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Abstract: UAS-based commercial services such as urban parcel delivery are expected to grow in the
upcoming years and may lead to a large volume of UAS operations in urban areas. These flights may
pose safety risks to persons and property on the ground, which are referred to as third-party risks.
Path-planning methods have been developed to generate a nominal flight path for each UAS flight
that poses relative low third-party risks by passing over less risky areas, e.g., areas with low-density
unsheltered populations. However, it is not clear if risk minimization per flight works well in a
commercial UAS operation that involves a large number of annual flights in an urban area. Recently,
it has been shown that when using shortest flight path planning, a UAS-based parcel delivery service
in an urban area can lead to society-critical third-party risk levels. The aim of this paper is to evaluate
the mitigating effect of state-of-the-art risk-aware path planning on these society-critical third-party
risk levels. To accomplish this, a third-party risk simulation using the shortest paths is extended
with a state-of-the-art risk-aware path-planning method, and the societal effects on third-party risk
levels have been assessed and compared to those obtained using shortest paths. The results show
that state-of-the-art risk-aware path planning can reduce the total number of fatalities in an area,
but at the cost of a critical increase in safety risks for persons living in areas that are favored by a
state-of-the-art risk-aware path-planning method.

Keywords: unmanned aircraft system; urban air delivery; risk assessment; flight volume

1. Introduction

Unmanned Aircraft Systems (UASs) [1] provide new opportunities for commercial
services. UAS can be deployed for a large variety of commercial services, such as parcel
delivery and urban air mobility. Although the number of UAS operations is not large as of
yet, the global market for UAS-based commercial services is expected to increase to tens of
billions of USD in the early 2030s (estimated by McKinsey [2]) and around 1 trillion USD
by 2040 (estimated by Morgan Stanley [3]) Therefore, it is expected that there will be a large
future volume of UAS operations in urban areas. However, these UAS operations pose
safety risks to persons on the ground, referred to as Third-Party Risk (TPR). TPR posed by
commercial UAS operations should be sufficiently mitigated such that the remaining risk
levels are acceptably safe from a societal perspective.

Risk-aware path-planning methods in the literature developed as important means
for mitigating safety risks posed by UAS flights to people on the ground. The key differ-
ence with shortest-path planning is that the safety risk is accounted for in the cost to be
minimized. Path planning generates a set of waypoints that an unmanned aircraft (UA)
should follow to reach a destination [4]. The planning minimizes the cost function that is
associated with each possible path. The commonly used path-planning methods include
graph-based and sampling-based methods. Graph-based algorithms search over the graph
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to find a path that has the minimum cost, such as Dijkstra’s algorithm [5]: A* [6] and its
variants [7,8]. Two prominent types of sampling-based algorithms include the probabilistic
roadmap method (PRM) [9] and rapidly exploring random tree (RRT) [10,11]. The PRM
samples and connects points in the environment to construct a roadmap; then, it searches
for a feasible path using the roadmap. RRT grows a unidirectional search tree from the
starting point until a tree branch hits the goal point.

UAS risk-aware path-planning methods take into account the risk posed to people
on the ground by a UA flight. They use risk maps to quantify the risk of flying over each
position for each drone [12]. Risk analyses are invoked to evaluate the risk to people on
the ground beforehand. A path with the minimum risk will be extended based on the risk
map, e.g., riskA* [13,14] and risk-aware RRT* [15,16]. A bi-objective optimization is also
used to minimize the trade-off between safety risk and flight distance [17]. Risk-based
RRT* [18] does not use the risk-based map to estimate the risk; it directly computes the risk
with risk assessment methods during planning paths. The UAS risk-aware path-planning
method efficiently reduces the risk per flight by finding paths over areas with a low density
of unsheltered populations.

Safety risks posed by a single UAS flight to the ground population has been well
studied [19–22]. The common finding is that the risk posed per UAS flight hour to ground
populations should be at an Equivalent Level Of Safety (ELOS) than the TPR posed per
flight hour by a commercial aircraft, e.g. Clothier and Walker (2006) [22]. In commercial
aviation, almost all fatalities concern crew and passengers onboard aircraft. This explains
why the ELOS reference of the expected number of ground fatalities per flight hour is
not a widely used TPR indicator in commercial aviation. Instead, TPR indicators are
defined in terms of the safety risk posed to ground populations by all annual flights around
an airport [23,24]. For these society-directed annual TPR indicators, models have been
developed that allow assessments of changes in the risk posed to persons on the ground
due to changes in the amount of flights, new departure/arrival routes, the impact of a
new airport, the risk of constructing a residential building in a certain area, etc. Because
similar annual TPR indicators are in use for hazardous facilities [24–29], there is ample
experience in setting acceptable thresholds on these annual TPR indicators. This motivated
Blom et al. (2021) [30] to extend the annual TPR indicators from conventional aviation to
similar versions for UAS operations. In addition, existing TPR simulation models of UAS
operations [31–33] have been extended for the assessment of these annual TPR indicators.

