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A B S T R A C T   

We apply Massively Parallel Interface for MPFA-O scheme with state-of-the-art Operator-Based Linearization 
(OBL) approach for multiphase flow in porous media. The implementation of MPFA-O scheme enhances the 
modelling capabilities for non-K-orthogonal mesh. A fully implicit scheme is applied to guarantee the stability of 
solutions when a mass-based formulation is involved to keep the flexibility of the framework for general-purpose 
reservoir simulation. As the MPFA-O introduces more non-zeros elements in the Jacobian matrix than the 
traditional TPFA, massively parallel computations via Message Passing Interface (MPI) in this work help to 
guarantee competitive computational efficiency for high-fidelity geological models. Concerning the Jacobian 
assembly hassle, we apply the OBL approach which introduces operators combining the fluid and rock properties 
in the conservation equations and discretizes the operators in the physical parameter space. By computing values 
and derivatives of the operators via a multilinear interpolation, the assembly of Jacobian matrix and residual 
vector could be drastically simplified. Another benefit of the OBL is that by only evaluating operator values on 
the predefined nodes in the physical parameter space, the overhead related to complex phase behavior and 
property evaluation is significantly reduced. In the end, we present several benchmark cases to rigorously 
demonstrate the accuracy, convergence, and robustness of the framework and two challenging field-scale cases to 
further prove its computing performance and parallel scalability.   

1. Introduction 

Characterization of the geological model is of vital importance for oil 
and gas field management. An accurate reservoir characterization model 
(RCM) could provide intensified assistance to low-cost and risk- 
controlled decision making in practical projects. However, it is always 
challenging to construct a geological formation accurately due to the 
uncertainties in the subsurface characterization and strong heteroge-
neities including faults, fractures, and pinchouts. To deal with that, the 
reservoir simulation technology which is the most efficient and best 
solution is usually applied to quantify the geological features through 
inverse modelling. In this approach, the simulation accuracy and the 
simulation efficiency which determines the number of iterations in 
limited time have a great influence on the finally adopted geological 

model. Therefore, a powerful reservoir simulator that is accurate and 
efficient is quite important in RCM. Moreover, the performance of the 
simulator plays a significant role in the optimization process of devel-
opment strategies as well. 

Mathematically, the reservoir simulation is supposed to solve a 
nonlinear system of coupled conservation equations and constitutive 
relations. The nonlinearity of the system is mainly introduced by the 
complex grid geometry in RCM, complicated phase behavior, and non- 
uniform formation properties. To tackle the challenges associated with 
these complexities, researchers exert a lot of effort to design optimal 
discretization schemes in space and time, nonlinear solvers, linear 
solvers, and phase behavior computations. 

The spatial discretization helps to approximate the fluxes through 
faces connecting grid blocks. For the purpose of different applications, 
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many schemes have been proposed. Among all the schemes, the two- 
point flux approximation (TPFA) is widely used in many reservoir 
simulation softwares because of its simplicity. However, it requires K- 
orthogonal mesh of which the grid is structured and aligned with the 
principal directions of the permeability (Aziz and Settari, 1979). Owing 

to the inconsistency on non-K-orthogonal mesh (Settari and Aziz, 1972), 
it fails to provide convergent solutions for the simulation of complex 
geological models having an unstructured grid and full tensor 
permeability. 

To tackle the challenges in TPFA, the multipoint flux approximation 
(MPFA) is proposed in (Aavatsmark et al., 1994, 1996a, 1996b, 1998; 
Edwards and Rogers, 1994, 1998) to provide correct spatial discretiza-
tions for non-K-orthogonal mesh. Having advantages for the cases with 
unstructured mesh and full tensor permeability, the MPFA is further 
extended in (Faille, 1992; Nordbotten and Eigestad, 2005; Wheeler and 
Yotov, 2006; Contreras et al., 2019; Cao et al., 2009). In addition, the 
extensive discussions in (Wheeler and Yotov, 2006; Klausen and 
Winther, 2006a, 2006b; Aavatsmark et al., 2006, 2007a, 2007b, 2008; 
Forsyth and Sammon, 1988; Njifenjou and Nguena, 2006; Aavatsmark 
and Eigestad, 2006; Eigestad and Klausen, 2005; Pal et al., 2006) prove 
the convergence of this scheme and indicate the prospective applications 
in reservoir simulation. Among all the MPFA versions, the O method is 
the classical and most intuitive method applicable for general applica-
tions (Aavatsmark, 2007). Futhermore, monotone nonlinear 
finite-volume methods that are robust and preserving are proposed 
(Schneider et al., 2018; Gao and Wu, 2013). 

Apart from the control volume methods, the finite element method 
has also been improved to tackle the challenges (Brezzi and Fortin, 
1991; Abushaikha et al., 2015, 2017; Moshiri and Manzari, 2019; 

Fig. 1. The schematic of control volumes and intersection volumes.  

Fig. 2. Normal vectors inside an interaction volume.  

Fig. 3. An intuitive representation of the operators in a black oil system (OBL resolution is 32).  
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Younes and Fontaine, 2008; Moortgat and Firoozabadi, 2016; Arrarás 
and Portero, 2019). In the variously derived versions, the 
mixed-finite-element method (MFEM), which solves the coupled con-
servation and momentum equations simultaneously, is locally conser-
vative and is capable to handle the anisotropic properties (Brezzi and 
Fortin, 1991). However, it leads to a saddle-point problem. To address 
this issue, the mixed-hybrid finite-element (MHFE) method is proposed 
and applied in reservoir simulation (Moshiri and Manzari, 2019; Younes 
and Fontaine, 2008; Moortgat and Firoozabadi, 2016; Arrarás and Por-
tero, 2019; Abushaikha et al., 2017). The mimetic finite difference 
scheme (MFD), part of the MHFE family, is presented to handle any 
shape of polygonal and polyhedral meshes (Tikhonov and Samarskii, 
1962; Lipnikov et al., 2014). Holding the advantages of MFEM and the 
flexibility on a general mesh, the application of MFD in reservoir 
simulation gains some success (Zhang et al., 2017; Alpak, 2010; Lie 
et al., 2012; Abushaikha and Terekhov, 2020). But unfortunately, the 
unknowns on the interfaces bring more challenges for linear solver 
compared with the TPFA and MPFA methods. 

