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A B S T R A C T

This paper is concerned with the formulation of an adequate likelihood function in the application of Bayesian
epistemology to uncertainty quantification of hydrologic models. We focus our attention on a special class
of likelihood functions (hereinafter referred to as distribution-adaptive likelihood functions), which do not
require prior assumptions about the expected distribution of the residuals, rather inference takes place over the
hypotheses (model parameters) and space of distribution functions. Our goals are threefold. First, we present
theory of a revised implementation of the generalized likelihood (GL) function of Schoups and Vrugt (2010)
wherein residual standardization precedes the treatment of serial correlation. This so-called GL+ function,
enjoys a solid statistical underpinning and guarantees a more robust joint inference of the autoregressive
coefficients and residual properties. Then, as secondary goal, we present a further generalization of the GL+

function, coined the universal likelihood (UL) function, which extends applicability to highly asymmetrical
lepto- and platy-kurtic residual distributions. The UL function builds on the 5-parameter skewed generalized
Student’s 𝑡 distribution of Theodossiou (2015) which makes up a large family of continuous probability
distributions including (but not limited to) symmetric and skewed forms of the generalized normal, generalized
𝑡, Laplace, normal, Student’s 𝑡, and Cauchy-Lorentz distributions. As our third and last goal, we present the use
of strictly proper scoring rules to evaluate, compare and rank likelihood functions. These scoring rules condense
the accuracy of a distribution forecast to a single value while retaining attractive statistical properties. The GL+

and UL functions are illustrated using data of a simple autoregressive scheme and benchmarked against the
GL function, Student 𝑡 likelihood (SL) of Scharnagl et al. (2015) and normal likelihood (NL) for a conceptual
hydrologic model using measured streamflow data. Our results show that, (i) the GL+ function is superior
to the GL function, (ii) the active set of nuisance variables exerts a large control on the performance of the
GL+, SL and UL functions, (iii) the treatment of autocorrelation deteriorates the scoring rules and performance
metrics of the forecast distribution, (iv) a leptokurtic distribution is favored for discharge residuals, (v) scoring
rules are indispensable in our search for the true forecast distribution, and (vi) the use of multiple strictly proper
scoring rules turns the selection of an adequate likelihood function into a multi-criteria problem.
1. Introduction and scope

In the past decades much progress has been made in uncertainty
quantification of the parameters, state variables and simulated out-
put of dynamic system models. In all this work, Bayes theorem has
emerged as a corner stone of modern probability theory (hypothesis
testing) and as working paradigm for the subjectivist approach to
epistemology, statistics, and inductive logic. Bayesian inference allows
for an exact description of parameter uncertainty (and other sources
of uncertainty) by treating the parameters as probabilistic variables

∗ Corresponding author.
E-mail address: jasper@uci.edu (J.A. Vrugt).

with joint posterior probability density function (PDF). This so-called
posterior parameter distribution, 𝑝(𝜽|�̃�), is the consequence of a prior
distribution, 𝑝(𝜽), which encodes all ‘‘subjective’’ knowledge about the
parameters, 𝜽 = [ 𝜃1 𝜃2 … 𝜃𝑑 ]⊤, before collection of the data, �̃�, and
a likelihood, 𝐿(𝜽|�̃�), which was designated as mathematical quantity
by Fisher (1934) to quantify our degree of belief (confidence) in the
parameter values, 𝜽, in light of the observed data, �̃�. Bayes (1763)
theorem expresses the mathematical relationship between the prior,
𝑝(𝜽), likelihood, 𝐿(𝜽|�̃�), and posterior (= updated) beliefs, 𝑝(𝜽|�̃�), of the
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𝑝(𝜽|�̃�) = 𝑝(𝜽)𝐿(𝜽|�̃�)
∫𝜣 𝑝(𝜽)𝐿(𝜽|�̃�)

∝ 𝑝(𝜽)𝐿(𝜽|�̃�), (1)

where the denominator, 𝑝(�̃�) = ∫𝜣 𝑝(𝜽)𝐿(𝜽|�̃�), acts as a normalizing
constant so that the posterior parameter distribution integrates to unity
over the prior parameter space, 𝜽 ∈ 𝜣 ⊆ R𝑑 . This so-called model
evidence or marginal likelihood plays a crucial role in hypothesis
testing when selecting the best model among a collection of competing
models (Volpi et al., 2017) but can be ignored during parameter
inference as the unnormalized posterior density, 𝑝(𝜽|�̃�) ∝ 𝑝(𝜽)𝐿(𝜽|�̃�),
suffices to estimate 𝑝(𝜽|�̃�). The 100(1 − 𝛼)% credible region, 𝛼 ⊆ 𝜣,
f the vector-valued, 𝜽 ∈ 𝜣, will make up a (1 − 𝛼) proportion of the
robability mass of 𝑝(𝜽|�̃�), at a significance level, 𝛼 ∈ (0, 1). Credible

intervals, 𝛼 = (𝑎, 𝑏), of each parameter, 𝜃𝑗 ; 𝑗 = (1, 2,… , 𝑑), may be
construed separately

∫

𝑎

−∞
𝑝(𝜃1, 𝜃2,… , 𝜃𝑗 ,… , 𝜃𝑑 |�̃�)d𝜽−𝑗

= ∫

∞

𝑏
𝑝(𝜃1, 𝜃2,… , 𝜃𝑗 ,… , 𝜃𝑑 |�̃�)d𝜽−𝑗 = 𝛼∕2, (2)

where marginalization takes places over 𝜽−𝑗 , the parameter space with-
out 𝜃𝑗 . Bayesian credible regions and/or intervals are analogous to the
confidence regions/intervals of generalized least squares (GLS) used in
frequentist statistics (Lee, 2012), although subtle but important differ-
ences exist in their computation and interpretation (Lu et al., 2012). For
a multi-modal posterior parameter distribution, confidence/credible in-
tervals are rather meaningless and we should resort instead to a highest
posterior density (HPD) region. A HPD region, 𝛼 , of 𝛼 significance
level is a (1 − 𝛼) region for which holds that 𝑝(𝜽|�̃�) ≥ 𝑝(𝜽′|�̃�) for all
𝜽 ∈ 𝛼 and 𝜽′ ∈ 𝜣∖𝛼 , where 𝐴∖𝐵 = {𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵}. After we
ave processed the data, �̃�, we can evaluate the posterior predictive
DF of the simulated quantity, 𝑦(𝜽) ∈ R

𝑝(𝑦|�̃�) = ∫𝜣
𝑝(𝑦|𝜽)𝑝(𝜽|�̃�)d𝜽, (3)

where 𝑝(𝑦|𝜽) is the density function of the distribution of 𝑦 given 𝜽 ∈ 𝜣.
This predictive distribution reflects both the aleatory uncertainty in
future observations and the posterior uncertainty in the parameters and
is directly related to its CDF, 𝐹 (𝑦|�̃�)

𝐹 (𝑦|�̃�) = ∫𝜣
𝐹c(𝑦|𝜽)d𝑝(𝜽|�̃�), (4)

where 𝐹c(𝑦|𝜽) is the conditional predictive distribution when 𝜽 ∈ 𝜣
equal the true parameter values (Greenberg, 2013; Gelman et al.,
2014). Unfortunately, the above integrals do not often admit a solution
in closed form, and, thus, must be approximated using some form of
Monte Carlo simulation (Gelfand and Smith, 1990; Gilks et al., 1996).

The likelihood function exerts a large control on the posterior pa-
rameter and predictive distributions, 𝑝(𝜽|�̃�) and 𝑝(𝑦|�̃�), respectively, and
has been the subject of much debate in the hydrologic literature (Beven
and Binley, 1992; Freer et al., 1996; Yang et al., 2007; Smith et al.,
2008; Smith and Marshall, 2008; Reichert and Mieleitner, 2009; Vrugt
et al., 2009; Schoups and Vrugt, 2010; Smith et al., 2010; Evin et al.,
2013; Scharnagl et al., 2015; Smith et al., 2015; Li et al., 2016;
McInerney et al., 2019; Ammann et al., 2019). These contributions
may be grouped in two main camps with fundamentally different
and opposing viewpoints on how to characterize uncertainty in the
presence of epistemic errors and residual non-stationarity. The first
camp believes in the power of statistical theory and treats uncertainty
as aleatory in nature. Proponents of this camp insist that likelihood
functions should have a solid theoretical underpinning, but despite
many efforts to understand and describe epistemic (systematic) uncer-
tainty, are often silent on how one should characterize and treat model
structural errors and non-stationary residual behavior. The residuals
display certain patterns, and it is in the features of these patterns that
2

we may distill a suitable likelihood function with roots in probability
theory. This camp of idealists is most likely to include theoreticians
and hydrologists with a strong STEM education. Contributions include
the use of Eq. (6) and variations thereof Sorooshian and Dracup (1980),
Tasker (1980), Kuczera (1982), Stedinger and Tasker (1985), Bates and
Campbell (2001), Smith et al. (2010), Evin et al. (2013), McInerney
et al. (2019), the application of advanced distribution-adaptive like-
lihood functions (Reichert and Mieleitner, 2009; Schoups and Vrugt,
2010; Scharnagl et al., 2015; Ammann et al., 2019) and implementation
of set-theoretic likelihood functions within the context of approximate
Bayesian computation (Sadegh and Vrugt, 2013). The second camp
recognizes the (current) limitations of formal statistical theory in de-
scribing systematic uncertainty and takes on an alternative philosophy
and approach to model evaluation. This includes the use of so-called
pseudo-likelihood functions within the GLUE methodology (Beven and
Binley, 1992; Freer et al., 1996; Beven and Freer, 2001; Smith et al.,
2008), set-theoretic likelihood functions within the context of Limits
of Acceptability (Beven, 2006; Vrugt and Beven, 2018) and voting-
point likelihoods for rating curve estimation in the presence of aleatory
and epistemic uncertainty (McMillan and Westerberg, 2015; Hollaway
et al., 2018). This camp of pragmatists will include practicing hydrolo-
gists who seek ways to formalize their field expertise and knowledge of
watershed characteristics and behavior into expectations about model
performance.

In this paper, we take a formal probabilistic viewpoint and focus
our attention on so-called distribution-adaptive likelihood functions.
This special group of likelihood functions does not make prior as-
sumptions about the expected distribution of the residuals. Rather,
inference takes place over the model parameters, 𝜽, and space of
distribution functions defined by the shape parameters of the like-
lihood function. We label this group distribution-adaptive likelihood
functions after distribution-free maximum likelihood (Cosslett, 1983)
and partially-adaptive (Zeckhauser and Thompson, 1970; Hansen et al.,
2006) estimation. The goals of this paper are threefold. First, we present
theory of a revised implementation of the generalized likelihood (GL)
function of Schoups and Vrugt (2010). This new formulation, referred
to as the GL+ function, rectifies a critical deficiency of the GL function
pointed out by Evin et al. (2013) and guarantees a (much) more robust
joint inference of the autoregressive coefficients and distribution of
the (partial) residuals. Then, as secondary goal, we present a further
generalization of the GL+ function, coined the universal likelihood
(UL) function. The UL function builds on the skewed generalized Stu-
dent’s 𝑡-distribution of Theodossiou (2015) and extends applicability
to a much larger family of continuous probability distributions among
which highly asymmetrical lepto- and platy-kurtic residual distribu-
tions. This includes (but is not limited to) symmetric and skewed forms
of the generalized normal, generalized 𝑡 (McDonald and Newey, 1988),
Laplace (Laplace, 1774), normal, Student’s 𝑡 (Student, 1908), Cauchy-
Lorentz (Poisson, 1824) and uniform distribution. Finally, as our third
and last goal, we present the use of strictly proper scoring rules to
evaluate, compare and rank the probabilistic forecasts of the likelihood
functions. Scoring rules are a powerful alternative to more intuitive
metrics such as the reliability, coefficient of variation and coverage
and condense the accuracy of a distribution forecast to a single penalty
oriented value while retaining attractive statistical properties (Alexan-
der et al., 2022). The GL+ and UL functions are tested using synthetic
data of a simple autoregressive scheme and benchmarked against the
GL function, Student 𝑡 likelihood (SL) of Scharnagl et al. (2015) and
normal likelihood for a conceptual hydrologic model using measured
streamflow data.

The remainder of this paper is organized as follows. Section 2
provides a problem statement and reviews the definition of the default
(normal) likelihood function. Section 3 presents theory and a derivation
of the GL+ function. In this section we also revisit the skewed Student 𝑡
distribution of Scharnagl et al. (2015) which serves as central ingredi-
ent of the so-called Student likelihood (SL) function. This is followed in

Section 4 by a detailed description of the UL function. Then, Section 5
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presents the scoring rules used to evaluate, compare and rank the
predictive distributions derived from the different likelihood functions.
This is followed by the application of the GL+ and UL functions to
wo different case studies involving a simple autoregressive scheme
nd conceptual watershed model. We conclude this paper in Section 6
ith a summary of our main findings. To be complete in our reasoning
nd arguments and convey the subtleties involved in the application,
valuation and ranking of distribution-adaptive likelihood functions,
his paper is relatively heavy on statistics. This is a necessary means to
escribing accurately the distribution of the residuals and prerequisite
o diagnosing and detecting model structural errors in an effort to
nhance our knowledge and understanding of the rainfall–discharge
elationship.

. Problem statement and background

Let us consider a deterministic system, S, whose future state,
ehavior and regularities may be described by one or more rules or
rinciples of change, which may be spatially coupled and explain its
emporal evolution. As most real-world systems have an intractable
omplexity, our understanding of the dynamics of the system is limited
o one or more variables whose values have been measured in situ or
ensed remotely over a period of time. For simplicity, we consider a
ingle variable, 𝜒 , whose behavior is measured and collected in a 𝑛× 1

vector, �̃� = [ 𝑦1 𝑦2 … 𝑦𝑛 ]⊤, where the tilde operator denotes measured
uantities.

If, the real-world system, S, is considered deterministic then we
ust be able to describe its behavior with explanatory laws, for exam-
le, those most fundamental and celebrated in physics. Let us suppose
hat the dynamic model, 𝐲 ← (𝜽,𝐗) ∶ R𝑑 → R𝑛, simulates the

temporal behavior, 𝐲 = [ 𝑦1 𝑦2 … 𝑦𝑛 ]⊤, of the variable 𝜒 of interest
using as input arguments a 𝑑-vector of unknown invariant system
properties, 𝜽 = [ 𝜃1 𝜃2 … 𝜃𝑑 ]⊤, with 𝜽 ∈ R𝑑 , and array, 𝐗, of constants
and input variables required under the supposition or hypothesis that
they govern, by causality, the variable 𝜒 using the evolution rules of
nature expressed in mathematical form. These physical laws are the
result of thought experiments, mathematical analysis and derivation,
and laboratory and/or field experimentation under idealized external
(boundary) conditions. A deterministic or metaphysical model scales
up the physical laws, a mixture of algebraic, ordinary and partial
differential equations, to the domain of the real-world system of interest
to warrant spatiotemporal simulation of the governing variables of in-
terest at the desired space–time resolution. In some cases the evolution
rule can be simplified to a mathematical expression (Van Geert, 1994)
but for most real-world systems the dynamics are simply too complex
to warrant an exact characterization by one or more mathematical
functions. The array, 𝐗, characterizes the system’s initial state, invari-
ant properties and spatiotemporal control inputs (forcing/explanatory
variables). As our main focus is on the model parameters, 𝜽, we
suppress the symbol 𝐗 in our subsequent notation and write instead,
𝐲 = (𝜽), for the vector-valued form of the model with respect to 𝜽.

A key task is now to determine suitable values of the parameters, 𝜽,
o that the model output, 𝐲, approximates as closely and consistently
s possible the measured response, �̃� = [ 𝑦1 𝑦2 … 𝑦𝑛 ]⊤ of variable
. As the data generating system, S, is considered deterministic and
escribed by laws of nature there is no randomness in the evolution
f future behavior. Any uncertainty in 𝜒 is due to measurement error
nly, an inherent byproduct of the measurement process. If we make
he common assumption that the measurement errors of 𝜒 are random
nd additive

= 𝐲 + 𝝐, (5)

hen the 𝑛-vector, 𝐲 = [ 𝑦1 𝑦2 … 𝑦𝑛 ]⊤, equals the unobserved ‘‘true’’
esponse of the deterministic system, S, which the model, (⋅), is
3

upposed to mimic. This paper is concerned with a formal probabilistic m
description of the residuals, 𝐞(𝜽) = �̃� − (𝜽), so as to help guide the
nference to the unobserved ‘‘true’’ response, 𝐲.

