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Communication
Evaluation of Convolution Integrals at Late-Times Revisited
Ioan E. Lager , Martin Štumpf , Guy A. E. Vandenbosch , and Giulio Antonini

Abstract— The late-time evaluation of electromagnetic (EM) field
quantities yielded by convolution integrals that combine Green’s functions
available at discrete time samples and strictly causal excitations is
critically revisited. A typical situation is used for tracing the causes of
the divergent late-time behavior that is often experienced. A framework
combining a suitable integral partitioning with a polynomial approx-
imation is shown to effectively guarantee the integrals’ convergence.
The formulation is validated via numerical experiments evidencing its
accuracy and computational efficacy. The method is amenable to be
used in a wide range of problems requiring the late-time evaluation
of convolution integrals of the indicated type.

Index Terms— Convolution, late-time behavior, numerical analysis,
polynomial approximation.

I. INTRODUCTION

Infinite integrals are prominently present in various approaches
to solving the electromagnetic (EM) field equations. In particular,
they are of critical relevance in (semi)analytical formulations making
use of integral representations, with [1]–[3] being illustrative for the
sustained efforts invested in the effective handling of the tail of such
integrals.

Infinite integrals are important for the EM analysis of layered
media that starting with Sommerfeld [4] relies on the use of Green’s
functions (see the overview in [5, Ch. 2]). This analysis is habitually
done in frequency domain (FD), but interest in time domain (TD)
studies is gaining momentum. Commonly, TD solutions involve deter-
mining via Fourier transform techniques the configurational impulse
response that is time-convolved with the excitation’s signature. This
approach may raise concerns about causality. First, the excitation is
often noncausal (see the review in [6]). Second, the causality of the
impulse response may be debatable when the used formulation cannot
a priori guarantee the causality of the result or may be effectively lost
when resorting to the discrete inverse Fourier transform [7, Ch. 11]
or when the solution in the spectral domain is band-limited.

An effective alternative is resorting to the intrinsically causal,
unilateral Laplace transform, with the TD inversion being effectuated
through the Cagniard–de Hoop (C-dH) method [8]. This procedure
was first used in antenna engineering in [9], was formalized in [10],
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Fig. 1. Configuration consisting of a pulsed-fed, transmitting loop L with
an equivalent magnetic moment m. The pulsed radiated EM field is sensed at
a receiving point R of position vector r .

and has increasingly become the instrument of choice for exploring
the pulsed EM field in layered configurations [11, Ch. 14]. At vari-
ance with the previously examined situation, all Green’s functions
yielded by the C-dH method are rigorously causal. By combining
them with strictly causal excitations, the causality of the response is
beyond any doubt. However, as with any formulation relying on the
convolution of Green’s function with an excitation, this approach may,
and often does, suffer from a divergent behavior in the evaluation of
the intervening integrals for (very) late times.

By starting from an illustrative example, this communication offers
a solution for preventing the divergent late-time behavior of the
convolution integrals combining causal Green’s functions available at
discrete time samples and causal excitations. The given example uses
Green’s function calculated via a typical C-dH formulation. First, the
causes of the emergence of the divergent behavior will be scrutinized.
A simple, yet extremely effective framework for guaranteeing the
integrals’ convergence will subsequently be put forward. The effi-
cacy of the proposed method will be illustrated through numerical
experiments, after which conclusions will be drawn.

II. ACCURACY CONCERNS IN THE EVALUATION OF

CONVOLUTION INTEGRALS

A. Case Study

The present analysis builds upon convolution integrals derived for
the configuration in Fig. 1. The position is specified by the coordi-
nates {x1, x2, x3} with respect to a Cartesian reference frame. The
time coordinate is t . The EM field is radiated by a current-carrying
loop L centered at the origin and lying in the x2 = 0 plane,
and it is sensed at a receiving point R of position vector r =
x1 i1 + x2 i2 + x3 i3 (cylindrical symmetry allows confining the
study to the x3 = 0 plane). L radiates in an infinite embedding of
permittivity ε0, permeability μ0, and wavespeed c0 = (ε0μ0)−1/2.
The pulsed feeding current i(t) has a (conventional) pulsewidth tw,
the loop’s diameter being small with respect to the pulse’s spatial
extent c0tw. Under this assumption, the radiating loop can be con-
strued as a magnetic moment m(t) = i(t)A = i(t)Ai3, with A being
the area enclosed by the loop L.