Important as the spatial discretization is, the discretization scheme in 
time also plays a vital role in reservoir simulation. Generally, the dis-
cretization scheme in time can be classified into several types including 
fully implicit, adaptive implicit, and implicit pressure explicit saturation 
(Li et al., 2004). Among them, the fully implicit scheme is the most robust 
in that it avoids numerical limitations such as the CFL limit. For that 

reason, this scheme is widely used to solve multiple simulation models in 
many reservoir simulation softwares. However, the application of this 
scheme may bring severe nonlinearity to the system. Aimed to provide 
efficient solutions, several types of selections of nonlinear unknowns have 
been proposed. As summed up in (Voskov, 2017), the types, also called as 
formulations can be classified into two classes including mass-based and 
phase-based formulations. Usually, the mass-based formulation has less 
nonlinear unknown variables than the phase-based formulation. Although 
this simplifies the linear solution, more phase behavior calculations are 
required for the assembly of Jacobian matrix and residual vector in the 
mass-based formulation. Therefore, the phase-based formulation can be 
more efficient in comparison to the mass-based formulation in the field 
applications having complex phase behavior. 

Apart from selection of the formulation, the linearization of the 
system at each nonlinear iteration is also quite important for the fully 
implicit scheme. In this process, it is always challenging to determine the 
value and derivatives of the properties and involve them in the Jacobian 
matrix and residual vector. Traditionally, there are three ways to deal 
with that including the numerical approach, straightforward hand- 
differentiation approach, and automatic differentiation techniques. 
The numerical approach is quite flexible but often fails to offer a robust 
solution. What important is that it can be expensive for multicomponent 
systems (Pruess et al., 1999; Pruess, 2004). The straightforward 
hand-differentiation approach is the most accurate strategy and has 

Fig. 4. The flowchart for implementation work.  
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Fig. 5. The grids for parallel simulation. Owned grid in yellow, shared cell in blue, ghost cell in red. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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been implemented in many commercial simulators. However, the 
complexity of the ensemble of the Jacobian brings hassles to software 
development when add/change governing physics (Cao, 2002). The 
automatic differentiation techniques (Voskov, 2012; Zaydullin et al., 
2014; Garipov et al., 2016, 2018) are proven to provide robust solutions 
and help to keep the flexibility of a reservoir simulator. But the auto-
matic differentiation usually introduces an overhead and limits the 

Fig. 6. Hexahedral grid.  

Table 1 
Discretization errors (single-phase flow, heterogeneous domain, diagonal 
permeability tensor, structured grid).  

1/h LP
∞− integ (MPFA- 

O) 
LP

2− integ (MPFA- 
O) 

LP
∞− integ (TPFA) LP

2− integ (TPFA) 

8 3.30E+00 6.12E-01 3.30 E+00 6.12E-01 
16 1.06 E+00 1.87E-01 1.06 E+00 1.87E-01 
32 2.87E-01 5.05E-02 2.87E-01 5.05E-02 
64 7.40E-02 1.31E-02 7.40E-02 1.31E-02 
O (L) 1.83 1.85 1.83 1.85  

Fig. 7. The effect of simulation time and time step on errors.  

Fig. 8. Comparison of MPFA-O error to TPFA error, single-phase flow, heterogeneous domain, diagonal permeability tensor, structured grid.  

Fig. 9. Split a hexahedral grid into six tetrahedron grids.  
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efficiency of a reservoir simulator. 
Recently, a novel linearization approach named Operator-based 

Linearization (OBL) has been proposed in (Voskov, 2017). In this 
approach, the operators, combining the fluid and rock properties, are 
introduced into the governing equations. Considering the fact that the 
operators account for the most complex and nonlinear part of the sys-
tem, an additional discretization of the operators is introduced in the 
physical parameter space. Then, a piecewise linear representation of the 
physics simplifies the evaluation of the complex phase behavior as well 
as rock property. Also, a moderate coarsening of physics helps to reduce 
the nonlinearity of the system. The applications in various challenging 
problems prove the robustness and reliability of the OBL method (Khait 
and Voskov, 2016, 2017, 2018a, 2018b; Wang et al., 2020). 

In this work, we first involve the advanced MPFA-O scheme and OBL 
approach within a parallel framework for general-purpose reservoir 
simulation. The MPFA-O method is applied on a general unstructured 
mesh for the purpose of handling complex geological models. The mass- 

based formulation employing OBL is involved in a fully implicit scheme 
to provide unconditionally stable solutions. Thanks to the imple-
mentation of OBL, the programming of the Jacobian assembly is 
simplified significantly. In order to enhance the modelling capabilities of 
high-fidelity/high-resolution geological models, we use massively par-
allel computations via Message Passing Interface (MPI) which can 
improve the simulation efficiency significantly. Finally, we present 
several benchmark cases under single-phase and two-phase flow and 
two challenging field-scale cases to demonstrate the accuracy, conver-
gence, and computing performance of the new simulator. 

2. Parallel framework for reservoir simulation 

In this section, we describe the governing equations, discretization 
method, linearization method, and the implementation of the 
framework. 

Table 2 
Discretization errors (single-phase flow, heterogeneous domain, diagonal 
permeability tensor, unstructured grid), h is the size of the hexahedral grid.  

1/h LP
∞− integ (MPFA- 

O) 
LP

2− integ (MPFA- 
O) 

LP
∞− integ (TPFA) LP

2− integ (TPFA) 

8 4.07 E+00 5.22E-01 2.71E+01 3.17 E+00 
16 1.95 E+00 2.67E-01 2.74E+01 4.09 E+00 
32 8.68E-01 1.13E-01 2.74E+01 4.59 E+00 
64 2.60E-01 3.20E-02 2.77E+01 4.87 E+00 
O (L) 1.32 1.34 − 1.06E-02 − 2.06E-01  

Fig. 10. Comparison of MPFA-O error to TPFA error, single-phase flow, heterogeneous domain, diagonal permeability tensor, unstructured grid.  

Fig. 11. Permeability magnitude and pressure contour, single-phase flow, heterogeneous domain, full permeability tensor.  

Table 3 
Discretization errors (single-phase flow, heterogeneous domain, full perme-
ability tensor, structured grid).  

1/h LP
∞− integ (MPFA- 

O) 
LP

2− integ (MPFA- 
O) 

LP
∞− integ (TPFA) LP

2− integ (TPFA) 

8 1.56E-03 5.00E-04 1.44E-01 4.68E-02 
16 4.84E-04 1.63E-04 1.82E-01 6.17E-02 
32 1.31E-04 4.57E-05 1.98E-01 6.98E-02 
64 3.40E-05 1.21E-05 2.07E-01 7.40E-02 
O (L) 1.84 1.79 − 1.74E-01 − 2.21E-01  

L. Li et al.                                                                                                                                                                                                                                        
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2.1. Governing equations 

A typical fluid model in petroleum, the black oil model (Li et al., 
2004), is applied to describe the phase behavior underground. In this 
model, there are three components including a light hydrocarbon, a 
heavy hydrocarbon, and a water component. The two hydrocarbon 
components comprise the hydrocarbon system that has oil and gas 
phases while the water component only stays inside the aqueous phase. 
The light one, usually rich in methane, forms the gas phase. The heavy 
one mainly constitutes the liquid oil phase. To represent the mass 
transfer between gas and oil phases, a certain amount of the light hy-
drocarbon is allowed to be dissolved in the oil phase depending on 

pressure. The transport equations of the three components can be 
written as below. 

