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Predicting the impact of temperature on metabolic fluxes using resource 
allocation modelling: Application to polyphosphate 
accumulating organisms 
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A B S T R A C T   

The understanding of microbial communities and the biological regulation of its members is crucial for imple-
mentation of novel technologies using microbial ecology. One poorly understood metabolic principle of mi-
crobial communities is resource allocation and biosynthesis. Resource allocation theory in polyphosphate 
accumulating organisms (PAOs) is limited as a result of their slow imposed growth rate (typical sludge retention 
times of at least 4 days) and limitations to quantify changes in biomass components over a 6 hours cycle (less 
than 10% of their growth). As a result, there is no direct evidence supporting that biosynthesis is an exclusive 
aerobic process in PAOs that alternate continuously between anaerobic and aerobic phases. Here, we apply 
resource allocation metabolic flux analysis to study the optimal phenotype of PAOs over a temperature range of 
4 ◦C to 20 ◦C. The model applied in this research allowed to identify optimal metabolic strategies in a core 
metabolic model with limited constraints based on biological principles. The addition of a constraint limiting 
biomass synthesis to be an exclusive aerobic process changed the metabolic behaviour and improved the pre-
dictability of the model over the studied temperature range by closing the gap between prediction and experi-
mental findings. The results validate the assumption of limited anaerobic biosynthesis in PAOs, specifically 
“Candidatus Accumulibacter” related species. Interestingly, the predicted growth yield was lower, suggesting that 
there are mechanistic barriers for anaerobic growth not yet understood nor reflected in the current models of 
PAOs. Moreover, we identified strategies of resource allocation applied by PAOs at different temperatures as a 
result of the decreased catalytic efficiencies of their biochemical reactions. Understanding resource allocation is 
paramount in the study of PAOs and their currently unknown complex metabolic regulation, and metabolic 
modelling based on biological first principles provides a useful tool to develop a mechanistic understanding.   

1. Introduction 

Biotechnological applications, especially in environmental engi-
neering, strongly depend on the function and stability of microorgan-
isms that interact with each other and with the environment in 
dynamically changing communities (Konopka, 2009). Further develop-
ment of tools to study and predict these microbial communities holds the 
key to improving and expanding the plethora of their applications 
(Widder et al., 2016). Wastewater treatment is a field of application that, 
for decades, has relied on the use of microbial communities and 
modelling to better predict and control the emerging dynamics of such 
environments (Van Loosdrecht et al., 2015). Extensive experimental 

knowledge on these systems has been obtained using long-term lab-scale 
experiments (Beun et al., 1999; Strous et al., 1998; Lawson et al., 2021; 
Acevedo et al., 2012). While significant experimental progress was 
achieved and there is a growing availability of high-throughput data 
generating techniques (i.e. genomics (Singleton et al., 2021), tran-
scriptomics (Camejo et al., 2019; Oyserman et al., 2016) and proteomics 
(Kleikamp et al., 2021)), a full characterization and especially mecha-
nistic understanding of these communities remains a challenging task in 
ecology (Zomorrodi and Segrè, 2016). Modelling enables to test 
different hypothesis of mechanisms and especially whole cell models are 
crucial to integrate observations, unravel biological principles and 
predict functions or conditions that are currently inaccessible via 
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1 Present address: Lehrstuhl für Bioverfahrenstechnik, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052 Erlangen, Germany 

Contents lists available at ScienceDirect 

Water Research 

journal homepage: www.elsevier.com/locate/watres 

https://doi.org/10.1016/j.watres.2022.119365 
Received 12 September 2022; Received in revised form 7 November 2022; Accepted 15 November 2022   

mailto:T.W.PaezWatson@tudelft.nl
mailto:timothypaezw@gmail.com
www.sciencedirect.com/science/journal/00431354
https://www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2022.119365
https://doi.org/10.1016/j.watres.2022.119365
https://doi.org/10.1016/j.watres.2022.119365
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2022.119365&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Water Research 228 (2023) 119365

2

experimental approaches only (McDaniel et al., 2021). 
The enhanced biological phosphorous removal (EBPR) is one of the 

most studied microbial processes in wastewater treatment and decades 
of research have unravelled the main biological transformations of this 
complex engineered ecosystem (Mino et al., 1998; Oehmen et al., 2007; 
Smolders et al., 1995). In the EBPR system, microorganisms cycle be-
tween anaerobic and aerobic phases leading to the enrichment and 
proliferation of polyphosphate accumulating organisms (PAOs). In this 
community, one of the most studied bacteria is “Candidatus Accumu-
libacter” (hereafter referred to as Accumulibacter) (Oehmen et al., 
2007). Accumulibacter thrives in a typical EBPR cycle by a complex 
metabolic strategy involving the cycling of storage polymers: poly-
phosphate, glycogen and polyhydroxyalkanoates (PHAs) (Smolders 
et al., 1995). 