To quantify the level of confidence (aka likelihood) in the simulated
utcome, 𝑦𝑡(𝜽), given observation, 𝑦𝑡, we must hypothesize a distribu-
ion, 𝑓𝑦𝑡 , of the measurement, 𝑦𝑡. As the data generating process, S, is
ssumed deterministic, there is no randomness in the system state and
ehavior at any moment in time. Then, Eq. (5) implies that 𝑦𝑡 should
ollow the distribution of the measurement error, 𝜖𝑡. If we make the
ommon and convenient assumption that 𝑒𝑡(𝜽) is zero-mean normally
istributed with variance, 𝜎2𝑒 , and, thus, 𝑒𝑡(𝜽) ∼  (0, 𝜎2𝑒 ), then the
istribution of the measurement, 𝑓𝑦𝑡 = 𝑓 (⋅|𝑦𝑡, 𝜎2𝑒 ), where 𝑓 (𝑎|𝑏, 𝑐)
ignifies the PDF of the normal distribution,  (𝑏, 𝑐), with mean, 𝑏, and
ariance, 𝑐, evaluated at the simulated outcome, 𝑎. The likelihood of the
arameters now equals the density of the normal PDF at the simulated
utcome, to yield, 𝐿(𝜽|𝑦𝑡, 𝜎2𝑒 ) = 𝑓

(

𝑦𝑡(𝜽)|𝑦𝑡, 𝜎2𝑒
)

. We can generalize the
omputation of the likelihood to a 𝑛-vector of simulated output. This
eads to the well-known GLS likelihood function, 𝐿(𝜽|�̃�,𝜮𝑒), and equals

(𝜽|�̃�,𝜮𝑒) =
1

√

(2𝜋)𝑛|𝜮𝑒|
exp

(

−1
2
𝐞(𝜽)⊤𝜮−1

𝑒 𝐞(𝜽)
)

(6)

here 𝜮𝜖 is the 𝑛 × 𝑛 measurement error covariance matrix, | ⋅ | is the
eterminant operator, 𝑛 denotes the length of the training data record
nd the multiplicative term in front of the exponential function is the
amiliar normalizing constant of a normal distribution. The maximum,
̂, of 𝐿(𝜽|�̃�,𝜮𝑒) is also known as the maximum likelihood solution.

The expectation that the measurement errors of the data generat-
ng process will provide an exhaustive description of the residuals is
lawed. As complex systems do not admit a perfect characterization,
he residuals, 𝐞(𝜽) = �̃� − 𝐲(𝜽), will almost always be larger than the
easurement errors, 𝝐, of the measured response, �̃�. The residuals are

imply expected to absorb the consequences of model misspecification
nd inadequate characterization of the initial states, system properties
nd controlling variables and behave analogously to the measurement
rrors of �̃�. This is equivalent to a residual covariance matrix, 𝜮𝑒, which
s a multiple of the measurement error covariance matrix, 𝜮𝜖 . In the
ase of a scalar covariance matrix, we can write, 𝜮𝑒 = 𝑐𝜎2𝜖𝐕, where
2
𝑒 = 𝑐𝜎2𝜖 signifies the (unknown) variance of the residuals. Thus, in
ractice, we must submit instead to Eq. (6) the 𝑛× 𝑛 covariance matrix
f the residuals, 𝜮𝑒, so that the standardized and decorrelated residuals
atisfy the assumptions of a zero-mean and constant variance of the
auss–Markov theorem. We can slip into usage of the terminology
easurement error, but this characterization is imprecise in the present

ontext (e.g. see Page 20 of Beven, 2006).
The multivariate form of the GLS likelihood in Eq. (6) permits

reatment of residual autocorrelation through the off-diagonal terms
f the residual covariance matrix, 𝜮𝑒. For example, for a first-order
utoregressive process, 𝑒𝑡(𝜽) = 𝜙1𝑒𝑡−1(𝜽) + 𝜀𝑡, with zero-mean nor-
ally distributed partial residuals, 𝜀𝑡 ∼  (0, 𝜎2𝜀 ), with variance, 𝜎2𝜀 ,

he residual covariance matrix, 𝜮𝑒, may be factorized to a product,
𝑒 =

(

𝐋(𝜙1)𝐔(𝜙1, 𝜎2𝜀 )
)−1, of a lower and upper triangular matrix, 𝐋(𝜙1)

nd 𝐔(𝜙1, 𝜎2𝜀 ), respectively, which depend only on the autoregressive
oefficient, 𝜙1, and/or 𝜎2𝜖 and the determinant, |𝜮𝑒| = 𝜎2𝑛𝜖 ∕(1−𝜙2

1). Un-
ortunately, not all surmised univariate residual distributions support

closed-form multivariate expression for the joint likelihood. This is
articularly true for the nontraditional residual distributions discussed
erein. Then, we must treat serial correlation prior to computation of
he marginal and joint likelihoods.

. Generalized likelihood function

The GLS likelihood function has found widespread application and
se, yet, involves the rather questionable assumption that the residuals
re normally distributed. Power transformations such as the (Box and
ox, 1964) transform may help stabilize the variance of the data and

odel simulations and make their respective marginal distributions
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more normal distribution-like, yet the power and/or shift parame-
ters of this transformation are not unambiguously defined (McIner-
ney et al., 2017) and the transformation does not necessarily pro-
tect against heavy-tailed residuals (Bates and Campbell, 2001; Yang
et al., 2007). Distribution-adaptive likelihood functions such as the GL
function of Schoups and Vrugt (2010) allow us to relax the assump-
tion of normality and describe any arbitrary residual distribution with
(non)constant variance and/or different degrees of skew and kurtosis.
Unlike the Box–Cox transformation which simultaneously affects sev-
eral moments of the residual distribution (Ammann et al., 2019), the
GL function separately treats residual heteroscedasticity, skewness and
kurtosis with parameters that have a direct relation to residual statistics
and can be deduced from diagnostic plots (Schoups and Vrugt, 2010).
This not only lets the measured data, �̃�, speak for itself, but also leads
to a more robust characterization of model parameter and predictive
uncertainty. A skewed residual distribution will, for instance, improve
the probabilistic description of truncated variables, say, near-zero flows
in a semiarid watershed (Schoups and Vrugt, 2010).

In this section, we present a revised formulation of the GL function
of Schoups and Vrugt (2010) which enacts treatment of serial correla-
tion on homogenized rather than non-homogenized (heteroscedastic)
residuals. This revised formulation simplifies the joint inference of
the parameters, 𝜽, and probabilistic properties of the residuals. The
theoretical derivation below serves as precursor to the UL function
which is presented in a subsequent section.

3.1. The standardized skew exponential power (SEP) density function

The GL function of Schoups and Vrugt (2010) builds on the stan-
dardized skew exponential power (SEP) density function which com-
bines the distribution of Subbotin (1923), also known as the exponen-
tial power (EP) or generalized normal distribution (Box and Tiao, 1992)

𝑓EP(𝑎|0, 1, 𝛽) = 𝜔𝛽 exp
(

−𝑐𝛽 |𝑎|
2∕(1+𝛽)), (7)

and the template density, 𝑓skew(𝑎|𝜉), for skewed distributions of Fer-
nandez and Steel (1998)

𝑓skew(𝑎|𝜉) =
2

𝜉 + 𝜉−1
𝑓
(

𝑎𝜉− sign(𝑎)), (8)

to yield (see Appendix A)

𝑓SEP(𝑎|0, 1, 𝛽, 𝜉) =
2𝜎𝜉𝜔𝛽

𝜉 + 𝜉−1
exp

(

−𝑐𝛽
|

|

|

|

𝜇𝜉 + 𝜎𝜉𝑎

𝜉sign(𝜇𝜉+𝜎𝜉𝑎)
|

|

|

|

2∕(1+𝛽))

, (9)

where | ⋅ | denotes the absolute value or modulus operator, sign(𝑥) =
|𝑥|∕𝑥, is the signum function and the scalars 𝑐𝛽 , 𝜔𝛽 , 𝜇𝜉 , and 𝜎𝜉 , are
a function of the kurtosis, 𝛽 ∈ (−1, 1], and skewness, 𝜉 ∈ R+, using
qs. (A.2a), (A.2b), (A.7a) and (A.7b), respectively. Appendix A com-
letes the derivation of the SEP density in Schoups and Vrugt (2010)
ith a detailed mathematical treatment of the mean, 𝜇𝜉 , and variance,
2
𝜉 , of the SEP distribution.

To provide insights into the functional shape of the standardized
EP density of Eq. (9), please consider Fig. 1 which presents a graph of
SEP(𝑎|0, 1, 𝛽, 𝜉) for 𝑎 ∈ [−3, 3] using different values of the (a) kurtosis,
, and (b) skewness, 𝜉.

As is evident from the two graphs, the density of the standardized
EP distribution at point 𝑎 is controlled by the values of 𝛽 and 𝜉.

The density is symmetric for 𝜉 = 1, positively skewed for 𝜉 > 1 and
negatively skewed for 𝜉 < 1. For a symmetric density, that is 𝜉 = 1,
a value of 𝛽 = −1 results in a uniform distribution, 𝛽 = 0 produces a
normal distribution, and 𝛽 = 1 equals a double-exponential or Laplace
distribution. Thus, a value of 𝛽 ∈ (0, 1] produces a SEP distribution
with (much) heavier tails than the normal density. Such leptokurtic
4

distributions help protect the model parameter estimates from outliers. w
3.2. Treatment of residual autocorrelation

The standardized SEP density of Eq. (9) enables a fluent description
of the distribution of the residuals. Before we can proceed, however,
with the derivation of the SEP likelihood function, we are in need of
an adequate description of the temporal structure of the raw residuals,
𝐞(𝜽). Schoups and Vrugt (2010) expressed serial correlation as an AR(𝑘)
process of the raw residuals, 𝐞(𝜽), as follows

𝑒𝑡(𝜽) =
𝑘
∑

𝑗=1
𝜙𝑗𝑒𝑡−𝑗 (𝜽) + 𝜎𝑒𝑡𝜀𝑡, (10)

here 𝜱𝑘 = [𝜙1 𝜙2 … 𝜙𝑘 ]⊤ is a 𝑘-vector of autoregressive coefficients,
𝑒𝑡 , signifies the standard deviation of the 𝑡th raw residual, 𝜀𝑡(𝜽, 𝜹),
enotes the AR(𝑘)-decorrelated residual and, 𝜹 = [ 𝛽 𝜉 𝜱𝑘 ]⊤, is a
ector of nuisance variables.1 The entries of the 𝑛 × 1 vector, 𝜺(𝜽, 𝜹) =
𝜀1(𝜽, 𝜹) 𝜀2(𝜽, 𝜹) … 𝜀𝑛(𝜽, 𝜹) ]⊤, are also referred to as innovations or
artial residuals.

The autoregressive operator in Eq. (10) operates on the non-stand-
rdized raw residuals, 𝐞(𝜽). This implementation is not recommended
s the autoregressive operator of Eq. (10) expects use of homogenized
esiduals. Evin et al. (2013) convincingly demonstrated that residual
tandardization should precede the treatment of serial correlation.
his guarantees a more robust inference of the model parameters
nd/or nuisance variables, and, consequently, may lead to sharper
rediction intervals. Therefore, and as in Steinschneider et al. (2015)
nd Hernández-López and Francés (2017), we admit standardized raw
esiduals, 𝑒𝑡(𝜽, 𝜹), with unknown mean and variance, 𝜎2𝑒 , instead

𝑒𝑡(𝜽, 𝜹) =
𝑒𝑡(𝜽)
𝜎𝜖𝑡

∀ 𝑡 = (1, 2,… , 𝑛), (11)

and conveniently limit our mathematical description of their structural
dependence to an AR(2)-process

𝑒𝑡(𝜽, 𝜹) = 𝜙1𝑒𝑡−1(𝜽, 𝜹) + 𝜙2𝑒𝑡−2(𝜽, 𝜹) + 𝜀𝑡, (12)

where the partial residuals, 𝜀𝑡(𝜽, 𝜹) ∼ (0, 𝜎2𝜀 , 𝛽, 𝜉), are assumed
o be independent and zero-mean SEP distributed with variance, 𝜎2𝜀 ,
kewness, 𝛽, and kurtosis, 𝜉, for all 𝑡 = (3, 4,… , 𝑛) and the single
ine underneath the raw residuals articulates their standardized dimen-
ionless counterparts, 𝐞(𝜽, 𝜹) = [ 𝑒1(𝜽, 𝜹) 𝑒2(𝜽, 𝜹) … 𝑒𝑛(𝜽, 𝜹) ]

⊤. Note
that the standardized raw residuals support the use of more elaborate
AR models, for example, with seasonally-varying coefficients or AR-
coefficients that depend on exogenous variables (Ammann et al., 2019).
This is not uncommon in statistical hydrology, and could be advised
if model performance depends on time (season) and/or the governing
processes.

The AR(2)-process of Eq. (12) should typically suffice in removing
erial dependencies of the standardized raw residuals, otherwise, one
ould always implement a higher-order AR(𝑘)-process with 𝑘 > 2.
ive remarks are in order. First, the recursion in Eq. (12) demands
pecification of so-called initial conditions, 𝑒−1(𝜽, 𝜹) and/or 𝑒0(𝜽, 𝜹),

for computation of the first two partial residuals, 𝜀1(𝜽, 𝜹) and 𝜀2(𝜽, 𝜹).
These initial conditions not only determine the values of 𝜀1(𝜽, 𝜹) and
𝜀2(𝜽, 𝜹) but also their respective marginal distributions. A second and
elated comment, the moments of the SEP innovations, 𝜀𝑡(𝜽, 𝜹), are not
nvariant under the transformation of Eq. (12). Thus, the standardized
aw residuals, 𝑒𝑡(𝜽, 𝜹), do not inherit the variance, 𝜎2𝜀 , skewness, 𝛽,

and kurtosis, 𝜉, of the partial residuals. A change of variance, thus,
𝜎2𝑒 ≠ 𝜎2𝜀 , is even expected with normally distributed innovations,
but the variant skew and kurtosis are the byproduct of the use of
non-Gaussian innovations. Third, Eq. (11) does not guarantee a zero
mean and unit variance of the standardized raw residuals. In fact, the

1 A nuisance variable is fundamental to the probabilistic model of concern
hich is not of immediate interest but must be accounted for in the inference
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Fig. 1. Density of the standardized skew exponential power (SEP) distribution, 𝑓SEP(𝑎|0, 1, 𝛽, 𝜉), of Eq. (9) for different values of (a) the kurtosis, 𝛽, using 𝜉 = 1 and (b) skewness,
𝜉, using 𝛽 = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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variance of the standardized raw residuals will almost always be larger
than one as the magnitude of the 𝑒𝑡(𝜽, 𝜹)’s will exceed, on average, the
measurement error standard deviations, 𝜎𝜖𝑡 , of the training data, 𝑦𝑡, for
𝑡 = (1, 2,… , 𝑛). We can inflate the 𝜎𝜖𝑡 ’s so as to absorb all other sources
of systematic and aleatory uncertainty and impose a unit variance of
the standardized raw residuals, 𝜎2𝑒 = 1. In this case, we should replace
he 𝜎𝜖𝑡 ’s with 𝜎𝑒𝑡 , the standard deviation of the 𝑡th residual. Fourth, it is
uite common to replace the denominator of Eq. (11) with estimates,
𝜖𝑡 , of the measurement error standard deviation, 𝜎𝜖𝑡 . In doing so, the
𝑡(𝜽, 𝜹)’s in Eq. (11) should be referred to as studentized residuals.2 We
ill use the terminology studentized residual throughout the remainder
f this paper as this characterizes better the application of Eq. (11).
astly, the use of 𝑠𝜖𝑡 rather than 𝜎𝜖𝑡 in the denominator of Eq. (11)
ssociates the nuisance variables, 𝜹, to the studentized raw residuals,
n a manner that will become explicit in Section 3.4. Therefore, we
rite, 𝐞(𝜽, 𝜹) = [ 𝑒1(𝜽, 𝜹) 𝑒2(𝜽, 𝜹) … 𝑒𝑛(𝜽, 𝜹) ]

⊤, for the studentized raw
esiduals.

