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Arbitration of Authority in Physical Human-Robot Collaboration with
Combined Preventive and Reactive Fatigue Management

Álvaro Gil Andrés, Niek Beckers, David A. Abbink, and Luka Peternel∗

Abstract— We present a method for arbitration between
human and robot involvement in a collaborative physical task
execution based on ergonomic metrics. The existing methods
for ergonomic control of physical human-robot collaboration
perform the real-time arbitration primarily based on a single
type of ergonomic metric. The novelty of our approach is
twofold. First, the system enables real-time arbitration based
on combining two types of ergonomic metrics: preventive and
reactive. Second, we use a preventive metric to prevent worker
fatigue and discomfort due to overexertion in the future and a
reactive metric to avoid immediate fatigue and discomfort. To
this end, we considered two metrics respectively: human arm
manipulability and muscle fatigue. The developed multi-metric
arbitration method translates the human multi-metric state to
a robot control level over a collaborative task execution using a
finite state machine. We demonstrate the proposed method on
a Kuka LWR iiwa robotic arm in a collaborative human-robot
polishing task that requires a specific force production.

I. INTRODUCTION

In physical human-robot collaboration (pHRC), the human
and the robot contribute to a common goal depending on
their skill set. Typically, humans are good at adapting to
unknown/changing environments and task requirements, and
have manual dexterity skills that robots lack. On the other
hand, robots are able to perform tasks with higher speed,
precision and consistency, while not being impacted by
muscle fatigue. When deciding, or arbitrating, who does what
in pHRC, the arbitration system should take these strengths
and weaknesses into account. Arbitration is defined as the
mechanism that assigns control over the task or moderates
the level of engagement between the human and the robot
[1], [2]. It determines the interaction strategies between the
human and the robot, such as teacher-student, supervisor-
subordinate, or leader-follower, to fit their skills and the task
[1], [3]. Generally, arbitration can be on the process level–to
allocate and schedule multiple sub-tasks [4], [5]–or on the
task level, where the aim is to share a portion of effort over
the same shared task [6]–[8]. This paper focuses on the latter.

Arbitration in pHRC for industrial applications is often
driven by the human worker’s ergonomy to ensure a safe and
efficient production process [9]. Typical ergonomic metrics
are arm manipulability and muscle fatigue. Arm manipulabil-
ity derives from the classic velocity and force manipulability
ellipsoids, which represent a quantitative metric of how well
an arm end-effector can produce velocity/force in different
directions in a given arm configuration with given joint
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Fig. 1: Illustration of the task: the human and the robot collaboratively
exert a desired force against a horizontal surface. The graph on the right
represents the desired force level of the task (pink), the robot’s end-point
force (orange), and the combined measured exerted force (red). This graph
is also used for real-time visual feedback to the human operator.

velocities/torques [10]. Studies in pHRC showed the impor-
tance of manipulability on collaborative task performance
[11], [12]. Besides benefits to task performance, the study
in [13] revealed that arm muscle activation and consequent
muscle fatigue are strongly related to human arm manipula-
bility; having to exert force with a low arm manipulability
results in muscle fatigue. Moreover, research concluded
that a fatigued muscle is more likely to get injured [14]–
[16]. Therefore, to ensure that human arm manipulability is
ergonomic, an arbitration system can provide a preventative
way to avoid muscle fatigue and minimise the risk of injury.

Manipulability has also been used in robot control to
actively improve the working conditions of the human worker
during the collaboration. The study in [11] developed a con-
trol method for a physical human-robot co-manipulation and
handover scenarios that integrates a human body model for
ergonomic optimisation, where human arm manipulability is
one of the constraints. For example, the manipulability limits
were set so that the algorithm would find arm configurations
that keep the manipulability isometric while optimising for
minimum joint torques. As a result, the robot ensured that
the human co-worker had equal force/velocity production
capacity in all directions of Cartesian space, thus improving
the effectiveness of co-manipulation. An extended version of
classic manipulability also incorporates human muscle prop-
erties [17], [18]. For example, this extended manipulability
was used as a supervisor-subordinate arbitration metric in a
control of an arm exoskeleton for human power augmenta-
tion, where the robot compensated for the minor ellipsoid
axes and formed an isometric manipulability ellipsoid in20
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any arm configuration [17]. However, these studies did not
explicitly consider the effect of preventing human fatigue by
ensuring that arm manipulability is acceptable.