Blom et al. (2021) [30] have also conducted a simulation-based comparison of the ELOS-
based TPR indicator and the annual TPR indicators for a hypothetical UAS-based parcel
delivery service in the city of Delft by using the shortest flight paths. The simulation results
obtained for this hypothetical example show that, in comparison to the ELOS indicator, the
annual TPR indicators tend to pose higher safety mitigation needs on commercial UAS
operations over urban areas. The objective of the current paper is to assess and compare the
risk-mitigating effect of risk-aware path planning in terms of the ELOS-based and annual
TPR indicators.

This paper is organized as follows. Section 2 reviews ELOS-based and annual TPR
indicators applied in this paper, together with an explanation of the use of these TPR
indicators within state-of-the-art UAS risk-aware path planning. The ELOS-based TPR
indicator is the Collective Ground Risk per flight hour (CGRfh). The annual TPR indicators
include the Annual Collective Ground Risk (CGR) and Annual Individual Risk (IR) map for
each location in the urban area, posed by all UAS flights. Section 3 introduces the simulation
methodology used for the evaluation of risk-mitigating effects of risk-aware path planning
on the three TPR indicators for the parcel delivery service example in Delft. This includes
an explanation on how risk-aware UAS path-planning algorithms are incorporated in
the simulation. Section 4 conducts the simulation study of this paper for a commercial
UAS-based parcel delivery service in the city of Delft that has been evaluated by Blom
et al. (2021) [30] under the shortest paths. These results show the effect of risk-aware path
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planning on ELOS-based and annual TPR indicators. Section 5 discusses the obtained
results. Section 6 draws conclusions.

2. Third-Party Risk Indicators and Path Planning

In this paper, three TPR indicators are involved: collective ground risk per flight hour
(CGRfh), annual individual risk (Annual IR), and annual collective ground risk (Annual
CGR). To allow a proper comparison of these three TPR indicators, this section reviews
their formal definitions and explains their use in state-of-art path planning.

2.1. Third-Party Risk Indicators

Safety risks posed by a UAS flight to persons on the ground has been well stud-
ied [19,20,22,34] from the perspective that a single UAS flight should be allowed to pose an
Equivalent Level Of Safety (ELOS) per flight hour to ground populations as is posed
by a single commercial flight per hour. This level of safety is expressed in terms of
the collective ground risk per flight hour (CGRfh). For the formal definition of CGRfh,
Blom et al. (2021) [30] make use of an auxiliary definition of the collective ground risk per
flight (CGRf): CGRf is the expected number of third-party fatalities on the ground per flight
in a given area Y due to the direct consequences of a UA flight accident. Let nUAS

i be the
number of third-party fatalities on the ground due to the i-th UA flight accident; then, the
calculation of CGRf is as follows:

Ri
Cground = E{nUAS

i } =
∫

Y
Ri

I(y)[1− P(S|y, i)]ρ(y)dy (1)

where Ri
I(y) is the fatality probability for an unprotected person at location y posed by the

i-th flight, P(S|y, i) is the shelter protection model, and ρ(y) is the population density in the
area Y considered. The characterization of Ri

I(y) in the UAS literature [12,30,31,35] satisfies the
following:

Ri
I(y) = P(i) ps(i) |A(i)| P(F|y ∈ A(i)) (2)

where P(i) is the ground crash probability, ps(i) is the crash location model, A(i) is the set
of crash impact areas, and |A(i)| is the size of the crash impact area. P(F|y ∈ A(i)) is the
unprotected fatality model. The CGRf considers the risk for a single flight. Let Ti be the
flight time for flight i; then, the collective ground risk per flight hour (CGRfh) for flight i is
Ri

Cground/Ti. It is a common practice to require that CGRfh for a UAS should not be higher
than an Equivalent Level Of Safety (ELOS) of the CGRfh posed by a commercial aircraft
flight to population on the ground.

The annual individual risk (Annual IR) [30] is the probability that an average unpro-
tected person at ground location y gets killed or becomes fatally injured due to unmanned
aircraft flight accidents during a given annum. This risk indicator considers the risk from
multiple flight perspectives. For conducting N flights per annum, the annual IR is described
as follows.

RUAS
I (y) = 1−

N

∏
i=1

[1− Ri
I(y)]. (3)

Often, Ri
I(y)� 0.1; then, Equation (3) can be approximated by RUAS

I (y) ∼= ∑N
i=1 Ri

I(y).
The safety threshold for the annual IR in the literature [27,29] indicates that the probability
of fatality per annum at each location should not exceed 10−6.

