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Abstract: This article focuses on the validation of a classical PID controller scheme for
flexible spacecraft with regards to the effect of parameter uncertainty on system stability
and pointing precision. A high-fidelity simulation environment with external disturbances was
built in Simulink using a control-oriented model of an Earth-observing satellite with a flexible
appendage and on-board microvibration sources in orbit around the planet. Then, a PID
control loop was designed with sensor dynamics, time delay behaviour, and a smooth trajectory
generator. After declaring the natural frequencies, damping ratio, and rotation angle of the
appendage, as well as the propellant tank mass to be uncertain, two worst-case scenarios were
identified. Comparing the response of worst-case systems with nominal settings, only a minor
drop has been found in the phase margins, with little to no difference in the pointing errors
(smaller than ±2 arcsec for both roll and pitch).

Keywords: flexible spacecraft, nonlinear dynamics, attitude tracking, precise pointing control,
PID control, parameter uncertainty

1. INTRODUCTION

Nowadays, there are many ongoing and proposed missions
involving spacecraft where extremely accurate pointing is
required, either for cosmic vision or Earth observation
purposes. These applications usually require rigid vehicles,
otherwise a number of disturbing effects would severely
impact image quality and line-of-sight stability, such as
flexible appendages and internal microvibration sources.

Flexible appendages tend to be prevalent in complex mis-
sions, as payload mass restrictions can often only be met
with low stiffness structures. Their vibration character-
istics are imprecisely known because the gravity envi-
ronment on Earth does not allow for rigorous testing.
This uncertainty of frequency and damping of the flexible
modes and potential coupling between axes leads to major
challenges in attitude determination and control system
(ADCS) design (Gasbarri et al. (2012)). Additionally,
manufacturing imperfections in reaction wheels generate
residual harmonic microvibrations which can be amplified
on interaction with the structure of the spacecraft, leading
to failure (Preda et al. (2018)).
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In scientific literature of the past decades, one can find
a vast number of solutions to these dynamical challenges.
Notable examples are the sliding mode controller in Xiao
et al. (2011) and the estimator-based method in Xiao et al.
(2016), but there are also robust approaches such as Preda
et al. (2018) that deal with pointing performance. How-
ever, there have been few publications featuring nonlinear
models or uncertainty, and just a handful on the verifica-
tion and validation of these systems, the most impactful
ones being Wang et al. (2010) and Gasbarri et al. (2012).

The presented work aims to tackle the control problem of
stabilizing the flexible system, while also fulfilling stringent
pointing precision requirements and validating the con-
trol algorithm for parameter uncertainty. This is achieved
by building a simulation environment where the modeled
spacecraft is subject to external and internal disturbances.
The main contribution of this paper is combining con-
troller validation with a nonlinear test environment that
is higher fidelity than most current approaches. The de-
veloped simulation environment can be used as a solid
basis for achieving more complex goals in the future, such
as advanced control design or conducting Monte Carlo
campaigns.

This paper is structured as follows: Section 2 presents
details on the control-oriented system model as well as
the nonlinear equations of motion. Section 3 introduces
the proposed control design together with sensor models,
and a quaternion-based method for smooth and precise
trajectory generation. Based on this design, Section 4
deals with the implications of parameter uncertainty in
a exhaustive search of value ranges for four variables.
Conclusions are stated in Section 5 at the end of the paper.
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2. MODELLING OF THE NONLINEAR SYSTEM

To describe and analyze the dynamics of the nonlinear
system, we built a control-oriented mathematical model in
Simulink. Throughout the paper, Sentinel-2B, a European
Earth observation satellite is used as a reference spacecraft
for both orbit modeling and system characteristics. This
features a rotating solar panel, a variable-mass propellant
tank, and a spacecraft bus with similar size and mass,
presented for the nominal case in table 1.

