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Abstract
In this study, we utilize a novel approach to solve the Ekman equations for eddy-viscosity
profiles in the stable boundary-layer. By doing so, a well-known expression for the stable
boundary-layer height by Zilitinkevich (Boundary-Layer Meteorology, 1972, Vol. 3, 141–
145) is rediscovered.

Keywords Boundary layer height · Eddy viscosity · Ekman equations · K profile · Stable
boundary layer

1 Introduction

Sergej Zilitinkevich was one of the giants of atmospheric physics who carried the field
of boundary-layer meteorology (BLM) on his shoulder for more than half a century. We,
representing the BLM community at large, are indebted forever for his ingenious efforts and
lifelong dedication in advancing our field. In the arena of stable boundary layers (SBLs),
Zilitinkevich made numerous ground-breaking contributions. As a matter of fact, it would
be difficult to find any contemporary article on SBLs which does not make at least one
reference to an original publication of Zilitinkevich. The present paper is also following the
same tradition.

In this study, we utilize the Ekman equations to analytically derive a stable boundary-layer
height formulation which was originally proposed by Zilitinkevich (1972) based on scaling
arguments. During the process, we also derive equations for the vertical profiles of eddy
viscosity. To the best of our knowledge, it is the first time that estimates are given for the
eddy-viscosity profiles directly from the Ekman equations.

B Sukanta Basu
s.basu@tudelft.nl

Albert A. M. Holtslag
bert.holtslag@wur.nl

1 Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft,
The Netherlands

2 Meteorology and Air Quality, Wageningen University, Wageningen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10546-022-00757-y&domain=pdf
http://orcid.org/0000-0002-0507-5349
http://orcid.org/0000-0003-0995-2481


S. Basu, A. A. M. Holtslag

2 Formulation of SBL Height by Zilitinkevich (1972)

Using boundary layer scaling arguments, Zilitinkevich (1972) proposed that the height (h)
of stationary SBLs can be written as:

h = γ

√
u∗0L
| fcor | = Chu

2∗0 | fcor Bs |−1/2 . (1)

Here, the surface friction velocity and surface Obukhov length are denoted by u∗0 and L ,
respectively; Bs is the surface buoyancy flux. TheCoriolis parameter is represented by fcor =
sgn( fcor )| fcor |. In the northern and southern hemispheres the value of sgn( fcor ) is + 1 and−
1, respectively (Garratt 1994). The proportionality constants γ andCh are related as follows:

Ch = γ√
κ

≈ 1.58γ, (2)

where κ is the von Kármán constant assumed to be equal to 0.4.
Zilitinkevich (1972) assumed Ch to be order of one. In an analytical study, Businger and

Arya (1974) estimated γ to be equal to 0.72. A much lower value of γ ≈ 0.4 was estimated
by Brost and Wyngaard (1978) using a second-order closure model. Garratt (1982) who
analyzed observational data from several field campaigns also found γ ≈ 0.4. In his local-
scaling paper, Nieuwstadt (1984) found γ ≈ 0.35 to be consistent with other equations.
Zilitinkevich (1989) summarized Ch from several studies and found it to vary within the
range of 0.55–1.58. A unique aspect of the present study is that we analytically derive γ (and
Ch) with limited assumptions.

Wewould like to point out that Eq. 1 predicts physically unrealistic boundary-layer heights
for two situations: (i) close to the equator (i.e., fcor → 0); and (ii) for near-neutral conditions
(i.e., L → ∞). To circumvent the second issue, a few interpolation approaches have been
proposed in the literature (e.g.,Nieuwstadt 1981; Zilitinkevich 1989).

3 Momentum and Sensible Heat Flux Profiles

In SBL flows, the profiles of friction velocity and sensible heat flux are often expressed as
follows (Nieuwstadt 1984; Sorbjan 1986):

u2∗L = (
uw2

L + vw2
L

)1/2 = u2∗0
(
1 − z

h

)α = u2∗0 fm, (3a)

wθ L = wθ0

(
1 − z

h

)β = wθ0 fh . (3b)

Here, the friction velocity, momentum flux components, and sensible heat flux at height z are
denoted by u∗L , uwL , vwL , and wθ L , respectively. The subscript ‘0’ is used to demarcate
the corresponding surface values. These equations imply that the magnitudes of turbulent
fluxes are maximum near the surface and they monotonically decrease to zero at the top of
the boundary layer.