While arm manipulability provides only an indirect way
to prevent fatigue, fatigue can be estimated and acted upon
directly using computational models. Some models use an
external force (e.g., on an object by the human) as input to
calculate a fatigue-related measure [15]. Others developed fa-
tigue models that infer the force generated by human muscles
based on physiological muscle motor unit behaviour [19].
Others used computational models that assessed whether ex-
erted torques were overloading the human joints by including
each joint’s torque capacity [16], [20]. While the fatigue
estimations based on an external force or joint torques give a
convenient overall estimation, they do not provide a detailed
insight into the fatigue of individual muscles that actuate
each joint and consequently the end-effector.

The method in [7] measured muscle activities through
electromyography (EMG) signals in order to estimate indi-
vidual muscle fatigue. The algorithm used fatigue to arbitrate
control between human and robot; the robot took over the
task whenever human muscle fatigue reached a predeter-
mined threshold. In [21] the robot adapted the working
configuration to relieve the fatigued muscles and involve
the fresh ones. However, in this case, the muscle activity
was modelled instead of measured. While modelling the
individual muscle effort eliminates the need and complexity
of physiological measurements, the estimation is limited
to the accuracy of the model. On the other hand, while
measuring the end-effector force or joint torque simplifies
the measurement system, they do not give muscle-specific
fatigue estimation. In that respect, using a fatigue model
with measured EMG signals gives an edge over the other
methods, at expense of some extra complexity.

We classify the ergonomic metrics used in human-robot
collaboration control into two main categories based on
their function regarding fatigue management: reactive and
preventive. Since fatigue is essentially integrated effort over
time and the robot acts to reduce fatigue once a certain level
of fatigue is reached, it falls into the reactive category. On
the other hand, optimising for manipulability will improve
the arm effectiveness in terms of force production and thus
reduce the effort, which in turn reduces the fatigue that will
be accumulated over time in subsequent task execution. Thus,
manipulability falls into the preventive category. Neverthe-
less, both preventive and reactive approaches on their own
have significant limitations.

Combining arm manipulability and muscle fatigue esti-
mations to arbitrate control between the human and the
robot has advantages over existing methodologies. Previous
methods only reactively adjust the arbitration between human
worker and robot when the human is already fatigued (e.g.,
[7]) and thus have a higher risk of injury. We aim to prevent
muscle fatigue in the first place by taking a two-pronged
approach. First, given that better arm manipulability leads
to lower fatigue in the long run, we propose to arbitrate
control in pHRC such that the robot enables the human to

Switch
Joints 

Position and 
Orientation 

Data

Human arm
manipulability and 

muscle fatigue

Robot 
joint 

torques

Raw emg 
data

Fig. 2: The proposed system consists of three main components, which
communicate through UDP. (Yellow) The arbitration module incorporates
the method based on a finite state machine that translates the fatigue and
manipulability values into a percentage of the total force exerted by the
robot. (Green) The fatigue module models fatigue values based on the
measured and processed EMG. (Blue) The Manipulability module captures
the pose of joints and calculates the manipulability value in the direction
of the exerted force.

optimise their arm manipulability. The limitation of using
only arm manipulability is that it only indirectly affects
muscle fatigue and therefore the exact level of fatigue at
any given moment is unknown. Thus, to account for unpre-
ventable or unforeseen fatigue, we also infer muscle fatigue
directly through EMG measurements to immediately react
and adjust the arbitration such that the robot takes over when
the human is tired. The challenge is that arm manipulability
and muscle fatigue are interdependent, which requires an
arbitration method that can successfully incorporate both
metrics, while resulting in stable arbitration in which both
the human and the robot are actively involved.

Here, we propose a multi-metric arbitration method that
combines human arm force manipulability and muscle fa-
tigue to achieve preventive and reactive pHRC. The proposed
method includes a finite state machine with four states and
assistance levels that provide smooth transitions between
the states. The main contribution of this work is a novel
arbitration approach for physical human-robot collaboration
that can simultaneously account for metrics related to both
preventive and reactive behaviour. The proposed method is
demonstrated with experiments on a collaborative human-
robot polishing task (see Fig. 1).