Next, we must establish a relationship between the variance, 𝜎2𝜀 , of
he innovations, 𝜀𝑡(𝜽, 𝜹), and the unconditional (or marginal) variance,
2
𝑒 , of the studentized raw residuals. The derivation of this relation-
hip can be found in statistical text books and relies on variance
ecomposition of Eq. (12) to yield

2
𝜀 =

(1 + 𝜙2)(1 − 𝜙1 − 𝜙2)(1 + 𝜙1 − 𝜙2)
(1 − 𝜙2)

𝜎2𝑒 . (13)

The quotient on the right-hand side is on the unit interval and, thus, we
yield that 𝜎2𝑒 > 𝜎2𝜀 , unless 𝜙1 = 0 and 𝜙2 = 0, then, 𝜎2𝜀 = 𝜎2𝑒 . If 𝜙2 = 0,
the above expression reduces to 𝜎2𝜀 = (1−𝜙2

1)𝜎
2
𝑒 , the familiar expression

for the relationship between the variance of an AR(1) process, 𝜎2𝑒 , and
the variance, 𝜎2𝜀 , of the partial residuals.

3.3. Derivation of the SEP likelihood function

If we consider the values of the 𝑠 nuisance variables, 𝜹 = [ 𝛽 𝜉 𝜱2 ]⊤,
to be known a-priori then the joint likelihood, 𝐿(𝜽|�̃�, 𝜹), of the 𝑑 model
parameters, 𝜽 = [ 𝜃1 𝜃2 … 𝜃𝑑 ]⊤

𝐿(𝜽|�̃�, 𝜹) ≡ 𝑝(�̃�, 𝜹|𝜽) = 𝑝(𝐞, 𝜹|𝜽), (14)

equals the joint PDF of the training data, �̃�, 𝜹 and 𝜽. To compute
the likelihood of the 𝑛-vector of raw residuals, 𝐞(𝜽), we must make
assumptions about the so-called initial conditions of the AR(2) model
in Eq. (12). The initial conditions, 𝑒−1(𝜽) = 𝑦−1−𝑦−1(𝜽) and 𝑒0(𝜽) = 𝑦0−

2 In statistics, a studentized residual is equal to a residual divided by an
stimate of its standard deviation. If instead we divide by the population
tandard deviation then we speak of a standardized residual
5

𝑝

𝑦0(𝜽), not only determine, after studentization with Eq. (11), the values
f the first two partial residuals, 𝜀1(𝜽, 𝜹) and 𝜀2(𝜽, 𝜹), but also control
he next successive entries of 𝜺(𝜽, 𝜹) via the recursion in Eq. (12). If
he measured data, 𝑦−1 and 𝑦0, and model output, 𝑦−1(𝜽) and 𝑦0(𝜽),
re known at 𝑡 = −1 and 𝑡 = 0 immediately preceding the first entry
f the training data record, then the so-called initial conditions equal,
−1 = 𝑦−1 − 𝑦−1(𝜽) and 𝑒0 = 𝑦0 − 𝑦0(𝜽). Otherwise, the user can fix the
aw residuals at some default value, say, 𝑒−1(𝜽) = 0 and 𝑒0(𝜽) = 0. In
his latter case, we do not adapt our notation and carry forward the
ependence of the initial condition on the assumed parameter values.

The joint distribution of the raw residuals, 𝑝(𝐞, 𝜹|𝜽), satisfies the
ollowing identity

(𝐞|𝜽) = 𝑝(𝐞|𝜽, 𝜹)
|

|

|

|

𝜕𝐞(𝜽, 𝜹)
𝜕𝐞(𝜽)

|

|

|

|

, (15)

here 𝑝(𝐞|𝜽, 𝜹) is the joint distribution of the studentized raw residuals
and, 𝜕𝐞(𝜽, 𝜹)∕𝜕𝐞(𝜽), signifies the Jacobian of the transformation from
he studentized raw residuals, 𝐞(𝜽, 𝜹), to the raw residuals, 𝐞(𝜽). The
oint distribution of the studentized raw residuals, 𝑝(𝐞|𝜽, 𝜹), equals the
product of the marginal densities, 𝑝(𝑒1|𝑒0, 𝑒−1;𝜽, 𝜹) and 𝑝(𝑒2|𝑒1, 𝑒0;𝜽, 𝜹),
of 𝑒1(𝜽, 𝜹) and 𝑒2(𝜽, 𝜹), respectively, and the conditional densities,
(𝑒𝑡|𝑒𝑡−1, 𝑒𝑡−2;𝜽, 𝜹), of the remaining 𝑛− 2 entries, {𝑒3(𝜽, 𝜹),… , 𝑒𝑛(𝜽, 𝜹)},

of 𝐞(𝜽, 𝜹), to yield

(𝐞|𝜽, 𝜹) = 𝑝(𝑒1|𝑒0, 𝑒−1;𝜽, 𝜹)𝑝(𝑒2|𝑒1, 𝑒0;𝜽, 𝜹)𝑝(𝑒3,… , 𝑒𝑛|𝑒0, 𝑒−1;𝜽, 𝜹)

= 𝑝(𝑒1|𝑒0, 𝑒−1;𝜽, 𝜹)𝑝(𝑒2|𝑒1, 𝑒0;𝜽, 𝜹)
𝑛
∏

𝑡=3
𝑝(𝑒𝑡|𝑒𝑡−1,… , 𝑒0, 𝑒−1;𝜽, 𝜹)

= 𝑝(𝑒1|𝑒0, 𝑒−1;𝜽, 𝜹)𝑝(𝑒2|𝑒1, 𝑒0;𝜽, 𝜹)
𝑛
∏

𝑡=3
𝑝(𝑒𝑡|𝑒𝑡−1, 𝑒𝑡−2;𝜽, 𝜹). (16)

If we make the convenient assumption that the partial residu-
als, 𝜺(𝜽, 𝜹), follow a normal distribution with zero-mean and vari-
ance, 𝜎2𝜀 , then the marginal distributions of 𝑒1(𝜽, 𝜹) and 𝑒2(𝜽, 𝜹) are
Gaussian as well, which supports an exact closed-form expression for
the likelihood function of the raw residuals. Yet, SEP innovations,
𝜺(𝜽, 𝜹) ∼ (0, 𝜎2𝜀 , 𝛽, 𝜉), do not admit a closed-form description for
(𝑒1|𝑒0, 𝑒−1;𝜽, 𝜹) and 𝑝(𝑒2|𝑒1, 𝑒0;𝜽, 𝜹) as the AR(2) process of Eq. (12)

does not preserve higher-order moments of the SEP distribution such
as its skew and kurtosis (Damsleth and El-Shaarawi, 1989; Hürlimann,
2012). We may resort to the law of total cumulance to determine the
expected skew and kurtosis of 𝑒1(𝜽, 𝜹) and 𝑒2(𝜽, 𝜹), yet, such estimates
must be turned into values of 𝛽 and 𝜉 to warrant a closed-form descrip-
tion of 𝑝(𝑒1|𝑒0, 𝑒−1;𝜽, 𝜹) and 𝑝(𝑒2|𝑒1, 𝑒0;𝜽, 𝜹), respectively. Henceforth,
we follow (Schoups and Vrugt, 2010) and condition on the unobserved
residuals, 𝑒−1(𝜽) and 𝑒0(𝜽), to yield

|𝑒 , 𝑒 ;𝜽, 𝜹)𝑝(𝑒 |𝑒 , 𝑒 ;𝜽, 𝜹)
(𝑒1 0 −1 2 1 0
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≃ 𝑝(𝑒1, 𝑒2|𝑒−1, 𝑒0;𝜽, 𝜹) =
2
∏

𝑡=1
𝑝(𝑒𝑡|𝑒𝑡−1, 𝑒𝑡−2;𝜽, 𝜹), (17)

This approximation is valid only for moderate to large training data
records, �̃�. If we now substitute Eq. (17) into (16) and enter the
resulting expression into Eq. (15), we yield the following expression
for the conditional likelihood function

𝐿(𝜽|�̃�, 𝜹) ≃
|

|

|

|

𝜕𝐞(𝜽, 𝜹)
𝜕𝐞(𝜽)

|

|

|

|

𝑛
∏

𝑡=1
𝑝(𝑒𝑡|𝑒𝑡−1, 𝑒𝑡−2;𝜽, 𝜹)

≃
𝑛
∏

𝑡=1

1
𝜎𝜖𝑡

𝑝(𝑒𝑡|𝑒𝑡−1, 𝑒𝑡−2;𝜽, 𝜹). (18)

According to the AR(2) process of Eq. (12), the conditional distribution
of 𝑒𝑡(𝜽, 𝜹) given 𝑒𝑡−1(𝜽, 𝜹) and 𝑒𝑡−1(𝜽, 𝜹) equals the marginal distribution
of the partial residuals, 𝜀𝑡(𝜽, 𝜹) for all 𝑡 = (1, 2,… , 𝑛). Hence, we can
now write

𝐿(𝜽|�̃�, 𝜹) ≃
𝑛
∏

𝑡=1

1
𝜎𝜖𝑡

𝑓SEP(𝜀𝑡|0, 𝜎2𝜀 , 𝛽, 𝜉). (19)

his formulation poses computational difficulties as we do not have
vailable a mathematical expression for the non-standardized SEP dis-
ribution with variance, 𝜎2𝜀 ≠ 1. Fortunately, we can take advantage of
he following identity

SEP(𝑎|0, 𝜎2𝑎 , 𝛽, 𝜉) =
1
𝜎𝑎

𝑓SEP(𝑎|0, 1, 𝛽, 𝜉), (20)

and, thus, the non-standardized SEP-density, 𝑓SEP(𝑎|0, 𝜎2𝑎 , 𝛽, 𝜉), at point,
𝑎, with, Var(𝑎) = 𝜎2𝑎 , is equivalent to a multiple, 𝜎−1𝑎 , of the standardized
SEP-density, 𝑓SEP(𝑎|0, 1, 𝛽, 𝜉), evaluated at the standardized 𝑎-value, 𝑎 =
𝑎∕𝜎𝑎. If we enter Eq. (20) into Eq. (19) then we end up with the
following general formulation for the SEP likelihood function of the
raw residuals

𝐿(𝜽|�̃�, 𝜹) ≃
𝑛
∏

𝑡=1

1
𝜎𝜖𝑡

1
𝜎𝜀

𝑓SEP(𝜀𝑡|0, 1, 𝛽, 𝜉), (21)

using standardized partial residuals, 𝜀𝑡 = 𝜀𝑡(𝜽, 𝜹)∕𝜎𝜀 for all 𝑡 = (1, 2,… ,
𝑛). We purposely use the terminology standardized partial residual as
the denominator, 𝜎𝜀, equals the theoretical standard deviation of the

R(2) innovations in Eq. (13). If we admit the standardized SEP-density,
SEP

(

⋅|0, 1, 𝛽, 𝜉
)

, of Eq. (9) to Eq. (21) then we arrive at the SEP
ikelihood function

(𝜽|�̃�, 𝛽, 𝜉,𝜱2,𝝈2
𝜖 )

≃
𝑛
∏

𝑡=1

1
𝜎𝜖𝑡

1
𝜎𝜀

2𝜎𝜉𝜔𝛽

(𝜉 + 𝜉−1)
exp

(

−𝑐𝛽
|

|

|

|

𝜇𝜉 + 𝜎𝜉𝜀𝑡(𝜽, 𝜹)

𝜉sign(𝜇𝜉+𝜎𝜉𝜀𝑡(𝜽,𝜹))
|

|

|

|

2∕(1+𝛽))

, (22)

where 𝑐𝛽 , 𝜔𝛽 , 𝜇𝜉 , and 𝜎𝜉 are a function of the kurtosis, 𝛽, and skewness,
𝜉, according to Eqs. (A.2a), (A.2b), (A.7a) and (A.7b), respectively,
𝜀𝑡(𝜽, 𝜹) signifies the 𝑡th standardized partial residual, 𝜎2𝜀 is the variance
f the AR(2)-process of Eq. (12), and 𝜹 = [ 𝛽 𝜉 𝜱2 ]⊤. It is important
o keep in mind that the SEP likelihood function is not exact but
onditional upon the initial conditions, 𝑒−1(𝜽) and 𝑒0(𝜽).

Eq. (22) (but in modified form) was coined the generalized likelihood
(GL) function by Schoups and Vrugt (2010) as it extends applicability to
situations wherein the raw residuals, 𝐞(𝜽), deviate from normality and
exhibit skew, kurtosis, heteroscedasticity and, possibly, serial correla-
tion at one or more lags. If as in Eq. (10) of Schoups and Vrugt (2010)
the treatment of serial correlation precedes residual studentization then
the multiplicative term, 1∕𝜎𝜀, will disappear from Eq. (22). This original
implementation is herein referred to as the GL function and the revised
formulation of the SEP likelihood function in Eq. (22) is coined the GL+

function.
Finite multiplication of the 𝑛 likelihoods in Eq. (22) is susceptible

to arithmetic underflow, resulting in a zero value of 𝐿(𝜽|�̃�, 𝛽, 𝜉,𝜱2,𝝈2
𝜖 ).

For reasons of numerical stability it is therefore more convenient to
work with the SEP log-likelihood function, (𝜽|�̃�, 𝛽, 𝜉,𝜱2,𝝈2

𝜖 ), instead

(𝜽|�̃�, 𝛽, 𝜉,𝜱2,𝝈2
𝜖 ) ≃ 𝑛 log(2𝜎𝜉𝜔𝛽 ) − 𝑛 log(𝜉 + 𝜉−1) − 1

𝑛
∑

{

log(𝜎2𝜖𝑡 )
}

6

2 𝑡=1
− 𝑛
2
log(𝜎2𝜀 ) − 𝑐𝛽

𝑛
∑

𝑡=1

|

|

|

|

𝜇𝜉 + 𝜎𝜉𝜖𝑡(𝜽, 𝜹)

𝜉sign(𝜇𝜉+𝜎𝜉𝜖𝑡(𝜽,𝜹))
|

|

|

|

2∕(1+𝛽)
, (23)

where 𝜎2𝜀 is equal to Eq. (13) for the AR(2) process of the standardized
raw residuals.

3.4. Treatment of nuisance variables and measurement data errors

The SEP log-likelihood function, (𝜽|�̃�, 𝛽, 𝜉,𝜱2,𝝈2
𝜖 ), above assumes

rior knowledge of the 𝑠 = 4 nuisance variables, 𝜹 = [ 𝛽 𝜉 𝜱2 ]⊤, and the
-vector of measurement error variances, 𝝈2

𝜖 = [ 𝜎2𝜖1 𝜎2𝜖2 … 𝜎2𝜖𝑛 ]
⊤, of the

training data, �̃� = [ 𝑦1 𝑦2 … 𝑦𝑛 ]⊤. In the absence of detailed knowledge
about the expected distribution of the residuals and/or measurement
errors of �̃�, we can choose to estimate the nuisance variables, 𝜹, along
with the model parameters, 𝜽. This approach does not change anything
to the mathematical formulation of the GL+ function in Eq. (23), except
the nuisance variables migrate to the left side of the vertical bar in
the parent definition of the SEP log-likelihood function to read instead,
(𝜽, 𝛽, 𝜉,𝜱2|�̃�,𝝈2

𝜖 ) or (𝜽, 𝜹|�̃�,𝝈2
𝜖 ). This alternative definition frees us

from having to make strong (and often questionable) prior assumptions
about the distribution of the residuals. The nuisance variables let the
residuals speak for themselves. Note that nuisance variables are also re-
ferred to as hyperparameters when they relate to the prior distribution
of the model parameters.