∂
∂t

[

φ
(

ρgSg +
ρgst

Bo
RgSo

)]

+∇ ⋅
(

λgρgK∇P+ λo
ρgst

Bo
RgK∇P

)

+ qg = 0, (1)  

∂
∂t
(φρoSo)+∇ ⋅ (λoρoK∇P)+ qo = 0, (2)  

∂
∂t
(φρwSw)+∇ ⋅ (λwρwK∇P)+ qw = 0. (3)  

where φ is the reservoir porosity; t is the time; subscripts g, o, and w 
represent gas, oil, and water; subscript st represents the standard con-
dition; ρ is the phase density; B is the formation volume factor; S is the 
saturation; λ is the phase mobility which is defined as kro/μo in oil phase; 
kro is the relative permeability of oil phase; μ is the viscosity; P is the 
pressure; K is the effective permeability tensor; q is the phase rate per 
unit volume; Rg is the gas solubility that represents the mass transfer 
between gas and oil phases. 

Fig. 12. Comparison of MPFA-O error to TPFA error, single-phase flow, heterogeneous domain, full permeability tensor, structured grid.  

Table 4 
Discretization errors (single-phase flow, heterogeneous domain, full perme-
ability tensor, unstructured grid), h is the size of the hexahedral grid.  

1/h LP
∞− integ (MPFA- 

O) 
LP

2− integ (MPFA- 
O) 

LP
∞− integ (TPFA) LP

2− integ (TPFA) 

8 1.54E-03 3.27E-04 4.92E-02 1.36E-02 
16 4.15E-04 9.56E-05 5.73E-02 1.93E-02 
32 1.11E-04 2.60E-05 6.22E-02 2.34E-02 
64 2.91E-05 6.79E-06 6.49E-02 2.59E-02 
O (L) 1.91 1.86 − 1.33E-01 − 3.11E-01  

Fig. 13. Comparison of MPFA-O error to TPFA error, single-phase flow, heterogeneous domain, full permeability tensor, unstructured grid.  

Table 5 
parameters for simulation.   

K [mD] Φ μo μw no nw 

value 1 0.3 2 1 2 2  

L. Li et al.                                                                                                                                                                                                                                        
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Equation (4) is applied to close the system. 

Sg + So + Sw = 1. (4)  

2.2. Discretization employing multipoint flux approximation method 

Taking full use of complex geological models is always challenging 
for reservoir simulation. First, unstructured gridding is sometimes 
required to characterize the important features explicitly; second, a 
coarsening of high-resolution heterogeneous geological model could 
introduce full tensor permeability. In this work, to tackle these two 
challenges, we apply the MPFA-O method for discretization assisted 
with the functions related to geometry calculation in INMOST (Terekhov 
and Vassilevski, 2019). 

Take the mesh in Fig. 1 for example, there are six control volumes in 
black bold lines and two intersection volumes in red lines. Points x1, x2, 
x3, x4, x5, and x6 are the centers of cell 1, cell 2, cell 3, cell 4, cell 5, and 
cell 6; points x1, x2, x3, x4, x5, x6, and x7 are the midpoints of edges 
where the subscripts indicate serial number. The fluxes through half- 
edges including x1x7, x3x7, x7x2, and x7x4 are computed through 
intersection volume x1x2x4x3, and the fluxes through half-edges 
including x2x8, x6x8, x8x5, and x8x7 are computed through intersec-
tion volume x3x4x6x5. Next, we describe the computation in detail with 
the lower intersection volume. 

As shown in Fig. 2, v is the normal vector on the half-edges of 
intersection volumes; take v(1)1 as an example, it is a normal on the 
connection line between x1 and x3, the superscript denotes the index of 
cell 1; n1, n2, n3, and n4 are the normal vectors on the half-edges of 
control volumes. Here, we approximately take the pressure gradient in 
triangular x1x1x3 as in sub-region x1x1x7x3. Then, the pressure in this 
region can be computed as described below: 

P= a1P1 + a2P3 + (1 − a1 − a2)P1, (5)  

where P1 and P3 are the pressure on points x1 and x3; P1 is the pressure 
on point x1; a1 and a2 are linear functions. The gradient of a1 in the 
direction of v(1)1 and the gradient of a2 in the direction of v(1)2 can be 
written as: 

grada1 =
1

2F1
v(1)

1 , grada2 =
1

2F1
v(1)

2 , (6)  

where F1 is the area of the triangle x1x1x3. Thus, the pressure gradient 
may be written in the form: 

gradP=
1

2F1

[
v(1)

1 (P1 − P1)+ v(1)
2 (P3 − P1)

]
. (7) 

Based on the pressure gradient, we next compute the fluxes f (1)1 and 
f (1)3 through half-edges x1x7 and x3x7. The superscript and subscript of f 
indicate the indexes of cell and half-edge respectively. 
⎡

⎣
f (1)1

f (1)3

⎤

⎦= −

[
Γ1nT

1

Γ3nT
3

]

K1gradP= −
1

2F1

[
Γ1nT

1

Γ3nT
3

]

K1
[

v(1)
1 v(1)

2

]
[

P1 − P1
P3 − P1

]

,

(8)  

where K1 is the permeability of cell 1 in full tensor format; Γ is the length 
of half-edge. 

By defining G1 

G1 =
1

2F1

[
Γ1nT

1

Γ3nT
3

]

K1
[

v(1)
1 v(1)

2

]
=

1
2F1

⎡

⎣
Γ1nT

1 K1v(1)
1 Γ1nT

1 K1v(1)
2

Γ3nT
3 K1v(1)

1 Γ3nT
3 K1v(1)

2

⎤

⎦, (9) 

Equation (8) can be written as 

⎡

⎣
f (1)1

f (1)3

⎤

⎦= − G1

[
P1 − P1
P3 − P1

]

. (10)  

Similarly, we obtain matrixes G2, G3, and G4 in the sub-regions x1x2x4x7, 
x3x7x2x3, and x7x4x4x2. Then, the fluxes through half-edges in the four 
sub-regions can be written as: 
⎡

⎣
f (1)1

f (1)3

⎤

⎦ = − G1

[
P1 − P1

P3 − P1

]

,

⎡

⎣
f (2)1

f (2)4

⎤

⎦ = − G2

[
P2 − P1

P4 − P2

]

⎡

⎣
f (3)2

f (3)3

⎤

⎦ = − G3

[
P2 − P3

P3 − P3

]

,

⎡

⎣
f (4)2

f (4)4

⎤

⎦ = − G4

[
P4 − P2

P4 − P4

]

.