II. METHODS

The proposed method consists of three main modules (see
Fig. 2): 1) the multi-metric arbitration module, 2) the ma-
nipulability estimation module, and 3) the fatigue estimation
module. The multi-metric arbitration module is based on
a finite state machine (FSM). Depending on a normalised
value of human arm force manipulability and muscle fatigue,
the FSM smoothly converges towards an arbitration value
a ∈ [0, 1] that represents the ratio of the robot’s contribution
to the task execution (a = 0: the human produces all
the force, a = 1: the robot produces all the force). The
normalised human arm force manipulability value follows
from an estimate of the force manipulability ellipsoid, which
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is measured through human arm pose estimation. Finally, the
fatigue estimate module computes a normalised fatigue level
based on muscle activity through EMG measurements. The
fatigue module distinguishes between two modes: fatigue
mode when the estimated fatigue slowly converges to 1, and
recovery mode when it is slowly converging to 0.

The proposed method is demonstrated on a collaborative
task that requires the human and robot team to physically
collaborate and apply a constant force for an extended
period and requires the human to control the position of
the applied force. Polishing and drilling a workpiece are
typical applicable industrial tasks. The human and the robot
provide a portion of the total desired force based on how
the force production sharing is arbitrated (e.g., more by the
human a −→ 0, or more by the robot a −→ 1). The force
production arbitration is assigned online depending on the
human muscle fatigue and arm force manipulability in the
direction of the desired force. For example, in collaborative
human-robot polishing of a surface, the robot and the human
hold the polisher against the surface. The human swipes the
polisher through the part of the surface that needs polishing
while exerting a percentage of the force. Depending on the
human arm pose and fatigue of the involved muscles, the
robot adapts by exerting different force contributions. The
human can monitor the measured and desired forces through
visual feedback (see Fig. 1, right side).

The method results in a human-robot arbitration in which
the robot reactively assists the human depending on the
human fatigue, allowing the human to rest when needed,
while still keeping the human in the loop to control the po-
sition of the polishing and supervise the task. The assistance
that depends on force manipulability constitutes a preventive
approach; the robot increases assistance when the human is
in a posture that is less effective, thereby allowing the human
to re-position and prevent fatigue in the long term. At the
same time, the robot keeps track of the fatigue level even
though it actively assists to prevent it, and acts based on
fatigue when it cannot be prevented from happening.

A. Arbitration Method

Manipulability and fatigue need to be translated into an
arbitration variable a, which is subsequently integrated into
an impedance control scheme of the robot. The arbitration
algorithm is a finite state machine (FSM) composed of five
states (see Fig. 3): four states (s1, s2, s4, s5) for a multi-
metric arbitration mode, and a fifth (s3) that substitutes
the two middle states (s2 and s4) in case a single-metric
arbitration mode is desired. Thus, the method also offers
modularity in terms of including or excluding a specific
metric. For example, if the system is to be used for a quick
task such as drilling a few holes in places that are not in
a comfortable arm configuration, then setting up the EMG
sensors might be inconvenient, and only manipulability-
based assistance would suffice. Three states are relevant in
this scenario: s1, s3 and s5. On the other hand, when the
task takes a long time and fatigue becomes relevant (e.g., as
in our experiment task), combining preventive and reactive

a = 0

a = 0.5

a = 0.9

a = 0.6a = 0.3

a = 0.1

m = 0 & f =0

s1

s0

s2

s3

s4

s5

Metric X (m or f):

Low           X<0.3

Mid     0.3 X<0.7

High          X≥0.7

Fig. 3: Schematic representation of arbitration with the finite state machine
(FSM). On the top right corner, we can see a legend explaining the intervals
for the variables: manipulability m and fatigue f . By the arrows pointing
out the top state, we can see the conditionals that lead to each of the states.
In red we can see the values or intervals referring to manipulability m. In
green we can see the values or intervals referring to fatigue f .

assistance is preferable. Four states are relevant for this
scenario: s1, s2, s4 and s5.