Annual collective ground risk (Annual CGR) [30] is the expected number of third-party
fatalities on the ground in a given area Y due to the direct consequences of ground crashes
by unmanned aircraft flights during a given annum. This risk indicator considers the risk
from the multiple flights perspective, i.e., flights in an annum. For conducting N flights per
annum, the annual CGR is as follows:

RUAS
Cground =

N

∑
i=1

Ri
Cground, (4)
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where Ri
Cground is defined in Equation (1). The annual CGR should not exceed 1.65 × 10−3

fatalities per annum [27,29]. The summary for the above indicators is shown in Table 1.

Table 1. Summary for TPR indicators CGRfh, annual IR, and annual CGR.

CGRfh Annual IR Annual CGR

Formula Ri
Cground/Ti RUAS

I (y) = 1−∏N
i=1[1− Ri

I(y)] RUAS
Cground = ∑N

i=1 Ri
Cground

# of flights single multiple multiple
Unit # of fatalities per flight hour probability of fatality per annum # of fatalities per annum
Safety threshold 10−6 10−6 1.65 × 10−3

# is number.

2.2. TPR Indicators in Path-Planning

Existing risk-aware path planning methods use the indicator Collective Ground Risk
per flight (CGRf) in searching for a nominal path for a given UAS flight from a point sstart
to a point sgoal . Optimization tools are used to minimize total cost function g(sstart, sgoal).
For shortest-path planning methods, the total cost g is described as follows.

g(sstart, sgoal) = length(sstart, sgoal). (5)

Here, length is the flight distance of the nominal path.
Risk-aware path-planning methods take the cost of risks into account. If the goal is

only the minimization of risk [13,14], then the cost g adopted is described as follows:

g(sstart, sgoal) = risk(sstart, sgoal), (6)

where risk is the accumulated collective ground risk (e.g., number of fatalities) on the flight path
from point sstart to sgoal per flight, which is basically CGRf. Under bi-objective optimizations
[17,36], the total cost, g, considers both risks and flight distances.

g(sstart, sgoal) = ωrrisk(sstart, sgoal) + ωl length(sstart, sgoal). (7)

The risk-to-distance ratio ωr : ωl determines to which extend the found path detours
high-risk areas.

There are two methods to evaluate risk as a function of the nominal path during
the optimization process. One is to use the pre-defined risk map [12]. For each location
on the map, the risk is pre-calculated based on static information (e.g., sheltering factor,
population density, etc.). The other one is a sampling-based method [18] that iteratively
samples a path from sstart to sgoal and calculates the correlated risk.

An open question is how these three path-optimization methods (path length only,
risk-aware only, and bi-objective) compare in terms of the annual safety indicators: annual
IR and annual CGR. Such a comparison is made in Section 4 for a commercial parcel delivery
service in the city of Delft. Prior to conducting these comparisons in Section 4, Section 3
gives an explanation on the method used to conduct these annual risk assessments.

3. Assessment of Annual Third-Party Risks for a Commercial UAS Service

A method to assess third-party risks posed to the ground population by a commercial
UAS service has been developed by Blom et al. (2021) [30]. This method can handle
an arbitrary large number N of annual origin-destination UAS flights. To take various
disturbances into account, for each of these N UAS flights, a number of K independent
Monte Carlo simulation runs are conducted. The sequence of steps to be conducted in this
method is shown in Algorithm 1. Step 0–1 generates UA flight demands (OD pairs), and
for each OD pair, there is a nominal flight path. Step 2 uses an applicable failure model
to evaluate ground crash probabilities. Step 3 uses, for each type of failure, an applicable
descent model to simulate the random descent path until the ground crash. Step 4 evaluates
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the distribution of the simulated ground crash locations. Step 5 uses an applicable human
fatality risk model under the assumption that persons on the ground are unprotected. Step
6 assesses an individual risk map Ri

I(y) for each of the N UAS flights. Step 7–9 assess
CGRfh, annual IR, and annual CGR, respectively.

Algorithm 1: Monte Carlo simulation-based evaluation of annual Third-Party
Risk indicators for a commercial UAS operation [30].

1 Step 0: Determine N OD pairs and UA types
2 Step 1: Determine nominal flight plans for each of the N delivery flights
3 foreach nominal path do
4 Step 2: Evaluate ground crash probability
5 Step 3: Run K simulations of crash
6 Substep 3.1: Sample each moment of failure event for each simulation
7 Substep 3.2: Simulate drone state (position, velocity, and attitude) at the

moment of failure event
8 Substep 3.3: Simulate drone state (position, velocity, and attitude) at the

moment of ground crash
9 Step 4: Evaluation of local hit density for an arbitrary location based on crash

position of simulated flights
10 Step 5: Evaluation of unprotected fatality based on crash velocity and attitude