The configuration in Fig. 1 was used in [12] for validating the
therein derived C-dH methodology. The last step in that formulation
required convolving the (semianalytically) evaluated (ray) Green’s

0018-926X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 28,2022 at 06:13:27 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5433-6173
https://orcid.org/0000-0002-9138-637X
https://orcid.org/0000-0002-7477-7694
https://orcid.org/0000-0002-5878-3285


9954 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022

functions with the causal excitation’s signature. Upon taking a
single-ray constituent in [12, eq. (47)] and ignoring some constants,
the radiated E-polarized electric E(r, t) = E2(r, t)i2 and magnetic
H(r, t) = H1(r, t)i1 + H3(r, t)i3 field strengths can be expressed
as

V (r, t) = [g(r, t)H(t − τa)]
(t)∗ ∂3

t f (t)

=
∫ t

τ=τa

[
∂3

t−τ f (t − τ)
][

g(r, τ )
]
dτ (1)

in which V (r, t) stands for E2(r, t), H1(r, t), or H3(r, t); τa is the
ray’s arrival time; g(r, t) is the ray’s (modified) Green’s function;
H(·) is the Heaviside step function; f (t) is the pulsed excitation; and
(t)∗ denotes the time convolution. Note that this study focuses on the
temporal behavior of signatures concerning specified locations. For
simplicity, the explicit mentioning of r may be henceforth omitted
in expressions where it is but an idle parameter.

For ensuring causality, the examples in [12] used ∂t PE(ν, tr, t) [see
(10)] as excitation shape. An attractive alternative causal shape is the
time-windowed ∂t WP(ν, tr, t) pulse of width tw = 2tr [see (12)].
By taking ν � 5, both the signatures are continuously differentiable
up to, and including, their third time derivative at t = 0, as required
by (1).

Comparing the C-dH solution for the mentioned ∂t PE excitation
with the corresponding analytical values derived in [13] for the
configuration in Fig. 1 evidenced an unacceptably large discrepancy
at late times. The discrepancy persisted, be it less pronounced,
when using the ∂t WP excitation (that should have yielded a zero
field outside the pulses’ support). Surprisingly, the deviation was
substantially smaller when using a ∂t PE excitation with ν = 7. Since
all these exercises used exactly the same Green’s function, this erratic
anomaly could only be attributed to the convolution integral.

The causes of this defect will be henceforth examined for the cases
of time-windowed and infinite-tail excitations.

B. Time-Windowed Excitations

The ∂t WP pulse is used as a typical time-windowed excitation
shape. Its support is [0, tw], with its integral over [0, tw] being zero
(see [14]). Furthermore, selecting ν � 5 ensures beneficial continuous
differentiability properties at t = 0 and t = tw, with ∂t WP(0) =
∂t WP(tw) = 0. By accounting for the finite support of ∂t WP, (1)
becomes for t > τa + tw

V (r, t) =
∫ t

τ=t−tw

[
∂3

t−τ f (t − τ)
][

g(r, τ )
]
dτ (2)

that becomes via successive integrations by parts

V (r, t) =
∫ t

τ=t−tw

[
f (t − τ)

][
∂3
τ g(r, τ )

]
dτ

−
2∑

k=0

[
∂k

t−τ f (t − τ)
][

∂2−k
τ g(r, τ )

]∣∣∣t
τ=t−tw

. (3)

Since ∂t WP and its first three derivatives vanish at 0 and tw, all terms
under summation vanish implying that

V (r, t) =
∫ t

τ=t−tw

[
f (t − τ)

][
∂3
τ g(r, τ )

