models that can simultaneously estimate
torque and stiffness, compared to the traditional single-term objective
function comprising solely differences at the torque level. We com-
puted, for the best fitting calibration of each of the 35 combinations
of « and g, the fitting error at the joint torque level (E, = Vlf;(:(;; ),
where Var stands for variance and 7 and 7 are the reference and
estimated joint torque profiles, respectively) and the total torque + joint

- T ol —
Var(Tir) Var(K7K ), where K7 and K‘I
Var(t) Var(K7)
are the reference and estimated joint stiffness profiles, respectively).

We assessed how many calibrated EMG-driven models obtained joint
torque and stiffness fits with root-mean-squared errors (RMSEs) that
did not exceed 20% of the RMSE of the best calibration, i.e., the EMG-
driven model with the lowest fitting error. Specifically, we compared
how many calibrated EMG-driven models obtained acceptable torque
fit (E, < 1.44-min(E,)) and how many calibrated EMG-driven models
obtained acceptable torque and stiffness fit (E,, xs < 1.44-min(E,, xs)).
Additionally, we checked that those calibrated EMG-driven models that
obtained a similar torque error underlay different sets of parameters.

stiffness fitting error (E, xs =

Third test. Estimation of joint stiffness via EMG-driven modeling using
data from an unperturbed trial and comparison to the results from
perturbed counterpart. Using the “Torque and stiffness” calibrated
EMG-driven model, we qualitatively compared measured joint torques
and joint angles from perturbed and unperturbed data. The corre-
sponding joint stiffness estimations were compared via RMSE and >
metrics. Additionally, a curve analysis was performed using statistical
parametric mapping (SPM) (Pataky et al., 2013). Specifically, a paired
t-test (¢ = 0.05) was performed using the spmld package for MAT-
LAB (https://www.spm1ld.org/) to identify regions in which the joint
stiffness estimations were different with statistical significance.

3. Results
3.1. First test

Fig. 3 shows the averaged joint torque and stiffness profiles per
subject, derived from EMG-driven models calibrated via the “Torque
only” and “Torque and stiffness” conditions. The joint torque and joint
stiffness nRMSEs across all subjects for the “Torque only” model ranged
between 0.17 and 0.78 (median: 0.38) and 0.19 and 0.92 (median:
0.64), respectively. The joint torque and joint stiffness nRMSEs across
all subjects for the “Torque and stiffness” model ranged between 0.23
and 0.94 (median: 0.48) and 0.14 and 0.64 (median: 0.32), respec-
tively. The joint torque and joint stiffness r*> values across all subjects
for the “Torque only” EMG-driven model ranged between 0.56 and 0.97
(median: 0.88) and 3.5x 10 and 0.92 (median: 0.11), respectively.
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Fig. 3. Average joint torque profiles (top row) and joint stiffness profiles (bottom row) for each subject. Reference values, i.e., dynamometer measurements for the joint torque
and system identification estimations obtained from perturbation-based data for joint stiffness, are depicted in gray, estimations from the model that was calibrated using the
traditional calibration, i.e. « = 1 and p = 0, are depicted in red, and estimations from the model that best fitted reference data, i.e. « € [0,1] and g € [0,1], are depicted in
green. Results expressed as mean values (solid line) + standard deviation (dashed lines). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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Fig. 4. Histograms depicting the distributions, across all cycles of all subjects (n =
297), of normalized root-mean-squared error (nRMSE) values of joint torque (A) and
joint stiffness (B) profiles, and squared Pearson correlation coefficient (r2) values of
joint torque (C) and joint stiffness (D) profiles. The dashed vertical lines indicate the
median nRMSE and > values. Results of the “Torque only” calibration are shown in
red and results of the “Torque and stiffness” calibration are shown in green. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

The joint torque and joint stiffness r> values across all subjects for the
“Torque and stiffness” EMG-driven model ranged between 0.53 and
0.96 (median: 0.83) and 3.4 x 10™* and 0.93 (median: 0.49), respec-
tively. Table 1 summarizes nRMSE and r? values for each subject. Fig. 4
depicts the distribution of nRMSE and r? values across all subjects and
cycles.

3.2. Second test

For every subject, the set of « and # combinations that yielded a
similar torque error E, (i.e., red circles in Fig. 5) always had greater
dimensionality than the set of @ and f# combinations that yielded a
similar total torque + stiffness error E_ s (i.e., blue circles in Fig. 5).
Results also showed that all the « and f combinations that yielded a
similar torque error underlay different parameter values and therefore
represented actual different model instances (Fig. 6). Across all subjects
and modeled MTUs, the median interquartile ranges of the calibrated
values of optimal fiber length, tendon slack length, strength coefficient,
and shape factor spanned 47%, 42%, 38%, and 50%, respectively, of
the permitted values.