(11) 

Assuming that the flux on the interface of two neighboring cells is 
continuous, equation (11) can be rewritten as: 

f1 = − g(1)
1,1(P1 − P1) − g(1)

1,2(P3 − P1) = g(2)
1,1(P1 − P2) − g(2)

1,2(P4 − P2)

f2 = g(4)
1,1(P2 − P4) + g(4)

1,2(P4 − P4) = − g(3)
1,1(P2 − P3) + g(3)

1,2(P3 − P3)

f3 = − g(3)
2,1(P2 − P3) + g(3)

2,2(P3 − P3) = − g(1)
2,1(P1 − P1) − g(1)

2,2(P3 − P1)

f4 = g(2)
2,1(P1 − P2) − g(2)

2,2(P4 − P2) = g(4)
2,1(P2 − P4) + g(4)

2,2(P4 − P4)

.

(12)  

where g is the submatrix of G and its superscript is the index of the cell. 
By defining f = [f1, f2, f3, f4]T, P = [P1, P2, P3,P4]

T, and P =

[P1, P2, P3,P4]
T, we can derive two equations based on Equation (12): 

f =CP + FP, (13)  

and 

AP=BP. (14)  

where 

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− g(1)
1,1 − g(2)

1,1 0 − g(1)
1,2 g(2)

1,2

0 g(4)
1,1 + g(3)

1,1 − g(3)
1,2 g(4)

1,2

g(1)
2,1 − g(3)

2,1 g(3)
2,2 + g(1)

2,2 0

g(2)
2,1 − g(4)

2,1 0 − g(2)
2,2 − g(4)

2,2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (15)  

B=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− g(1)
1,1 − g(1)

1,2 − g(2)
1,1 + g(2)

1,2 0 0

0 0 g(3)
1,1 − g(3)

1,2 g(4)
1,1 + g(4)

1,2

g(1)
2,1 + g(1)

2,2 0 − g(3)
2,1 + g(3)

2,2 0

0 g(2)
2,1 − g(2)

2,2 0 − g(4)
2,1 − g(4)

2,2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (16)  

C=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− g(1)
1,1 0 − g(1)

1,2 0

0 g(4)
1,1 0 g(4)

1,2

0 − g(3)
2,1 g(3)

2,2 0

g(2)
2,1 0 0 − g(2)

2,2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (17)  

F=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g(1)
1,1 + g(1)

1,2 0 0 0

0 0 0 − g(4)
1,1 − g(4)

1,2

0 0 g(3)
2,1 − g(3)

2,2 0

0 − g(2)
2,1 + g(2)

2,2 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (18) 

By combining Equations (13) and (14), we can obtain: 

f =TP,T = CA− 1B + F. (19) 

L. Li et al.                                                                                                                                                                                                                                        



Journal of Petroleum Science and Engineering 220 (2023) 111190

9

As knowing the fluxes through full-edges could benefit the imple-
mentation of MPFA-O a lot, we derive a new formulation based on 
Equation (19): 

finteg =TintegPinteg. (20) 

Taking the connection between cell 3 and cell 4 in Fig. 1 as an 
example, Equation (20) can be instantiated as: 

fc3− c4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T1integ
T2integ
T3integ
T4integ
T5integ
T6integ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Τ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1
P2
P3
P4
P5
P6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (21) 

In this way, we can construct the transmissibility vector and its 
corresponding grid information in the connection-based approach (Cao, 
2002; Terekhov et al., 2017). 

Then, the governing Equations (1)–(3) can be transformed as follows 
when applying Equation (20) to discretize in space and applying back-
ward Euler approximation to discretize in time. 
[

Vφ
(

ρgSg +
ρgst

Bo
RgSo

)]n+1

−

[

Vφ
(

ρgSg +
ρgst

Bo
RgSo

)]n

− Δt
∑

l

[(

λl
gρl

g + λl
o
ρgst

Bl
o

Rl
g

)

Tl
integPl

integ

]

+ΔtVqg = 0,
(22)  

(VφρoSo)
n+1

− (VφρoSo)
n
− Δt

∑

l

(
λl

oρl
oTl

integPl
integ

)
+ΔtVqo = 0, (23)  

(VφρwSw)
n+1

− (VφρwSw)
n
− Δt

∑

l

(
λl

wρl
wTl

integPl
integ

)
+ΔtVqw = 0. (24)  

Here, V is the volume of a grid block; l denotes the interfaces between a 
grid block and its neighboring grid blocks; λl

j = (krj/μj)
l is the mobility of 

Table 6 
Simulation results using different OBL resolutions.  

OBL 
resolution 

Absolute 
error of 
Sw (T =
1000 
days) 

Total 
nonlinear 
newton 
iterations 

Nonlinear 
newton 
iterations 
per time 
steps  

CFL∞max 

2 3.05E-01 20,024 2.00E+00 7.37E-01 1.67E+00 
4 5.17E-02 20,669 2.07E+00 5.68E-01 1.22E+00 
8 1.83E-02 22,320 2.23E+00 6.95E-01 1.09E+00 
16 7.76E-03 30,027 3.00E+00 7.80E-01 1.04E+00 
32 2.74E-03 31,081 3.11E+00 8.48E-01 1.02E+00 
64 7.83E-04 33,767 3.37E+00 8.99E-01 1.19E+00 
128 1.75E-04 34,620 3.46E+00 9.56E-01 1.43E+00 
256 2.77E-05 35,491 3.55E+00 9.77E-01 1.77E+00 
Conventional 0 35,226 3.52E+00 1.36E+00 2.06E+00  

Fig. 14. The effect of OBL resolution on the absolute error of water saturation, 
T = 1000 days. 

Fig. 15. Comparison of analytical solutions to numerical solutions at different 
simulation time, OBL resolution is 64. 

Fig. 16. Permeability distribution of the bent SPE10 model.  

Fig. 17. Domain decomposition of the bent SPE10 model, 48 subdomains.  
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phase j over the interface l by the classic upstream weighting; n+1 is the 
current time step; n is the previous time step. It is good to mention that 
the arithmetic mean of mobilities (Souza et al., 2018) is also a good 
strategy to approximate the mobility. 

2.3. Operator-based representation of governing equations 

In this section, to simplify the representation of governing equations, 
we re-write Eqs. (22)–(24) in a general form (Voskov, 2017). 

V(ξ)φ0(ξ)[αc(ω) − αc(ωn)] −
∑

l
ΔtTl

integPβl
c(ω)+ΔtVqc = 0, c= 1, 2, 3,

(25)  

where ξ is the spatial coordinate, ω is the physical state. The operators 
are defined as: 

α1(ω)=
[
1+ cr

(
P − Pref

)]
(

ρgSg +
ρgst

Bo
RgSo

)

, (26)  

α2(ω)=
[
1+ cr

(
P − Pref

)]
ρoSo, (27)  

α3(ω)=
[
1+ cr

(
P − Pref

)]
ρwSw, (28)  

β1(ω)= λl
gρl

g + λl
o
ρgst

Bl
o

Rl
g, (29)  

β2(ω)= λl
oρl

o, (30)  

β3(ω)= λl
wρl

w, (31)  

Here, Pref is the reference pressure for the porosity φ0; cr is the rock 

compressibility factor. The operators αc and βc are only dependent on 
the phase and rock properties and independent of spatially distributed 
properties. 