]
dτ. (4)

Experience shows that g(r, τ ) becomes quickly extremely smooth,
with |g(r, τ )| increasing monotonically.1 It can be safely assumed

1An elaborate examination of this property exceeds the scope of the present
study. The reader is referred to [15, eq. (29)] for an illustration of this increase
and to [10, eq. (92)] for the asymptotic behavior of the C-dH contour, both
the results legitimating the monotonic increase in |g(r, τ )|.

that g(r, τ ) can be approximated over [t − tw, t] as a third-order
polynomial (in fact, a second-order polynomial also suffices). Under
this assumption, (4) becomes

V (r, t) = κ

∫ tw

τ=0
∂t WP(ν, tr, τ )dτ = 0 (5)

with κ ∈ R some constant. Since the integral in (5) is zero, it can be
concluded that for the considered degree of regularity of g(r, τ ),
the convolution integral must be zero outside the support of the
excitation, this also concurring with the behavior predicted by the
expressions in [13].

However, in a computer code, g(r, τ ) is only determined at discrete
time samples and, thus, the integral in (2) must be evaluated numer-
ically. The inherent limited accuracy of any numerical integration
scheme will then prevent the condition in (5) from being met even
for a bounded integration interval and irrespective of the time step for
sampling g(r, τ ). Moreover, upon noting that |∂3

t−τ f (t −τ)| < C on
[0, tw], with C > 0 being a real constant, the mean-value theorem for
integrals entails that |V (r, t)| given by (2) will vary as twC |g(r, τ )|
and, since |g(r, τ )| is monotonically increasing for late times, the
deviation will build-up with time, as evidenced by our experiments.

C. Infinite-Tail Excitations

The ∂t PE pulse is used as a typical causal, infinite-tail excitation
shape. Selecting ν � 5 again entails beneficial continuous differentia-
bility properties at t = 0, with ∂t PE(0) = 0. However, its prototype’s
expression [6] implies that only

lim
t→∞

∫ t

τ=0
∂t PE(τ)dτ = 0 (6)

with any finite t yielding a nonzero integral. In this case, too,
an analysis as that in Section II-B is possible, with the additional
restriction given by (6). The situation is further aggravated by the
fact that the integration interval in (1) increases with time. It then
follows that the deviation will increase with time much faster than in
the case of the ∂t WP excitation, as already indicated in Section II-A.

III. ACCURACY AND EFFECTIVENESS IMPROVEMENT VIA

POLYNOMIAL APPROXIMATION

The late-time error build-up in evaluating (1) can be precluded via
a suitable polynomial interpolation/extrapolation.2 Its effect differs
depending on the type of excitation.

A. Time-Windowed Excitations

Assume that there exists an instant t̃p > tw such that Green’s
function g(x�, τ ) can be acceptably approximated for any t beyond
tp = τa + t̃p as a second-order polynomial

g(r, τ ) ≈ P2(τ) = a2τ2 + a1τ + a0 (7)

the coefficients a0, a1, and a2 being inferred via polynomial
regression (e.g., using the polyfit MATLAB function). Numer-
ical experiments have shown that it suffices to take t̃p as slightly
larger than tw, all examples in this communication making use of
t̃p = 1.2tw = 2.4tr . With this choice, the evaluation of (1) differs
depending on the time sample t .

2The present approach relies on distinguishing between different types of
integrals (“partition”) and using, where applicable, a polynomial approxi-
mation (“extrapolation”). By this token, it shares conceptual, although not
technical, similarities with the formulation advocated in [3].
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1) Evaluation at t ∈ (τa, tp]: The polynomial approximation is
not applicable and (1) must be evaluated numerically. However, the
integration interval is at most tw long, the upper limit applying for
t ∈ [τa + tw, tp]. The quadrature is then accurate and fast—using
precomputed values for the ∂3

t−τ f (t − τ) part in (1) substantially
expedites the computations.