The exponents α and β in Eqs. 3a and 3b are not universal constants. By utilizing his local-
scaling hypothesis, Nieuwstadt (1984) suggested α = 1.5. He also proved that β should be
equal to 1 under the assumptions of horizontal homogeneity and stationarity. In contrast, based
on observational data from the well-knownMinnesota field campaign (Caughey et al. 1979),
Sorbjan (1986) estimated α = 2, and β = 3 for evolving SBLs. In another observational
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study, Lenschow et al. (1988) considered the additional effects of radiational cooling and
found the optimal α and β to be equal to 1.75 and 1.5, respectively.

Using the definition of Obukhov length (Stull 1988) in conjunction with Eqs. 3a and 3b,
we get:

� = L
f 3/2m

fh
, (4)

where � is the so-called local Obukhov length at height z.
The first and second derivatives of fm function in Eq. 3a can be written as:

f ′
m = −α

h

(
1 − z

h

)α−1
, (5a)

f ′′
m = α (α − 1)

h2

(
1 − z

h

)α−2
. (5b)

We will make use of these derivatives in a later section.

4 Eddy-Viscosity Profile in the Ekman Layer

According to theK-theory, based on the celebrated hypothesis ofBoussinesq (1877), turbulent
fluxes can be approximated as products of the eddy exchange coefficients and the mean
gradients (Lumley and Panofsky 1964):

uwL = −KM
∂U

∂z
, (6a)

vwL = −KM
∂V

∂z
. (6b)

here KM is the so-called eddy-viscosity coefficient. The mean velocity components in x and
y directions are denoted as U and V , respectively. Based on these equations, we can write:

u2∗L = (
uw2

L + vw2
L

)1/2 = KMS, (7)

where S is the magnitude of wind velocity shear.
For boundary layer flows over homogeneous and flat terrain, under steady-state conditions,

the averaged equations of motions can be simplified as follows (Zilitinkevich et al. 1967;
Brown 1974; Garratt 1994):

sgn( fcor )| fcor |
(
V − Vg

) = ∂ (uwL)

∂z
, (8a)

sgn( fcor )| fcor |
(
U −Ug

) = −∂ (vwL)

∂z
. (8b)

The geostrophic velocity components are denoted by Ug and Vg . In the literature, these
equations are commonly known as the Ekman-layer equations (Brown 1974; Nieuwstadt
1983).

In a landmark paper, Ekman (1905) first analytically solved Eqs. 8a and 8b with the
assumption of constant eddy-viscosity (KM ) in conjunction with appropriate boundary con-
ditions. Over the years, a few more closed-form analytical solutions of the Ekman equations
have been reported in the literature (e.g.,Wippermann 1973; Brown 1974; Nieuwstadt 1983;
Grisogono 1995; Parmhed et al. 2005). In all these papers, simplified profiles of KM were
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always assumed. In this paper, we take a radically different approach. We only assume that
Eq. 3a is valid and then deduce KM profile from the Ekman equations as shown below.

For barotropic conditions, the Ekman equations can be re-written as:

sgn( fcor )| fcor |∂V
∂z

= ∂2 (uwL)

∂z2
, (9a)

sgn( fcor )| fcor |∂U
∂z

= −∂2 (vwL)

∂z2
. (9b)

Next, by utilizing Eqs. 6a and 6b, these equations are transformed as follows:

−sgn( fcor )| fcor |vwL

KM
= ∂2 (uwL)

∂z2
, (10a)

−sgn( fcor )| fcor |uwL

KM
= −∂2 (vwL)

∂z2
. (10b)

Dividing Eq. 10a by Eq. 10b and rearranging we arrive at:

uwL
∂2 (uwL)

∂z2
+ vwL

∂2 (vwL)

∂z2
= 0. (11)

