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Abstract — The sensing properties of the binary phase codes
are investigated with their application to phase-coded (linearly)
frequency modulated continuous waveform (PC-FMCW). It is
shown that the ambiguity function of FMCW signal modulated
with a binary phase code corresponds to sheared ambiguity
function of the code itself. The range profiles of PC-FMCW with
different code families are analysed and compared in terms of
integrated sidelobe level (ISL).

Keywords — Phase modulation, Modulated chirps, Ambiguity
function, Phase-coded FMCW.

I. INTRODUCTION

Linear frequency modulated continuous waveforms
(LFMCW) have been used in many radar applications as it
provides high range resolution, low sidelobes, good Doppler
tolerance and constant peak-to-average power ratio (PAPR)
with a relatively low hardware complexity [1]. However, these
benefits come with the price of having poor distinctness,
which makes the LFM waveform weak against radar to
radar interference [2]. In addition, the orthogonality between
waveforms is crucial for the realization of multiple input
multiple output (MIMO) systems, and creating mutual
orthogonality between LFMCW signals often requires
transmission schemes that lose unambiguous Doppler velocity
and range resolution to achieve orthogonality [3].

Waveform coding is commonly used in radars to achieve
unique waveform recognition [4]. In addition, such coding can
be used to achieve joint sensing and communication systems
[5], [6]. Particularly, phase modulated continuous waveforms
(PMCW) have been used to achieve mutual orthogonality
between waveforms in the MIMO systems and enhance the
robustness of the radar against interference [7]. However, any
PMCW waveform suffers from poor Doppler tolerance, and
its usage requires a high sampling frequency in the receiver.
To overcome the limitations of both LFMCW and PMCW,
applying phase-coding to LFMCW has become a notable
alternative.

Phase-coded frequency modulated continuous waveforms
(PC-FMCW), where coding is done over the time duration of
the chirp (code controls the phase changes inside the sweep),
have been investigated to enhance the mutual orthogonality
of the waveform and achieve simultaneous transmission for
the MIMO systems while keeping the advantages of LFMCW
[8]–[10]. For the PMCW applications, different phase code
families are optimized for providing good sensing performance

(low sidelobes, certain Doppler tolerance) [11]. However, these
properties do not hold after using a chirp as a carrier for
these codes and finding the suitable code families to use with
PC-FMCW becomes important.

The objective of this paper is to investigate how different
code families affect the sensing performance of PC-FMCW
waveform. To achieve this task, we rewrite the signal model
and pre-processing of PC-FMCW signal in Section II. Then in
Section III, we examine the ambiguity function of PC-FMCW
and the shearing effect of LFM on its ambiguity function. The
comparison of the range profiles corresponding to PC-FMCW
modulated with different code families and their corresponding
integrated sidelobe level (ISL) are given in Section IV. Finally,
the concluding remarks are highlighted in Section V.

II. SIGNAL MODEL

Linear frequency modulated continues waveform can be
written as:

xfmcw(t) = exp
(
j
(
2πfct+ πγt2

))
, t ∈ [0, T ], (1)

where fc is the carrier frequency of the radar, B and T are
the bandwidth and the time duration of the chirp respectively,
and γ = B/T denotes the chirp rate. Assume a phase-coded
signal s(t) is used to modulate the LFMCW signal (1). Then
the transmitted waveform for PC-FMCW can be written as:

xt(t) = s(t) exp
(
j
(
2πfct+ πγt2

))
. (2)

In this study, we consider binary phase shift keying (BPSK)
as a phase modulation scheme where the phase changes
between {0, π} according to the phase sequence ϕn. Then the
phase-coded signal can be represented as:

s(t) =

Nc∑
n=1

ejϕnrect

(
t− (n− 1/2)Tc

Tc

)
, (3)

where rect(t) is the rectangle function, Nc is the number of
chips within one chirp, Tc = T/Nc is the chip duration. Then
the bandwidth of the code signal can be calculated as Bc =
Nc/T . When the transmitted signal (2) is reflected from a
target at a range R0 moving with a constant radial velocity v0,
the round trip delay between radar and target can be given as:

τ0(t) =
2 (R0 + v0t)

c
, (4)
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where c is the speed of light. For the narrow band, the received
signal is a linearly delayed copy of the transmitted signal with
a corresponding Doppler shift. Accounting propagation and
back-scattering effects by complex coefficient η, the received
signal can be represented as:

xr(t) = η xt(t− τ0(t)) + n(t) (5)

where n(t) represents the received noise signal. The received
signal acquisition time Taq= [0, T+Tr], where Tr is the pulse
repetition interval and for the continuous wave Tr=T. In
the white noise scenario, the optimum receiver that jointly
maximizes signal-to-noise ratio (SNR) for each range-Doppler
hypothesis is the matched filter [12]. After down-conversion
with the carrier tone to the base-band, the matched filter
receiver convolves the received signal with the complex
conjugate of the transmitted signal as:

xMF(t) =

∫ ∞

−∞
xr(k)xt

∗(t− k) dk, (6)

where (·)∗ denotes the complex conjugate. The matched filter
output contains the range information about the target.