of simulated flights
11 Step 6: Evaluation of Ri

I(y): fatality probability for an unprotected person at
location y per flight

12 Step 7: Evaluation of CGRfh Ri
Cground/Ti

13 end
14 Step 8: Evaluation of IR RUAS

I (y)
15 Step 9: Evaluation of CGR RUAS

Cground

In [30], the workings of this Monte Carlo simulation approach have been applied
to a commercial UAS parcel delivery service in the city of Delft. The map of the city’s
population is given in Figure 1. In [30], the nominal paths in the example application were
the shortest distance paths. In the next subsection, an explanation is provided on how this
is extended to single- and bi-objective risk-aware path planning in step 1 of Algorithm 1.
The grid size of the possible OD pairs generated during Step 0 increased from 5 m in [30]
to 500 m in Section 3.1. The specific details of Step 0 and Step 1 are described in Sections 3.1
and 3.2, respectively.

3.1. Generation of N OD Pairs (Step 0)

During Step 0 of Algorithm 1, the annual flight demand is generated, including the
number of OD pairs, the locations of OD pairs, and the number of flights for each OD
pair. It assumes that the drone route’s network is from one hub to serve multiple delivery
destinations inside a service radius.

The generation of OD pairs is based on population distributions. Recently, several stud-
ies looked at the forcast of air delivery/mobility demand distributions, and many factors
are considered, e.g., population distributions, historical travel/delivery demands, residents’
incomes, different points of interest (POI), etc. [37–39]. In this study, for the sake of simplic-
ity, we use the assumption in [30] in which the density of the parcel delivery location is the
same as the population density within the service radius. The geographic map is discretized
into multiple rectangular grid areas, and in each grid, if the average population density is
beyond a threshold, the center of the grid will be selected as a destination. The simulations
use an area in Delft, as shown in Figure 1. The width and length for the area are 6.6 km
and 6.6 km separately, and the total size is 43.6 km2. The population in the area is around
130,000 people. In the simulations, we take the service radius as 3.1 km, the size of each
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grid as 0.5 km × 0.5 km, and the population density threshold as 2000 people/km2. As a
result, a total of 71 OD pairs are generated, as shown in Figure 1.

Figure 1. Generated OD pairs (hub-delivery destinations) in the scenario.

To estimate the number of UA flights per annum, more specifically, the number of
flights for each OD pair per annum, we first estimate the number of package deliveries per
person per annum. For example, if each person receives 10 package per year in Delft, then
around 1.3 million packages are delivered in the above area in Delft, in which there are
130 thousand people. More specifically, if each person is served n packages in a year, the
number of flights N from the hub to each delivery location is described as follows:

N = n ∗ population, (8)

where population is the number of people in the area covered by the delivery location.

3.2. Nominal Flight Path Generation (Step 1)

In Step 1 of Algorithm 1, nominal paths are determined for UA flights by a typical
risk-aware path-planning algorithm.

We used an A*-based graph search method to represent typical risk-aware path-
planning algorithms. The A*-based graph search method uses Equation (7) to search for a
path. For the sake of simplicity, we use population density as the pre-defined risk at each
location and sum population density over a path. ωr and ωl are the weights for the risk
and the path length in Equation (7). We define the risk weight ratio ωratio as follows.

ωratio = ωr : ωl . (9)

ωratio reflects how the risk and flight distance will be optimized. If ωr is much larger
than ωl , e.g., ωratio = 1:0, the total cost only includes risk. The generated path completely
detours over low-populated areas, as shown in Figure 2a, so the path can have a low CGRf.
If ωr is much larger than ωl , e.g., ωratio = 0:1, the total cost only includes length. The
algorithm will search a short path, as shown in Figure 2b. By changing the risk weight
ratio, the algorithm can generate different paths either by detouring over low-populated
areas or by being short.



Aerospace 2022, 9, 682 7 of 21

(a) (b)

Figure 2. An example of generated paths by setting (a) ωratio = 1:0: a path over low-populated areas;
(b) ωratio = 0:1: a short path.

3.3. Risk Assessment via Monte Carlo Simulation

In conducting Steps 2–9 of Algorithm 1, specific submodels for UAS types, UAS
failures, UAS descent path to ground crash, UAS crash impact area, and human fatality
models have to be adopted. Their relationship is shown in Figure 3. For the Monte Carlo
simulations conducted in Section 4, we adopt the same submodels that have been adopted
by Blom et al. (2021) [30] for the Delft parcel delivery example.

Figure 3. The failure model, descent model, and fatality model in risk assessments.

In the UAS parcel delivery example used in [30], the hypothetical drones are based
on the MD4-1000 quadcopter from Microdrones [40]; each drone has a mass of 2.7 kg
and the payload is up to 1 kg. Moreover, the surface area of drones is 0.1 m2. The full
list of parameter values is stated below. The cruise, ascent, and descent speeds are 12,
7.5, and 6 m/s, respectively [41]. Horizontal and vertical position errors follow Gaussian
distributions, and the standard deviations are 3.68 m and 7.65 m, respectively [42]. Standard
deviations for horizontal and vertical velocity errors are both 2.0 m/s [43]. The drag
coefficient of drones follows a Gaussian distribution N(0.7, 0.2) [43]. The summary of these
parameters is provided in Table A1.