The momentum flux components can be decomposed in terms of local friction velocity as
follows (Businger and Arya 1974):

uwL = −u2∗L cos (δ) , (12a)

vwL = sgn( fcor )u
2∗L sin (δ) . (12b)

Here, δ is the angle between the flux vector and the x-axis. By plugging Eq. 3a in Eqs. 12a
and 12b, we get:

uwL = −u2∗0 fm cos (δ) , (13a)

vwL = sgn( fcor )u
2∗0 fm sin (δ) . (13b)

These equations can be differentiated as follows:

∂ (uwL)

∂z
= −u2∗0

[
f ′
m cos(δ) − fmδ′ sin(δ)

]
, (14a)

∂ (vwL)

∂z
= sgn( fcor )u

2∗0
[
f ′
m sin(δ) + fmδ′ cos(δ)

]
. (14b)

After differentiating one more time we arrive at:

∂2 (uwL)

∂z2
= −u2∗0

[
f ′′
m cos(δ) − 2 f ′

mδ′ sin(δ) − fmδ′′ sin(δ) − fmδ′2 cos(δ)
]
, (15a)

∂2 (vwL)

∂z2
= sgn( fcor )u

2∗0
[
f ′′
m sin(δ) + 2 f ′

mδ′ cos(δ) + fmδ′′ cos(δ) − fmδ′2 sin(δ)
]
.

(15b)

By combining Eqs. 11, 13a, 13b, 15a, 15b, and simplifying we get:

fm f ′′
m cos2(δ) − 2 fm f ′

mδ′ sin(δ) cos(δ) − f 2mδ′′ sin(δ) cos(δ) − f 2mδ′2 cos2(δ) +
fm f ′′

m sin2(δ) + 2 fm f ′
mδ′ sin(δ) cos(δ) + f 2mδ′′ sin(δ) cos(δ) − f 2mδ′2 sin2(δ) = 0. (16)

Please note that we have used
[
sgn( fcor )

]2 = 1.
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By invoking the Pythagorean trigonometric identity, we can further simplify this equation
to:

fm f ′′
m − f 2mδ′2 = 0. (17)

Thus,

δ′ =
√

f ′′
m

fm
. (18)

Substituting fm and f ′′
m from Eqs. 3a and 5b in 18, we find:

δ′ =
(√

α (α − 1)

h

) (
1 − z

h

)−1
. (19)

The second derivative of δ is:

δ′′ =
√

α (α − 1)

h2

(
1 − z

h

)−2
. (20)

Please note that these derivatives have real values if α is greater than one.
Now, we can directly estimate the KM profile from Eqs. 10a, 13b, 15a, 19, and 20:

KM = − sgn( fcor )| fcor |vwL

∂2(uwL)/∂z2
(21a)

= +
[
sgn( fcor )

]2 | fcor | fm sin(δ)

f ′′
m cos(δ) − 2 f ′

mδ′ sin(δ) − fmδ′′ sin(δ) − fmδ′2 cos(δ)
(21b)

= | fcor |h2
(2α − 1)

√
α (α − 1)

(
1 − z

h

)2
. (21c)

We would like to emphasize that this formulation of KM is derived directly from the Ekman
equations with very limited assumptions. To the best of our knowledge, similar formulation
and derivation have not been reported in the literature.

Similar to other Ekman layer findings, Eq. 21 is only valid in the outer layer. It does not
represent surface-layer conditions. In the literature, various patching and asymptoticmatching
approaches (e.g.,Taylor 1915; Blackadar and Tennekes 1968; Brown 1974; Zilitinkevich
1975) have been proposed to combine outer layer and inner layer (i.e., surface layer) solutions.
A nice overview was given by Hess and Garratt (2002). In Sects. 6 and 7, we utilize an
unorthodox strategy.