We can further generalize the SEP log-likelihood function of Eq. (23)
to situations without knowledge of the training data measurement
errors, 𝝈2

𝜖 . A pragmatic remedy is to relate the measurement error to
the simulated data (Schoups and Vrugt, 2010; Evin et al., 2013), as
follows

𝑠𝜖𝑡 = 𝑠0 + 𝑠1𝑦𝑡(𝜽) (24)

here 𝑠𝜖𝑡 is an estimate of the measurement error standard deviation of
he 𝑡th simulated output, 𝑦𝑡(𝜽), and 𝑠0 > 0 and 𝑠1 ∈ [0, 1] are unknown
oefficients that define the intercept and slope of the measurement
rror function, respectively. With 𝑠1 = 0, the expression above reduces
o a homoscedastic measurement error function with variance equal to
2
0.

In the original GL function of Schoups and Vrugt (2010), the slope
nd intercept of Eq. (24) were treated as two separate nuisance vari-
bles each having their own prior distribution. This implementation
ould be fine with the application of Eqs. (12) and (13) so that the
ariance of the partial residuals, 𝜎2𝜀 , is directly proportional to the
ariance of the standardized raw residuals, 𝜎2𝑒 . In the GL+ function,

we simplified the implementation to include only a single nuisance
variable, 𝑠0. The slope, 𝑠1, is evoked as a phantom variable to enforce
a unit variance, 𝜎2𝑒 = 1, of the studentized raw residuals, 𝐞(𝜽, 𝜹). If 𝑚𝑒

and 𝑠2𝑒 denote the sample mean and sample variance of the studentized
raw residuals, respectively

𝑚𝑒 =
1
𝑛

𝑛
∑

𝑡=1
𝑒𝑡(𝜽, 𝜹) and 𝑠2𝑒 =

1
𝑛 − 1

𝑛
∑

𝑡=1

(

𝑒𝑡(𝜽, 𝜹) − 𝑚𝑒
)2, (25)

then the zero-point of the so-called residual function, ℏ(𝑠1|𝜽, 𝜹) =
1 − 𝑠2𝑒 , equals the value of 𝑠1 for which 𝑠2𝑒 = 1. The secant method
can efficiently solve this root-finding problem in only a handful of
iterations. Thus, for a given value of the intercept, 𝑠0, of Eq. (24) the
secant method finds the value of the slope, 𝑠1, so that 𝜎2𝑒 → 1. This
approach increases the number of nuisance variables with only one,
namely, 𝜹 = [ 𝛽 𝜉 𝜱2 𝑠0 ]⊤, and the SEP log-likelihood function becomes

(𝜽, 𝛽, 𝜉,𝜱2, 𝑠0|�̃�) ≃ 𝑛 log(2𝜎𝜉𝜔𝛽 ) − 𝑛 log(𝜉 + 𝜉−1)

−
𝑛
∑

𝑡=1

{

log
(

|𝑠0 + 𝑠1𝑦𝑡(𝜽)|
)}

− 𝑛
2
log(𝜎2𝜀 ) − 𝑐𝛽

𝑛
∑

𝑡=1

|

|

|

|

𝜇𝜉 + 𝜎𝜉𝜖𝑡(𝜽, 𝜹)

𝜉sign(𝜇𝜉+𝜎𝜉𝜖𝑡(𝜽,𝜹))
|

|

|

|

2∕(1+𝛽)
, (26)
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Table 1
Nuisance variables of the GL+ function, including their description, symbols, units, prior ranges and default
values.
Description Symbol Units Min. Max. Default

Intercept of measurement error function 𝑠0 mm/d 0 R+ 0.1
Kurtosis 𝛽 – −1 1 0
Skewness 𝜉 – 0.1 10 1
Autoregressive coefficient 1 𝜙1 – 0 1 0
Autoregressive coefficient 2 𝜙2 – 0 1 0

Slope of measurement error function 𝑠1 – 0 R+ 0
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As our result will demonstrate our definition of 𝑠1 as phantom variable
rather than nuisance variable is inconsequential. Both methods produce
equivalent results.

The root finding procedure is not limited to measurement errors
with a non-constant variance, but could, in principle, also work for
homoscedastic measurement errors. The value of 𝑠0 will then determine
whether the zero-point of ℏ(𝑠1|𝜽, 𝜹) is feasible or not. A simpler solution
in this case, that avoids using any nuisance variable for the measure-
ment error function of Eq. (24) after all, is to set 𝑠0 equal to the sample
standard deviation of the raw residuals, that is, 𝑠0 =

√

𝑠2𝑒 .
The inference of the slope and intercept of the measurement error

function, is, however, not without problems. If the model is not able to
describe sufficiently closely the observed data, �̃�, then joint inference
of 𝑠0 and 𝜙1 (𝑠1 is conditioned on 𝑠0 via the constraint that 𝜎2𝑒 →

), may result in unrealistically large values of 𝑠0 and/or 𝑠1 while
imultaneously promoting 𝜙1 → 1 so as to downplay the role of the

model, (𝜽), in describing the measured data and maximize the SEP
log-likelihood of Eq. (26). Unfortunately, there is nothing we can do
about this. If the raw residuals, 𝐞(𝜽), are large in magnitude then 𝑠0
and/or 𝑠1 must be large as well so as to honor the unit variance of the
studentized raw residuals, 𝐞(𝜽, 𝜹). Instead, we must find ways to remove
model bias and improve the overall model-data consistency. Forcing
data errors will certainly contribute significantly to the model bias and
simulation uncertainty.

Table 1 summarizes the nuisance variables of the GL+ function
and lists their lower and upper bounds and default values. If the
measurement error variances, 𝝈2

𝜖 , are known a-priori then the SEP log-
likelihood function with AR(2) description of the standardized raw
residuals, (𝜽, 𝛽, 𝜉,𝜱2|�̃�,𝝈2

𝜖 ), is equal to Eq. (23) with 𝜱2 = [𝜙1 𝜙2 ]⊤

and 𝜎2𝜀 equal to Eq. (13). If the 𝑛 measurement error variances, 𝝈2
𝜖 , of

the training data record, �̃�, are unknown then we can resort to Eq. (26).
This formulation, (𝜽, 𝛽, 𝜉,𝜱2, 𝑠0|�̃�), requires specification of the mea-
urement error intercept, 𝑠0, in the case of heteroscedastic errors. This

increases the number of nuisance variables to five, 𝜹 = [ 𝛽 𝜉 𝜙1 𝜙2 𝑠0 ]⊤.
f an AR(1) is assumed instead, then 𝜙2 = 0 and 𝜎2𝜀 = 1−𝜙2

1 in Eqs. (23)
and (26).

3.5. Special cases of the SEP log-likelihood function

If so desired, we can fix the skew, 𝛽, and kurtosis, 𝜉, of the SEP log-
likelihood function to some default values to satisfy prior assumptions.
For 𝛽 = 0 and 𝜉 = 1, Eq. (26) simplifies to the well-known Gaussian
log-likelihood, (𝜽,𝜱2, 𝑠0|�̃�, 0, 1), of an AR(2) process. Indeed, without
skew and excess kurtosis, Eqs. (A.2a), (A.2b), (A.7a) and (A.7b), result
in 𝑐𝛽 = 1

2 , 𝜔𝛽 = (2𝜋)−1∕2, 𝜇𝜉 = 0 and 𝜎𝜉 = 1. If we enter these values
nto the SEP log-likelihood function we yield

(𝜽,𝜱2, 𝑠0|�̃�, 𝛽 = 0, 𝜉 = 1)

≃ − 𝑛
2
log(2𝜋) −

𝑛
∑

𝑡=1

{

log
(

|𝑠0 + 𝑠1𝑦𝑡(𝜽)|
)}

− 𝑛
2
log(𝜎2𝜀 ) −

1
2

𝑛
∑

𝑡=1
𝜖𝑡(𝜽, 𝜹)

2,

(27)

hich is equal to a conditional Gaussian log-likelihood function with
onstant and/or nonconstant measurement errors and AR(2)-process of
he studentized raw residuals. This expression follows directly from
7



he GLS likelihood function of Eq. (6). For 𝜙1 = 0 and 𝜙2 = 0, the
bove expression simplifies further to a normal log-likelihood function
onditional upon the unobserved raw residuals, 𝑒−1(𝜽) and 𝑒0(𝜽), and
non)constant variance of the raw residuals. In the remainder of this
aper, the normal log-likelihood of Eq. (27) will be referred to as NL
unction. For 𝛽 = 1 and 𝜉 = 1, the SEP-log likelihood function simplifies
o

(𝜽,𝜱2, 𝑠0|�̃�, 𝛽 = 1, 𝜉 = 1)

≃ − 𝑛
2
log(2) −

𝑛
∑

𝑡=1

{

log
(

|𝑠0 + 𝑠1𝑦𝑡(𝜽)|
)}

− 𝑛
2
log(𝜎2𝜀 ) −

√

2
𝑛
∑

𝑡=1
|𝜖𝑡(𝜽, 𝜹)|,

(28)

hich is equal to a Laplacian log-likelihood, (𝜽,𝜱2, 𝑠0|�̃�, 𝛽 = 1, 𝜉 = 1),
of an AR(2) process. This concludes our description of the GL+ function.

3.6. The skewed Student’s 𝑡-likelihood function

The GL and GL+ functions rely on the generalized normal (or
EP) distribution to better characterize nontraditional residual distribu-
tions with skew, kurtosis and heavier tails than the normal distribu-
tion. Scharnagl et al. (2015) replaced the EP distribution of Eq. (7) with
a standardized Student’s 𝑡-density

𝑓ST(𝑎|0, 1, 𝜈) =
𝛤
(

(𝜈 + 1)∕2
)

𝛤 (𝜈∕2)
1

√

𝜋(𝜈 − 2)

(

1 + 𝑎2

𝜈 − 2

)− 𝜈+1
2
, (29)

where 𝜈 > 2 denotes the degrees of freedom. If we combine Eq. (29)
ith the skew density of Eq. (8) then we yield the following expression

or the standardized skewed Student’s 𝑡 (SST) density (Scharnagl et al.,
015)

SST(𝑎|0, 1, 𝜈, 𝜉)

=
2𝜎𝜉

(𝜉 + 𝜉−1)
𝛤
(

(𝜈 + 1)∕2
)

𝛤 (𝜈∕2)
√

𝜋(𝜈 − 2)

(

1 + 1
𝜈 − 2

( 𝜇𝜉 + 𝜎𝜉𝑎

𝜉sign(𝜇𝜉+𝜎𝜉𝑎)

)2
)− 𝜈+1

2

, (30)

with skewness parameter, 𝜉 > 0, and shift and scale constants, 𝜇𝜉
nd 𝜎2𝜉 , respectively, that depend on 𝜈 and 𝜉 and standardize the SST

density (Scharnagl et al., 2015). Closed-form expressions for 𝜇𝜉 and 𝜎2𝜉
are presented in Eqs. (B.7a) and (B.7b) of Appendix B.

Fig. 2 plots the density of the standardized skewed Student 𝑡-
distribution of Eq. (30) for 𝑎 ∈ [−3 1

2 , 3
1
2 ] using different values of the

a) skewness, 𝜉, and (b) degrees of freedom, 𝜈.
The SST density is positively skewed for 𝜉 > 1 and negatively

kewed for 𝜉 < 1. For 𝜉 = 1, the Student’s 𝑡-distribution is symmetric
nd bell-shaped albeit with (much) heavier tails than the normal dis-
ribution for small values of 𝜈. These so-called leptokurtic distributions
re more peaked than a normal distribution and have stronger tails. For
arge values of 𝜈 the Student’s 𝑡-distribution converges to the standard
ormal distribution (zero mean and unit standard deviation). Thus, the
alue of 𝜈 ∈ (2,∞) determines the kurtosis and heaviness of the tails of
he SST distribution.

If we assume an AR(2)-process of the standardized raw residuals and
reat measurement data errors as in Section 3.4 then we yield the log-
ikelihood function, (𝜽, 𝑠0, 𝜈, 𝜉, 𝜎2𝜀 |�̃�), of the SST density of Scharnagl
t al. (2015) (see Appendix B)

̃
(𝜽, 𝑠0, 𝜈, 𝜉,𝜱2|𝐲)
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Fig. 2. Density of the standardized skewed Student’s 𝑡-distribution of Eq. (30) for 𝜉 = 1 and 𝜈 = 5 degrees of freedom. Color coding differentiates between different values of 𝜈
left panel) and 𝜉 (right panel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Nuisance variables of the SL function, including their description, symbols, units, prior ranges and default values.
Description Symbol Units Min. Max. Default

Intercept of measurement error function 𝑠0 mm/d 0 R+ 0.1
Degrees of freedom 𝜈 – 2 ∞ 𝑛 − 𝑑
Skewness 𝜉 – 0.1 10 1
Autoregressive coefficient 1 𝜙1 – 0 1 0
Autoregressive coefficient 2 𝜙2 – 0 1 0

Slope of measurement error function 𝑠1 – 0 R+ 0
a

𝐵

u

v
𝜆
s
a

−

𝜆

= − 𝑛
2
log(𝜎2𝜀 ) −

𝑛
∑

𝑡=1

{

log
(

|𝑠0 + 𝑠1𝑦𝑡(𝜽)|
)}

+ 𝑛 log(2) + 𝑛 log(𝜎𝜉 )

+ 𝑛 log
(

𝛤
(

(𝜈 + 1)∕2
)

)

− 𝑛 log(𝜉 + 𝜉−1) − 𝑛 log
(

𝛤 (𝜈∕2)
)

− 𝑛
2
log(𝜋)

− 𝑛
2
log(𝜈 − 2) − 𝜈 + 1

2

𝑛
∑

𝑡=1

{

log

(

1 + 1
𝜈 − 2

( 𝜇𝜉 + 𝜎𝜉𝜀𝑡(𝜽, 𝜹)

𝜉sign(𝜇𝜉+𝜎𝜉𝜀𝑡(𝜽,𝜹))

)2
)}

,

(31)

here 𝑠1 equals the zero-point of the residual function, ℏ(𝑠1|𝜽, 𝜹) = 1 −
2
𝑒 , so as to enforce a unit variance of the studentized raw residuals. The

SST log-likelihood is referred to as Student likelihood or SL function in
the remainder of this paper.

Table 2 summarizes the nuisance variables of the SL function. The
default value of the degrees of freedom, 𝜈, is set equal to the sample
size, 𝑛, minus the number, 𝑑, of estimated parameters, 𝜽. Note that for
𝜉 = 1 and 𝜈 → ∞ the SL function reduces to the NL function of Eq. (27).

4. The universal likelihood function

The skewed generalized Student’s 𝑡-(SGT)-distribution of Theodos-
siou (1998) is a further generalization of the SST distribution in Eq. (30)
to a family of continuous probability distributions, which includes the
generalized Student’s 𝑡 (McDonald and Newey, 1988; Hansen, 1994),
error (Theodossiou, 2015) and exponential power distributions (Sub-
botin, 1923; Box and Tiao, 1992), the skewed and symmetric Laplace,
Cauchy, Student’s 𝑡 and normal distributions (see e.g. Johnson et al.
(1995)) and the uniform distribution. The PDF of the non-standardized
SGT distribution is given by Theodossiou (2015)

𝑓SGT(𝑎|𝜇, 𝜎, 𝜆, 𝑝, 𝑞)

=
𝑝

2𝜅𝜆𝑝𝑞𝜎𝐵
(

1∕𝑝, 𝑞∕𝑝
)

(

1 +
|

|

|

|

𝑎 − 𝜇 + 𝜇𝜆𝑝𝑞

𝜅𝜆𝑝𝑞𝜎
(

1 + 𝜆 sign(𝑎 − 𝜇 + 𝜇𝜆𝑝𝑞)
)

|

|

|

|

𝑝)−(𝑞+1)∕𝑝

,

(32)

where 𝜇, 𝜎 > 0 and 𝜆 ∈ (−1, 1) are location, scale and skewness
parameters, 𝑝 > 0 and 𝑞 > 0 control the kurtosis of the distribution,
𝜇 and 𝜅 , are shift and scale constants, respectively, that depend
8

𝜆𝑝𝑞 𝜆𝑝𝑞
on 𝜆, 𝑝 and 𝑞, and 𝐵(𝑎, 𝑏) is the so-called beta function or Euler integral
of the first kind

𝐵(𝑎, 𝑏) = ∫

1

0
𝑥(𝑎−1)(1 − 𝑥)(𝑏−1) d𝑥, (33)

nd is equivalent to the following expression

(𝑎, 𝑏) =
𝛤 (𝑎)𝛤 (𝑏)
𝛤 (𝑎 + 𝑏)

, (34)

sing the gamma function, 𝛤 (⋅), in Eq. (A.3).
The scalars 𝜇𝜆𝑝𝑞 and 𝜅𝜆𝑝𝑞 negate changes in the mean, 𝜇, and

ariance, 𝜎2, of the SGT distribution imposed by the variables, 𝑝, 𝑞 and
. In the original parameterization of Theodossiou (1998), the shift and
cale constants are defined as given in Eqs. (35a) and (35b) (see Box I)
nd yield a SGT distribution with mean, 𝜇, and variance, 𝜎2, if 𝑝𝑞 > 2.