The failure model describes the probability that an in-flight failure happens. Let λi(t)
be the rate of a crash event happens at moment t during the ith flight, and the nominal
flight time of i-th flight is [0, Tnom

i ]. Then, the probability of a crash is described as follows.

P(i) = 1− exp
{
−
∫ Tnom

i

0
λi(t)dt

}
. (10)
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A constant λi(t) is used in the MC simulation.
The descent model describes how a drone descends to the ground after an in-flight

failure happens. A ballistic descent model [12] is used in the MC simulation to estimate
the crash location. In this model, the descending crash is affected by the drag coefficient
and the surface area of the drone, in addition to wind velocities. Let st and vt represent the
position and velocity of the drone at time t; then, the ballistic descent model is described as
follows:

ṡt = vt (11)

v̇t = [0, 0, g]T − CD ASQt||vt − wt||(vt − wt)/2m (12)

where g is the gravitational constant, CD is the drag coefficient, AS is the size of surface
area, m is the mass of the drone with payload, and Qt and wt are air density and wind
velocity vectors at time t.

The fatality model describes the fatality probability for different impact energies. A
commonly used fatality model [44] is applied in the MC simulation. It is an S-shaped curve:

P(Fatality) = Z
( lnEimp − lna

b

)
, (13)

where Z is the cumulative standard normal distribution, Eimp = m|v|2/2 is the kinetic
energy of an unmanned aircraft at the moment of impact, with impact velocity v and with
impact mass m, a is the energy when the probability of fatality reaches 1/2, b is the standard
deviation of the effect of Eimp. The parameters a and b reflects the fatality probability of
an object hitting a person. In the experiment we take the fitted value a = 103 Joule and
b = 0.538 [45], the curve of the fatality model is shown in Figure 4.

Figure 4. The RCC fatality model with parameters a = 103 Joule and b = 0.538.

4. Simulation Results

We conducted three experiments and analyses based on the assessment in Section 3.
Experiment I tests how annual third-party risks changes as path-planning objective changes;
i.e., the risk weight ratio in path planning increases. Experiment II tests how annual TPRs
change with the volume of flight operations, and experiment III conducts sensitivity analyses:
it tests how annual TPRs are sensitive to risk assessment parameters.

4.1. Experiment I: Risk Weight Ratio

This experiment simulates whether the current path-planning algorithm can reduce
annual TPR by changing the risk weight ratio in the path-planning algorithm. Here, the
flight volume is set as 1 package per person per annum.

Here, we evaluate different weights where the risk weight ratio increases gradually.
The generated paths are shown in Figure 5. When the weight ratio on risk is higher, paths
detour to lower populated areas, and flight distances are longer.
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Figure 5. Generated paths with different risk weight ratios.

The histograms of CGRfh are shown in Figure A1 in Appendix A. All flights have CGRfh
at an acceptable level (<10−6 fatalities per flight hour). As the risk weight ratio increases, the
maximum CGRfh reduces from 5.34 × 10−7 per flight hour to 2.58 × 10−7 per flight hour, and
the mean value also reduces from 2.72 × 10−7 per flight hour to 6.12 × 10−8 per flight hour.

The annual IRs over the map are shown in Figure 6. Bright yellow and orange colors
mean higher annual IR and dark purple means a lower annual IR. As the risk weight
ratio increases, more areas are colored orange instead of purple in Figure 6 intuitively,
meaning that more areas have high annual IRs. The precise area size of high annual IRs
(IR > 10−6 [30]) is shown in Table 2, which increases from 0.75 km2 to 2.47 km2.

Figure 6. Annual IR with different risk weight ratios.
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Table 2. Area size with high annual IR with different risk weight ratios.

ωratio 0:1 1:4 1:1 4:1 1:0

Area size with annual IR > 10−6 (km2) 0.75 1.06 1.22 1.86 2.47
Percentage of improvement 0.0% −41.3% −62.7% −148.0% −229.3%

The annual CGR is shown in Table 3. The annual CGR reduces from 3.00 × 10 −3

fatalities per annum to 1.57 × 10 −3 fatalities per annum as the risk weight ratio increases.
Under the threshold of 1.65 × 10 −3 fatalities per annum, only ωratio = 1 : 0 can generate
paths that satisfy the annual CGR criterion.

Table 3. Annual CGR with different risk weight ratios.