5 Conventional K-profile Approach

One of the most widely used first-order formulation for KM is the K-profile approach (Sten-
srud 2007). O’Brien (1970) was one of the first researchers to propose a K-profile which
portrays desirable surface layer behavior, attains a maximum value within the planetary
boundary layer (PBL), and decreases to a background diffusion level above the PBL. Based
on a second-order closure model, Brost and Wyngaard (1978) proposed a different K-profile
formulation for stably stratified flows:

KM = (κzu∗0)
φM

(
1 − z

h

)p
. (22)
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Here, φM is a type of non-dimensional velocity gradient, defined later. The exponent p is
a priori not known. For neutrally stratified flows in the surface layer, Eq. 22 reduces to
KM = κzu∗; this equation is in complete agreement with the well-established logarithmic
law of the wall. Furthermore, for stably stratified surface layers, one can deduce a stability-
corrected logarithmic law of the wall (e.g.,Businger et al. 1971) from Eq. 22.

The K-profile approach was modified by Troen and Mahrt (1986), Holtslag and Moeng
(1991), Holtslag and Boville (1993), Hong and Pan (1996), Noh et al. (2003), Hong et al.
(2006), and other researchers for its application in the unstable regime. They included a
counter-gradient term to include the effects of large-scale eddies on local fluxes. They also
considered entrainment fluxes at the top of the PBL. Holtslag and Moeng (1991) estimated
p to be equal to 2 for unstable conditions.

In the context of numerical stability, theK-profile approach is quite robust (Beljaars 1992).
Thus, it is not surprising that it is widely used in numerical weather prediction models. As
a matter of fact, the default PBL scheme (called the YSU scheme) of the popular Weather
Research and Forecasting (WRF) model uses the K-profile approach for both unstable and
stable conditions.

In spite of its wide usage, Eq. 22 suffers from two limitations for stable conditions. First,
there is uncertainty in the value of the exponent p. Brost and Wyngaard (1978) found p to
be equal to 1.5 based on their simulations. On the other hand, based on field campaign data
from Minnesota, Sorbjan (1989) found p = 1. In the absence of reliable field observations,
Troen and Mahrt (1986) used an integer value of p = 2. The local scaling hypothesis by
Nieuwstadt (1984) also leads to p = 2. In the present study, we estimate p analytically.

The other limitation is related to the parameterization of φM . The K-profile formulation
uses the following normalized velocity gradient:

φM =
(

κzS

u∗0

)
. (23a)

Please note that in this equation surface friction velocity (u∗0) is used. However, in contrast
to well-known surface-layer formulations, z is not limited to the depth of the surface layer.
Instead, z ranges from the surface to the top of the boundary layer. Function φM is commonly
parameterized as (e.g.,Brost and Wyngaard 1978):

φM = 1 + c
( z

L

)
= 1 + c

( z

h

) (
h

L

)
, (23b)

where c is a constant often assumed equal to 5. In the surface layer, for z/L < 1, numerous
studies documented the validity of this equation. However, its applicability for the outer layer
(i.e., above surface layer) is questionable. Furthermore, this equation (incorrectly) implies
that the logarithmic law of the wall applies to the entire boundary layer for neutral conditions
(i.e., h/L = 0).

6 Alternative K-profile Approaches

In this section, we derive two competing K-profile formulations. Both the formulations are
applicable for the entire SBL (i.e., including the surface layer and the outer layer).
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6.1 Option 1

Multiplying both sides of Eq. 7 by (κz/u∗0), we get:(
κz

u∗0

)
u2∗L = KM

(
κzS

u∗0

)
, (24a)

By using Eq. 3a, we deduce:

(κzu∗0) fm = KMφM . (24b)

Thus,

KM = (κzu∗0) fm
φM

= (κzu∗0)
φM

(
1 − z

h

)α

. (24c)

This equation is identical to the one proposed by Brost and Wyngaard (1978) based on the
second-order turbulence modeling. Except, in case of Eq. 24c, the exponent α is the same as
in Eq. 3a.