So far, metabolic modelling approaches for PAOs have been devel-
oped and are used with the aim to maintaining stable operations during 
EBPR processes and/or predicting better conditions favouring simulta-
neous carbon, phosphorous and nitrogen removal (Van Loosdrecht et al., 
2015). Early models such as the ASM3 or TUDP have shown to translate 
well with process observations, however require extensive recalibration 
depending on plant properties and environmental conditions. For 
example, more recent model developments include the effect of putative 
PAO competitors (Lopez-Vazquez et al., 2009; Oehmen et al., 2010), 
fermentative PAOs (Varga et al., 2018), storage levels’ effects (Santos 
et al., 2020), etc. Nevertheless, most current models rely on pre-defined 
metabolic strategies and consequently reflect the already existing, 
though not necessarily complete, scientific knowledge on metabolic 
functions of this ecosystem. Although useful, these features limit the 
mechanistic understanding of the biological principles governing mi-
crobial communities under dynamic conditions. 

One of the pre-defined microbial strategy commonly applied in the 
EBPR models is the assumption of growth being limited to the aerobic 
phase. Already very early PAO studies suggested that biosynthesis oc-
curs only in the aerobic phase of EBPR systems at expenses of PHA 
degradation (Comeau et al., 1986; Smolders et al., 1994). Throughout 
the years, this assumption has been adopted into metabolic models. 
Interestingly, this assumption has not been verified in-depth besides the 
observations on the consumption of certain nutrients (e.g. NH4+) linked 
to aerobic growth (Camejo et al., 2019). Many bacterial species that 
survive under both anaerobic and aerobic conditions grow anaerobically 
while fermenting substrate (Sawers, 1999; Ribes et al., 2004), hence the 
validity of this assumption (aerobic biosynthesis) in PAOs is yet to be 
confirmed. 

Due to the slow growth of organisms in EBPR processes, it has been 
difficult to estimate protein turnover rates and to precisely calculate 
protein synthesis in different phases of a cycle. A typical EBPR lab-scale 
setting consist of daily cycles of 6 h with an imposed SRT of 8 days. Thus, 
theoretically the biomass in the system should renew its proteome in the 
range of around 32 cycles, meaning that in one cycle the newly produced 
proteins would account for only 3% of the proteome, and the putative 
contribution of anaerobic biosynthesis would be even lower. Measuring 
such small differences in microbial communities is technically chal-
lenging considering the inhomogeneity of the culture as well as current 
limitations such as number of mass spectra acquisition per time 
(Kleiner, 2019), biased extraction methods to soluble proteins (Sievers, 
2018; Helbig et al., 2010), amongst others. Proteomics studies on EBPR 
sludge from Wilmes et al. (2008) and Wexler et al. (2009) fell short on 
quantitatively identifying these changes, exemplifying the complica-
tions of studying protein synthesis in slow growing systems such as 
PAOs. 

Data from transcriptomic studies, however, seem to indicate a major 
trend towards aerobic protein biosynthesis. Time series metatran-
scriptomic data from a highly enriched Accumulibacter culture showed 
different clusters of expression throughout the EBPR cycle (Oyserman 
et al., 2016). The largest number of transcripts from their study showed 
trends of transcription during the aerobic phase (identified as aerobic 

pattern, redox transition and low phosphate patterns). Although the link 
from transcription to protein synthesis is not always direct, these results 
highly suggest that there is a regulation favouring protein synthesis to 
occur in the aerobic phase. This hypothesis could be further explored 
experimentally with the use of isotopically labelled acetate fed to a PAOs 
enrichment, such as the experiments done by (Hesselmann et al., 2000), 
to identify the fate of 13C anaerobically and aerobically over one or 
multiple cycles, however up to date such evidence is lacking. 

With no final experimental evidence, model based studies consid-
ering biosynthesis and resource allocation could be applied to develop 
an understanding of a putative synthesis of biomass components and 
furthermore quantify the putative benefit of anaerobic growth. 
Constraint-based models such as flux balance analysis (FBA) integrating 
principles from resource allocation represent an opportunity to test a 
hypothesis regarding biosynthesis during a cyclic, dynamic system 
(Orth et al., 2010; Rügen et al., 2015). Conditional flux balance analysis 
(cFBA) is a metabolic modelling tool that was originally developed to 
predict the metabolism of cyanobacteria under dynamic day/night cy-
cles with strong dependency on resource allocation (Rügen et al., 2015). 
The characteristics of the cFBA framework and the similarities of these 
cyclic conditions with those of EBPR make cFBA a suitable method to 
apply in the context of studying PAOs. Recently, the cFBA method was 
applied to predict optimal strategies under dynamic environmental 
conditions encountered during EBPR (Guedes da Silva et al., 2019). 
Depending on the environmental constraints, different optimal strate-
gies, i.e. organisms accumulating polyphosphate (PAOs), glycogen 
(GAOs), polyhydroxyalkanoates (PHA-Os) and heterotrophs were pre-
dicted. The optimizations resulted in metabolic strategies comparable to 
those typically observed for Accumulibacter. While the general behav-
iour was correctly predicted, there were quantitative mismatches, sug-
gesting the need for further model development probably beyond 
parameter calibration. Because the model is strongly shaped by the 
relation between enzymatic activities and resource allocation, there is 
potential for expansion in this front. 