The operator-based representation of governing equations provides a 
way to unify the three governing equations. What is more, it could also 
unify the governing equations of different models such as single-phase, 
two-phase dead oil, three-phase black oil, and compositional models. A 
programming based on this kind of representation helps to keep the 
flexibility and extensibility of the simulator. Besides, the most severe 
nonlinearity and complexity related to phase behavior and property 
calculation can be reduced to evaluation of operators. 

2.4. Fully implicit scheme using the OBL 

Induced by the complex geological model and phase behavior un-
derground, the flow system in petroleum is quite nonlinear. Thus, we 
apply the unconditionally stable fully implicit method in this framework 
to guarantee robust solutions. It can be written as below with the 
application of the Newton-Raphson method. 

xk+1
n+1 = xk

n+1 −
r
(
xk

n+1

)

J(xk
n+1)

, (32)  

where x is the vector of unknowns; the subscript n+1 represents the 
current time step; the superscript k and k+1 represent previous 
nonlinear iteration and current nonlinear iteration respectively; r(xk

n+1)

and J(xk
n+1) are the residual vector and Jacobian matrix evaluated using 

the estimated unknowns at k nonlinear iteration. 
In the operator-based linearization (OBL) approach (Voskov, 2017), 

the molar formulation is applied for solving the system of Equation (25). 
For the black oil model, the nonlinear unknowns are comprised of 

Fig. 18. Case 1 the pressure and water saturation distributions.  
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pressure, mass overall composition of gas component zg, mass overall 
composition of oil component zo. It is worth mentioning that the un-
knowns are exactly the physical state which can be used to compute the 
properties in operators αc and βc. 

Benefit from that, the operators can be represented in an explicit and 
effective manner when we discretize the parameter space of the un-
knowns using a uniform grid and estimate the values of the operators on 

the vertices. With regard to the points not coinciding with the vertices, 
the values of their operators can be evaluated by multi-linear interpo-
lation. The interpolation coefficients will yield partial derivatives of 
operators with respect to nonlinear unknowns. Here, we take a black oil 
system to illustrate the theory. In this example, a three-dimensional 
space, with pressure, zg, and zo on each axis, is discretized uniformly. 
By setting the number of points (resolution) on each axis equal to 32, we 
compute all operators in the vertices. Here, for an illustrative visuali-
zation, we only show four cross-sections in the direction of pressure in 
Fig. 3. The smoothly distributed operators, represented by the degree of 
color, demonstrate the feasibility of the OBL. 

In this work, following an adaptive way proposed in (Khait and 
Voskov, 2017), the operators on each node are only computed single 
time and stored when a physical state falls inside its supporting hyper-
cubes during a simulation run. Compared with the traditional 

Fig. 19. Case 1 water cut of production wells.  

Fig. 20. Case 1 computational results of MPFA-O and TPFA schemes.  

Table 7 
Well locations.  

Well name INJ P1 P2 P3 P4 

X 202 122 82 362 290 
Y 222 82 402 82 342  
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approaches such as numerical differentiation, hand-differentiation or 
automatic differentiation techniques, the OBL approach reduces the 
time spent on property computations (e.g. complex phase behavior) 
quite a lot. 

2.5. Implementation of MPFA-O and OBL within a parallel framework 

To guarantee efficient solutions for reservoir simulation, we imple-
ment state-of-the-art MPFA-O and OBL methods within a parallel 
modelling framework (Li et al., 2020; Li and Abushaikha, 2020; Li and 
Abushaikha, 2022). In this framework, we apply the MPI standard for 
parallel communication because of its feasibilities in distributed and 
shared memory systems. The point-to-point communication benefits the 
construction of distributed mesh and the update of nonlinear unknowns 
in ghost cells greatly. Fig. 4 shows a flowchart for the implementation 
work which is described in detail as follows..  

(1) Input. We read the simulation parameters and load the mesh with 
geological information.  

(2) Domain decomposition (DDM). We divide the global reservoir 
domain into sub-domains according to the number of processors 

required for simulation. In this study, the K-MEANS and Reverse 
Cuthill-McKee algorithm (RCM) methods are applied for DDM. 
Moreover, the other algorithms from the Zoltan library can also 
be involved in this framework. Taking a geological model with 8 
× 8 structured grids as an example, four sub-domains, shown in 
Fig. 5a, can be partitioned employing the Recursive Coordinate 
Bisection (RCB) method.  

(3) Construction of shared and ghost cells. The flux through a face 
lying on the interface of two neighboring sub-domains is con-
strained by the grid pressures from two or more sub-domains in 
the MPFA-O scheme. Thus, the communication of mesh infor-
mation and grid nonlinear unknonwns between neighboring sub- 
domains is required. Aim to solve that, we determine shared cells 
in blue in Fig. 5b of which the unknowns and properties will be 
sent to neighboring sub-domains. Moreover, we construct ghost 
cells in red in Fig. 5c to receive the information. Besides, we show 
the mesh of TPFA scheme in Fig. 5d as a comparison. We can find 
that the work related to the construction of shared and ghost cells 
for MPFA-O is more complicated that for TPFA, especially when 
we use unstructured mesh.  

(4) Discretization. We construct the matrix Tinteg for flux computation 
on each face employing the MPFA-O scheme described above.  

(5) Coupling wells. We find the reservoir blocks penetrated by the 
wells and calculate the well index.  

(6) Solution process. In each time step, we converge the solution 
below the pre-defined tolerance using nonlinear newton-based 
solver. For the system at each nonlinear iteration, we linearize 
it with OBL approach. However, the linear system could be 
nonsymmetric because of the application of MPFA-O scheme and 
source/sink term. In this study, we apply the biconjugate gradient 
stabilized method (BiCGSTAB) (Van der Vorst, 1992) to solve the 
linear system. Besides, the Portable Extensible Toolkit for Scien-
tific computation (PETSc) (Abhyankar Adams et al., 2014) linear 
solvers can also be employed to guatantee the solving capabilities 
for general-purpose reservoir simulation.  

(7) Output. We output the computational results for further analysis 
and utilization. 

3. Numerical benchmark 

In this section, we present several numerical tests to demonstrate the 
accuracy and convergence of the framework’s solutions. First, we 
investigate the convergence of numerical solutions to an analytical so-
lution for single-phase flow in a heterogeneous domain; second, we 
extend the first case to a full tensor permeability case; third, to validate 
the feasibility of OBL method in multi-phase flow problems, we test the 
convergence of numerical solutions to a Buckley-Leverett analytical 
solution with respect to OBL resolution. 