6.2 Option 2

An alternate expression for KM profile can be found by multiplying Eq. 7 by (κz/u∗L ):(
κz

u∗L

)
u2∗L = KM

(
κzS

u∗L

)
, (25a)

or

(κzu∗L) = KMφML . (25b)

By using Eq. 3a, we get:

(κzu∗0) f 1/2m = KMφML . (25c)

Hence,

KM = (κzu∗0) f 1/2m

φML
= (κzu∗0)

φML

(
1 − z

h

)α/2
. (25d)

In these equations, φML(= κzS/u∗L) is a local non-dimensional velocity gradient as it
utilizes local friction velocity (u∗L ) from height z. It is straightforward to show that:

φM = φML f 1/2m . (26)

Equation 26 implies that φM decreases more strongly with height than φML . Several past
simulation studies (e.g., Basu and Porté-Agel 2006; Zilitinkevich and Esau 2007; van deWiel
et al. 2008) found the following parameterization for φML :

φML = 1 + cL
( z

�

)
. (27)

In those studies, cL was found to be between 3 and 5. By regression analysis of field obser-
vations, Mahrt and Vickers (2003) found cL = 3.7. Here, we assume cL = 4.
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7 Matching of KM Profiles in the Outer Layer

Thus far, we have derived 3 different K-profiles. Note that Eq. 21 is only valid in the outer
layer. In contrast, Eqs. 24c and 25d are valid in the entire SBL. In the following sub-sections,
we match these KM profiles for the outer layer when z/L � 1 and z/� � 1.

7.1 Option 1

In the outer layer, for z/L � 1, Eq. 24c simplifies to:

KM = (κzu∗0) fm
c
( z
L

) , (28a)

=
(κ

c

)
(u∗0L) fm, (28b)

=
(κ

c

)
(u∗0L)

(
1 − z

h

)α

. (28c)

If we assume α = 2, then we get:

KM =
(κ

c

)
(u∗0L)

(
1 − z

h

)2
. (29)

Similarly, by plugging in α = 2 in Eq. 21, we get:

KM = | fcor |h2
3
√
2

(
1 − z

h

)2
. (30)

By directly matching Eq. 29 with Eq. 30 we arrive at:

| fcor |h2
3
√
2

=
(κ

c

)
(u∗0L) . (31)

Further simplification leads to the SBL height parameterization of Zilitinkevich (1972):

h = γ1

√
u∗0L
| fcor | , (32a)

where:

γ1 =
√
3
√
2

(κ

c

)
. (32b)

For c = 5, we have: γ1 = 0.583.

7.2 Option 2

Similar to option 1, in the outer layer, for z/� � 1, Eq. 25d simplifies to:

KM = (κzu∗0) f 1/2m

cL
( z

�

) , (33a)

=
(

κ

cL

)
(u∗0�) f 1/2m , (33b)
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=
(

κ

cL

) (
u∗0L f 2m

fh

)
. (33c)

In this derivation, we used Eq. 4 in the conversion of � to L . If we assume α = 3/2 and
β = 1, we get:

KM =
(

κ

cL

)
(u∗0L)

(
1 − z

h

)2
. (34)

Comparing this equation with Eq. 21, we arrive at:

h = γ2

√
u∗0L
| fcor | , (35a)

where:

γ2 =
√√

3

(
κ

cL

)
. (35b)

If cL = 4, we get γ2 = 0.416.
Interestingly, both the options 1 and 2 lead to the SBL height parameterization of Zil-

itinkevich (1972). The estimated proportionality constants, γ1 and γ2, fall within the range of
previous observation-based and simulation-based empirical values. Furthermore, based on
the literature, both α = 3/2 andα = 2 are plausible in SBLs. However, usingφM = 1+5z/L
for the entire SBL, as commonly done in practice, does not seem physicallymeaningful and is
in contrast with observations (e.g, Holtslag 1984, amongmany others). From this perspective,
option 2 seems to be a better option.

8 Conclusion

Fifty years ago, Zilitinkevich (1972) proposed a formulation for the SBL height by using
boundary-layer scaling arguments. In this study, we derive the same formulation from an
analytical approach involving the Ekman layer equations. In addition, we provide novel
derivations for eddy-viscosity profiles in the SBL. Our approach makes use of the following
assumptions: (i) the magnitude of turbulent fluxes decrease monotonically with height and
go to zero at the top of the boundary layer; (ii) the K theory is applicable for stably stratified
conditions; and (iii) under steady-state condition, for flows over homogeneous and flat terrain,
geostrophic balance holds in the boundary layer. None of these assumptions are unorthodox.
In our future work, we hope to extend our analytical approach to derive geostrophic drag
laws for SBLs.
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