From all « and f# combinations with similar torque errors, only a
subset of combinations minimized E_, xs (< 1.44-min(E_, xs)), i.e. blue

Table 1

Normalized root-mean-squared error (nRMSE) and squared Pearson correlation coeffi-
cient (?) values between estimated and reference joint torques and stiffness for each
subject. Results expressed as median (interquartile range). Results of the “Torque only”
calibrated EMG-driven model in gray font, and results of the “Torque and stiffness”
calibrated EMG-driven model in black font.

Subject nRMSE r?
Torque Stiffness Torque Stiffness

1 0.37 (0.08) 0.50 (0.10) 0.89 (0.05) 0.69 (0.26)
0.41 (0.10) 0.23 (0.08) 0.88 (0.05) 0.83 (0.10)

2 0.36 (0.06) 0.63 (0.09) 0.88 (0.03) 0.01 (0.04)
0.43 (0.08) 0.46 (0.08) 0.82 (0.07) 0.05 (0.09)

3 0.44 (0.11) 0.39 (0.16) 0.85 (0.09) 0.54 (0.41)
0.73 (0.16) 0.28 (0.10) 0.84 (0.10) 0.59 (0.30)

4 0.32 (0.08) 0.71 (0.06) 0.92 (0.03) 0.04 (0.09)
0.52 (0.14) 0.21 (0.06) 0.80 (0.09) 0.52 (0.21)

5 0.39 (0.06) 0.77 (0.07) 0.87 (0.05) 0.05 (0.13)
0.44 (0.06) 0.44 (0.10) 0.85 (0.06) 0.46 (0.21)

circles in Fig. 5. For subject 1, 21 combinations of « and g resulted in
similar torque fits, but only 11 minimized both torque and joint stiffness
simultaneously. For subject 2, 23 combinations of « and f resulted in
similar torque fit, but only 9 minimized both torque and joint stiffness
simultaneously. For subject 3, 23 combinations of « and f resulted in
similar torque fit, but only 7 minimized both torque and joint stiffness
simultaneously. For subject 4, 20 combinations of « and f resulted in
similar torque fit, but only 7 minimized both torque and joint stiffness
simultaneously. For subject 5, 19 combinations of « and f resulted in
similar torque fit, but only 17 minimized both torque and joint stiffness
simultaneously.

3.3. Third test

Fig. 7 shows, for each subject individually and for the average across
all subjects, average joint torque, angle, and stiffness profiles for both
the perturbed and unperturbed data. The joint stiffness RMSEs across
all subjects between perturbed and unperturbed data ranged between
24% 1073 N m/rad and 3.41 N m/rad (median: 0.77 N m/rad). The
joint stiffness r? values across all subjects between perturbed and un-
perturbed data ranged between 5.4 x 10~* and 0.97 (median: 0.67). All
subjects, in addition to the average across subjects, showed statistically
different joint stiffness profiles in portions of the task cycle: 15%, 30%,
57%, 15% of the whole cycle for subjects 1 — 4, respectively, and 46%
of the whole cycle for the average across all subjects.

4. Discussion

We proposed an EMG-driven model-based stiffness estimation me-
thodology, which we validated against the joint perturbation-based
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Short Data Segments system identification method using data from
the same subject population and movement. Differently from joint
perturbation-based methods, our approach provides a direct link be-
tween joint stiffness and the underlying EMG and muscle force profiles,
something crucial to study causalities between neural, muscular, and
articular dynamics.

Previous research highlighted the predominant contribution of short-
range stiffness to the model-based estimation of arm end-point stiffness
during isometric contractions only (Hu et al.,, 2011). However, it
was never investigated to what extent EMG-driven Hill-type muscle
models could estimate reference joint stiffness profiles during dynamic
tasks, during which short-range stiffness components would play a less
predominant role (Cop et al., 2021).