Table 1. Reference spacecraft parameters

Part Size (m) Mass (kg) Center of mass (m)

Bus [3.4; 1.8; 2.35] 975 [0; 0; 0]
Panel [0.01; 3.1; 2.3] 40 [0;−2.45; 0]
Tank [0.5; 0.5; 0.5] 125 [−1.4; 0; 0]
Sum - 1140 [−0.1535;−0.0860; 0]

Ahead of initialization, four uncertain parameters are
declared (nominal values and ranges presented in table 2).

Table 2. Uncertain parameters

Parameter Value Range

Tank mass multiplier 1 0-1
Panel rotation angle 0 0-2π rad

Panel damping ratio multiplier 1 0.85-1.15
Panel frequency multiplier 1 0.95-1.05

Regarding the summation of the spacecraft body’s mo-
ments of inertia, the inertia matrix is calculated after
taking the value of uncertain parameters into account,
which results in an approximation of the real value for
Sentinel-2B. In the nominal case, the inertia matrix J for
the entire spacecraft has a value as follows:

J =

[
998.50 15.044 0
15.044 1628.9 0

0 0 1689.6

]

2.1 Reference Frames

We will be using four reference frames throughout this
paper, which are sufficient to describe the dynamics of
the system. The first one is the Earth Centered Inertial
(ECI, or ”I”) frame, whose origin is defined in the Earth’s
center of mass, with the z axis aligned with the mean
North pole, the x axis with the mean vernal equinox at
some epoch (here: J2000.0), and the y axis completing the
right-handed orthogonal system. This is the only inertial
frame, with the three other frames being defined to it.

The second one is Earth Centered Earth Fixed (ECEF, or
”F”), which (disregarding precession and nutation) shares
an origin and z axis with ECI, but the x-y axes are rotating
with Earth. The rotation matrixRFI can be formulated as
a simple rotation around the z axis, with the angle as the
product of Earth’s rotation rate and the time passed since
the ECI epoch. For modeling the planet and converting
between ECEF and LLA (geodetic latitude, longitude,
altitude), the paper uses the WGS84 reference ellipsoid.

The third frame is Local Vertical Local Horizontal (LVLH,
or ”L”), which is a local frame with an origin that is fixed
to the center of mass of the spacecraft. The z axis points
in the direction of the nadir (towards the center of mass of

the Earth), the y axis to the negated normal vector of the
orbital plane, and the x axis completing the right-handed
orthogonal system. This is convenient for declaring the
rotation matrix RLI in simulations, as the nadir vector is
the same as the negated unit ECI position vector, while
the normal vector of the orbital place is the same as the
unit cross product of the ECI position (rIBI) and velocity
(vI

BI) vectors. The transformed rotation matrix RLF can
also be defined with ECEF vectors and the WGS84 Earth
rotation rate ω⊕, using the orthogonal basis vectors ôi:

o1 = o2 × o3

o2 = −rFBF ×
(
vF
BF − rFBF × ω⊕

)

o3 = −rFBF

RLF = [ô1 ô2 ô3]

(1)

Finally, the Body frame (”B”) is defined with its origin
fixed to the center of mass of the orbiting body, and its
orientation fixed to the principal axes of the spacecraft.

2.2 Equations of Motion

Sentinel-2B occupies a highly inclined, circular orbit at
790 km altitude. The orbital dynamics of the satellite are
described with two sets of differential equations, one for
the ECEF position vector, and another for the body-frame
velocity vector. Due to the rotation of the ECEF frame,
there are also centrifugal and Coriolis components in the
dynamics (Markley and Crassidis (2014)).

r̈FBF = v̇F
BF =

= RFB
fB

m
− 2ω⊕ × vF

BF − ω⊕ ×
(
ω⊕ × rFBF

)
(2)

Initial conditions for all the states have been calculated
by extracting position and velocity data from the refer-
ence spacecraft’s two-line orbital elements, after solving
Kepler’s equation and converting from the perifocal frame.