2) Evaluation at t ∈ (tp, tp + tw]: In this case, the polynomial
approximation becomes partially available. Let now t = tp + tw −�t
with 0 � �t < tw. The integration in (1) is partitioned over
[t − tw, tp]∪ (tp, t], with (7) being applicable over (tp, t]. Successive
integrations by parts will then yield

V (r, t) ≈
∫ tp

τ=tp−�t

[
∂3

t−τ f (t − τ)
][

g(r, τ )
]
dτ

+
(

a2t2
p + a1tp + a0

)
∂2

t f (tw − �t )

+ (
2a2tp + a1

)
∂t f (tw − �t )

+2a2 f (tw − �t ). (8)

This expression is twice beneficial: The support of the integral that
still needs being handled numerically shrinks to zero as t → tp +
tw, this forcing the integral to vanish. The remaining terms contain
time derivatives of ∂t WP(ν, tr, τ ) that also tend to zero for τ → tw
(which, in fact, corresponds to the same t → tp + tw). It can now
be concluded that |V (r, t)| in (8) drops to zero as t → tp + tw
irrespective of the possible inaccuracies induced by the numerical
integration.

3) Evaluation at t > tp + tw: The polynomial approximation
applies now to the entire integration interval, implying that by sub-
stituting the second-order polynomial in (4), the expression of the
convolution integral effectively vanishes. As a result, the evaluation
of the convolution can be fully skipped, with evident computational
benefits.

B. Infinite-Tailed Excitations

Although the ∂t PE pulse has an infinite tail, it can be assigned a
conventional pulsewidth tw given by (14). Assume that there exists
t̃p > tw such that for t > tp = τa + t̃p, Green’s function can be
expressed as in (7). For consistency with the time-windowed choice,
all reported examples make use of t̃p = 2.4tr that exceeds the value
of tw in (14).

1) Evaluation at t ∈ (τa, tp]: As in the case of ∂t WP excitation, the
polynomial approximation is not applicable and (1) must be evaluated
numerically. At variance with the time-windowed case, the infinite
tail of ∂t PE yields a monotonically increasing integration interval
that, in turn, results in longer computation times and, possibly, higher
quadrature errors.

2) Evaluation at t > tp: By making use of the notation t = tp+�t
with �t > 0, the integral in (1) is partitioned in a manner that is
reminiscent of (8) as

V (r �, t) ≈
∫ tp

τ=τa

[
∂3

t−τ f (t − τ)
][

g(r �, τ )
]
dτ

+
(

a2t2
p + a1tp + a0

)
∂2

t f (�t )

+ (
2a2tp + a1

)
∂t f (�t ) + 2a2 f (�t ). (9)

The integral to be evaluated numerically is effectuated over an interval
of fixed length tp − τa. Furthermore,

∣∣∂k
t f (t)

∣∣, k = 0, . . . , 3, decay
exponentially for ∂t PE(ν, tr, t) beyond an instant ted that depends
on ν and tr . It then follows that the three supplementary terms
will decay exponentially for �t > ted. Moreover, by observing
that t − τ = �t + tp − τ , it can be inferred that the integrand is
sampled over a by �t shifted [τa, tp] interval and, then, ∂3

t f (t − τ)

will also eventually start decaying exponentially. Summarizing, the
expression in (9) contains a numerical integral of an exponentially
decaying integrand and with a fixed length support, supplemented by
three exponentially decaying analytic terms. This formulation clearly
outperforms the direct integration.

Nonetheless, using the time-windowed ∂t WP excitation is evi-
dently superior: 1) the quantities used in that case for evaluating
(1) drop rapidly to zero and become effectively zero beyond a
certain instant, this eliminating the need of their calculation and
2) since tp > tw, the length of the interval over which the numerical
quadrature must be performed is smaller, this being propitious from
both computational time and accuracy points of view.