The first test showed that EMG-driven models calibrated under the
“Torque only” condition displayed only minimal improvements at esti-
mating reference joint torque profiles, compared to models calibrated
under the “Torque and stiffness” condition (median nRMSE reduced
by 0.1; median r? increased by 0.05). However, EMG-driven models
calibrated under the “Torque and stiffness” condition outperformed the
“Torque only” models at estimating reference joint stiffness profiles
(median nRMSE reduced by 0.32; median r? increased by 0.38, Figs. 3—
4). Our EMG-driven modeling formulation could estimate reference
joint stiffness and torque profiles in a robust way, i.e., EMG-driven
models calibrated using 1.6 s of data estimated 100 s of joint torques
and stiffness from unseen EMGs and ankle angle profiles ( Table 1).
Model-based joint stiffness estimations were in line with literature. Re-
cent work estimated ankle stiffness during dynamometry experiments
where subjects tracked a sinusoidal plantar flexion torque while the
dynamometer imposed a sinusoidal ankle rotation (Ludvig et al., 2022).
Even though the protocol involved higher torque levels, their lowest
torque level (i.e., between 0 and 10 N m), yielded a joint stiffness of 25
N m/rad, which matched the stiffness values we obtained at a plantar
flexion torque level of 10 N m.

The second test showed there were always more EMG-driven model
instances, each of them characterized by different model parameters
(Figs. 5-6), that yielded a similar torque fitting error than EMG-driven
model instances that yielded a similar total torque + stiffness fitting
error (Section 3.2). Moreover, Fig. 5 shows that calibrations only at the
torque level, i.e., when alpha # 0 and beta = 0, or only at the stiffness
level, i.e., alpha = 0 and beta # 0, consistently yielded the largest total
torque + stiffness fitting error. This provides evidence of the possibility
of reducing the MTU parameter solution space by calibrating and
validating an EMG-driven model using a multi-term objective function
and may facilitate the identification of realistic muscle force solutions
that would explain multiple mechanical variables simultaneously.

In the third test, joint stiffness profiles estimated from unperturbed
conditions underlay similar trends than stiffness profiles derived from
perturbed conditions, with a median RMSE of 0.77 N m/rad and a me-
dian r? of 0.67 (Section 3.3, Fig. 7). This indicates that our EMG-driven
model, once calibrated using reference data, was able to estimate realis-
tic joint stiffness profiles without needing to perturb the joint. However,
despite similarity between the perturbed and unperturbed conditions,
our EMG-driven model was also able to capture subtle differences,
enabling, for the first time, the study of joint stiffness in natural, unper-
turbed conditions. This represents a viable way for understanding joint
stiffness modulation during functional movements, e.g., locomotion,
where it is not possible to perturb the joints without affecting the
underlying neuromechanical processes involved. Moreover, the ability
to decode joint stiffness from EMGs and joint angles, without the
need to apply external perturbations, might radically change the way
wearable assistive robots are myoelectrically controlled.

Follow up studies should extend our proposed methodology to gen-
eralize to functional movements. Future work should integrate short-
range stiffness modules that dynamically engage across static and
dynamic movements. Future work should systematically investigate
what MTU parameters are most sensitive to stiffness (e.g., slopes of
the passive force-length curve and the tendon force-strain curve) and
enable direct tuning within our proposed calibration method. Pre-
vious work explored ankle joint stiffness estimation techniques by
combining ultrasonography and system identification during isomet-
ric tasks (Jakubowski et al., 2022). Future work will investigate the
integration of ultrasonography within our data-driven modeling frame-
work to refine the estimation of MTU states (e.g., activation, length,
velocity) and the calibration of parameters at muscle and tendon scales
(e.g., tendon slack length) (Dick et al., 2017).

Currently, a limitation of our EMG-driven model’s calibration is
that it still requires perturbation-based reference joint stiffness profiles
for the initial calibration. Nevertheless, the ability of our EMG-driven
modeling framework to estimate joint stiffness without perturbing the
joints provides a starting point to relax joint-perturbation constraints
post-calibration. Moreover, Fig. 3 and Table 1 provide evidence that
EMG-driven models (e.g., subjects 1 and 3) could be potentially cali-
brated in the “Torque only” condition, while matching reference joint
stiffness profiles. Future work will investigate how to constrain MTU
parameters during a “Torque only” calibration to enable simultaneous
estimation of reference joint stiffness and torque, thereby facilitating
our EMG-driven modeling framework’s full clinical translation.

Finally, we presented an ankle EMG-driven model that has been
calibrated simultaneously at the joint torque and stiffness levels about
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the plantar-dorsiflexion DoF. Future work will seek to obtain phys-
iologically and dynamically consistent EMG-driven models for joint
torque and stiffness estimation across multiple DoFs and joints simulta-
neously. For this, different joint perturbation and system identification
techniques are to be employed (Van der Kooij et al., 2022), and a
more extensive calibration comprising a variety of tasks across different
joints and planes of movement should be used (Kian et al., 2021).
A comprehensive EMG-driven model across all DoFs will enable the
implementation of robust and reliable control strategies for assistive
devices.
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