To conduct the accuracy and convergence study, we apply the 
following norms to quantify the differences between the numerical so-
lution and analytical solution. 

LP
∞− integ =

∫ T

t=0
LP

∞dt,LP
∞ = max

1≤i≤N
|Pa− i − Pn− i|, (33)  

LP
2− integ =

∫ T

t=0
LP

2 dt,LP
2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
Vi(Pa− i − Pn− i)

2
.

√
√
√
√ (34)  

Where Vi is the volume of the ith grid block; Pa-i is the analytical pressure 
solution of the ith block; Pn-i is the numerical pressure solution of the ith 
block; N is the number of blocks. Note that LP

∞ and LP
2 are used for 

quantification at a certain time step or steady-state while LP
∞− integ and 

Fig. 21. Permeability distribution of egg model.  

Fig. 22. Domain decomposition of egg model, 20 subdomains.  
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LP
2− integ are applied for transient state cases. 

3.1. Single-phase flow in a heterogeneous domain 

In this test, we consider a single-phase transient flow problem in a 

cubic heterogeneous domain with diagonal permeability tensor 
described by Equation (35). 

The flow equation can be written as: 

∇ ⋅ (K∇P)= f , (36)  

where f is a force term constrained by an analytical solution: 

Pa = ai sin(2πx)sin(2πy)sin(2πz)e− t. (37)  

Here, t is the time which makes the force term time-dependent. Taking 
the analytical solution as a reference, we study the performance of the 
framework using structured and unstructured grids. 

3.1.1. Structured grid 
Here, we apply a hexahedral grid, shown in Fig. 6, with different grid 

resolutions shown in Table 1 to investigate the convergence of numer-
ical solutions. To provide reliable solutions for analysis, we first deter-
mine optimal simulation time and time step with the third resolution (1/ 

h = 32). In Fig. 7a, we apply a fixed time step (0.1 days) to study the 
effect of simulation time on error LP

2− integ. We also employ a similar 
approach in Fig. 7b to investigate the sensitivity to time step with a fixed 
simulation time (5 days). Based on that, we determine the optimal 
simulation time and time step as 5 days and 0.1 days respectively. Any 
prolongation of simulation time or chop of time step will barely change 
the errors. 

By comparing numerical solutions with the analytical solution at 
different scales, we obtain the LP

∞− integ and LP
2− integ of MPFA-O and TPFA 

schemes shown in Table 1. In Fig. 8, the results show a good convergence 
of the numerical solutions. Here, we demonstrate again that the MPFA-O 

Fig. 23. Case 2 the pressure and water saturation distributions.  

K=

⎡

⎣
Kx 0 0
0 Ky 0
0 0 Kz

⎤

⎦,

⎧
⎪⎪⎨

⎪⎪⎩

Kx = 1,Ky = 10,Kz = 0.01; Ω1 = (0 ≤ y ≤ 0.5, 0 ≤ z ≤ 0.5)
Kx = 1,Ky = 0.1,Kz = 100; Ω2 = (0.5 < y ≤ 1, 0 ≤ z ≤ 0.5)
Kx = 1,Ky = 0.01,Kz = 10; Ω3 = (0.5 < y ≤ 1, 0.5 < z ≤ 1)
Kx = 1,Ky = 100,Kz = 0.1; Ω4 = (0 ≤ y ≤ 0.5, 0.5 < z ≤ 1)

. (35)   

L. Li et al.                                                                                                                                                                                                                                        



Journal of Petroleum Science and Engineering 220 (2023) 111190

14

method provides the same solution with TPFA method for the simulation 
cases holding heterogeneities, structured grid, and diagonal perme-
ability tensor. 

3.1.2. Unstructured grid 
Next, we test this case with an unstructured grid to further investi-

gate the performance of the framework. For this purpose, we split each 
hexahedral grid into six tetrahedron grids shown in Fig. 9. By running 
simulations with different grid resolutions, we obtain the LP

∞− integ and 
LP

2− integ shown in Table 2. In Fig. 10, we compare the solution of MPFA-O 
to that of TPFA scheme. It shows that the numerical errors of MPFA-O 
reduce with the increase of grid resolution, whereas the TPFA fails. 
Moreover, by observing the errors and rates of convergence of MPFA-O 
in Tables 1 and 2, we find that the degeneration of grid quality lowers 
the rate of convergence of MPFA-O. Considering the failure of TPFA in 
addition, the unstructured grid is only recommended for diagonal 
permeability cases when it is required to depict important geological 
features. 

3.2. Single-phase flow with full tensor permeability 

In this section, we test the framework with a full tensor permeability 
case. The heterogeneity and full tensor permeability in a uniform cube 
[0, 1]3 is described in Equation (38): 

K(x, y, z)=

⎡

⎣
y2 + z2 + 1 xy xz

xy x2 + z2 + 1 yz
xz yz x2 + y2 + 1

⎤

⎦. (38) 

The magnitude of the full tensor permeability for the domain is 
shown in Fig. 11a. The analytical solution (Lipnikov et al., 2006), shown 
in Equation (39) and Fig. 11b, is taken as a reference for a single-phase 
transient flow problem. 

Pa =
[
x2y3z+ 3x sin(yz)

]
e− t. (39) 

Again, we will test this case with both structured and unstructured 
grids to study the performance of the framework. 

Fig. 24. Case 2 water production rate of production wells.  

Fig. 25. Case 2 computational results of MPFA-O and TPFA schemes.  
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3.2.1. Structured grid 
We obtain the numerical errors shown in Table 3 by running simu-

lations with simulation time (5 days) and time step (0.1 days) on 
different structured-grid resolutions. In Fig. 12, we compare the solution 
of MPFA-O to that of TPFA. It shows that the solutions of MPFA-O 
converge to the real solution with grid refinement. The results demon-
strate that MPFA-O is capable to provide convergent numerical solutions 
for both full tensor and diagonal permeability cases that apply a struc-
tured grid. The fact that TPFA fails to converge proves it can not handle 
the full tensor permeability. In addition, the big errors introduced by 
TPFA indicates that this discretization scheme is only recommended for 
the cases having diagonal permeability tensor and structured grid. 

3.2.2. Unstructured grid 
For further investigation, we test the previous case employing the 

unstructured grid. The errors and rates of convergence are shown in 
Table 4. Comparing the results in Tables 1–4, we find that the numerical 
solutions of MPFA-O holding full permeability tensor in the unstructured 
grid have a higher rate of convergence than that of holding diagonal 
permeability tensor in the unstructured grid when the rates of conver-
gence in the structured grid are very close. An explanation for that is the 
multi-directional normals on the faces of unstructured grid, introduced 
by the degeneration of grid quality, hold higher potential to capture the 
diffusion in full permeability tensor cases than that of in diagonal 
permeability tensor cases. 