C. Discussion

The results derived in this section refer to convolutions of the type
in (1), comprising a third-order time derivative of the excitation. Other
formulations may yield expressions using different order derivatives,
such as second order in [16, eq. (30)] or fourth-order in [16, eq. (23)].
Based on (8) and (9), the case of higher than third-order derivatives is
readily covered by the discussed formalism, since fourth- and higher
order derivatives of the considered (second-order) polynomial approx-
imation vanish. Nonetheless, second- or lower order derivatives of
the excitation require a separate study. Assuming the same order of
Green’s functions’ polynomial approximation, such derivative orders
will yield different supplementary terms in (8) and (9). However,
the zero-value and exponential decay arguments will still hold and,
hence, the inferred conclusions remain valid.

Another interesting point is that the C-dH contour becomes asymp-
totically a straight line (see [10, eq. (92)]). This convenient form
allows an exact calculation of the Green’s function for very late times
and, thus, can form the basis of an analytic examination of the field
representation’s accuracy. At the same time, it offers a cogent support
for the adopted second-order polynomial approximation of Green’s
function.

It is important to note that computational schemes that are not
affected by any late-time error build-up have also been reported. For
example, the convolution integral may be evaluated analytically in
some particular cases [17], [18], while [11, Appendix H] demon-
strated the virtues of the so-called “recursive convolution technique.”
Nevertheless, the framework in this section was specifically devised
for situations when relevant Green’s function is only available at
discrete time samples. The applicability of the error-accumulation-
free schemes to those situations is debatable and comparisons with
them are intentionally left out.

To conclude with, this section demonstrated in a compelling
manner how the late-time error build-up can be precluded for
time-windowed excitations and, to a lesser degree, for causal but
infinite-tail ones. However, none of the derived arguments applies
to noncausal excitations, this raising additional concerns about the
adequacy of such pulse shapes to TD studies, especially when late-
time behavior is of particular interest.

IV. ILLUSTRATIVE NUMERICAL EXPERIMENTS

The (computational) opportunity of the framework assembled in
Section III is now validated via illustrative numerical experiments.
These experiments were conducted via a self-developed MATLAB
code. For properly focusing on the algorithms’ features and for being
able to infer computational metrics, the code deliberately used only
elementary quadrature via the MATLAB trapz function.

A. Computational Choices

The presented experiments make use of ∂t PE and ∂t WP excitations
with pulse raising power ν = 5. The plots are constructed for

Authorized licensed use limited to: TU Delft Library. Downloaded on November 28,2022 at 06:13:27 UTC from IEEE Xplore.  Restrictions apply. 



9956 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022

Fig. 2. Normalized H3 analysis for a ∂t PE excitation with ν = 5—
present approach. (a) Comparison between the analytical and C-dH-evaluated
values—T1 analysis and (b) T2 analysis—the exciting current pulse i(t) of
amplitude Imax is superimposed for reference.

the normalized quantity H3/|Hav|max in which “av” stands for the
“analytical values” given by the radiated field expressions in [13]. The
abscissa variable is the by-the-arrival-time-retarded time coordinate
t � = t − τa, normalized by the zero-crossing time t0x = tr (see
Appendix A).

Two types of H3/|Hav|max signatures are examined: T1, corre-
sponding to t � ∈ [0, 25] and intended for examining the convolution
integral’s behavior at very late times; T2, corresponding to t � ∈ [0, 7]
and highlighting the “active” section of the pulsed field. While the
T1 time window may seem exaggerate, its use is justified by the
relevance of examining the late-time ringing in layered configura-
tions. One practical scenario would be for predicting the radiation
from a CMOS-integrated, small loop that is fed by the monopulse
generated with the circuitry introduced in [19]—its shape was shown
in [20] to be an almost exact replica of the ∂t WP pulse. The T1
time window will then be adequate for studying pulse trains with a
repetition frequency of 1 GHz, as required by an ultrahigh data rate,
near-field data transfer.

All reported signatures correspond to a receiving point located at
r = x1 i1 + x3 i3, with x1 = 4 mm and x3 = 1 mm (in accordance
with the experiments reported in [12]). Since the examined config-
uration in Fig. 1 is in free space, no interface-induced reflections
can appear and, thus, all the signatures are obtained via a single-
ray evaluation of the C-dH strategy demonstrated in [12]. In all the
reported experiments, the polynomial approximation was applied for
t � τa + 2.4tr .