If we admit, 𝜇 = 0 and 𝜎2 = 1, then we yield the standardized SGT
density

𝑓SGT(𝑎|0, 1, 𝜆, 𝑝, 𝑞)

=
𝑝

2𝜅𝜆𝑝𝑞𝐵
(

1∕𝑝, 𝑞∕𝑝
)

(

1 +
|

|

|

|

𝑎 + 𝜇𝜆𝑝𝑞
𝜅𝜆𝑝𝑞

(

1 + 𝜆 sign(𝑎 + 𝜇𝜆𝑝𝑞)
)

|

|

|

|

𝑝)−(𝑞+1)∕𝑝
. (36)

The SGT distribution of Eq. (36) with the closed-form expressions
for 𝜇𝜆𝑝𝑞 and 𝜅𝜆𝑝𝑞 in Eqs. (35a) and (35b) nests a number of commonly
used univariate probability distributions including (but not limited to)
the generalized Student’s 𝑡-distribution (McDonald and Newey, 1988),
the generalized error distribution3, and the symmetric and skewed Stu-
dent’s 𝑡, Laplace, Cauchy-Lorentz and normal distributions (see Table 3
and Appendix C).

To provide insights into the functional form of Eq. (36), Fig. 3
displays the standardized SGT density, 𝑓SGT(𝑎|0, 1, 𝜆, 𝑝, 𝑞), for −3 1

2 ≤
𝑎 ≤ 3 1

2 for different values of the (a) kurtosis, 𝑝 > 0, (b) skewness,
1 < 𝜆 < 1, (c) kurtosis, 𝑞 > 0, and (d) 𝑝, 𝛽 and 𝑞.

The SGT distribution can be symmetric and highly skewed. For
∈ (−1, 0), the distribution is negatively skewed (to the left), and for

𝜆 ∈ (0, 1), the SGT distribution is positively skewed (to the right). For

3 Also known as the generalized normal distribution or EP distribution
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𝜇𝜆𝑝𝑞 =
2𝜅𝜆𝑝𝑞𝜆𝜎𝐵

(

2∕𝑝, (𝑞 − 1)∕𝑝
)

𝐵(1∕𝑝, 𝑞∕𝑝)
if 𝑝𝑞 > 1 (35a)

𝜅𝜆𝑝𝑞 =
𝐵(1∕𝑝, 𝑞∕𝑝)

√

(1 + 3𝜆2)𝐵(1∕𝑝, 𝑞∕𝑝)𝐵
(

3∕𝑝, (𝑞 − 2)∕𝑝
)

− 4𝜆2𝐵
(

2∕𝑝, (𝑞 − 1)∕𝑝
)2

if 𝑝𝑞 > 2, (35b)

Box I.
Table 3
Special and/or limiting cases of the Skewed Generalized Student’s 𝑡-distribution.
𝜆 𝑝 𝑞 Distribution Reference

0 Generalized Student’s 𝑡-distribution McDonald and Newey (1988)
2 Skewed Student’s 𝑡-distribution Hansen (1994)

0 2 Student’s 𝑡 distribution Student (1908)
∞ Skewed exponential power distribution ‡

0 ∞ Exponential power distribution Subbotin (1923), Box and Tiao (1992)
1 ∞ Skewed Laplace distribution

0 1 ∞ Laplace distribution Laplace (1774)
2 1 Skewed Cauchy–Lorentz distribution

0 2 1 Cauchy–Lorentz distribution Poisson (1824)
2 ∞ Skewed normal distribution

0 2 ∞ Normal distribution
0 ∞ ∞ Uniform distribution

‡Treatment of skew is different than in template density of Fernandez and Steel (1998).
Fig. 3. Probability density function of the standardized skewed generalized 𝑡-distribution, 𝑓SGT(𝑎|0, 1, 𝜆, 𝑝, 𝑞), of Eq. (36) for different values of (a) the kurtosis, 𝑝, (b) skewness,
𝜆, (c) kurtosis, 𝑞, and (d) 𝑝, 𝑞 and 𝜆 of the special SGT parameterizations listed in Table 3. The coefficients, 𝜇𝜆𝑝𝑞 and 𝜅𝜆𝑝𝑞 , are computed using the closed-form expressions of
Eqs. (35a) and (35b), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝜆 = 0, the distribution is symmetric. The parameters 𝑝 > 0 and 𝑞 > 2
control the kurtosis of the SGT distribution. The smaller the values of
𝑝 and 𝑞, the more slender the SGT distribution will be, and, thus, the
larger its kurtosis. A distribution with kurtosis that exceeds the value of
three is also called leptokurtic and will have fatter tails than a normal
distribution. For large values of 𝑝 and 𝑞 the excess kurtosis of the SGT
9

distribution disappears in lieu of a much more uniform distribution
of the probability density. The parameter 𝑝 exerts the largest control
on the kurtosis, as is evident by the large variation in SGT densities
for different values of 𝑝. The impact of 𝑞 on the SGT distribution is
more subtle, and its impact decreases substantially with large values of
𝑞. Altogether, small values of 𝑝 and/or 𝑞 produce a SGT distribution
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with much heavier tails than the normal density. The bottom panel
demonstrates the ability of the standardized SGT density to describe
a wide variety of distributions.

The graph plots four different parameterizations (color red) of the
standardized SGT distribution. Note, that in each graph, the mean of the
SGT distribution equals zero — and, more difficult to see, the variance
equals one. The bottom-right graph presents eight of the special param-
eterizations of the SGT distribution listed in Table 3, among which the
EP distribution of Eq. (7) (in red). The ability of the SGT distribution
to morph into a wide variety of well-known probability distributions
has desirable advantages for residual characterization and description.
Henceforth, the forthcoming likelihood function stemming from the
SGT distribution is referred to as the universal likelihood function.

4.1. Derivation of SGT (log)-likelihood function

If we treat the SGT parameters, 𝜆, 𝑝 and 𝑞, as nuisance variables and
assume further that the studentized raw residuals, 𝐞(𝜽, 𝜹), exhibit serial
correlation according to the AR(2) scheme of Eqs. (12) then the SGT
likelihood should follow our derivation of the SEP likelihood function.
Specifically, according to Eq. (18) we may write

𝐿(𝜽, 𝜆, 𝑝, 𝑞,𝜱2|�̃�,𝝈2
𝜖 ) ≃

𝑛
∏

𝑡=1

1
𝜎𝜖𝑡

𝑝(𝑒𝑡|𝑒𝑡−1, 𝑒𝑡−2;𝜽, 𝜹) (37)

and, thus, we yield

𝐿(𝜽, 𝜆, 𝑝, 𝑞,𝜱2|�̃�,𝝈2
𝜖 )

≃
𝑛
∏

𝑡=1

1
𝜎𝜖𝑡

𝑓SGT
(

𝜀𝑡(𝜽, 𝜹)|0, 𝜎2𝜀 , 𝜆, 𝑝, 𝑞
)

≃
𝑛
∏

𝑡=1

1
𝜎𝜖𝑡

1
𝜎𝜀

𝑓SGT
(

𝜀𝑡(𝜽, 𝜹)|0, 1, 𝜆, 𝑝, 𝑞
)

≃ 𝜎−𝑛𝜀

𝑛
∏

𝑡=1

𝑝
2𝜎𝜖𝑡𝜅𝜆𝑝𝑞𝐵(1∕𝑝, 𝑞∕𝑝)

×
(

1 +
|

|

|

|

𝜀𝑡(𝜽, 𝜹) + 𝜇𝜆𝑝𝑞
𝜅𝜆𝑝𝑞

(

1 + 𝜆 sign(𝜀𝑡(𝜽, 𝜹) + 𝜇𝜆𝑝𝑞)
)

|

|

|

|

𝑝 )−(𝑞+1)∕𝑝
(38)

where 𝑓SGT
(

𝜀𝑡(𝜽, 𝜹)|0, 1, 𝜆, 𝑝, 𝑞
)

returns the density at 𝜀𝑡(𝜽, 𝜹) of the
standardized SGT distribution in Eq. (36), 𝜺(𝜽, 𝜹) = [ 𝜀1(𝜽, 𝜹) 𝜀2(𝜽, 𝜹) …

𝑛(𝜽, 𝜹) ]
⊤, denotes the 𝑛-vector of standardized partial residuals and 𝜎2𝜀

is the variance of the partial residuals, 𝜺(𝜽, 𝜹) = [ 𝜀1(𝜽, 𝜹) 𝜀2(𝜽, 𝜹) …
𝜀𝑛(𝜽, 𝜹) ]⊤, computed using Eq. (13). If we take the natural logarithm
of Eq. (38) then we yield the SGT log-likelihood function

(𝜽, 𝜆, 𝑝, 𝑞,𝜱2|�̃�,𝝈2
𝜖 )

≃ − 𝑛
2
log(𝜎2𝜀 ) −

𝑛
∑

𝑡=1

{

log(𝜎𝜖𝑡 )
}

+ 𝑛 log(𝑝)

− 𝑛 log(2) − 𝑛 log(𝜅𝜆𝑝𝑞) − 𝑛 log
(

𝐵(1∕𝑝, 𝑞∕𝑝)
)

−
𝑞 + 1
𝑝

𝑛
∑

𝑡=1

{

log
(

1 +
|

|

|

|

𝜀𝑡(𝜽, 𝜹) + 𝜇𝜆𝑝𝑞
𝜅𝜆𝑝𝑞

(

1 + 𝜆 sign(𝜀𝑡(𝜽, 𝜹) + 𝜇𝜆𝑝𝑞)
)

|

|

|

|

𝑝 )}

, (39)

where the natural logarithm of the beta function, 𝐵(𝑎, 𝑏), follows
from Eq. (34)

log
(

𝐵(𝑎, 𝑏)
)

= log
(

𝛤 (𝑎)
)

+ log
(

𝛤 (𝑏)
)

− log
(

𝛤 (𝑎 − 𝑏)
)

. (40)

The SGT (log)-likelihood functions in Eqs. (38) and (39) assume
prior knowledge of the measurement error variances, 𝝈2

𝜖 , of the training
data record, �̃�. If the 𝑛 entries of 𝝈2

𝜖 are unknown then we can resort
to the measurement error function of Eq. (24) and treat the intercept,
𝑠0, as an additional nuisance variable. Then the SGT log-likelihood
function becomes

(𝜽, 𝑠0, 𝜆, 𝑝, 𝑞,𝜱2|�̃�)

≃ − 𝑛 log(𝜎2𝜀 ) −
𝑛
∑

{

log
(

|𝑠0 + 𝑠1𝑦𝑡(𝜽)|
)}

+ 𝑛 log(𝑝)
10

2 𝑡=1
p

− 𝑛 log(2) − 𝑛 log(𝜅𝜆𝑝𝑞) − 𝑛 log
(

𝐵(1∕𝑝, 𝑞∕𝑝)
)

−
𝑞 + 1
𝑝

𝑛
∑

𝑡=1

{

log
(

1 +
|

|

|

|

𝜀𝑡(𝜽, 𝜹) + 𝜇𝜆𝑝𝑞
𝜅𝜆𝑝𝑞

(

1 + 𝜆 sign(𝜀𝑡(𝜽, 𝜹) + 𝜇𝜆𝑝𝑞)
)

|

|

|

|

𝑝 )}

. (41)

here 𝑠1 is computed using root finding of the residual function,
(𝑠1|𝜽, 𝜹) = 1 − 𝑠2𝑒 , with Newton’s method. For the AR(2) process of

the raw studentized residuals in Eq. (12), the variance, 𝜎2𝜀 , of the SGT
innovations equals Eq. (13). If the second autoregressive coefficient,
𝜙2, is fixed at zero then the variance of the partial residuals, 𝜺(𝜽, 𝜹),
implifies to 𝜎2𝜀 = 𝜎2𝑒∕(1 − 𝜙2

1), the variance of the innovations of an
R(1) process. In the remainder of this paper, we refer to Eq. (41) as

he universal likelihood (UL) function.
Table 4 summarizes the nuisance variables of the UL function

ncluding symbol, units, prior ranges and default values. Three remarks
re in order. First, the product, 𝑝 × 𝑞, of the kurtosis parameters, must
lways exceed two, otherwise the scale constant, 𝜅𝜆𝑝𝑞 , is not defined.
econd, the upper bounds of 𝑝 and 𝑞 are arbitrary. They should just
e set large enough so as to benefit from the versatility of the SGT
istribution. Third, the default values of 𝜆 = 0, 𝑝 = 2 and 𝑞 = 1010

mply a normal distribution (see Table 3).

.2. Special and/or limiting cases of the SGT log-likelihood function

The two formulations of the UL function, (𝜽, 𝜆, 𝑝, 𝑞,𝜱2|�̃�,𝝈2
𝜖 ) and

(𝜽, 𝑠0, 𝜆, 𝑝, 𝑞,𝜱2|�̃�), assume joint inference of the skewness, 𝜆, and
kurtosis, 𝑝 and 𝑞, of the partial residuals and the model parameters, 𝜽.
If the partial residuals, 𝜺(𝜽, 𝜹), should follow some known distribution
then we can set one or more nuisance variables at a default value. For
example, if the 𝜀𝑡(𝜽, 𝜹)’s are expected to follow a Student’s 𝑡 distribution,
hen one can fix 𝜆 = 0 and 𝑝 = 2 (see Fig. 3d and Table 3) and
nfer the remaining nuisance variables, 𝑞, 𝑠0, and/or, 𝜙1 and/or 𝜙2, of
he SGT log-likelihood function with the 𝑑 model parameters, 𝜽. Note
hat in this case, the shift constant, 𝜇𝜆𝑝𝑞 , in Eq. (35a) equals 𝜇02𝑞 = 0,
he scale constant, 𝜅02𝑞 =

√

𝑞 − 2, and the SGT log-likelihood function
f Eq. (41) reduces to the SST log-likelihood of Eq. (31) with 𝜉 = 1. This
s only one of many special cases of the SGT function as discussed in
ppendix C. The more common case of normally distributed (partial)
esiduals deserves specific attention in Appendix D.

In summary, the SGT distribution is the key ingredient of a family
f likelihood functions, which includes the normal likelihood function.
hus, the UL function makes obsolete other commonly used likelihood
unctions in DREAM Suite.

. Case studies

In this section, we illustrate the application of the GL, GL+, SL
nd UL functions to two case studies involving a simple autoregres-
ive scheme and a conceptual watershed model. We first detail the
ethodological steps and then present the individual studies and their

indings.