Enzymatic activities are strongly influenced by temperature and 
consequently temperature plays a crucial role in shaping the metabolism 
of microorganisms (Russell, 1990). Implementation of temperature de-
pendencies on metabolic models have shed light on basic biological 
principles such as a linear relationship between growth rate and ribo-
some content (Bosdriesz et al., 2015; Metzl-Raz et al., 2017) and optimal 
proteome allocation as a function of temperature (Mairet et al., 2021). 
However, these principles result from models for organisms such as 
Escherichia coli at steady-state and may not apply to microbial commu-
nities under dynamic conditions. On the other hand, there are extensive 
experimental studies on the effect of temperature on PAOs metabolism 
(Brdjanovic et al., 1997, 1998a, 1998b). The current mechanistic un-
derstanding of PAOs metabolism with relation to temperatures could be 
combined with metabolic models such as cFBA to identify metabolic 
principles governing growth and resource allocation. Especially, at low 
temperatures, the efficient use of available resources like enzyme ca-
pacity are assumed to be crucial for evolutionary competitiveness. 

In the current study, we combined the cFBA modelling framework 
with temperature dependency for PAOs to identify metabolic principles 
regarding resource allocation. We compared the complete model with 
and without a constraint on anaerobic biomass synthesis. Our results 
further validate the assumption on biomass being limited to the aerobic 
sector of EBPR and shed light on previously unexplored putative regu-
lation on protein biosynthesis. 

2. Materials and methods 

2.1. Model description 

For modelling the metabolism and energy allocation of PAOs, a 
constrained-based approach named conditional flux balance analysis 
(cFBA) was used (Rügen et al., 2015). The model and parameters for 
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PAOs was obtained from Guedes da Silva et al. (2019). 
The model consists of 29 metabolites connected by 36 reactions 

represented in a stoichiometric matrix S. All network reactions and 
stoichiometry are detailed in Table S1. Different to conventional ap-
proaches, only a subset of metabolites (7 metabolites) are considered in 
steady state by the relation: 

S . vt = 0,

where S denotes the stoichiometric matrix subset of steady state me-
tabolites and vt denotes the fluxes of each reaction at time interval t. The 
remaining 22 metabolites are dynamic, i.e. are allowed to accumulate or 
deplete over time (polymers, enzymes and biomass precursors) and their 
molar amount is updated at each time point by the following relation: 

Mt = S̃ . vt + Mt− 1 

Mt is a vector that indicates the molar amount of the non-steady state 
metabolites at time interval t, and S̃ denotes the stoichiometric matrix 
subset of the dynamic metabolites (not in steady state). 

2.1.1. Biomass growth and composition 
Growth of the system at the end of the simulation is described as the 

overall fold-change (α) of the initial metabolite composition (M0): 

Mend = α ∗ M0 

This relation introduces the possibility to simulate a system in a 
cycle, as the proportions of non-steady state metabolites need to be 
maintained only at the end of the simulation. The values of M0 are an 
outcome of the simulation in order to achieve maximal growth but 
limited to the total sum of 1 gram dry weight (gDW) by the relation: 

wT .M0 = 1,

where wT is a transposed vector containing the weights that different 
components have on 1 gDW of biomass. The values in wT were defined by 
Guedes da Silva et al. (2019) for glycogen, polyphosphate and PHA 
levels based on data published by Acevedo et al. (2012). Data published 
by Acevedo et al. (2012) belong to a reactor performing > 99% phos-
phate removal with a defined population of > 85% PAOs and show 
clearly identified cycling of polyphosphate, glycogen, PHB and PHV. 
Protein content was based on the work of Yücesoy et al. (2012). 

2.1.2. Quota definition of compounds 
The metabolites that are not in steady state consist of storage poly-

mers (glycogen, polyphosphate, PHB and PH2MV), catalytic metabolites 
(enzymes and ribosomes) and non-catalytic metabolites (named here as 
biomass precursors and other proteins). Because some of these metab-
olites do not reinforce the autocatalytic behaviour of the system, their 
values in the vector M0 will tend to be 0 as this vector is an outcome of 
the simulation to optimize growth. To enforce the synthesis of these 
compounds, Rügen et al. (2015) introduced the concept of quota com-
pounds following the relation: 

BquotatMt ≥ Cquotat
(
wT ⋅Mt

)

In this relation, Bquatat is a matrix containing the index positions in the 
M vector of the metabolites for which the quota is being defined at time 
point t. Cquatat is a vector containing the values for the said quotas. The 
indicated relation was used to define minimal quota levels at time 0 for 
glycogen, polyphosphate and PHAs based on data published by Acevedo 
et al. (2012). It was also used to define an all-time minimal level of 
biomass precursors and non-catalytic proteins. 

For this research, the concept of quota compounds was slightly 
modified to include specific and maximum quota compounds at indi-
cated time points. 