In Fig. 13, we compare the solution of MPFA-O to that of TPFA. It 
shows that the numerical errors of MPFA-O reduce with grid refinement, 
whereas TPFA fails. We can conclude that the MPFA-O is capable to 
handle the diagonal and full permeability tensors in structured and 
unstructured grids. Thus, we strongly recommend it for the simulations 
that have a complex structure of the geological model and require a full 
tensor representation of permeability. 

3.3. Multiphase flow with different OBL resolutions 

Since the OBL is an approximation approach in essence, we need to 
rigorously demonstrate the accuracy of the numerical solutions in 
modelling multiphase flow. For this purpose, taking the Buckley- 
Leverett analytical solution as a reference, we investigate the conver-
gence of numerical solutions with respect to the OBL resolution. In this 
test, the reservoir size is 10 × 1 × 1 m, the rock and fluid are 

incompressible, the reservoir is initially saturated with oil, an injection 
well and a production well are separately set on the left and right sides of 
the domain, the well rates are both fixed as 0.001 m3/day, the simula-
tion time is 1000 days, the domain is meshed with the hexahedral grid 
using dimension 10,000 × 1 × 1, the other parameters are shown in 
Table 5. 

We run the simulation using different OBL resolutions. The numer-
ical errors between the solutions of OBL method and traditional method 
(straightforward hand-differentiation), shown in Table 6 and Fig. 14, 
indicate that the OBL resolution affects the simulation accuracy greatly. 
However, with the increase of OBL resolution, the numerical solution 
approaches the solution of traditional method fast. In addition, we find 
that the OBL resolution has an influence on the CFL criteria defined in 
Equation (40) as well as the nonlinear newton iterations. We would like 
to point it out that the optimal OBL resolution for practical simulations is 
dependent on the degree of nonlinearity of the system. 

CFL∞ =max(CFLi), =

∑
CFL∞

Time
steps

,CFL∞max =max(CFL∞), (40)  

where 

CFLi =max
(
CFLi,in,g,CFLi,in,o,CFLi,in,w,CFLi,out,g,CFLi,out,o,CFLi,out,w

)
,

(41)  

CFLi,d,g =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Δt
∑

l

[(
λl

gρl
g + λl

o
ρgst
Bl

o
Rl

g

)
Tl

integPl
integ

]

Vφ
(

ρgSg +
ρgst
Bo

RgSo

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

,

⎧
⎨

⎩

d = in,Tl
integPl

integ ≥ 0

d = out,Tl
integPl

integ < 0
,

(42)  

CFLi,d,o =

⃒
⃒
⃒
⃒
⃒
⃒
⃒

Δt
∑

l

(
λl

oρl
oTl

integPl
integ

)

VφρoSo

⃒
⃒
⃒
⃒
⃒
⃒
⃒

,

⎧
⎨

⎩

d = in,Tl
integPl

integ ≥ 0

d = out,Tl
integPl

integ < 0
, (43)  

CFLi,d,w =

⃒
⃒
⃒
⃒
⃒
⃒
⃒

Δt
∑

l

(
λl

wρl
wTl

integPl
integ

)

VφρwSw

⃒
⃒
⃒
⃒
⃒
⃒
⃒

,

⎧
⎨

⎩

d = in,Tl
integPl

integ ≥ 0

d = out,Tl
integPl

integ < 0
. (44)  

Here, subscript i is the index of grid block; subscript d represents the flow 
direction where in and out mean flowing in and flowing out the ith grid 
block respectively; subscript l represents all the faces of the ith grid 
block. 

To display the simulation accuracy in an intuitive way, we show the 
profiles of water saturation in Fig. 15. It is clear that the numerical so-
lution approaches the analytical solution at different simulation time 
which further demonstrates the accuracy of the OBL method. 

3.4. Discussion 

We presented several benchmark cases to demonstrate the accuracy, 
convergence, and robustness of the framework. For single-phase tran-
sient flow problem, we benchmarked the numerical solutions with 
analytical solutions applying diagonal and full permeability tensor in 
structured and unstructured grids. The results prove that the MPFA-O 
scheme could provide convergent solutions for all the tested cases 
when TPFA scheme only succeeds in diagonal permeability tensor case 
using structured grid. For multi-phase flow problems, we benchmarked 
the numerical solutions with the Buckley-Leverett analytical solutions. 
The results demonstrate that the numerical solution approaches the 
solution of traditional method with the refinement of OBL resolution. 

Fig. 26. Scalability of the parallel framework (normalized to 10 processors).  
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We can conclude that the framework is capable to provide convergent 
and robust solutions for muli-phase flow problems. 

4. Application cases 

In this section, we present two challenging field-scale cases to further 
demonstrate the performance the parallel framework. First, we test a dead 
oil model with a bent SPE10 model using unstructured grid; second, we test 
a black oil model with a refined egg model holding full tensor permeability. 

4.1. Case 1 

We test a dead oil model with the full layers of SPE10 model of which 
a large gridblock number (1.122 million) and various permeability 
contrast introduce a great challenge for reservoir simulation. Moreover, 
to prove the modelling capabilities of MPFA-O, we bend the geological 
model to generate an unstructured domain that is shown in Fig. 16. The 
initial pressure is 300 bar, the rock and fluid are incompressible, the 
viscosities of water and oil are equalling to 1 and 2 cP respectively, the 
initial water saturation is 0.2, the relative permeability model is defined 
as krw = [(Sw-Swc)/(1-Swc-Sor)]2 and kro = [(So-Sor)/(1-Swc-Sor)]2 where 
Swc = 0.2 and Sor = 0.2. We set an injection well in the middle of the 
geological model and four production wells at the corners (Fig. 17). The 
locations of the four producers are (2, 1.5), (2, 658.5), (238, 658.5), and 
(238, 1.5) respectively. The bottom hole pressures of injector and pro-
ducers are equalling to 350 and 250 bar respectively. The OBL resolution 
is 128, the simulation time is 2000 days with a maximum time step of 20 
days. 

After domain decomposition, the bent SPE10 model is divided into 
48 subdomains that are shown in Fig. 17. Note that a well should be fully 
inside a single subdomain. Fig. 18 shows the pressure and water satu-
ration distributions of MPFA-O and TPFA schemes. We can see an 
obvious difference in the pressure solution which indicates the TPFA 
fails to capture the flow response in unstructured domain. Moreover, the 
failure of honoring grid orthogonality makes it hard for TPFA scheme to 
predict the pathway of the injected water. 