ωratio 0:1 1:4 1:1 4:1 1:0

Annual CGR (# of fatalities per annum) 3.00 × 10 −3 2.11 × 10 −3 1.96 × 10 −3 1.87 × 10 −3 1.57 × 10 −3

Percentage of improvement 0% 29.7% 34.7% 37.7% 47.7%

The relationship between annual TPRs (annual IR and annual CGR) and risk weight
ratio is shown in Figure 7. As the risk weight ratio increases, annual IR increases but the
annual CGR reduces; there should be a trade-off on the risk weight ratio.

Figure 7. Changes in annual IR and Annual CGR with risk weight ratios.

In summary, as the risk weight ratio increases, the paths detour more to low populated
areas, and more flights have lower CGRfh. The annual CGR also reduces, but there are
more areas that have high annual IRs. CGRfh is reduced because fewer people will beome
fatally injured if paths detour over low populated areas, and the annual CGR is reduced for
the same reason. However, because many flights occur over low-populated areas, people
living in these areas are more likely to be injured by drones, making the annual IR in these
areas high. Thus, there are more areas that have high annual IR. In addition, considering
the thresholds for different TPR indicators, CGRfh is satisfied for all tested risk weight
ratios, and annual CGR is only satisfied with ωratio = 1:0; moreover, areas that have high
annual IR always exist.
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4.2. Experiment II: # of Packages per Person per Annum

This experiment evaluates how TPR changes as the volume of flight operations in-
creases by increasing the # of packages per person per annum. Here, the risk weight ratio
is set as ωratio = 1:1.

Here, we increase the # of packages per person per annum from 0.1 to 10. The
generated paths are shown in Figure A2 in Appendix A. The CGRfh for different flight
volumes is shown in Figure A3 in Appendix A. The range of CGRfh for the flights does
not change, and the flight frequency for each CGRfh also does not change. The annual
IR for different flight volumes is shown in Figure A4 in Appendix A. Color (Annual IR)
becomes brighter (higher) intuitively in the figure. To compare the differences in annual
IR quantitatively, we plot annual IRs as a series of box plots, as shown in Figure 8a. The
annual CGR for different flight volumes is shown in Figure 8b. Annual CGRs increase
linearly with the # of flights.

In summary, as the flight volume increases, CGRfh does not change because the safety
risk for a single flight is not affected by flight volumes, but both annual IR and annual
CGR increase linearly; this corresponds to the definition of annual IR and annual CGR in
Equations (1) and (3).

(a) Box plots of annual IRs with different flight vol-
umes.

(b) Annual CGR with different flight volumes

Figure 8. Annual IR and annual CGR with different flight volumes.

4.3. Experiment III: Sensitivity Analysis on Parameters in Risk Assessment

This section simulates how parameters in risk assessment affect the estimated annual
IR and annual CGR. A total of six parameters is included: the failure rate λ that reflects
system stability, the mean drag coefficient C̄D, the drone’s surface area size AS, and wind
velocity w that affects the ballistic descent process. Moreover, parameters a and b are in
the RCC fatality model. Here, a and b do not have physical meaning, but they affect the
estimation of calculated fatality probability.

The range of values for each parameter is shown in Table 4. In these experiments, λ is
time-invariant. The range of λ is determined based on [46]. For areas varying from urban
areas to city centers where the population density is larger than 3861 persons/km2 and
for the drone’s weight varying from <0.5 kg to 25 kg, the maximum acceptable λ changes
from [1.50 × 10−3 to 1.28× 10−6]. The drag coefficient varies for different shapes. For most
shapes, C̄D is within range [0.1, 1.3] [47]. The surface area size of most small UAs is in
the range of [0.1 m2,0.4 m2] [46]. To conduct sensitivity analyses on wind, we retain the
wind direction but proportionally change wind speeds. Let wraw be the recorded wind
speed in the data; then, we take ratio ∗ wraw as the wind speed for risk assessments, and
the ratio varies in [0.5, 1.5]. The RCC fatality model is a fitted model based on fatality
data. The fatality probabilities are different if the object hits different body positions. The
authors of [45] fit a and b for the probability of fatality from debris impacts for different
body positions. a is in [79, 110] and b is in [0.491, 0.541]. Here, we take a and b from a larger
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range of [53, 253] and [0.138, 0.938] separately, which covers the fatality probability of a
drone hitting a person.

Table 4. Parameters in risk assessments and their values for sensitivity analyses.