The initial state is a = 0, when manipulability m = 0
and fatigue f = 0. The five other states depend on values
of m and f : [0, 0.3), [0.3, 0.7) or [0.7, 1]. When m is in
the low interval or f is in the high interval, arbitration is
a = 0.9 and the robot exerts 90% of the desired force and
thus provides maximum assistance. When m and f are in the
middle interval, arbitration is a = 0.6 and the robot provides
a high-intermediate level of assistance. When m is in the
high interval and f in the middle interval, or f is in the low
interval and m is in the middle interval, arbitration is a = 0.3
and the robot provides a low-intermediate level of assistance.
When m is high and f is low, or in single-metric arbitration
mode when the metrics is in a good condition, arbitration is
a = 0.1 and the robot provides minimum assistance. Finally,
in single-metric arbitration mode, when the metric is in the
middle interval, arbitration is a = 0.5 and the robot provides
intermediate assistance. State transitions between arbitration
values are smoothed using a sigmoid function as

a(t+ dt) =


at + (a0 − at) ·

(
1− 1

1+eE(t)

)
if a(t) > at

a0 + (at − a0) ·
(
1− 1

1+eE(t)

)
if a(t) < at

a(t) if a(t) = at
(1)

E(t) = −
a0+at

2 − (a(t) + (at−a0)ts
T )

ts
(2)

where a0 and at are the current and the target state (i.e.,
arbitration value), respectively. The expanded exponential
term E is shown in (2), where ts is sampling time and T
determines minimum time in each state after a transition. T
was set to 5 seconds to avoid fast state transitions and to
allow the human to adapt to the new state.

B. Human Arm Manipulability

The manipulability calculation requires measuring the
human arm configuration in the joint space and the arm
Jacobian. We used a Kinect V2 to acquire human arm
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Fig. 4: Collaborative human-robot setup with human body segment skeleton,
as extracted by Kinect V2 camera using the Kinect Studio v2.0 software.

joints angle in real-time (see Fig. 4). From the measured
joint angles, we obtained the Jacobian by using the method
based on human arm triangle space projection [22]. The
force manipulability ellipsoid for a redundant arm can be
calculated by a singular value decomposition as

M = (J(q)J(q)T )−1 = UΣV T , (3)

where Σ ∈ Rm×n is a diagonal matrix composed of the
singular values σn ≥ 0, and U ∈ Rm×m and V ∈ Rn×n are
orthogonal matrices containing singular vectors. Each entry
of U ∈ Rm×m is an unit vector ui that defines a direction of
one of the principal axes of manipulability ellipsoid, while
the corresponding singular value σi defines the size of the
principal axis. The principal axis σ1u1 represent the direction
in which the end-effector can exert the highest force with the
given joint torques. Similarly, σmum represents the direction
of the lowest force production capacity.

In the task examined in this study, orientation was not
relevant and therefore we only used the three values/vectors
related to position. We were interested in the direction where
the polishing force has to be exerted on the surface, which
was aligned with robot base frame z-axis, thus manipulability
metric was defined as

m = u1,z
√
σ1 + u2,z

√
σ2 + u3,z

√
σ3, (4)

where the m value was then normalised using a sigmoid
function with 0.5 value on m = 1.0283.

C. Fatigue model

We used the fatigue model from [7] that operates with
measured EMG and is based on a first-order system:

dfi(t)

dt
=

{
(1− fi(t))Ai(t)

Ci
if Ai(t) ≥ Ath1

−fi(t) R
Ci

if Ai(t) < Ath2
, (5)

where the top equation represents the fatigue induction phase
and the bottom one the recovery phase. The fatigue index of
the muscle i fi(t) increases when the muscle activation level
Ai(t) is above an activation threshold Ath. Similarly, the
muscle fatigue index decreases when the mentioned muscle
activation is below a threshold at a recovery rate R. Different
thresholds Ath1 and Ath2 for passing up and passing down
between effort and relaxation modes can be used in order
to form a hysteresis and prevent the states from switching
rapidly back and forth. The speed with which the fatigue

induction or recovery happens also depends on the fatigue-
related capacity Ci of muscle i. The parameters Ci and
R were calibrated in the same way as in [7]. The muscle
activation signals are defined as

0 ≤ Ai(t) =
EMGi(t)

MVCi
≤ 1, (6)

where Ai(t) is the activation level of muscle i, EMGi(t)
is the processed EMG signal and MVCi is the EMG at the
maximum voluntary contraction. The raw EMG signal was
processed by high pass filtering, by rectification and finally
by low-pass filtering. We used wireless Delsys Trigno System
to collect the raw EMG signal.

III. PROOF-OF-CONCEPT DEMONSTRATIONS

To demonstrate the functionality of the developed FSM,
we first conducted six simulations with different variations
in the values of ergonomic metrics and two simulations
with variations of only one metric. Figure. 5 shows that for
different combinations of manipulability m and fatigue f , the
arbitration value is adapted according to the FSM in Fig. 3.