B. Infinite-Tail Excitations

A first experiment refers to the field radiated in the case of a ∂t PE
feeding. The corresponding T1 signature is shown in Fig. 2(a) and
clearly illustrates the vanishing tail. A similar behavior, not reported

Fig. 3. Normalized H3 analysis for a ∂t WP excitation with ν = 5—present
approach. (a) T2 analysis—the exciting current pulse i(t) of amplitude Imax
is superimposed for reference and (b) zoom-in corresponding to the end of
the excitation’s signature.

here for brevity, was obtained in the case of a ∂t PE excitation with
ν = 7. Upon noting that the strategy in Section III-B used different
expressions for t < tp and t > tp, it is important to examine possible
computational artifacts that may appear in the transition zone. The
T2 study in Fig. 2(b) documents the smooth, artifact-free transition.

C. Time-Windowed Excitations

The second experiment refers to the field radiated in the case of
∂t WP feeding. Since in this case the calculated field is effectively
zero for t > tp + tw, a T1 study is useless, with the assessment being
confined to the possible computational artifacts in the transition zone.
The corresponding T2 signature is shown in Fig. 3(a) and confirms
an artifact-free transition. For gaining confidence, a hugely zoomed-
in plot of the transition is given in Fig. 3(b). Only at four orders of
magnitude under the peak |H | become visible some discrepancies
between the numerically integrated and polynomially approximated
values (see the solid box P)! It is also worth mentioning that only
at this level can one note the first vestiges of the inaccuracies in the
computation of Green’s function (the dashed ellipse G), this certifying
the accuracy of the C-dH method.

D. Computational Metrics

The computational efficiency of the proposed formulation is now
examined based on some computational metrics.

As a baseline, it is mentioned that the convolution integrals were
evaluated via a function yielding all three components E2, H1, and
H3 for the complete set of time samples in an interval. The function
used precomputed Green’s function values but assembled internally
all needed polynomial approximations and excitation signatures. The
MATLAB code was run on a Windows 10, i7/2.60-GHz laptop.
T1 and T2 signatures comprised 16 661 and 4661 time samples,
respectively.
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Fig. 4. Pulse shapes of u1(t) = ∂t PE(5, tr, t) and u2(t) = ∂t WP(5, tr, t).

The runtime for evaluating T2 signatures amounted to 5.66 and
6.42 s for ∂t WP and ∂t PE excitations, respectively. As for T1 sig-
natures, constructing them required 50.25 s for a ∂t WP excitation
and 54.61 s for a ∂t PE one. Recall that these computation times also
include the assembling of the excitation samples. The huge number of
time samples in T1 allowed in that case to estimate the time required
for calculating the excitation. Upon deducting that part, it was inferred
that the net time for evaluating the convolution integrals with both
Green’s function and excitation having precomputed values amounted
to approximately 8 and 20 s for the ∂t WP and ∂t PE excitations,
respectively. These runtimes concur with the fact that calculating the
field values is skipped for the ∂t WP excitation when t > tp + tw.

This analysis cogently shows that the proposed strategy is not only
accurate but also computationally highly effective.

V. CONCLUSION

A decidedly accurate and computationally effective strategy for
dealing with the tail of the convolution integrals involving strictly
causal excitations was demonstrated. The method was shown to per-
form superiorly with time-windowed excitations, with the expected
zero tail being replicated with a seamless transition between regions
where different evaluation models were used. The technique is of
interest for a wide range of TD EM problems yielding a convolution
between a function available at discrete time samples and a (time-
differentiated) excitation. Its implementation is effortless, requiring
only a choice for the order of the function’s polynomial approxima-
tion, and an (empiric) determination of the start of the interval where
this approximation applies. As a rule, the polynomial interpolation
should be at least one order lower than the time derivative applying to
the excitation. Furthermore, using time-windowed feeding is clearly
recommendable.