Bquata eqtMt = Cquata eqt
(
wT ⋅Mt

)

Bquota maxtMt ≤ Cquota maxt
(
wT .Mt

)

These additional concepts were used to define a set initial amount of 
substrate (acetate) at time 0 hours and to enforce its uptake by setting a 
maximum quota of 0 at 0.5 h of the cycle. 

2.1.3. Catalytic and non-catalytic constraints on fluxes 
Comparable to conventional FBA, each reaction can be limited ac-

cording to pre-assigned values in a lower (lb) and upper bound (ub) 
vector at each time point. 

lbt ≤ vt ≤ ubt 

The lower and upper bounds were used to specify environmental 
limits on reactions (e.g. during the anaerobic period, oxygen consuming 
had an ub of 0 mmol/gDW/h). Otherwise, the upper bounds were defined 
by the amount of a specific catalyst and the turnover rate of this catalyst 
(kcat,E values) by: 

vt ≤ Mt,E .kcat,E  

where Mt,E denotes a subsection of Mt containing the molar amount of 
enzymes at time t and kcat,E a vector with the catalytic turnover number 
(kcat,E) of each enzyme. All reactions from the system except for CO2 
diffusion are catalysed by enzymes or ribosomes. The kcat,E values for 
each reaction were adapted from the work from Rügen et al. (2015) and 
if not considered in their research it was obtained from the BRENDA 
database (Schomburg et al., 2012). The molar cost of all the enzymes 
was the assumed to be the same based on the work from Rügen et al. 
(2015). 

2.1.4. Maintenance requirements 
Metabolic models commonly consider the expenditure of energy 

(ATP) for basic maintenance purposes. Here, a constant flux of 0.3980 
mmol ATP/gDW/h was used, based on literature values for PAOs 
(Smolders et al., 1995). This value is assumed for the anaerobic as well 
as aerobic phase, and is independent of the amount of available 
substrate. 

2.1.5. Simulation of dynamic conditions 
Simulations were performed considering a typical EBPR cycle: an 

anaerobic phase of 1.5 h followed by an aerobic phase of 3.5 h. The 
anaerobic conditions were simulated by setting the upper bound for the 
electron transport chain (ETC) reaction to 0 mmol O2/gDW /h. 
Conversely, during the aerobic phase the upper bound of this reaction 
was only limited by the capacity of the respective enzyme constraint. 
The substrate (acetate) was available at the beginning of the anaerobic 
phase (t=0h) by setting an initial metabolite quota for the starting 
amount. To enforce rapid consumption, a maximum quota of 0 mmol/ 
gDW/h was set at 30 min. 

2.1.6. Optimization target and algorithm used 
The previously defined constraints (equalities and inequalities of the 

model) are discretized in defined time intervals throughout the cycle. 
Linear programming was then used to identify possible flux distributions 
at each time interval without an optimization objective. Thus, the ob-
tained flux distribution for each time point is not an optimal unique 
solution, but rather a possible solution that fulfils the equality and 
inequality constraints mentioned so far (steady state metabolites, initial 
metabolite composition, quotas and enzyme capacities). 

The possible solutions can be further constrained for any given α 
value (fold change of the system). The overall optimal target (maximum 
possible α value) was set following the approach introduced by Rügen 
et al. (2015) and used by Reimers et al. (2017) and Guedes da Silva et al. 
(2019). Briefly, a search for α values that fulfil the linear constraints is 
performed using an algorithm of binary search until the highest 
achievable α value is found with a defined accuracy (minimal step-size) 
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of 10− 7. Due to the presence of internal cycles in the metabolic model, 
the solution obtained is not unique. To further limit the solution space, 
we identified and limited internal cycles from the available solutions 
with no effect on the outcome of the simulation. 

2.1.7. Temperature dependencies 
Temperature was implemented as a parameter affecting the turnover 

rates (kcat) of individual reactions following the simplified Arrhenius 
equation from 4 to 20 ◦C. This relation has been used previously to 
describe temperature effect on the kinetics of PAOs using a black-box 
kinetic model (Brdjanovic et al., 1998a; Lopez-Vazquez et al., 2009) 
and is expressed as: 

kcat(T) = kcat(20) ∗ θ (T − 20∘C)

where kcat (T) represents the kcat value at temperature T, kcat (20) the kcat 
value at 20◦C (defined as optimal temperature for PAOs) and theta (θ) 
the temperature coefficient for the specific reaction in question. The 
values for θ are reaction specific, and were adapted from the previously 
determined θ values found in Lopez-Vazquez et al. (2009) and summa-
rized in Table S2. The values for θ of reactions that have not been 
determined were set within the range of estimated θ values for compa-
rable bioconversions. The effect of the set θ values on the model pre-
diction was evaluated with a general parameter sweep. 