.1. Posterior approximation

Unless we use a conjugate prior, the GL, GL+, SL and UL functions,
(𝜽, 𝜹|�̃�, ⋅), do not admit a closed-form solution for the posterior param-
ter distribution, 𝑝(𝜽, 𝜹|�̃�, ⋅) ∝ 𝑝(𝜽, 𝜹)𝐿(𝜽, 𝜹|�̃�, ⋅). We therefore resort to
umerical integration (Gelfand and Smith, 1990; Gilks et al., 1996) and
nfer the joint posterior distribution of the 𝑑 model parameters, 𝜽, and 𝑠
uisance variables, 𝜹, using Markov chain Monte Carlo simulation with
REAM Suite, a Windows-based implementation of the DiffeRential
volution Adaptive Metropolis algorithm (Vrugt et al., 2008, 2009;
rugt, 2016) and variants thereof Vrugt and ter Braak (2011), Laloy
nd Vrugt (2012), Vrugt and Sadegh (2013a), Sadegh et al. (2015),
rugt and Beven (2018). The transition kernel of DREAM creates multi-
le different sequences (chains) of parameter vectors that are stationary
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Table 4
Nuisance variables of the UL function, including their description, symbols, units, prior ranges and default
values.
Description Symbol Units Min. Max. Default

Intercept of measurement error function 𝑠0 mm/d 0 R+ 0.1
Skewness 𝜆 – −1 1 0
Kurtosis 𝑝 – 0 10 2
Kurtosis 𝑞 – 0 100 1010

Autoregressive coefficient 1 𝜙1 – 0 1 0
Autoregressive coefficient 2 𝜙2 – 0 1 0

Slope of measurement error function 𝑠1 – 0 R+ 0
t
𝑡

5

d
S
s
e

𝑦
s
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and ergodic and have as joint distribution, 𝑝(𝜽, 𝜹|�̃�, ⋅) (ter Braak, 2006;
Vrugt et al., 2009). Convergence of the joint chains to a stationary
distribution is monitored using several different diagnostic measures
as advocated by Cowles and Carlin (1996). This includes single chain
and multi-chain diagnostics, among which the convergence metrics
of Raftery and Lewis (1992) and Geweke (1992) and the univariate and
multivariate scale-reduction factors, 𝑅𝑑 and 𝑅, of Gelman and Rubin
(1992) and Brooks and Gelman (1998), respectively. The 𝑚 posterior
ectors of the joint Markov chains are stored column-wise in a (𝑑+𝑠)×𝑚

matrix, [𝜣∗ ; 𝜟∗ ].

5.2. Performance of optimal parameter values

The maximum a posteriori (MAP) parameter values, (�̂�, �̂�), equal
the columns of [𝜣∗ ; 𝜟∗ ]4 which maximize the unnormalized posterior
density, 𝑝(𝜽, 𝜹|�̃�, ⋅). The performance of the MAP point predictions may
be quantified using different summary measures, also known as scoring
functions. We use the root mean square error

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1

(

𝑦𝑡 − 𝑦𝑡(�̂�)
)2 (42)

nd percentage bias

BIAS = 100
(
∑𝑛

𝑡=1
(

𝑦𝑡(�̂�) − 𝑦𝑡
)

∑𝑛
𝑡=1 𝑦𝑡

)

. (43)

Furthermore, we also perform diagnostic checks of the residuals of
the MAP solution. Specifically, we investigate the homoscedasticity,
distribution, autocorrelation function and quantiles of the standardized
partial residuals, 𝜺(�̂�, �̂�), of the MAP solution. The sample autocorrela-
tion, 𝜌𝜀(𝑘), of two standardized partial residuals, 𝜀𝑖(𝜽, 𝜹) and 𝜀𝑗 (𝜽, 𝜹), a
istance (time) 𝑘 = |𝑖 − 𝑗| apart may be computed using

𝜌𝜀(𝑘) =
Cov

(

𝜀𝑖(𝜽, 𝜹), 𝜀𝑗 (𝜽, 𝜹)
)

Var
(

𝜀𝑖(𝜽, 𝜹)
)

=
1

𝑛−𝑘
∑𝑛

𝑖=𝑘+1
(

𝜀𝑖(𝜽, 𝜹) − 𝑚𝜀
)(

𝜀𝑖−𝑘(𝜽, 𝜹) − 𝑚𝜀
)

1
𝑛−𝑘

∑𝑛
𝑖=𝑘+1

(

𝜀𝑖(𝜽, 𝜹) − 𝑚𝜀
)2

, (44)

where 𝑚𝜀 = 1
𝑛
∑𝑛

𝑡=1 𝜀𝑡(𝜽, 𝜹) is the unitless mean of the 𝑛-record of
tandardized partial residuals and 𝑘 = (1, 2,… , 𝑛 − 1).

.3. Parameter and predictive uncertainty

Parameter uncertainty is computed following Eq. (2) by truncating
∕2 of the left and right tails of the posterior samples, [𝜣∗ ; 𝜟∗ ], to
ield 100(1 − 𝛼)% credible intervals, 𝛼 = (𝑎, 𝑏), of the parameters and
uisance variables. Stationarity and ergodicity of the sampled chains
f DREAM Suite imply that the predictions, 𝑦∗1 , 𝑦

∗
2 ,… , 𝑦∗𝑚, of the 𝑚

osterior parameter vectors, [𝜣∗ ; 𝜟∗ ], have as invariant distribution
he posterior predictive PDF, 𝑝(𝑦|�̃�), and CDF, 𝐹 (𝑦|�̃�), in Eqs. (3) and

4 The semicolon implies vertical concatenation. Thus, matrix 𝜟∗ is
concatenated to the bottom of matrix 𝜣∗
11

𝐲

(4), respectively. The predictive distribution, 𝑝(𝑦|�̃�), of Eq. (3), can be
obtained by marginalizing each model prediction over the posterior
distribution. A detailed algorithmic recipe on how to do this is provided
in Appendix E using the posterior realizations of the GL+ function. This
supplement also returns predictive percentiles, 𝐲∗𝑡,𝛼∕2 and 𝐲∗𝑡,1−𝛼∕2, which
ogether define the 100(1 − 𝛼)% prediction interval of 𝑝(𝑦𝑡|�̃�), where
= (1, 2,… , 𝑛).

.4. Comparison and ranking of predictive distributions

We use so-called scoring rules to evaluate the quality of the pre-
ictive distributions derived from the different likelihood functions.
coring rules condense the accuracy of a distribution forecast to a
ingle penalty oriented value while retaining attractive statistical prop-
rties (Alexander et al., 2022).

If 𝛺 ⊆ R denotes the set of possible values of the quantity of interest,
, and  is a convex class of probability distributions on 𝛺 then a
coring rule, (𝐹 , �̃�), is a function

∶ ×𝛺 ⟶ R, (45)

hat assigns numerical values to pairs of forecasts, 𝐹 ∈  , and ob-
servations, 𝑦 ∈ 𝛺.5 Based on early recommendations by Brier (1950)
and Shuford et al. (1966), we restrict attention to proper scoring rules,
the statistical implications of which have been discussed in the litera-
ture by Gneiting and Raftery (2007). A scoring rule is proper relative
to  if the expected score

(𝐹 ,𝐺) = ∫𝛺
(𝐹 , �̃�)d𝐺(𝑦) (46)

s minimized for 𝐹 = 𝐺, and, thus, (𝐺,𝐺) ≤ (𝐹 ,𝐺) for all probability
distributions, 𝐹 ,𝐺 ∈  (Krüger et al., 2021). A score rule is strictly
proper relative to the class  if the above holds with equality only
if 𝐹 = 𝐺 (Lerch et al., 2017). Such strictly proper scoring rules have
an important advantage over proper scoring rules. In statistical jargon,
a strictly proper score rule is a sufficient condition, whereas a proper
score rule is a necessary but not sufficient condition. In plain words,
if (𝐹 ,𝐺) is a strictly proper score rule, then the smaller its value, the
closer the distribution of 𝐹 will be to that of 𝐺. This is not true for
proper scoring rules, which can attain a perfect score even if 𝐹 ≠ 𝐺.

While it is generally agreed upon that scoring rules must at least
be proper to adequately quantify the accuracy of probabilistic fore-
casts (Winkler et al., 1996; Gneiting and Ranjan, 2011), the question
which ones to use remains largely open (Gneiting and Raftery, 2007;
Alexander et al., 2022). We restrict our attention to the four scoring
rules listed in Table 5. These scoring rules benefit a strong math-
ematical underpinning (Dawid, 2007; Gneiting and Raftery, 2007)
and are used to evaluate predictive distributions of MCMC output in
probabilistic forecasting (Krüger et al., 2021). The scoring rules are

5 We use the terminology ‘‘forecasts’’ for the residual corrupted model
utput, 𝐲∗𝑗 = 𝐲𝑗 (𝜽) + 𝐞𝑗 (𝜹) ∈ R𝑛×𝑚, of the posterior realizations, 𝑗 = (1, 2,… , 𝑚).
trictly speaking, these outcomes are not forecasts as the simulated output,
(𝜽) assumes knowledge of the exogenous variables.
𝑗
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Table 5
Summary of the instantaneous scoring rules, (𝐹𝑡 , 𝑦𝑡), used to evaluate the quality of the predictive distributions of the different likelihood functions. For a probability distribution
with CDF, 𝐹𝑡, we write 𝑓𝑡 for its density.

Scoring rule Symbol (𝐹𝑡 , 𝑦𝑡) Reference

Logarithmica LS − log
(

𝑓𝑡(𝑦𝑡)
)

Good (1952)

Cont. rank probabilityb CRPS
∞
∫
−∞

(

𝐹𝑡(𝑧) − 1{𝑦𝑡 ≤ 𝑧}
)2d𝑧 Matheson and Winkler (1976)

Pseudosphericalc PS − 𝑓𝑡(𝑦𝑡)𝜁−1
( ∞

∫
−∞

𝑓𝑡(𝑧)𝜁d𝑧
)(𝜁−1)∕𝜁

Good (1971)

Intervald IS
(𝑢𝑡 − 𝑙𝑡) +

2
𝛼
(𝑙𝑡 − 𝑦𝑡)1{𝑦𝑡 < 𝑙𝑡}

+ 2
𝛼
(𝑦𝑡 − 𝑢𝑡)1{𝑦𝑡 > 𝑢𝑡}

Gneiting and Raftery (2007)

aLimiting case (𝜁 → 1) of the pseudospherical score if suitably scaled.
bThe notation, 1{𝑦𝑡 ≤ 𝑧}, signifies the empirical CDF of the scalar observation, 𝑦𝑡.
cThe norm, 𝜁 , must exceed one and the minus sign reverses the orientation.
dLower, 𝑙𝑡 = 𝑦∗𝑡,𝛼∕2, and upper, 𝑢𝑡 = 𝑦∗𝑡,1−𝛼∕2, limits of 100(1 − 𝛼)% prediction interval.
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negatively oriented,6 and for all but the interval score (IS) condense
different aspects of a forecast distribution among which accuracy, skill,
resolution and sharpness. In short, the logarithmic score (LS) evaluates
the forecast density, 𝑝(𝑦𝑡|�̃�), at the measured value, 𝑦𝑡. This measure has
a strong foundation in information theory (Shannon, 1948a,b; Kullback
and Leibler, 1951) and is strictly local as it ignores model predicted
probabilities of all non-realized outcomes. The continuous rank prob-
ability score (CRPS) is a quadratic measure of the difference between
the predictive CDF, 𝐹 (𝑦𝑡|�̃�), and the CDF, 𝐺𝑡, of 𝑦𝑡. This is a common
measure of performance for probabilistic forecasts of a scalar observa-
tion, 𝑦𝑡, and rewards predictive distributions with a mass close to the
observation. The pseudospherical score (PS) remunerates leptokurtic
forecast densities as well, yet, this score rule acts on the predictive
PDF and uses mixed powers in the numerator and denominator. For
𝜁 = 2 the PS reduces to the spherical score (SS) as used herein Friedman
(1983). The interval score (IS) is important for quantile prediction,
and rewards narrow prediction intervals. If the observation is outside
the [𝑙𝑡, 𝑢𝑡] prediction interval, the score incurs a penalty, the size of
which depends on the significance level, 𝛼. Note that the IS evaluates
only two predictive percentiles of the forecast distribution. This does
not necessarily require an accurate description of the distribution of
the predictand, 𝑦𝑡. Hence, in the terminology of Gneiting and Raftery
(2007), the IS is a proper but not a strictly proper scoring rule. The
situation is different for the LS, CRPS and SS scoring rules, which are
strictly proper and thus encourage forecasters to model correctly the
entire predictive distribution. Thus, in principle, any of the LS, CRPS
and SS rules will suffice to evaluate the quality of the probabilistic
forecasts of the GL, GL+, UL, SL and NL functions.

For each scoring rule, we compute a (time-averaged) mean score

(F, �̃�) = 1
𝑛

𝑛
∑

𝑡=1
(𝐹𝑡, 𝑦𝑡), (47)

here F = {𝐹1, 𝐹2,… , 𝐹𝑛} is the collection of empirical CDFs derived
rom the 𝑚 posterior realizations. Specifically, for 𝑡 ∈ (1, 2,… , 𝑛), the
mpirical CDF (eCDF) of the predicted outcomes, 𝐹𝑡, is constructed
rom the 𝑚 entries, (𝑦∗𝑡1, 𝑦

∗
𝑡2,… , 𝑦∗𝑡𝑚), in the 𝑡th row of the 𝑛 × 𝑚 matrix

𝐘∗ as follows

𝐹𝑡(𝑧) =
1
𝑚

𝑚
∑

𝑗=1
1{𝑧 ≥ 𝑦∗𝑡𝑗}, (48)

where the indicator function, 1{𝑎}, returns 1 if 𝑎 is true and zero
otherwise. The eCDF is assumed continuous for every 𝜽 ∈ 𝜣 and 𝜹 ∈ 𝜟
and strictly positive on the bounded interval, 𝛺. As a result, the density,

6 if (𝐹 , �̃�) > (𝐺, �̃�) then 𝐺 is a better probabilistic forecast of the target
ariable, �̃�, than 𝐹
12

i

Table 6
Time-averaged values of the performance metrics, (F, ỹ), of the predictive distributions
erived from the 𝑚 posterior realizations.
Performance metric Symbol (F, ỹ) Reference

Reliabilitya RLBL 1 − 2
𝑛

𝑛
∑

𝑗=1

|

|

|

𝐹 s
𝑗 − 𝑗

𝑛
|

|

|

Renard et al. (2011)

Coefficient of variation CV 1
𝑛

𝑛
∑

𝑡=1

𝑠𝐹𝑡

𝑚𝐹𝑡

Evin et al. (2013)

Coverage 𝐶 1
𝑛

𝑛
∑

𝑡=1
1{𝑙𝑡 ≤ 𝑦𝑡 ≤ 𝑢𝑡}

Width 𝑊 1
𝑛

𝑛
∑

𝑡=1
(𝑢𝑡 − 𝑙𝑡)

a𝐹 s
1 ≤ 𝐹 s

2 ≤ ⋯ ≤ 𝐹 s
𝑛 ; the sorted eCDFs, 𝐹𝑡(𝑦𝑡), of (48) for all 𝑡 = (1, 2,… , 𝑛).

𝑓𝑡(⋅|𝜽, 𝜹)

𝑡(𝑧) =
d
d𝑧 [𝐹𝑡(𝑧)], (49)

s continuous and strictly positive under the same support. The lower,
𝑡, and upper, 𝑢𝑡, limits of the 100(1 − 𝛼)% prediction interval are equal
o

𝑡 = 𝐹−1
𝑡 (𝛼∕2) and 𝑢𝑡 = 𝐹−1

𝑡 (1 − 𝛼∕2), (50)

here 𝐹−1
𝑡 (𝑧) is the quantile function of 𝐹𝑡(⋅|𝜽, 𝜹).

The scoring rules of Table 5 are indispensable in our search for the
rue forecast densities, nevertheless, have not yet entered mainstream
se in the hydrologic community. Therefore, we also consider other
etrics of the forecast distribution hydrologists may be more familiar
ith (see Table 6). The reliability formalizes the thesis in probability

heory that the sequence of probability integral transforms should
onsist of independent standard uniform random variables. In other
ords, if the 𝑛 observations are samples of the predictive distribution,
, then the successive values of 𝐹𝑡(𝑦𝑡)

𝑡(𝑦𝑡) = ∫ ∫ 1{𝑦∗𝑡 (𝜽, 𝜹) < 𝑦𝑡
}

𝑝
(

𝑦∗𝑡 (𝜽, 𝜹)|𝜽, 𝜹
)

𝑝(𝜽, 𝜹|�̃�)d𝑦∗𝑡 (𝜽, 𝜹)d(𝜽, 𝜹),

(51)

hould be uniformly distributed on the unit interval (Thyer et al., 2009;
enard et al., 2011). The reliability, RLBL, equals the mean absolute
istance (1-norm) between the quantile function of the 𝐹𝑡(𝑦𝑡)’s and its
ounterpart of the standard uniform distribution. The multiplier of 2
cales the RLBL to the unit interval between 0 (poor) and 1 (perfect).
he coefficient of variation, CV, measures the average sharpness of
he predictive distribution. Smaller values of the CV are preferred. The
overage, 𝐶, equals the fraction of observations inside the prediction
ntervals. To be statistically meaningful and robust, 𝐶 should equal 1−𝛼
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Fig. 4. Marginal distribution of the autoregressive coefficients, 𝜙1 and 𝜙2 of the training data record and coefficients (a) 𝛽 and 𝜉 of the SEP distribution and (b) 𝜆, 𝑝 and 𝑞 of the
SGT distribution. The red crosses portray the true values of the synthetic training data record.
at a significance level 𝛼. The width, 𝑊 , measures the average size of
the 100(1 − 𝛼)% prediction intervals.