Regarding the gravity field, we used a zonal harmonic
expansion to the fourth degree to account for the non-
spherical gravity field. This is due to Earth having a geoid
shape with a non-uniform mass distribution, which has a
significant effect over the timescale of the simulations.

Then, we derived the differential equations from the rel-
ative dynamics of rotating reference frames and the kine-
matics of quaternions. Including the body-frame torques
τB and reaction wheel angular momentum Hrw in the
equation, the angular velocity of the body frame with
respect to the inertial frame can be expressed as:

ω̇B
BI = J−1

[
τB − ωB

BI ×
(
HB

rw + JωB
BI

)]
(3)

Using a scalar-first convention and defining ω̊B
F as a

quaternion with a zero scalar element, the kinematics of
the quaternion between the fixed and body frames can be
expressed as a single quaternion product. Notice how the
quaternion is defined as a rotation between the ECEF and
Body frames, in order to reduce model complexity.

q̇BF =
1

2
qBF ◦ ω̊B

BF (4)

Initial conditions for all rotation states are defined for a
nadir-pointing case and zero angular velocity with respect
to the local frame.

2.3 Disturbing Forces and Torques

There are numerous external and internal factors disturb-
ing the motion of bodies in space through small forces and
torques, whose magnitude and dynamics are dependent on
both position and time. In Low Earth Orbit, the sources
of main disturbing torques are aerodynamics, magnetism,
and gravity. Solar radiation pressure is excluded from
modeling to increase simulation speed, as it is a relatively
minor effect in the selected altitude range. Torque models
are further detailed in Markley and Crassidis (2014).

Gravity Gradient Torque Any non-symmetrical rigid
body in a gravity field is subject to gravity-gradient
torque, which is an effect that tries to align the principal
axis of minimum inertia of the spacecraft with the nadir
vector (nB). Assuming the gravity field to be spherically
symmetric (standard parameter µ), it can be approxi-
mated as:

τB
gg =

3µ

|rFBF |3
nB × JnB (5)

Magnetic Torque It is often the case for spacecraft that
they have some magnetic dipole moment mM , roughly
estimated as a multiple (here: 1e-3 Am2kg−1) of the
spacecraft mass in a random direction. This could be a
result of residual magnetism from the on-board equipment,
or electric current passing through a loop. In the magnetic
field (BF ) of Earth, which can be approximated to a
desired degree using WMM2020, this generates a torque:

τB
m = mM ×RBFB

F (6)

Aerodynamic Torque One way to approximate drag is to
consider the spacecraft to be a collection of flat plates, each
with surface area si and surface normal vector ni. Since the
atmosphere is rotating with the Earth, an ”air speed” vrel

is also defined. Then, incident angles can be calculated for
each of the plates, which allows for cancelling out the non-
contributing ones. The total aerodynamic torque can then
be calculated as the sum of individual forces and moment
arms (rCP ) on each of the plates making up the spacecraft:

τ ae,i = rCP ×
(
−1

2
ρcDsiv

2
rel max {cos θi, 0} · v̂rel

)

vrel = vB
BF cos θi = ni · v̂rel

(7)

In the equation, there are two variables: the drag coef-
ficient of a flat plate (cD = 1.28) and the atmospheric
density (ρ). We used NRLMSISE-00 for the latter, which
also takes into account the ionization of the upper at-
mosphere to give valid densities and temperatures up to
1000 km in altitude. We managed to significantly speed up
calculation speed by using averaged values for parameters
such as year, day, magnetic flux data, which are relatively
constant over the simulation timescale (minutes).

2.4 Flexible Appendage

The spacecraft has a solar panel attached to one side of
the body, which acts as a flexible appendage, disturbing its
attitude. We modeled the panel as a flexible beam element
constrained in the connection point with the spacecraft,
based on the work of Alazard and Cumer (2018) and

Alazard and Sanfedino (2020). Its properties are illus-
trated on figure 1, where the dynamics involve motion in
just one rotation and one translation axis. Considering a
Young modulus of E = 150 GPa (an approximation for
single-crystal silicon in the panel), a state-space model
of the appendage can be built with linear and angular
acceleration in the connection point P as inputs, and
reaction forces and torques in the same point as outputs.