2.1.8. Simulation with and without biomass synthesis constrains 
To evaluate the effect that biomass growth during the entire cycle or 

only during the aerobic phase, two simulations were performed. These 
simulations are referred to as the unconstrained growth (no constrains on 
biosynthesis) and the aerobic growth (biosynthesis can only occur during 
the aerobic period) models. The only difference between both models 
lays on the upper bounds allowed for the reactions involved in protein 
and ribosomes production (including enzymes) and synthesis of biomass 
precursors (BMP) synthesis (See Table S1 for information on the stoi-
chiometry of these reactions). In the unconstrained growth model, these 

bounds were constrained like all other reactions (set by the catalytic 
limitations), whereas in the aerobic growth model, these upper bounds 
were set to 0 mmol/gdw/h during the anaerobic phase. 

2.2. Software and model availability 

All simulations were performed in MATLAB version 9.4 (R2019b) 
using LINPROG as the linear optimization solver. The original cFBA 
model was retrieved from Rügen et al. (2015) and the PAOs specific 
model retrieved from Guedes da Silva et al. (2019). The adapted model 
used in this study is available at GitLab project ID 39202430 (https:// 
gitlab.com/delft_paos/cFBA_temperature). 

3. Results 

3.1. Reference simulation: EBPR cycle with unconstrained growth at 20◦C 

We first investigated the predicted metabolic response of the model 
with unconstrained growth (Fig. 1A) in a typical EBPR system at 20 ◦C and 
used it as the reference simulation for further comparisons. A total cycle 
length of 5 h was applied: 1.5 h anaerobic and 3.5 h aerobic. Acetate was 
enforced to be consumed within 30 min of the anaerobic period to 
simulate the competition for substrate and obtain the competitive 
strategy of organisms enriched under this regime (Guedes da Silva et al., 
2019). The minimal initial amounts (quota) of storage polymers (poly-
phosphate, glycogen and PHA) per biomass (mol / gDW) were introduced 
in the model based on data published by Acevedo et al. (2012). Using 
these conditions, the reference metabolic response of PAOs simulated 
was obtained and compared to the experimental profiles from Acevedo 
et al. (2012) (Fig. 1B). 

The simulation reproduced complete acetate consumption and 
accumulation as PHA (Fig. 1B), while polyphosphate was degraded to 
provide the required ATP for the uptake and activation of acetate and 
anaerobic maintenance. Reducing equivalents (modelled as NADH) for 

Fig. 1. A) Schematic representation of the reaction network used for the cFBA simulations. Compounds enclosed by grey boxes are dynamic compounds, that can 
accumulate resp. decrease over time. All other compounds were assumed to reach quasi steady-state. Each reaction is catalyzed by a specific enzyme available at a 
calculated, dynamic concentration. B) Solid lines: predicted metabolite concentrations of PAOs during an EBPR cycle at 20 ◦C with unconstrained growth (Guedes da 
Silva et al., 2019). Circles and dotted lines: experimental data from an EBPR system retrieved from Acevedo et al. (2012). Abbreviations: Inorganic phosphate (Pi), 
polyphosphate (PolyP), poly-hydroxy-butyrate (PHB), poly-hydroxy-2-methylvalerate (PH2MV), oxaloacetate (OAA), succinyl CoA (SuccCoA), acetyl CoA (AcCoA), 
phosphoenolpyruvate (PEP), glycogen (Glyc), biomass precursors (BMP), phosphenolpyruvare carboxylase (PEPC), phosphoenolpyruvate carboxykinase (PEPCK), 
glyoxylate shunt (GOX), oxidative and reductive tricarboxylic acid cycle (OxTCA and redTCA respectively), electron transport chain (ETC). 
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PHA accumulation were provided by glycogen degradation and a frac-
tion of acetate being channelled through the TCA cycle. When oxygen 
became available (aerobic phase, with activated ETC), the intracellular 
PHAs were degraded and the resources from this degradation were used 
to restore the glycogen and polyphosphate pool. Such metabolic strategy 
observed in the cycling of polymers is typical of Accumulibacter (Oeh-
men et al., 2007; Acevedo et al., 2012; Smolders et al., 1995). 

Although the model with unconstrained growth predicted typical 
profiles for Accumulibacter, there are some quantitative mismatches 
with the compared experimental data set (Fig. 1B), mainly regarding the 
amount of glycogen and PHA used/accumulated within a cycle. This 
mismatch between prediction and experimental data results in part from 
a higher contribution of the NADH generated in the TCA cycle leading to 
lower required flux through glycolysis (Fig. 3, explored in the following 
subsections). We additionally identified that biosynthesis was active 
anaerobically in this simulation (mainly synthesising enzymes). To 
evaluate if the observed mismatches were specific to the chosen condi-
tion (EBPR at 20 ◦C) or based on a systematic feature of our modelling 
approach, we explored a broad range of different temperatures. 

3.2. Simulations for different temperatures 

Reported, experimentally determined values of temperature co-
efficients (θ) in PAOs range from 1.03 for polyphosphate synthesis to up 
to 1.13 for PHA degradation (See Table S2 and Fig. S1). For other re-
actions of the metabolic model (TCA cycle, ETC, protein biosynthesis, 
ribosome synthesis, etc.) no specific θ values for PAOs were found in 
literature. Therefore, these were assumed to be the same for all 
uncharacterized reactions and we analysed the impact of this value 
varying within a range of the previous reported values. 