To validate the proposed method as a whole we performed
a test on a Kuka LWR iiwa robotic arm (see Fig. 1). The
task of the human user and the robot was to collaboratively
exert a vertical force of 50N against a horizontal surface.
While keeping the desired combined force, the human had
to change the arm posture to test the robot’s adaptability
to the manipulability value and fatigue accumulation. The
arbitration value and forces were displayed to the human in
real-time by a monitor (see Fig. 1). We examined four differ-
ent arm configurations with different manipulability values;
Fig 6 shows the sequence of configurations. Because the task
mainly involved pushing the arm down on the surface, the
Latissimus Dorsi muscle had a major contribution to this
action. We placed the EMG sensor on the Latissimus Dorsi
of the subject and calibrated the fatigue model parameters.
We tuned the model to be more sensitive than usual in order
to achieve a faster system response and to check the state
transitions quicker online. We set the recovery rate R = 0.5.
The thresholds between the induction and recovery modes
were set to Ath1 = Ath2 = 0.3, which were intentionally
relatively high for the purpose of demonstration.

Figure 6 shows the results of the test. The top graph
displays the fatigue value, the manipulability value, and the
arbitration value. We can see how manipulability changes
with the different arm configurations of the human operator.
The second graph displays the calculated robot force and the
measured combined force. When the manipulability was low
in the first configuration, the robot took over the majority
of the effort to produce the desired combined force. In
accordance with that, human effort was very low as can be
seen from the muscle activity signal in the bottom graph.
Note that for the first part of this stage (around 13 seconds)
the arbitration is still at a lower value a = 0.3 (state s2),
which is a result of (2) that prevents rapid switching between
states. Thus, it took some time for the arbitration value to
switch to a = 0.9 (state s5).
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The second arm configuration improved human manipu-
lability and the arbitration shifted more effort to the human.
In the third arm configuration, the human muscle activity
reached above the predefined relaxation threshold, thus fa-
tigue gradually increased. When the fatigue increased beyond
the predefined level, the state was transitioned and the arbi-
tration shifted more effort to the robot. After that, the human
effort was reduced and fatigue gradually reduced as a result.
In the last configuration, the manipulability was extremely
high since the human arm was in a singular configuration.

That meant that very little muscle effort was required for
the human to produce most of the desired combined force.
Accordingly, the arbitration shifted the effort predominantly
to the human. However, even though the produced force was
high, the muscle effort was low due to high manipulability,
thus fatigue did not occur.

IV. DISCUSSION

Collaborative robots aim to decrease human workload,
prevent injuries in the workplace, and increase task perfor-
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mance. Nevertheless, decreasing the cognitive load below
the individual skill of the user could lead to boredom [23].
Boredom is highly related to a detriment in vigilance [24],
which can be problematic in terms of safety and quality of
work. The proposed method keeps the human engaged in the
task most of the time with various levels of involvement.

Existing methods exploit the manipulability and fatigue
metrics separately and achieve either only the preventive
or only the reactive robot behaviour. The method in [7]
employed fatigue for binary single-metric arbitration. The
robot takes over the task only when a certain level of muscle
fatigue is reached. The approach in [17] used manipula-
bility for single-metric arbitration in a power-augmentation
exoskeleton. This way, the exoskeleton provided assistance
based on the difficulty of exerting force in every possible
position. The approach reduced the effort and thus reduced
the induced fatigue, however, it did not actually monitor or
react to it. We filled this gap by successfully developing a
multi-metric arbitration method, which combines both pre-
ventive and reactive strategies to manage human fatigue. The
manipulability metric is exploited to reduce the probability
of getting fatigued, while the muscle fatigue metric is used
to react when fatigue cannot be prevented.

There are two main approaches to arbitrate the percentage
of human and robot involvement in a common task: the
binary arbitration [6], [7], and the continuous arbitration
[8], [25]. The main advantage of binary arbitration is clear
attribution of task performance, i.e., either fully robot or fully
human, and we know exactly who is responsible for good or
bad task execution [26]. However, changes between the states
can be too significant for the user to adapt to them quickly.
On the other hand, continuous arbitration provides smooth
transitions between the percentage of human and robot
involvement. However, human has to constantly adapt the
effort according to the arbitration, leading to an unnecessary
additional workload. Thus, the proposed arbitration method
tries to strike a middle ground by considering a trade-off
between the binary approach and the continuous approach.
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