Fig. 1. Pure flexion (Alazard and Cumer (2018))

Since the full nonlinear model already incorporates the
rigid dynamics of the panel, we separated those compo-
nents from the resulting state-space model, so we can in-
clude the purely flexible appendage model without touch-
ing other parts of the spacecraft dynamics. This had the
added benefit of respecting the modularity of the Simulink
model. The flexible characteristics of the appendage for the
nominal case are presented in table 3.

Table 3. Flexible characteristics

Frequency (rad/s) Damping coeff.

17.2702 0.1
108.836 0.1
311.149 0.1
1383.16 0.1

2.5 Reaction Wheels

On most modern spacecraft, the primary instruments for
attitude control actuation are reaction wheels. They are
essentially torque motors with a high inertia rotor which
can spin in either direction and can provide one axis of
control. In the model, we are using one reaction wheel for
each of the spacecraft’s principal axes. For redundancy, an
additional fourth wheel is added diagonally, at 45 degrees
rotation to the three orthogonal ones (NASA Standard
configuration). We applied the pseudoinverse distribution
law to determine how much torque each wheel should
contribute for control in 3 axes.

The driving motor of a single wheel is modeled as a low-
pass filter with a cutoff frequency of 100 rad/s. Wheel
friction is modeled as a sum of viscous (kv = 10−6Nms)
and Coulomb (kc = 10−3Nm) components, and is depen-
dent on the rotation rate of the wheel, ωw. This rotation
rate is directly related to the nominal torque, which can be
expressed as the difference between drag torques and the
motor torque. The axial moment of inertia of the wheel
Jw = 0.2kgm2 is taken from catalog data for a wheel with
0.3 Nm of maximum torque, 50 Nms capacity, and 3850
rpm maximum rotation speed.

ω̇w = J−1
w τwnom τwnom = τmot−kvω

w−kcsign (ω
w) (8)
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Young modulus of E = 150 GPa (an approximation for
single-crystal silicon in the panel), a state-space model
of the appendage can be built with linear and angular
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reaction forces and torques in the same point as outputs.
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Since the full nonlinear model already incorporates the
rigid dynamics of the panel, we separated those compo-
nents from the resulting state-space model, so we can in-
clude the purely flexible appendage model without touch-
ing other parts of the spacecraft dynamics. This had the
added benefit of respecting the modularity of the Simulink
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nominal case are presented in table 3.
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On most modern spacecraft, the primary instruments for
attitude control actuation are reaction wheels. They are
essentially torque motors with a high inertia rotor which
can spin in either direction and can provide one axis of
control. In the model, we are using one reaction wheel for
each of the spacecraft’s principal axes. For redundancy, an
additional fourth wheel is added diagonally, at 45 degrees
rotation to the three orthogonal ones (NASA Standard
configuration). We applied the pseudoinverse distribution
law to determine how much torque each wheel should
contribute for control in 3 axes.

The driving motor of a single wheel is modeled as a low-
pass filter with a cutoff frequency of 100 rad/s. Wheel
friction is modeled as a sum of viscous (kv = 10−6Nms)
and Coulomb (kc = 10−3Nm) components, and is depen-
dent on the rotation rate of the wheel, ωw. This rotation
rate is directly related to the nominal torque, which can be
expressed as the difference between drag torques and the
motor torque. The axial moment of inertia of the wheel
Jw = 0.2kgm2 is taken from catalog data for a wheel with
0.3 Nm of maximum torque, 50 Nms capacity, and 3850
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We modeled the microvibration environment of the wheel
based on Kim (2014). In the wheel’s rocking frame, N
harmonic disturbances affect the wheel, which present as
forces and torques in the x-y plane which are added to the

nominal values. The parameters af,ti and hi are the same
as the ones used in the paper (which are estimated from

experimental data), while ϕf,t
i are random phase angles.