Model in Risk Assessment Parameter Value

Failure model λ [1.50 × 10−3, 1.28 × 10−6]

Descent model
C̄D [0.1, 1.3]
AS [m2] [0.1, 0.4]
w [0.50 ∗ wraw, 1.50 ∗ wraw]

Fatality model a [53, 253]
b [0.138, 0.938]

4.3.1. Sensitivity Analysis for Failure Model

The failure model contains parameter failure rate λ. The annual IR for different λ is
shown in Figure A5 in Appendix A. As λ reduces from 1.50 × 10−3 to 1.28 × 10−6, the max-
imum IR reduces from 4.20 × 10−3 to 3.60 × 10−6, and CGR reduces from 8.58 × 10−3 to
7.32 × 10−6. The box plots of the annual IR for different λ is shown in Figure 9a, and the an-
nual CGR is shown in Figure 9b. Both annual IR and annual CGR have linear relationships
with λ. As failure rate λ increases, the ground crash probability P(i) increases linearly; thus,
the individual risk per flight Ri

I(y) will increase linearly. Based on Equations (1) and (3),
the annual IR and annual CGR will also increase linearly, which corresponds to the obtained
simulation
results.

(a)Annual IR with different failure rates (b)Annual CGR with different failure rates

Figure 9. Annual IR and Annual CGR with different failure rates.

4.3.2. Sensitivity Analysis for Descent Model

The descent model contains the following parameters: mean drag coefficient C̄D,
surface area size AS of drones, and wind speed w. The annual IR for different C̄D is shown
in Figure 10. As C̄D increases, the width of colored areas increases, meaning that drones
can drop to places further away from the nominal paths; thus, areas affected by drone
operations enlarge. The annual CGR for different C̄D is shown in Table 5. It increases from
1.74 × 10−3 fatalities per annum to 2.07 × 10−3 fatalities per annum as C̄D increases. This
can be understood from the impact energy and impact position’s perspective.

The case of the velocity and energy of a drone crashing to the ground for different C̄D
is shown in Table 6. As C̄D increases, the vertical speed of the drone crashing to the ground
reduces from 50.6 m/s to 21.7 m/s because of a larger drag force. Since vertical speeds
account most for the total speed, the impact’s energy reduces significantly from 4719 Joule
to 926 Joule. However, this impact energy is still very large ,and it almost causes a fatality if
it hits a person. At the same time, as C̄D increases, drones are more likely to fly away from
the nominal path because of wind. Since the nominal paths are over low-populated areas,
such deviation results in the impact location having a higher population. As a result, the
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annual IR becomes scattered because of the deviation of the impact location, the annual
CGR increases because the population at the impact location is higher while the fatality
probability for hitting a person almost does not reduce.

In summary, as C̄D increases, the annual IR is more scattered over the considered area,
and the annual CGR increases at the same time. The annual IR for different AS and w are
shown in Figures A6 and A7 in Appendix A. The width of the colored areas increases,
similarly to C̄D. The annual CGRs for different AS and w are shown in Table 5. Either the
increase in AS or w makes the annual CGR increase, similarly to C̄D.

Figure 10. Annual IRs with different mean drag coefficients C̄D.

Table 5. Annual CGRs for different C̄D, AS, and w.

Drag coefficient C̄D 0.1 0.4 0.7 1.0 1.3
Annual CGR (# of fatalities per annum) 1.74 × 10−3 1.85 × 10−3 1.96 × 10−3 2.02 × 10−3 2.07 × 10−3

Surface area size AS (m2) 0.1 0.175 0.25 0.325 0.4
Annual CGR (# of fatalities per annum) 1.96 × 10−3 2.06 × 10−3 2.11 × 10−3 2.13 × 10−3 2.12 × 10−3

Wind speed w 0.5 ∗ wraw 0.75 ∗ wraw 1.0 ∗ wraw 1.25 ∗ wraw 1.5 ∗ wraw
Annual CGR (# of fatalities per annum) 1.79 × 10−3 1.88 × 10−3 1.96 × 10−3 2.02 × 10−3 2.08 × 10−3

Table 6. A case of velocity and energy when crashing to the ground for different C̄D.

drag coefficient C̄D 0.1 0.4 0.7 1.0 1.3

X-axis horizontal speed Vx (m/s) 1.9 4.9 5.7 5.7 5.5
Y-axis horizontal speed Vy (m/s) −9.5 −3.5 −1.3 −0.5 −0.2
Vertical speed Vz (m/s) −50.6 −35.5 −28.7 −24.6 −21.7
Impact energy Eimp (Joule) 4719 2402 1584 1182 926

Initial state when crash down: height = 187.3 m, Vx = −1.6 m/s, Vy = −15.3 m/s,
Vz = −0.8 m/s, mass m = 3.7 kg, wind speed wx = 7.9 m/s, wy = 0 m/s

4.3.3. Sensitivity Analysis for Fatality Model

The fatality model contains two parameters a and b. The annual IR for different a and
b is shown in Figures A8 and A9 in Appendix A. The annual CGR for different a and b are
shown in Table A2 in Appendix A. We can see that both annual CGR and annual IR almost
do not change for different a and b. The reason is that because the impact energy is too
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large, such as in Table 6 where the minimum impact energy is still 926 J. Whatever model is
taken, hitting a person almost results in a fatality.