A typical EBPR cycle was simulated ranging between 4 ◦C and 20 ◦C. 
For all simulations, a shift in the metabolic strategy towards lower 
temperatures was observed (Fig. S2). The tested θ value of uncharac-
terized reactions did not affect the metabolic shift, but affected the 
temperature at which the shift was observed (Fig. S2). For example, the 
simulations indicated a metabolic shift of the system towards colder 
temperatures below either 13 ◦C or 18 ◦C when assuming θ values for 
uncharacterized reactions with θ=1.05 or 1.15 respectively. From here 
on, a value of 1.05 was used for the reactions where no experimental 
value was available. 

3.3. Influence of the growth constraint on simulations 

With temperature dependencies implemented in the metabolic 
model, we simulated a typical EBPR cycle of PAOs over a temperature 
range from 4 ◦C to 20 ◦C with no constraints on growth. The results show 
a decrease in growth yield with a decrease in temperature following two 
different exponential regions (Fig. 2A: Unconstrained growth). In these 
simulations, the model employed slightly a different metabolic strategy 
towards lower temperatures resulting in a larger use of glycogen and 
polyphosphate over the cycle (Fig. 2B: Unconstrained growth). We 
observed that in the studied temperature range, resources were destined 
for growth in both the anaerobic and aerobic phases. Interestingly, the 
lower the temperature, the higher contribution anaerobic growth had on 
the system, especially destined towards enzyme synthesis reactions 
(reaching up to 25% of all biosynthesis at temperatures below 10 ◦C). 

Although there is no conclusive proof that growth is an exclusive 
aerobic process in PAOs, we analysed the impact of constraining growth 
to the aerobic phase only. Particularly, a constraint was introduced to 
block biosynthesis reactions during anaerobic conditions. The model 
with these new constraints was used to simulate the previous conditions 
(typical EBPR cycle of PAOs over a temperature range from 4 ◦C to 
20 ◦C). The resulting growth yields were lower than those of the un-
constrained growth model, and similarly decreased towards lower tem-
peratures (Fig. 2A: aerobic growth model). This decrease, however, 
followed a distinct exponential Arrhenius-like curve. Additionally, these 

simulations resulted in higher levels of glycogen use at 20 ◦C then the 
model with no growth constraints (>3 fold higher) better replicating the 
results from Acevedo et al. (2012). Towards lower temperatures, less 
glycogen and more polyphosphate was used in these simulations 
(Fig. 2B: Aerobic growth). 

3.4. Comparison and analysis of resource allocation strategies 

The different predictions obtained over the studied temperature 
range are compared in terms of their resource allocation. Especially, we 
focus on the allocation of electrons (in form of NADH) and energy (in the 
form of ATP) by analysing reactions using or generating these metabo-
lites. For this, we analysed the generation and consumption of NADH 
(Fig. 3) and ATP (Fig. 4) during the anaerobic phase of each simulation 
with respect to the amount of acetate consumed. Note that the meta-
bolism of PAOs is strongly constrained in the anaerobic phase, hence we 
primarily focus on the anaerobic phase of each simulation. 

The model with no constraints on anaerobic growth predicted that, 
anaerobically, NADH and ATP were allocated towards biosynthesis of 
enzymes, and this allocation grew larger at lower temperatures (Figs. 3 
and 4: unconstrained growth model). The increased need for these re-
sources for biosynthesis was met with an increased flux of glycogen 
degradation (up to 280% more turnover) supplying both the required 
ATP and NADH in this model, which fits the observations of a larger 
turnover of glycogen towards lower temperatures (Fig. 2: Unconstrained 
growth). 

Predictions of the model allowing only aerobic growth indicated an 
opposite trend than that of the unconstrained model. Namely, the 

Fig. 2. Predicted biomass yields and intracellular storage pools during an EBPR 
cycle at different temperatures. (A) Biomass increase at the end of a cycle. A 
decrease in temperature results in a decrease of biomass synthesis during the 
cycle of both the unconstrained growth and the aerobic growth model. The red 
and blue dots indicate simulations that are displayed w.r.t. glycogen and pol-
yphosphate profiles over time (B). (B) Glycogen and polyphosphate over time in 
an EBPR cycle at 8 ◦C (blue line) and 16 ◦C (red line). Left panel represents the 
profile for the unconstrained growth model and the right panel represents the 
profiles of the aerobic growth model. For a representation of polymer changes 
over the entire temperature range, see Fig. S3. 
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turnover of NADH was larger at higher temperatures (Fig. 3) resulting in 
a larger turnover of glycogen as described in the previous section 
(Fig. 2). Interestingly, the larger amounts of glycogen degraded at higher 
temperatures led to an overproduction of electrons than required only 
for acetate uptake, leading to a higher accumulation of PH2MV as a sink 
of these electrons. Additionally, the source of ATP produced anaerobi-
cally in this model shifted from a nearly full contribution of 

polyphosphate at lower temperatures towards a shared contribution of 
polyphosphate degradation, glycogen degradation and PEPCK at higher 
temperatures (Fig. 4: Aerobic growth model). Note that PEPCK is a 
reversible reaction, and as such acts as both an ATP sink and source at 
lower and higher temperatures respectively. 