To quantify the error of TPFA in water saturation that is a vital in-
dicator for the evaluation of water flooding strategy, we show the water 
cut of production wells in Fig. 19. We can find that the water break-
through time of TPFA scheme is earlier than that of MPFA scheme. This 
difference could significantly affect the results of development strategy 
selection and uncertainty quantification. 

Fig. 20 shows the CFL, time steps, and nonlinear newton iterations of 
MPFA-O and TPFA schemes. We can find that the CFL of TPFA is much 
larger than that of MPFA-O. The explanation for the difference is that the 
water flows faster in TPFA scheme which is intuitively shown in the 
water saturation distributions in Fig. 18. Moreover, the results indicate 
that the failure of honoring grid orthogonality changes the displacing 
process physically and convergent process computationally. Thus, a 
predictive simulation of an unstructured domain requires advancing 
discretization schemes such as the MPFA-O scheme. 

4.2. Case 2 

In this case, we test a black oil model with a refined egg model 
(Jansen et al., 2014). The dx, dy, and dz of the structured grid are refined 
as 4, 4, and 2 m respectively, the PVT properties and relative perme-
abilities are taken from the SPE9 test case (Killough, 1995), the porosity 
is 0.2, the rock compressibility is 1.450377E-5 bar− 1, the initial pressure 
is 300 bar, the mass fractions of gas, oil, and water component are 0.227, 
0.588, and 0.185 respectively. We set an injection well and four pro-
ducers (Fig. 22) with well locations shown in Table 7. The bottom hole 
pressures of injector and producers are equalling to 340 and 260 bar 
respectively. The OBL resolution is 128, the simulation time is 4000 days 
with a maximum time step equaling 10 days. The permeability distri-
bution is shown in Fig. 21. For the purpose of testing a full tensor 

permeability case, we rotate the diagonal tensor as following: 

K=Rz(30◦)diag(Kx,0.01Kx,0.005Kx)RT
z (30◦),Rz(θ)=

⎡

⎣
cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎤

⎦.

(45) 

Fig. 22 shows the result of the domain decomposition of the egg 
model with 20 subdomains. Fig. 23 shows the pressure and water 
saturation distributions. We find that the rotated permeability tensor 
imposes an obvious constraint on the pressure distribution of MPFA-O 
scheme but barely affects that of TPFA scheme. Moreover, the differ-
ence in honoring grid orthogonality makes the two schemes turn out an 
obviously different water saturation distribution. We quantify this dif-
ference in Fig. 24 which shows earlier water breakthrough in P1, P2, and 
P4 for the TPFA scheme. The results demonstrate that it is difficult for 
the TPFA scheme to provide reliable solutions for full tensor perme-
ability cases as well. 

Fig. 25 shows the CFL, time steps, and nonlinear newton iterations of 
MPFA-O and TPFA schemes. Because of the modification of displacing 
process, the TPFA scheme provides a higher CFL∞ than that of MPFA-O 
scheme. 

Finally, we test the scalability of the framework by running the 
simulation with different numbers of processors. Fig. 26 shows the 
speedup versus the number of processors. The results demonstrate 
strong scalability of the parallel framework for reservoir simulation. 

4.3. Discussion 

We investigated the performance of the new parallel framework with 
two applied challenging cases. In the first case, we bent the domain of 
SPE10 model to show the capabilities of handling unstructured grid. The 
simulation results indicate that the TPFA scheme introduces large nu-
merical errors in field-scale unstructured-domain case. We also quanti-
fied the computational results by measuring the water breakthrough, 
CFL, time steps, and nonlinear newton iterations of MPFA-O and TPFA 
schemes. In the second case, we rotated the permeability tensor of a 
refined egg model to demonstrate the modelling capabilities for full 
tensor permeability case. The distinctive difference in pressure distri-
butions indicates that the TPFA scheme can not reproduce the expected 
flow response within the constraints imposed by permeability tensor. 
Because of that, the water saturation distribution and water break-
through time differ greatly between the solutions for the two schemes. 
The scalability test proves a good parallel performance of the 
framework. 

5. Conclusions 

In this work, we applied Message Passing Interface for MPFA-O 
scheme with state-of-the-art Operator-Based Linearization (OBL) 
approach for fluid flow in porous media. Although the MPFA-O scheme 
may have some trouble to get the invesrse of A in equation (19) for 
highly distorted meshes and/or highly anisotropic media, most of the 
geological models used for reservoir simulation match its requirement 
on mesh quality and anisotropy. Thus, as the MPFA-O scheme could 
handle non-K-orthogonal mesh and is implemented on a general un-
structured grid, the reservoir simulator is powerful to simulate complex 
cases that have unstructured domain and full tensor permeability. 

To keep the extensibility of the framework, we used the operator- 
based representation of governing equations and the mass-based 
formulation to describe the physical processes in oil and gas field 
development. Benefit from that, the governing equations of single- 
phase, two-phase dead oil, three-phase black oil, and compositional 
models can be unified. However, the state-dependent operators could 
introduce Jacobian assembly hassle and potentially large computation 
time of complex phase behavior evaluation since we applied the fully 
implicit scheme that is unconditionally stable to solve the nonlinear 
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system. To deal with that, we applied the OBL that uniformly discretizes 
the parameter space of the unknowns. Based on that, a tabulated rep-
resentation of physics can be constructed by computing the values of 
operators on vertices of hypercubes. Accordingly, the operator values 
and their derivatives, required by the residual and Jacobian assembly, 
can be determined by multi-linear interpolation. In this way, the pro-
gramming complexity or Jacobian assembly for complex physical 
problems is drastically simplified. 

In order to simulate results at a geological scale, we used massively 
parallel computations via Message Passing Interface (MPI) to improve 
the computational efficiency. The construction of shared and ghost cells 
for MPFA-O scheme is more complicated than that for the traditional 
TPFA scheme. To demonstrate the performance of the framework, we 
presented several benchmark cases and field-scale cases. First, we 
benchmarked the numerical solutions with analytical solutions for 
single-phase flow. The results show that the framework is capable to 
provide convergent solutions for heterogeneous cases holding full/di-
agonal permeability tensor in a structured/unstructured grid. Second, 
we compared the numerical solutions to Buckley-Leverett analytical 
solutions for two-phase flow which rigorously demonstrates the 
robustness and accuracy of the OBL method. Finally, we tested two 
challenging field-scale cases holding high heterogeneities, large grid-
block numbers, unstructured gridding, and full tensor permeability. The 
results show advanced modelling capabilities and parallel scalability for 
complex reservoir simulations. 

We demonstrated that a combination of the OBL and MPFA can 
guarantee accurate solutions for complex cases with strong heteroge-
neity, unstructured grid, and full tensor permeability. To enhance the 
simulation capabilities for highly distorted meshes and/or highly 
anisotropic media, we will include the monotone nonlinear finite- 
volume schemes and non-classic MPFA schemes with good robustness 
and accuracy in our simulator. 
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