F x
i

F y
i

τxi
τyi
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afi (ω
w)2 sin


hiω
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w)2 cos
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w)2 cos

�
hiω

wt+ ϕt
i


ati(ω

w)2 sin
�
hiω

wt+ ϕt
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(9)

3. CONTROL DESIGN

Using this model, we built a control loop that consists
of a state estimator with sensor models, a trajectory
generator using sensor measurements, and a controller that
calculates desired torques to be delivered by the reaction
wheels. The linearized equations of rotational motion serve
as the basis of control design, defined as follows:

θ̈ = ω̇ = J−1
�
τ ∗
rw + τ ∗

flex


(10)

In which the linearized reaction wheel torques (τ ∗
rw) are

free of vibrations and friction (but still have transient
behaviour), while the linearized flexible dynamics (τ ∗

flex)

only respond to external torques (but not forces).

3.1 State Estimation

To estimate the states, four states are measured and then
mixed with normally distributed random noise (charac-
teristics presented in table 4). ECEF position is measured
with GPS, Body-frame velocity with integrated accelerom-
eter, body-frame angular velocity with a drifting gyro, and
Euler angles with a star tracker.

Table 4. Noise Characteristics or Sensors

Sensor Mean Variance Sample Time (s)

Gyro 0 rad/s 1e-13 0.01
Gyro Drift 0 rad/s2 1e-18 0.01
Star Tracker 0 rad 1e-11 0.1
Accelerometer 0 m/s2 1e-7 0.01

GPS 0 m 1e-2 1

With these sensor measurements, we estimate all other
states of the system by plugging them into the equations
of motion. To handle sensor drift, the integrators driven
by the gyro and the accelerometer are periodically reset
with lower frequency measurements from the GPS and star
tracker. The state estimator also has some time delay (0.01
s), which is modeled with a 5th order Padé approximant in
the linear model. Outputs are smoothed with a first-older
holder (to be replaced with a Kalman filter in the future).

The outputs of state estimation to be used the trajec-
tory generation and the controller are ECEF position rFB ,
ECEF velocity vF

B , body-frame angular velocity ωB
BI , and

the Euler angles θ. The angles are calculated from the ro-
tation quaternion from the LVLH frame to the Body frame
(qBL) and follow an XYZ rotation order, which makes the
line-of-sight vector (body-frame ”Z”) independent of the

yaw angle. This is beneficial for both trajectory generation
(as pointing precision only requires two Euler angles) and
operations (as the yaw angle becomes a free parameter).

3.2 Trajectory Generation

We implemented a quaternion-based algorithm for trajec-
tory generation, which solves the following question: what
is the quaternion qBL that rotates the nadir vector i3
(”Z” base of LVLH) into the vector rtarget that connects
the position of the spacecraft rFB with the ground target
rFT ? The first vector corresponds to the line-of-sight vector
where all Euler angles are zero, while the second vector
defines the desired case. Using the previously defined sen-
sor measurements to first determine the ECEF-to-LVLH
rotation matrix, the desired quaternion can be calculated
as follows.

rLtarget = RLF

�
rFTF − rFBF


i3 = [0 0 1]

T

qBL =

1 + i3 · rLtarget i3 × rLtarget

 (11)

After normalizing the quaternion, it is converted to Euler
angle representation using an XYZ convention with the
yaw angle set to zero, then multiplied with a polynomial
smoothing factor. The derivatives of this polynomial at
T=0 and T=150s are all zeroes up to the third order,
which ensures continuity in the trajectory and significantly
decreases the required control effort (Chen et al. (2000)).