Fig. 3. Balance and reactions involved in the NADH generation (green) and consumption (magenta) during the anaerobic phase at different temperatures of the 
unconstrained growth (left panel) model and the aerobic growth (right panel) model. Black arrow indicates the use of NADH for biosynthetic reactions showcasing 
the main difference in the structure between both models. Biosynthesis comprised all reactions synthetizing enzymes, ribosomes and biomass precursors. For the 
specific reaction stoichiometry, please see Table S1. Abbreviations: tricarboxylic acid cycle (TCA), poly-hydroxy-butyrate (PHB), poly-hydroxy-2- 
methylvalerate (PH2MV). 

Fig. 4. Balance and reactions involved in the ATP generation (green) and consumption (magenta) during the anaerobic phase of the PAOs simulations at different 
temperatures of the unconstrained growth (left panel) model and the aerobic growth(right panel) model. Black arrow indicates the use of ATP for biosynthetic 
reactions showcasing the main difference in the structure between both models. Biosynthesis comprised all reactions synthetizing enzymes, ribosomes and biomass 
precursors. For the specific reaction stoichiometry, please see Table S1. Abbreviations: polyphosphate (PolyP), phosphoenolpyruvate carboxykinase (PEPCK), 
tricarboxylic acid cycle (TCA). 
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4. Discussion 

4.1. The model with only aerobic growth predicts better polymer use of 
PAOs 

The metabolic shift predicted by the unconstrained growth model 
indicated that at lower temperatures larger amounts of glycogen were 
being degraded than at higher temperatures (Fig. 2B: unconstrained 
growth). This result was surprising and opposite to what has been 
observed experimentally and described in literature. Brdjanovic et al. 
(1997) exposed PAOs enrichments at short term temperature changes 
and observed that at lower temperatures less glycogen was used overall, 
contradictory with the predictions of this model. Further, Brdjanovic 
et al. (1998a) confirmed the same experimental observations in PAOs 
enrichments on longer term temperature effects. This same behaviour 
has been reproduced by using kinetic models (Lopez-Vazquez et al., 
2009; Garcia-Usach et al., 2006) and even proven to hold true for 
Glycogen Accumulating Organisms (GAOs) under similar conditions 
(Lopez-Vazquez et al., 2008). 

On the other hand, the constraint limiting biosynthesis to be an 
exclusive aerobic process resulted in predictions more in line with the 
described literature over the studied temperature range (Brdjanovic 
et al., 1998a; Brdjanovic et al., 1997; Lopez-Vazquez et al., 2009; 
Whang and Park, 2006). I.e. the amount of glycogen used anaerobically 
in a cycle increased with an increase in temperature (Figs. 2, 3 and 4: 
aerobic growth). Further, the overall amount of glycogen used (and 
consequently PHA accumulated) at 20 ◦C was also larger than in the 
unconstrained growth model, resulting in improved model predictions 
when compared to the experimental dataset obtained by Acevedo et al. 
(2012) (Fig. 1). Not only the predictions of the aerobic growth model 
approximated better the results from Acevedo et al. (2012), but also the 
anaerobic stoichiometric yields for glycogen, PHA and polyphosphate fit 
better within the observed yields from multiple PAOs enrichments at 
20 ◦C (summarized in Welles et al. (2015)) (Fig. 5) further supporting 
the validity of the added biological constraint of this model. 

Other than the direct effect observed on polymer cycling, the model 

also improved in fulfilling a basic principle of systems biology: linear 
relationship between growth rate and ribosome content (Fig. S4). Such a 
biological principle is paramount for biological systems at balanced 
growth (Bosdriesz et al., 2015; Metzl-Raz et al., 2017), and should not be 
an exception for PAOs. The simulations with no growth constraints at 
different temperatures showed no such linear relation (Fig. S4 A & B). 
However, once the constraint on limiting anaerobic biosynthesis was 
introduced, a linear relation between growth rate and ribosome content 
emerged (Fig. S4 C & D). We note that recently Mairet et al. (2021) 
showed that at higher temperatures, this linear relationship breaks, 
nevertheless the temperature range of this study is below such threshold. 

The different predictions from both models arose as a consequence of 
resource limitation in a system that was tightly constrained by its cat-
alytic capacities (Rügen et al., 2015). At lower temperatures, the 
decrease in catalytic efficiency of each metabolic process resulted in 
lower flux capacities that could only be resolved by either producing 
larger enzymatic levels or adopting a different metabolic strategy. Such 
limitations in energy metabolism are known to strongly shape the pro-
teome and metabolic strategy of microorganisms (Chen and Nielsen, 
2019). This was clearly observed in the unconstrained growth model, 
when at lower temperatures there was an increased flux of biosynthesis 
during the anaerobic phase (Figs. 3 and 4) in order to maintain meta-
bolic fluxes high. These higher fluxes also resulted in higher growth 
yields of the unconstrained growth model as compared to the growth 
constrained model. Such biosynthetic fluxes were balanced with 
increased glycogen degradation that generated the required NADH, ATP 
and metabolic precursors. As these results strongly contradict what has 
been observed experimentally, we conclude that indeed anaerobic 
biosynthesis is severely limited in PAOs. 