APPENDIX

A. Excitation Pulse Shapes

For ensuring the causality requirement, this communication uses
exclusively causal excitations pulse shapes, namely, as follows.

1) Time-Differentiated Power-Exponential (PE) Pulse [6]:

∂t PE(ν, tr, t) = NPE
(
1 − t �

)
t �ν−1 exp

[−ν
(
t � − 1

)]
H(t) (10)

in which ν = 2, 3, 4, . . . is the pulse rising power, tr > 0 is the pulse
rise time, t � = t/tr , H(·) is the Heaviside step function, and NPE is
a normalization parameter that reads

NPE = νν/2
(
ν1/2 − 1

)1−ν
exp

(
−ν1/2

)
. (11)

Fig. 5. Normalized Green’s function corresponding to H3 at
r = 4i1 + i3 (mm), and its polynomial replication. The abscissa variable
is the normalized, by-the-arrival-time-retarded time coordinate t � = τ − τa.
The domain of applicability of the polynomial approximation is highlighted.

2) Time-Differentiated Windowed-Power (WP) Pulse [14]:

∂t WP(ν, tr, t) = NWPt �ν−1
(2 − t �)ν−1 H(t �)H(2 − t �)

(12)

in which the normalization parameter NWP reads

NWP = 21−ν(ν − 1)1−ν(2ν − 1)ν−1/2. (13)

Both the pulses are inferred from prototype unipolar pulses via time
differentiation and are normalized to a unit amplitude. The pulse
rise time is taken as the interval between the onset and the instant
when the corresponding unipolar pulse peaks. The signatures given
by (10) and (12) have zero-crossings at t0x = tr . By taking ν � 5,
they are continuously differentiable up to, and including, their third
time derivative at t = 0, this feature applying for ∂t WP at t = tw,
as well. The ∂t WP pulse is time-windowed and has the pulsewidth
tw = 2tr [14]. Although the ∂t PE pulse has an infinite tail, it can
be assigned a conventional pulsewidth that follows by applying [6,
eq. (23)] to its prototype unipolar pulse and amounts to:

tw = tr �(ν + 1) exp(ν)/νν+1 (14)

with �(·) denoting the Euler gamma function. Note that tw < 1.85tr
for ν � 2. Both model pulses have analytical Fourier transforms
[6], [14]. The ∂t PE and ∂t WP shapes used in this communication
are shown in Fig. 4. Their spectral behaviors peak at 0.283/tr and
0.441/tr , respectively, and fall by 20 dB/decade toward zero and by
about 100 dB/decade toward infinity.

B. Green’s Function Analysis

Application of the C-dHmethod [8] to EM problems concerning
stratified media yields the solution as a convolution between a (higher
order) time derivative of the excitation’s signature and Green’s func-
tion. In the specific situation examined in [12], that solution is, apart
from some constants, of the form (see [12, eq. (47)])

V (r, t) =
∫ t

τ=τa

[
∂3

t−τ f (t − τ)
][

g(r, τ )
]
dτ (15)

with all intervening quantities being defined in Section II-A. As in
most C-dH frameworks, g(r, τ ) is obtained at discrete time sam-
ples, only. This communication uses free-space Green’s function, its
shape at the location used in Section IV-A being shown in Fig. 5.
This g(r, τ ) can be accurately replicated via third- or even second-
order polynomials, their coefficients being inferred via polynomial
regression (the present formulation uses the polyfit MATLAB
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function). The relevant polynomial approximations are superposed in
Fig. 5 on original Green’s function. The representation error

Err =
[∫

T

∣∣g(r, τ ) − g̃m (r, τ )
∣∣dτ

][∫
T

∣∣g(r, τ )
∣∣dτ

]−1
(16)

amounted to 0.1% and 0.02% in the case of the third- and second-
order polynomial approximations, respectively, with g̃m(r, τ ),

m = 3, 2, denoting the polynomial replicas and T the interval over
which they were calculated.
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