In order to calculate the trajectory for the angular veloci-
ties, the measured position and velocity of the spacecraft
are used to propagate its orbit 0.01 s ahead in time using
the Bogacki–Shampine method on the orbital equations
of motion. Then, the desired rotation quaternion is also
calculated, normalized, and smoothed for the propagated
states. Finally, both are rotated to represent ECEF-to-
Body quaternions (qBF ). We then applied first-order nu-
merical differentiation to get q̇BF , which was plugged into
the inverted rotation kinematics to define the desired ωB

BF .

3.3 PID Control

As a test case, we implemented a PID control loop with
controller coefficients as shown in table 5. The control
torque is calculated by substracting measured Euler angles
(θm) and angular velocities (ωm) from the desired trajec-
tories (θd and ωd) to get error signals θe(t) and ωe(t):

τ c(t) = kP · θe(t) + kI


θe(t)dt+ kD · ωe(t) (12)

Table 5. PID Controller Coefficients

Controller kP kI kD
Roll 500 400 2000
Pitch 500 400 2000
Yaw 1e-1 1e-4 100

The coefficients were calculated by using the proprietary
PID Tuner tool of Simulink on the time-delayed linearized
equations of rotational dynamics to get a stable system
response, then further tuning the resulting controllers to
improve stability characteristics on the linearized system
and pointing performance on the nonlinear system. Roll
and pitch are more strictly controlled as they have the
largest impact on pointing precision.

3.4 Nominal Control Performance

All simulations in this paper are carried out using an
ode3 (Bogacki-Shampine) solver at a fixed step time of
1 ms, with a simulation length of 800 s. For testing the
control loop, the satellite was initialized with two-line
orbital elements measured during the morning pass, and
then pointed at an off-track city nearby. This ensured
a realistic test scenario with a large roll angle. After
closely following the smooth portion of the trajectory,
the designed controller produced an absolute performance
error within the ±2 arcsec range for roll and pitch, and ±3
degree range for yaw (figure 2). This was achieved by also
staying within the maximum torque range of the reaction
wheels. In case of wheel failure, the smooth portion of the
trajectory can be extended to further reduce the required
torque. After intersecting the line-of-sight vector with the
WGS84 reference ellipsoid, we determined the results to
correspond to a ground error of less than 10 meters for
the entire pass, which lasted several minutes and can be
extended even further by proper timing of the maneuver.

4. PARAMETER UNCERTAINTY ANALYSIS

To verify the designed controller, it has to be robust
with regards to parameter uncertainty. The targets of
this analysis are the four variables that we have defined
at the start of the paper (table 2). First, their effect
is individually assessed on system stability, using Bode
diagrams and pole-zero plots. We have found that the
panel rotation angle is markedly different from the other
three parameters, since it provides a way for flexible
behaviour to be transferred from purely yaw dynamics
to purely roll dynamics (and anything inbetween). This
shows up as large dips on both Bode curves at the
vibration frequencies. As such, this allows for defining two
parameter sets for worst-case scenarios: one for purely yaw
disturbances (0 rotation, Param 1), and another for purely
roll disturbances (90 deg rotation, Param 2).

The remaining three parameter ranges are then sliced
up with 10% intervals to form two cubes of potential
parameter sets, one for each rotation angle. Then, all of the
cases are analyzed in an exhaustive search to identify the
case with the worst phase margin characteristics. These
were found to be at the edges, as presented in table 6.

Table 6. Worst-case Parameter Sets

Parameter Param 1 Param 2

Tank mass multiplier 0 0
Panel rotation angle (deg) 0 90

Panel damping ratio multiplier 0.85 0.85
Panel frequency multiplier 1.05 1.05

Two figures showcase the effect of uncertainty on the con-
trol loop’s performance. Figure 4 presents Bode diagrams
and pole-zero maps for both the yaw and the roll responses.
Several systems are shown on the graphs at the same time,
transforming the nominal case parameter set (blue) into
the worst-case parameter set (red) in a linear manner. The
main feature is the gradual loss of phase margin at the
vibration frequencies as we move away from the nominal
case, visible as a deepening dip on the phase diagrams. The
poles migrating closer to the Re=0 axis is also noticeable.