5. Discussion for Simulation Results

This section discusses the societal effect of using state-of-the-art risk-aware path
planning when mitigating risks.

Based on the simulation results in Section 4, risk-aware path planning does not neces-
sarily generate paths that meet the annual TPR criteria, as it depends on the risk weight
ratio and flight volume. Because the trend of annual IRs and annual CGRs with the risk
weight ratio is contradictory for current path planning, adjusting the risk weight ratio
to reduce annual CGR/IR will definitely increase another. Trading off the risk weight
ratio can make both annual IR and annual CGR acceptable in some cases but not in all
cases. In addition, once the flight volume is larger than a certain threshold, the annual TPR
criteria can not always be satisfied by UAS path planning alone, such as in the above-tested
scenario in which the certain annual threshold is small. In this case, one possible way
to reduce TPR is to reduce the system’s failure rate. In addition, when increasing the
drag coefficient, the impact’s speed will reduce; thus, the impact energy will be reduced.
However, drones may fly over more populated areas, as a result of which the annual CGR
may even increase.

Based on the discussion, we can give the following meaningful insights:

1. For annual flights, current UAS path planning can reduce CGRfh and annual CGR
but it may lead to more areas with a high annual IR. The trade-off on weight risk ratio
in current UAS path planning should be carefully considered.

2. Annual IR and annual CGR increase linearly as the number of flights increases.
Current UAS path planning fails to generate paths that satisfy safety risk criteria if
the flight volume is larger than a certain threshold.

3. Both the annual IR and annual CGR reduce linearly as the system’s failure rate
reduces.

4. Increasing the drag coefficient reduces the impact energy, but drones can fly away to
highly populated areas.

6. Conclusions

This paper focuses on the safety risk posed by multiple unmanned aircraft flights to
people on the ground in urban areas. Many UAS risk-aware path-planning methods in
the literature have been developed to reduce the risk for a single flight, but it is unknown
whether they are effective for reducing societal third-party risks. So this paper assesses
the societal third-party risk of using state-of-the-art risk-aware path planning instead of
shortest-paths via a simulation study.

Two third-party risk indicators that consider societal effects, annual individual risk
and annual collective ground risk, are assessed in the work. Moreover, one commonly used
indicator for a single flight, the collective ground risk per flight hour, is also involved in the
comparison. Definitions of these indicators are introduced in Section 2.

The proposed method in Section 3 evaluates how the third-party risks change when
risk weight ratio in path planning, flight volume, and risk assessment parameters change.
The method is applied in a scenario of a UAS parcel delivery service for the city of Delft in
the Netherlands. The simulation results and the discussions are in Section 4 and Section 5,
respectively.

Future works will focus on developing path-planning methods that consider operation
volumes for making acceptable-level collective ground and individual risks. In addition,
we will explore methods and techniques for reducing impact risks during descents, such as
using parachutes, and evaluate their effectiveness on reducing societal third-party risks.
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Appendix A

Figure A1. Histogram of CGRfh with different risk weight ratios.

Figure A2. Generated paths for OD pairs in Experiment II.
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Figure A3. CGRfh with different flight volumes.

Figure A4. Annual IR with different flight volumes.
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Figure A5. Annual IR with different failure rate λ.

Figure A6. Annual IR with different surface area size AS.
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Figure A7. Annual IR with different wind speed w.

Figure A8. Annual IR with different a in fatality model.
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Figure A9. Annual IR with different b in fatality model.

Table A1. Summary of risk assessment model parameters.

Model in Risk Assessment Parameter Value

Failure model failure rate (per hour) λ 3.42 × 10−4 [46]

Descent model
drag coefficient CD N(0.7, 0.2) [43]
surface area AS (m2) [0.1, 0.4]
wind speed w from KNMI [48]

Fatality model mid-point value a(Joule) 101.6 [45]
standard deviation b 0.538 [45]

Others

mass with parcel m [kg] 3.7 [40]
cruise speed vc (m/s) 12 [41]
ascent speed va (m/s) 7.5 [41]
descent speed vd (m/s) 6 [41]
horizontal position errors σ

p
H (m) 3.68 [42]

vertical position errors σ
p
V (m) 7.65 [42]

horizontal velocity errors σv
H (m/s) 2.0 [43]

vertical velocity errors σv
V (m/s) 2.0 [43]

Table A2. Annual CGR with different a and b.

a 53 103 153 203 253
Annual CGR (# of fatalities per annum) 1.96 × 10−3 1.96 × 10−3 1.95 × 10−3 1.94 × 10−3 1.93 × 10−3

b 0.138 0.338 0.538 0.738 0.938
Annual CGR (# of fatalities per annum) 1.96 × 10−3 1.96 × 10−3 1.96 × 10−3 1.95 × 10−3 1.94 × 10−3
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