The performance metrics of Table 6 measure different and comple-
mentary aspects of the forecast distribution. This complicates somewhat
the ranking of the likelihood functions as we cannot combine the RLBL,
CV, 𝑊 and 𝐶 into a single performance index without assigning arbi-
trary weights. One can instead sort the performance metrics according
to the Pareto dominance principle and use the corresponding Pareto
rank of each likelihood function as overall performance index (McIn-
erney et al., 2017, 2019). But the width and coefficient of variation
are properties of the predictive distribution only and, thus, do not
guarantee honest forecasts. Furthermore, the reliability and coverage
measure only two aspects of the statistical consistency between the
distributional forecasts and the observations. In other words, these are
necessary but not sufficient criteria for determining that the forecast
distribution is accurate (see e.g. Hamill 2001). We therefore insist on
using the strictly proper scoring rules of Table 5 for likelihood function
evaluation and ranking.

5.5. General remarks

To simplify the discussion of our findings we classify the nuisance
variables of the GL, GL+, SL and UL functions in two different groups.
Nuisance variables that are integral part of the underlying PDF of each
likelihood function are coined internal nuisance variables. This includes
the parameters of 𝑓SEP(𝑎|⋅), 𝑓SST(𝑎|⋅), and 𝑓SGT(𝑎|⋅) in Eqs. (9), (30) and
(36), respectively. The remaining autoregressive coefficients, 𝜙1 and/or
𝜙2, will be referred to as external nuisance variables.

5.6. Case study I: An AR(2) process with non-Gaussian innovations

To benchmark the GL+ and UL functions our first case study con-
siders a simple autoregressive scheme

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜀𝑡 (52)

with 𝜙1 = 0.7, 𝜙2 = 0.2 and 𝜀𝑡’s drawn from (a) a standardized SEP
distribution, 𝜀𝑡 ∼ (0, 1, 𝛽, 𝜉), with 𝛽 = 0.5 and 𝜉 = 3 and (b)
a standardized SGT distribution, 𝜀𝑡 ∼  (0, 1, 𝜆, 𝑝, 𝑞), with 𝜆 = 0.5,
𝑝 = 1.2 and 𝑞 = 5. We create a synthetic training data record, �̃� =
[ 𝑦1 𝑦2 … 𝑦𝑛 ]⊤, with 𝑛 = 5, 000 using initial conditions, 𝑦−1 = 0 and
𝑦0 = 0.

Fig. 4 presents histograms of the marginal posterior distributions of
coefficients, 𝜙1 and 𝜙2, of the autoregressive model of Eq. (52) and the
nuisance variables (a) 𝛽 and 𝜉 and (b) 𝜆, 𝑝 and 𝑞 of the SEP and SGT
13
Fig. 5. Comparison of the true (black line) and MAP derived (gray bins) marginal
distributions of the (a) SEP and (b) SGT innovations of Eq. (52).

distributions using the GL+ and UL functions of Eqs. (26) and (41) with
𝑠0 = 1. The ‘‘true’’ values of the coefficients are separately indicated
with a red cross.

The histograms of the SEP and SGT coefficients are well described
by a normal distribution with mean approximately equal to the true
values of the parameters of the AR(2) training data record and a
small dispersion. This inspires confidence in the ability of the GL+

and UL functions to correctly describe the marginal distribution of the
partial studentized residuals. As the AR(2) operator of Eq. (12) does
not preserve the skew and/or kurtosis of the SEP and SGT innova-
tions, 𝜺1, 𝜺2,… , 𝜺𝑛, the mode of the marginal posterior distributions
of the skew and/or kurtosis parameters do not necessarily have to
coincide with their true values. But as we will show next, such small
discrepancies do not have practical consequences.

Fig. 5 compares the empirical density function (histogram) of the
partial residuals, 𝜀1, 𝜀2,… , 𝜀𝑛, of Eq. (52) with its theoretical (true)
counterpart (solid line) for the (a) SEP and (b) SGT innovations, re-
spectively.

Notice the excellent agreement between the theoretical PDF of the
(a) SEP and (b) SGT innovations and their empirical frequency distribu-
tion derived from MCMC simulation using DREAM Suite (Vrugt, 2016).
The different bins of the empirical histogram of the partial residuals
provide an almost perfect characterization of the true distribution of
the partial residuals. In fact, this holds for almost any other realization
from the posterior parameter distribution. In other words, the posterior
uncertainty in the empirical distribution of the innovations is very
small.
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Fig. 6. Evolution of the MAP value (solid black lines) and its 95% confidence ranges (gray region) of the model parameters, 𝜙1 and 𝜙2, of the autoregressive scheme of Eq. (52)
and the coefficients, (a) 𝛽 and 𝜉 of the GL+ function, and (b) 𝜆, 𝑝 and 𝑞 of the UL function. The true values of the parameters and nuisance variables are separately indicated
with a red cross.
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To understand the relationship between the length of the training
data record and the posterior uncertainty of the coefficients of Eq. (52),
please consider Fig. 6 which presents trace plots of the MAP values
(solid black lines) of the two model parameters, 𝜙1 and 𝜙2, and nui-
sance variables of the (left) SEP and (right) SGT innovations. The gray
region portrays the 95% confidence intervals of the MAP solution.

The autoregressive coefficients, 𝜙1 and 𝜙2, of the data-generating
process of Eq. (52) converge rapidly to their theoretical values. After
processing only one hundred data points, the 95% confidence intervals
of the two autoregressive coefficients have collapsed to a small region
immediately surrounding their MAP values. This conclusion holds for
both the SEP and SGT innovations. Most of the nuisance variables of
the GL+ and UL functions converge at a somewhat smaller pace to their
theoretical values with MAP values that go up and/or down the prior
parameter space for small training data records. This is particularly
true for the kurtosis parameters, 𝛽 and 𝑞. A training record of 𝑛 =
2, 000 data points appears long enough to sufficiently constrain all
the nuisance variables of the GL+ and UL functions. Larger records
hardly change the MAP values of the nuisance variables but further
reduce the parameter uncertainty to a very small region interior to
the uniform prior distribution. Intuitively, one would expect that the
highest order moments of the partial residuals are most difficult to
accurately characterize. Thus, it is no surprise that 𝛽, 𝑞 and/or 𝑝,
may need a longer training data record, on average, than the skew
parameters, 𝜉 and 𝜆. Even a long training data record is no guarantee,
however, that the skew and/or kurtosis parameters of the GL+ and
UL functions will converge exactly to their theoretical values. Such
discrepancies do not harm the distribution of the partial residuals (see
Fig. 5).
14
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Altogether, the results of our first study demonstrate that the GL+

and UL functions correctly infer the marginal distribution of the SEP
and SGT innovations of the AR(2) scheme. This inspires confidence in
the ability of the two likelihood functions to accurately describe the
distribution of the partial residuals.

5.7. Case study II: Conceptual watershed model with measured discharge
data

As second case study, we illustrate the application of the GL, GL+, SL
nd UL functions to a parsimonious 5-parameter conceptual watershed
odel. The HYdrologic MODel describes the rainfall–discharge rela-

ionship using five fictitious control volumes. These reservoirs simulate
rocesses such as evaporation, percolation, river inflow and baseflow
see Fig. 7).

Hymod originates from the PhD thesis of Boyle (2001) and inter-
sted readers are referred to this publication for further details. We
mbed the process formulations of Fenicia et al. (2018) in a mass-
onservative second-order integration method. Adaptive time stepping
uarantee a robust and accurate numerical solution of the simulated
luxes and state variables. Table 7 presents the five hymod parameters
ith their corresponding symbols, units, and lower and upper bounds.

We illustrate the different likelihood functions by application to hy-
rologic data from the Leaf River near Collins, MS, USA. This medium-
ized watershed with a strong winter regime according to the functional
lassification of Brunner et al. (2020) has been studied extensively in
he hydrologic literature. We resort to the CAMELS data set (Newman
t al., 2015; Addor et al., 2017) and simulate daily river discharge
etween 1 October 1998 and 30 September 2004 using daily estimates
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Fig. 7. Schematic illustration of the HYdrologic MODel of Boyle (2001). Gray boxes, labeled in red, correspond to fictitious control volumes of the watershed which govern
he rainfall–runoff transformation. The state variables, 𝑆u, 𝑆s, 𝑆f1, 𝑆f2 and 𝑆f3, correspond to the water storage in each compartment. Arrows portray the fluxes into and out
f the compartments, including precipitation, 𝑃 , evaporation, 𝐸a, precipitation converted into flow, 𝑄u, fast flow, 𝑄f, and baseflow, 𝑄s. The fluxes are computed as follows,
u = 𝑃

(

1− (1−𝑆u)𝑏
)

, 𝐸a = 𝐸p𝑆u(1+ 𝑐)∕(𝑆u + 𝑐), 𝑄u1 = 𝑎𝑄u, 𝑄u2 = (1−𝑎)𝑄u, 𝑄f = 𝐾f𝑆f3 and 𝑄s = 𝐾s𝑆s, where 𝐸p signifies the potential evapotranspiration, 𝑐 = 10−2, 𝑆u = 𝑆u∕𝑆u,max
nd 𝑆u,max, 𝑎, 𝑏, 𝐾s and 𝐾f are unknown parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
P

Table 7
Summary of the hymod parameters and their symbols, units, and lower and upper
bounds.

Parameter Symbol Units Min. Max.

Maximum storage unsaturated zone 𝑆u,max mm 50 1000
Spatial variability of soil moisture capacity 𝑏 – 0.1 10
Flow partitioning coefficient 𝑎 – 0 1
Recession constant, slow reservoir 𝐾s 1/d 10−5 10−1

Recession constant, fast reservoir 𝐾f 1/d 10−1 5

of catchment-averaged precipitation (Maurer product) and potential
evapotranspiration derived from the formula of Oudin et al. (2005).
Daily discharge measurements of the last five years on record (WY
1999–2004) are used for parameter estimation purposes using the GL,
GL+, SL and UL functions. This amounts to 𝑛 = 1827 data points.

Table 8 lists the scoring rules and performance metrics of Tables 5
nd 6 for the predictive streamflow distributions derived from the
L, GL+, SL, UL and NL functions using different active sets of nui-

ance variables. Inactive nuisance variables are set to their default
alues (see Tables 1, 2 and 4). For completeness, the penultimate three
olumns list summary statistics of the goodness-of-fit of the hymod
AP simulation. Finally, the last column reports the Pareto rank of

ll likelihood functions but the GL function. These ranks are derived
rom non-dominated sorting of the strictly proper scoring rules of the

tabulated formulations of the UL, GL+, SL and NL functions. Thus, all
likelihoods are ranked together treating LS, CRPS and SS as if they are
complementary, non-commensurate, criteria. Rank one solutions are
Pareto optimal; any other solution is considered inferior. A-priori one
would advise using 𝜙1 and/or 𝜙2 in the active set of nuisance variables
as the discharge residuals will almost surely exhibit serial correlation
and, thus, fail an independence test. To explore to the fullest extent
possible the performance of the different likelihood functions, we do
include formulations without the external nuisance variables, 𝜙1 and/or
𝜙2. The row number in the first column serves as unique identifier of
each likelihood function.

The tabulated data may be a bit overwhelming and, thus, we orga-
nize and discuss our results according to the goals and/or objectives of
this paper.

Comparison of GL and GL+ functions.

(i) The values of the scoring rules and performance metrics of the
GL and GL+ functions are in almost perfect agreement when
the active set of nuisance variables is equivalent and made-up
of only internal variables. Any small differences between the
two likelihood functions are simply the result of a dissimilar
treatment of the slope, 𝑠1, of the measurement error function.
The GL function considers 𝑠1 a free parameter whose value is
estimated jointly with the other nuisance variables. The GL+

function, on the contrary, evokes the slope as a phantom variable
so as to enforce a unit variance of the studentized residuals,
𝐞(𝜽, 𝜹). This latter approach frees 𝑠 from the list of nuisance
15
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variable in the GL+, SL, NL and UL functions. This simplifica-
tion is inconsequential as evidenced by the close match in the
results of formulations 13, 15 and 16 of the GL+ function and
their equivalent counterparts 29, 31 and 32 of the GL function,
respectively.

(ii) The scoring rules and performance metrics of the GL function
deteriorate tremendously when the active set of nuisance vari-
ables includes one or more external variables, 𝜙1 and/or 𝜙2. This
is an immediate consequence of the application of the AR(𝑘)
process of Eq. (12) to non-homogenized residuals. This flaw was
identified by Evin et al. (2013) and explains the rather inferior
and overdispersed forecast distributions of the GL function as
evidenced by the exceedingly high values of the scoring rules,
relatively poor reliability, and unexpectedly large values of the
coefficient of variation, width of the 95% prediction intervals
and bias of the MAP simulation. Note that formulations 27 and
28 of the GL function even produce negative values of the CV.
This exemplifies the deficient implementation of the GL function
and demonstrates that we do not truncate negative discharge
forecasts to zero. The GL+ function does not suffer these prob-
lems as residual studentization precedes the treatment of serial
correlation in Eq. (12). This results in a much better description
of the discharge forecast distribution with prediction intervals
that are much sharper on average and exhibit an improved
coverage and reliability.

erformance of distribution-adaptive likelihood functions.

(i) The scoring rules and performance metrics vary considerably
among the tabulated formulations of the same distribution-
adaptive likelihood function. The choice of active nuisance
variables exerts a large control on the performance of the UL,
GL+ and SL functions. The most advanced formulations do not
necessarily yield the best overall performance. In other words, a
larger number of active nuisance variables does not necessarily
improve the performance of the UL, GL+ and SL functions.

(ii) It is difficult, if not impossible, to single out a single best
likelihood function and/or formulation thereof whose perfor-
mance is uniformly excellent across all scoring rules and/or
performance metrics. The GL+ and SL functions achieve, on
average, a somewhat lower Pareto rank than the UL function,
suggesting that the advantages of this latter likelihood function
did not fully materialize in the present example. Yet, we should
not draw generalized conclusions from this single data set and
model. We do not observe large differences in the performance
of the GL+, UL, SL and NL functions. None of their formulations
consistently places best among the different scoring rules and/or
performance metrics. Furthermore, care should be exercised that
each non-dominated (= rank one) likelihood function satisfies
residual assumptions. Such diagnostic checks of the residuals

will impact substantially the ranking of the likelihood functions.
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Table 8
Scoring rules and performance metrics of the predictive distributions of the UL, GL+, SL, GL and NL functions for different active sets of nuisance variables. This is followed by
summary statistics of the goodness-of-fit of the MAP solution and the Pareto rank of each likelihood function. Inactive nuisance variables assume default values.