Regarding performance in the nonlinear simulation (figure
3), little difference was found between the three cases,
despite the controller retaining its tuning. This indicates
that the control loop is sufficiently resilient to parameter
uncertainty.

5. CONCLUSION

Overall, the classical PID has been proven sufficiently
robust to uncertainty in the four selected parameters,
with satisfactory results (±2 arcsec) in precise pointing
using the high-fidelity simulation. Matching expectations,
stability characteristics such as phase margin got worse,
especially for roll response, but didn’t affect system be-
haviour. Our next goal is to design an advanced control
loop to further improve performance, by replacing the
PID with an H∞ or MPC-based controller, and designing
a vibration-isolated camera platform with an additional
inner control loop. This will then be followed by expanding
the presented uncertainty analysis to more parameters in
order to determine the most significant contributors to
performance degradation, and carrying out a Monte Carlo
campaign to further validate the designed control loop.

REFERENCES

Alazard, D. and Cumer, C. (2018). Satellite Dynamics
Toolbox - Principle, User Guide and tutorials. Technical
report, ISAE/DMIA/ADIS.

Alazard, D. and Sanfedino, F. (2020). Satellite dynamics
toolbox for preliminary design phase. In 43rd Annual
AAS Guidance and Control Conference, volume 30,
1461–1472.

Chen, X., Steyn, W., and Hashida, Y. (2000). Ground-
target tracking control of earth-pointing satellites. In
AIAA Guidance, Navigation, and Control Conference
and Exhibit, 4547.

Gasbarri, P., Monti, R., Campolo, G., and Toglia, C.
(2012). Control-oriented modelization of a satellite with
large flexible appendages and use of worst-case analysis
to verify robustness to model uncertainties of attitude
control. Acta Astronautica, 81(1), 214–226.

Kim, D.K. (2014). Micro-vibration model and parameter
estimation method of a reaction wheel assembly. Journal
of Sound and Vibration, 333(18), 4214–4231.

Markley, F.L. and Crassidis, J.L. (2014). Fundamentals of
spacecraft attitude determination and control. Springer.

Preda, V., Cieslak, J., Henry, D., Bennani, S., and Falcoz,
A. (2018). Robust microvibration mitigation and point-
ing performance analysis for high stability spacecraft.
International Journal of Robust and Nonlinear Control,
28(18), 5688–5716.

Wang, W., Menon, P., Bates, D., and Bennani, S. (2010).
Robustness analysis of attitude and orbit control sys-
tems for flexible satellites. IET control theory & appli-
cations, 4(12), 2958–2970.

Xiao, B., Hu, Q., and Zhang, Y. (2011). Adaptive sliding
mode fault tolerant attitude tracking control for flexible
spacecraft under actuator saturation. IEEE Transac-
tions on Control Systems Technology, 20(6), 1605–1612.

Xiao, B., Yin, S., and Kaynak, O. (2016). Attitude stabi-
lization control of flexible satellites with high accuracy:
An estimator-based approach. IEEE/ASME Transac-
tions on Mechatronics, 22(1), 349–358.



 János Bezsilla  et al. / IFAC PapersOnLine 55-20 (2022) 241–246 245
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loop to further improve performance, by replacing the
PID with an H∞ or MPC-based controller, and designing
a vibration-isolated camera platform with an additional
inner control loop. This will then be followed by expanding
the presented uncertainty analysis to more parameters in
order to determine the most significant contributors to
performance degradation, and carrying out a Monte Carlo
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Fig. 2. Control performance of the PID in the nonlinear simulation (nominal case)
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Fig. 3. Control performance of worst-case models in the nonlinear simulation compared to nominal case
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Fig. 4. The effect of uncertainty on linearized yaw and roll dynamics for parameter sets between nominal (blue) and
worst-case (red)