The aforementioned discussed results highlight the validity of the 
newly introduced constraint as a general biological principle that could 
apply to PAOs such as Accumulibacter, but might even be generalized to 
organisms that are adapted to live under dynamic anaerobic/aerobic 
environments such as those encountered in EBPR or estuary sediments. 
Next, we attempt to give a biological meaning to the introduced 
constraint on limiting biomass synthesis and hypothesise on the possible 
regulation behind it. 

4.2. Putative regulation of biosynthesis under dynamic conditions 

Biomass synthesis in PAOs has been commonly assumed to be limited 
to only the aerobic phase (Comeau et al., 1986; Smolders et al., 1994). 
However, these assumptions have never been proven experimentally. 
Since anaerobic growth is very common among bacteria it cannot simply 
be assumed as non-existing in PAOs. 

We suggest that the limit on anaerobic biosynthesis is likely caused 
due to a dynamics shift in the energetic and redox state over an EBPR 
cycle. The presence of an external electron acceptor (i.e. oxygen) has 
been proven to strongly affect the redox state of cells (Sun et al., 2012). 
That is, anaerobically the NADH/NAD+ ratio increases, limiting re-
actions that are near equilibrium in the cell. Although not studied in 
depth during EBPR we hypothesise that this ratio is dynamically 
changing over a cycle (Zhao et al. (2021) showed direct measurements 
of this ratio, although this methodology has not been extensively 
proven). Similarly, we hypothesise that polyphosphate degradation 
could be initiated anaerobically by thermodynamic control caused by a 
shift in the ATP/AMP balance in the cell (hypothesised in early PAOs 
research by Comeau et al. (1986)) as a combined consequence of fast 
acetate uptake and the changed redox state. However, the synthesis and 
polymerization of proteins requires a relatively low ATP/AMP ratio, 
being opposite to that required for polyphosphate degradation (Urry, 
2011), making both physiological processes to be thermodynamically 
opposed. More research is required in the dynamics of the redox and 
energetic state of PAOs to further understand physiological mechanisms 
of organisms living under EBPR like conditions. 

Fig. 5. Anaerobic yields of Glycogen (Cmol glycogen / Cmol acetate), PHA 
(Cmol PHA / Cmol acetate) and polyphosphate (Pmol / Cmol acetate) on ac-
etate over a typical EBPR cycle at 20 ◦C. The figure indicates a (green) box plot 
sumarizing typical literature values for PAOs enrichments from several research 
groups (summarized in Welles et al. (2015)), and the predictions at 20 ◦C from 
the (orange) unconstrained growth model and (light grey) aerobic 
growth model. 
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4.3. First principles modelling approach to predict PAOs metabolism 

The dynamic resource allocation modelling approach applied resul-
ted in typical polymeric profiles that PAOs exhibit in a EBPR cycle 
(Fig. 1) without the need of parameter calibration or predefinition of 
metabolic strategies. Thus, the employed method could be used not only 
to understand the environmental selection on PAOs, GAOs and PHA-AOs 
as was done by Guedes da Silva et al. (2019), but to test basic metabolic 
principles shaping optimality in dynamic conditions. This modelling 
approach represents an alternative to traditional used modelling ap-
proaches that rely on experimental yields and kinetics (Van Loosdrecht 
et al., 2015; Lopez-Vazquez et al., 2009; Oehmen et al., 2010; Varga 
et al., 2018; Santos et al., 2020), but is however not intended to be used 
as an indicator of EBPR process control or performance. 

The applied model in this research could be used as a tool to expand 
our current understanding of redox and energetic state of bacterial cells 
under dynamic conditions. For example, here we identified a potential 
shift in the sources of NADH and ATP (Figs. 3 and 4 respectively) as a 
function of temperature. Further studying these individual contribu-
tions, this model could explain the reason behind the large variation in 
P/C ratio obtained by different research groups when studying PAOs 
enrichments (summarized in da Silva et al. (2020)). This model is not 
intended to be used for monitoring waste water treatment plants, but 
rather to gather fundamental knowledge that could help improve our 
mechanistic understanding of organisms commonly encountered in said 
processes. 

5. Conclusions 

From this research, we can conclude that:  

• Resource allocation theory delivers a strong framework to analyse 
metabolic processes in microbial communities typically found in 
wastewater treatment systems.  

• Integrating temperature into a FBA models of organisms living in 
dynamic conditions allows for deeper understanding of resource 
allocation limitations of cells.  

• Based on the resource allocation theory results, the biosynthetic 
routes of Accumulibacter are limited to the aerobic phase of the 
EBPR cycle. 
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