Note that conventional matched filtering requires the
sampling of the signal with its full band. As a result of
high sampling demands, conventional matched filtering is not
suitable for radars where the processing power is limited. To
overcome this problem, the matched filter can be realized via
filter bank after dechirping, or it can be approximated by
using the group delay filter receiver. Both of these receiver
approaches significantly decrease the sampling requirements
of analog-to-digital converter (ADC) [13]. In this study, we
focus on the matched filter and the ambiguity function to set
the boundaries for the sensing performance of the waveform
with different code families.

III. AMBIGUITY FUNCTIONS

In this section, we use the ambiguity function, which is a
principal tool for studying radar waveforms and corresponds to
the outcome of the matched filter. The ambiguity function of
signal x(t) can be calculated as a linear (aperiodic) convolution
of a signal with its time-delayed and frequency-shifted replica:

|χ(x(t); τ, fd) | =
∣∣∣∣∫ ∞

−∞
x(t)x∗(t− τ)ej2πfdt dt

∣∣∣∣ , (7)

where fd represents the Doppler frequency. The ambiguity
function determines the range-Doppler resolution of the
transmitted signal for selected system parameters. In this
particular example, we select B = 10 MHz and T = 25.6
µs for the LFM signal. Moreover, we use Nc = 16 chips
within one chirp duration so that the chirp bandwidth becomes
Bc = 0.62 MHz for the phase-coded signal, and no repetitions
of the code over a duration of the signal are performed.
As mentioned in the introduction, one of the advantages of
LFMCW signal is its high range resolution and good Doppler
tolerance. This behaviour can be seen in Fig. 1 a, where the
ambiguity function of LFM signal is demonstrated. However,
the ambiguity function of PMCW has poor Doppler tolerance
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Fig. 1. Ambiguity functions of a) LFM B=10 MHz b) PMCW c) PC-FMCW
B=2 MHz d) PC-FMCW B=10 MHz. The shearing effect of LFM on the
ambiguity function of phase-coded signal with Bc = 0.62 MHz is observed

as shown in Fig. 1 b. As a result, the PMCW signal is very
sensitive to Doppler frequency shifts caused by the target
motion, and it often requires a special process for moving
targets to compensate for the poor Doppler tolerance.

In [12], it is proved that adding the linear frequency
modulation, which is equivalent to a quadratic-phase
modulation, shears the resulting ambiguity function. This main
property of the ambiguity function can be represented as:∣∣χ(s(t)exp (jπγt2) ; τ, fd) ∣∣⇐⇒ |χ(s(t); τ, fd − γτ) | . (8)
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Fig. 2. Range profile comparison of PMCW and PC-FMCW with different code families; a) Random b) Gold c) ZCZ d) Kasami

Consequently, the ambiguity function of PC-FMCW is a
sheared version of the coding signal ambiguity function and
this shearing effect is proportional to the chirp slope. We
observe this phenomenon in Fig. 1 c, where the ambiguity
function of PC-FMCW with B = 2 MHz is demonstrated. Due
to this shearing effect, the ambiguity function of PC-FMCW
has a range-Doppler coupling similar to LFMCW. As shown in
Fig. 1 d, the Doppler tolerance of PC-FMCW has substantially
improved compared to PMCW by increasing the chirp
bandwidth to B = 10 MHz. Note that the parameters selected
herein are different from typical automotive radars (B = 300
MHz) to observe the shearing effect clearly. By increasing
the chirp bandwidth to typical values, PC-FMCW keeps the
advantages of LFMCW such as high range resolution, Doppler
tolerance and constant PAPR while having the advantage of
waveform coding and mutual orthogonality.

IV. RANGE PROFILE COMPARISON

In this section, we compare the zero Doppler cut (range
profile) of the ambiguity functions of PC-FMCW modulated
with different code families, namely random, Gold, zero
correlation zone (ZCZ) and Kasami codes [11], which
have different sidelobe levels. Although these codes are
optimized for periodic auto-correlation properties, they still
exhibit reasonable aperiodic auto-correlation properties. We
consider an automotive radar scenario where the transmitting
PC-FMCW has a chirp duration T = 25.6 µs with a carrier
frequency fc = 77 GHz, and chirp bandwidth B = 300
MHz. The BPSK sequence is used as a phase-coded signal to
modulate LFMCW. Hence, the amplitude of the phase-coded
signal is constant and changes between {−1, 1}. We use
Nc = 1024 number of chips per chirp. Thus the bandwidth
of the code signal becomes Bc = Nc/T = 40 MHz.

The ambiguity functions of PC-FMCW and PMCW are
simulated by using the same code families. The comparison of

the range profiles with the zero Doppler cut is demonstrated
in Fig. 2. It can be seen that the random code provides
∼ 23 dB dynamic range with the chosen system parameters
while the Gold code provides the same dynamic range with
lower sidelobes in the far range. Moreover, it is observed
that the range profile of the code itself (PMCW) is changed
essentially after modulating with the chirp signal (PC-FMCW).
This behaviour can be seen especially for the ZCZ code in
Fig. 2 c. The ZCZ code, as the name implies, is a code that
tries to find a zone with zero correlation, and the range profile
of the ZCZ code has sidelobes less than ∼ −40 dB close to
the main lobe. However, adding linear frequency modulation
alters the code property, and its sidelobe is raised to ∼ −15 dB.
Thus, the design of optimal code for PC-FMCW is a problem
to be considered in future. As for the Kasami code, we see
that it has a dynamic range of ∼ 30 dB without chirp and
modulating with chirp increases its dynamic range to ∼ 23 dB
with a slightly different range profile than the Gold code.

Next, we assess the sidelobe levels of different code
families by using integrated sidelobe level (ISL). Since we
consider automotive radar application, we only take into
account ISL between range interval ±250 meter noted as the
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Fig. 3. Integrated side lobe level comparison of PC-FMCW with different
code families

395

Authorized licensed use limited to: TU Delft Library. Downloaded on November 28,2022 at 06:28:38 UTC from IEEE Xplore.  Restrictions apply. 



-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Normalized frequency f / f
s

-40

-30

-20

-10

0
A

m
p

lit
u

d
e

 (
d

B
)

a)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Normalized frequency f / f
s

-40

-30

-20

-10

0

A
m

p
lit

u
d

e
 (

d
B

)

b)
Fig. 4. Spectrum of the transmitted PC-FMCW with random phase-coded
signal a) Nc = 16, relative code bandwidth Bc/B = 0.002 b) Nc = 1024,
relative code bandwidth Bc/B = 0.133

interval [r1, r4]. Then ISL can be defined as [14]:

ISL = 10 log10

(∫ r2
r1

|χ(τ, 0) |2 dτ +
∫ r4
r3

|χ(τ, 0) |2 dτ∫ r3
r2

|χ(τ, 0) |2 dτ

)
,

(9)
where the interval [r2, r3] defines the main lobe, and χ(τ, 0) is
the zero Doppler cut of the ambiguity function of signal x(t).

ISL of PC-FMCW with investigated code families are
compared and illustrated as a function of the number of
chips per chirp in Fig. 3. It is seen that ISL of investigated
code families are comparable, and their ISL raises as the
number of chips per chirp increases. This behaviour is expected
because the bandwidth of the code becomes comparable to
chirp bandwidth and spectrum leakage outside of the chirp
bandwidth leads to increased sidelobes. To illustrate this issue,
we compare the relative bandwidth of the code with chirp
bandwidth as Bc/B in Fig. 4. It can be observed that the
power of leakage outside of the chirp bandwidth increased
∼ 20 dB as the relative code bandwidth changed from 0.002
to 0.133. Thus, the relative code bandwidth limits the sensing
performance and should be considered in the system design.

V. CONCLUSION

The ambiguity function of PC-FMCW is investigated.
Modulating with the chirp signal shears the ambiguity
function of phase-coded signal, and thus PC-FMCW has
Doppler tolerance and high range resolution similar to
LFMCW. The zero Doppler cuts of the ambiguity function
are shown for random, Gold, ZCZ and Kasami code,
and their sensing performance has been compared. It has
been demonstrated that the sidelobe values in the range
profile of PC-FMCW might be essentially different from the
sidelobe levels of code auto-correlation function; different

codes with different auto-correlation functions provide very
similar sensing performance for PC-FMCW. The demonstrated
performance can be used as a boundary for any practical
realization of the receiver design. The utilization of codes
mutual orthogonality for self-interference suppression in the
MIMO systems will be presented elsewhere.
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