ID Lik Nuis. vars., 𝜹 Scoring rules, (F, ỹ) Performance metrics, (F, ỹ) Summary statistics Rank

LS CRPS SS IS RLBL CV 𝐶 𝑊 (�̂�, �̂�|ỹ) RMSE PBIAS

1 UL 𝑠0 , 𝜆, 𝑝, 𝑞, 𝜙1 , 𝜙2 0.395 0.429 −1.194 3.961 0.660 0.416 0.935 2.581 1507.0 1.573 26.91 5
2 UL 𝑠0 , 𝜆, 𝜙1 0.349 0.347 −1.245 3.013 0.797 0.427 0.956 2.331 674.96 1.151 11.75 3
3 UL 𝑠0 , 𝑝, 𝜙1 0.635 0.443 −1.231 4.048 0.886 0.552 0.957 3.494 1418.1 1.645 27.54 6
4 UL 𝑠0 , 𝑞, 𝜙1 0.397 0.444 −1.301 3.644 0.858 0.482 0.950 2.797 1413.4 1.623 27.41 3
5 UL 𝑠0 , 𝜆, 𝑝, 𝑞 −0.055 0.334 −1.446 3.761 0.976 0.594 0.948 2.483 107.68 1.141 −4.120 1
6 UL 𝑠0 , 𝑝, 𝑞, 𝜙1 0.168 0.440 −1.273 3.809 0.881 0.513 0.961 3.197 1443.2 1.631 27.38 5
7 UL 𝑠0 , 𝑝 0.630 0.383 −1.340 3.764 0.918 0.504 0.969 3.039 −149.67 1.322 14.36 2
8 UL 𝑠0 , 𝜆, 𝑝, 𝑞, 𝜙1 0.272 0.429 −1.199 3.967 0.664 0.415 0.935 2.584 1508.3 1.579 26.99 3
9 UL 𝑠0 0.647 0.354 −1.288 3.200 0.870 0.457 0.965 2.515 −269.44 1.184 12.49 3

10 GL+ 𝑠0 , 𝛽, 𝜉, 𝜙1 , 𝜙2 0.809 0.449 −1.305 3.796 0.918 0.506 0.970 3.166 1289.7 1.693 27.26 3
11 GL+ 𝑠0 , 𝛽, 𝜙1 1.007 0.453 −1.297 3.870 0.922 0.517 0.970 3.241 1281.6 1.717 27.35 5
12 GL+ 𝑠0 , 𝜉, 𝜙1 0.404 0.345 −1.271 3.248 0.891 0.475 0.958 2.532 663.09 1.143 9.298 3
13 GL+ 𝑠0 , 𝛽, 𝜉 −0.042 0.329 −1.444 3.580 0.945 0.545 0.953 2.505 86.729 1.126 −2.955 1
14 GL+ 𝑠0 , 𝛽, 𝜉, 𝜙1 0.702 0.448 −1.301 3.799 0.917 0.506 0.970 3.170 1290.1 1.699 27.05 4

15a GL+ 𝑠0 , 𝛽
0.656 0.383 −1.341 3.769 0.919 0.505 0.970 3.043 −149.51 1.320 14.05 20.584 0.382 −1.340 3.759 0.918 0.505 0.969 3.040 −149.43 1.319 14.11

16 GL+ 𝑠0 , 𝜉 0.135 0.316 −1.333 3.221 0.877 0.470 0.940 2.239 −63.714 1.050 2.206 1
17 GL+ 𝑠0 0.620 0.355 −1.288 3.200 0.869 0.457 0.964 2.513 −269.28 1.170 12.26 3

18 SL 𝑠0 , 𝜈, 𝜉, 𝜙1 , 𝜙2 0.128 0.438 −1.295 3.840 0.789 0.447 0.935 2.559 1427.8 1.597 27.37 3
19 SL 𝑠0 , 𝜈, 𝜙1 0.133 0.444 −1.300 3.641 0.857 0.481 0.951 2.796 1413.5 1.632 27.33 3

20a SL 𝑠0 , 𝜉, 𝜙1
0.364 0.348 −1.244 3.011 0.796 0.427 0.957 2.330 674.90 1.127 12.05 40.428 0.347 −1.246 3.013 0.798 0.427 0.956 2.333 674.75 1.149 12.04

21 SL 𝑠0 , 𝜈, 𝜉 −0.057 0.333 −1.431 3.748 0.969 0.599 0.941 2.362 104.23 1.143 −4.525 1
22 SL 𝑠0 , 𝜈, 𝜉, 𝜙1 0.129 0.438 −1.288 3.869 0.791 0.455 0.938 2.562 1428.1 1.595 27.37 4
23 SL 𝑠0 , 𝜈 0.063 0.385 −1.363 3.699 0.927 0.516 0.967 2.829 −91.219 1.341 14.66 2
24 SL 𝑠0 , 𝜉 0.155 0.316 −1.333 3.222 0.877 0.470 0.942 2.240 −63.799 1.048 2.153 2
25 SL 𝑠0 0.629 0.355 −1.289 3.199 0.870 0.457 0.966 2.516 −269.38 1.188 12.68 3

26 GL 𝑠0 , 𝑠1 , 𝛽, 𝜉, 𝜙1 , 𝜙2 2.078 1.114 −0.582 17.52 0.642 49.6 0.980 15.91 1642.4 1.856 −60.56
27b GL 𝑠0 , 𝑠1 , 𝛽, 𝜙1 2.169 1.111 −0.588 17.63 0.645 −25.1 0.979 16.01 1642.3 1.806 −58.82
28b GL 𝑠0 , 𝑠1 , 𝜉, 𝜙1 2.015 1.147 −0.552 17.71 0.619 −19.6 0.987 16.95 1207.2 1.550 −42.16
29b GL 𝑠0 , 𝑠1 , 𝛽, 𝜉 −0.040 0.330 −1.448 3.655 0.960 0.532 0.949 2.426 90.964 1.131 −3.455
30b GL 𝑠0 , 𝑠1 , 𝜙1 2.024 1.161 −0.546 17.95 0.616 72.1 0.987 17.15 1206.4 1.547 −42.02
31b GL 𝑠0 , 𝑠1 , 𝛽, 𝜉, 𝜙1 2.087 1.110 −0.584 17.38 0.641 353 0.980 15.76 1643.6 1.884 −61.50
32b GL 𝑠0 , 𝑠1 , 𝛽 0.930 0.384 −1.344 3.694 0.922 0.482 0.968 2.896 −147.10 1.332 14.65
33b GL 𝑠0 , 𝑠1 , 𝜉 0.253 0.315 −1.343 3.258 0.884 0.460 0.938 2.180 −61.216 1.048 1.325

34a NL 𝑠0 , 𝜙1
0.399 0.436 −1.082 3.336 0.700 0.437 0.957 2.627 639.00 1.348 22.31 60.410 0.437 −1.080 3.339 0.699 0.437 0.958 2.627 638.97 1.350 23.43

35 NL 𝑠0 0.653 0.355 −1.288 3.197 0.870 0.458 0.964 2.515 −269.46 1.188 12.46 4

aThe two lines report the results of separate trials.
bDefault values of 𝛽 = 0, 𝜉 = 1, 𝜙1 = 0 and 𝜙2 = 0 of Schoups and Vrugt (2010).
(iii) The SL function has the largest number of non-dominated for-
mulations (two) and produces, on average, the lowest values of
the IS and width, 𝑊 , of the 95% prediction intervals. The GL+

function yields the highest reliability. The UL function is a close
competitor to the SL and GL+ functions and achieves the highest
mean value of the log-likelihood, (�̂�, �̂�|�̃�), but at the expense
of a somewhat larger RMSE and PBIAS. The UL and GL+ have
only a single Pareto optimal formulation according to the strictly
proper scoring rules of the discharge forecast distribution.

(iv) The UL, GL+, SL functions produce equivalent scoring rules,
performance metrics and summary statistics if the active set
of nuisance variables includes only the intercept, 𝑠0, of the
measurement error function of Eq. (24). The performance of
these three respective formulations (9, 17 and 25) is nearly
indistinguishable and equal to that of the NL function with 𝑠0
(= 35). This latter finding is enforced by the use of normal
default values of the inactive nuisance variables and confirms
our analytic derivations.

(v) The NL function with heteroscedastic measurement error func-
tion (35) achieves a performance that is at least comparable to
that of most of the tabulated formulations of the GL+, SL and
UL functions. But as this formulation does not satisfy residual as-
sumptions (shown later) we should benchmark the distribution-
adaptive likelihood functions against the NL function with 𝑠 , 𝜙
16
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(= 34). All tabulated formulations of the UL, GL+ and SL func-
tions but the UL function with (3) 𝑠0, 𝑝, 𝜙1, improve upon the
scoring rules and performance metrics of this normal likelihood
as evidenced by their superior Pareto rank.

(vi) Different trials with the exact same likelihood function produce
almost equal values of the scoring rules, performance metrics
and summary statistics (see 15, 20 and 34). This demonstrates
that the sampled chains successively converge to the approxi-
mately same target distribution. Thus, disparities in the tabu-
lated statistics of the likelihood functions highlight differences
between the UL, GL+, SL and NL functions and/or their selection
of active nuisance variables.

On scoring rules and performance metrics.

(i) The scoring rules of the forecast distribution display only weak
relationships (see Tables F.1 and F.2 in Appendix F). The Pearson
and Spearman correlation coefficients, 𝑟 and 𝜌, respectively,
of LS, CRPS, SS and IS are consistently smaller than 0.5, ex-
cept for 𝑟CRPS,IS = 0.67 and 𝜌CRPS,IS = 0.62, respectively. The
weak correlation between the strictly proper scoring rules may
seem counter-intuitive given that LS, CRPS and SS measure the
divergence of the predictive distribution to the true forecast
density. Apparently, this divergence can be expressed using
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three seemingly unrelated quantities. But this does not imply
that the strictly proper scoring rules are independent. Their low
degree of correlation simply articulates a large departure, on
average, from the true forecast densities. We expect the pairwise
correlations of LS, CRPS and SS to increase when the predictive
distributions approximate more closely and consistently the true
forecast densities. The relative independence of LS, CRPS and SS
turns the selection of an adequate likelihood into a multi-criteria
decision making problem.

(ii) The performance metrics of the forecast distribution do not
display strong linear and monotonic relationships (Appendix F).
The exception to this are the reliability and coefficient of varia-
tion, which have Pearson and Spearman correlation coefficients
of 0.82 and 0.91, respectively. These two performance metrics
measure different aspects of the forecast distribution, yet exhibit
a relatively strong linear and rank dependence for the present
data set and model.

(iii) Most of the scoring rules display only a weak relationship with
the tabulated performance metrics. The strongest linear and
rank correlation is found between the CRPS and width, 𝑊 , of
the forecast distribution (𝑟CRPS,𝑊 = 0.71, 𝜌CRPS,𝑊 = 0.87) and
the spherical score, SS, and the reliability (𝑟SS,RLBL = −0.82,
𝜌SS,RLBL = −0.76). A somewhat weaker relationship is found
between the SS and the coefficient of variation (𝑟SS,CV = −0.73,
𝜌SS,CV = −0.68) and the logarithmic score, LS, and the cover-
age, 𝐶 (𝑟LS,𝐶 = 0.68, 𝜌LS,𝐶 = 0.73). The scoring rules com-
plement the performance metrics and help provide additional
and/or orthogonal information about the quality of the forecast
distribution.

(iv) All tabulated formulations of the UL, GL+, SL and NL functions
achieve the desired coverage of about 0.95 at a significance
level, 𝛼 = 0.05. This performance metric does not discriminate
among the different likelihood functions. Indeed, a coverage of
1− 𝛼 is simply a result of the rigorous application of probability
theory. Note that a poor coverage alerts us to an erroneous
implementation of the likelihood function, inaccurate character-
ization of the posterior (𝜽, 𝜹)-parameter distribution and/or use
of an improper prior distribution.

(v) The CRPS demonstrates a rather small variation among the dif-
ferent likelihood formulations. This measure is commonly used
when the probabilistic forecast is a CDF and the observations
are scalars. This amounts to an eCDF, 𝐺𝑡, of each observation,
𝑦𝑡, that is equal to a Dirac delta function with unit integral.
The CRPS may show a larger variation among the different
likelihoods if we replace this tall narrow spike with an actual
CDF for each individual discharge observation. This CDF may
be construed from replicates of discharge time series using the
approach of Oliveira and Vrugt (2022). Alternatively, one can
specify a normal CDF with variance derived from Eq. (24) using
the MAP value of 𝑠0. This latter approach is not ideal as the CDF
of the data will depend on the likelihood function used.

(vi) The reliability, coefficient of variation, width and coverage mea-
sure specific properties of the forecast distribution deemed im-
portant to represent accurately in practical application. These
performance metrics have the advantage of being easy to analyze
and interpret, but as necessary and insufficient conditions of the
predictive distribution these metrics do not help in the pursuit
of the true forecast density. The same is true for proper scoring
rules, such as the interval score.

(vii) The strictly proper scoring rules provide a sufficient description
of the true forecast density, yet, the LS, CRPS and SS are diffi-
cult to interpret as they provide an integrated measure of the
divergence of the predictive distribution from the true forecast
density.
17
The treatment of residual autocorrelation.

(i) The use of external nuisance variables, 𝜙1 and/or 𝜙2, in the
UL, GL+, SL and NL functions, enhances substantially the log-
likelihood of the posterior realizations but at the expense of
a deterioration in most (if not all) of the scoring rules and
performance metrics. Specifically, the treatment of serial correla-
tion reduces the reliability of the discharge forecast distribution
and increases the width, 𝑊 , of its 95% prediction intervals. In
interpreting this finding it is important to reiterate that the au-
toregressive operator of Eq. (12) is evaluated in simulation mode
using the recipe detailed in Algorithm E.1. If we switch to one-
observation ahead forecasting and submit the actual residuals
to the autoregressive operator instead, then the quality of the
predictive discharge distribution would improve considerably,
beyond the scoring rules and performance metrics obtained with
internal nuisance variables only. However, this would obfuscate
the comparison of AR and non-AR based formulations of the
likelihood function(s) and, thus, we do not present these results
herein.

(ii) The use of external nuisance variables, 𝜙1 and/or 𝜙2, substan-
tially increases the RMSE and percentage bias of the MAP simu-
lation. This is a result of model evaluation in simulation mode.
The MAP discharge simulation equals the deterministic output of
hymod only, thus, does not include the AR-extension of Eq. (12).

(iii) There are no benefits to using an AR(2) model of the studentized
raw residuals. The value of 𝜙2 consistently converges to zero in
all respective formulations. Higher-order autoregressive models
may be required for other data sets and/or models to remove
serial correlation among the studentized raw residuals.

Altogether, the results confirm that the GL+ function is superior to
the GL function and has the additional benefit of requiring the estima-
tion of one less nuisance variable. The use of studentized residuals in
the autoregressive model of Eq. (12) rectifies a critical deficiency of
the GL function and guarantees an accurate implementation of the SEP
log-likelihood of Eq. (26). This makes obsolete the GL function and,
thus, we focus our attention on the UL, GL+ and SL functions.

The strictly proper scoring rules facilitate a rigorous evaluation of
the forecast distributions derived from the posterior realizations of
the different likelihood functions. This reduces the need for a visual
assessment of the results. The LS, CRPS and SS (and/or IS) should not
be used as sole determinant for likelihood function selection as these
scoring rules do not verify whether residual assumptions are satisfied.
Some of the likelihood functions perform better than others, but no
formulation consistently ranks best among the different scoring rules
and/or performance metrics. To illustrate this in more detail, please
consider Fig. 8 which presents bivariate scatter plots of the values of
the strictly proper scoring rules of the UL, GL+, SL and NL functions
of Table 8. We assign a separate color to each likelihood function and
use empty (white) circles to differentiate formulations that do not treat
serial correlation from those that do (filled circles).

The scatter diagrams are only cross-sections of the three-dimensional
space of strictly proper scoring rules, yet highlight some of the dif-
ficulties involved in the selection of a suitable likelihood function.
The dotty plots confirm our earlier claim that the treatment of serial
correlation tends to deteriorate, on average, the quality of the discharge
forecast distribution. This testifies to the use of simulated residuals
in the autoregressive operator of Eq. (12). The different graphs do
not favor a single unique formulation of the likelihood function, but
rather demonstrate the presence of multiple different optimal formu-
lations. These so-called Pareto solutions represent trade-offs among
the different scoring rules and have the property that moving from
one solution to another results in the improvement of one scoring
rule while causing a simultaneous deterioration in one or more others.

This is a result of the low correlation among the strictly proper scoring
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Fig. 8. Two-dimensional scatter plots of the values of the scoring rules derived from the tabulated formulations of the GL+, SL, UL and NL functions: (a) LS − CRPS, (b) LS − SS,
and (c) CRPS − SS. The color of each data point matches to the likelihood function. The empty circles correspond to the formulations of Table 8 that do not include external
nuisance variables, 𝜙1 and/or 𝜙2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Diagnostic checks of the residuals: (a) scatter plot, (b) histogram, (c) sample autocorrelation function and (d) quantile–quantile plot of the standardized partial residuals,
𝜺(𝜽, 𝜹), of the hymod MAP simulation for our selection of likelihood functions, including (1) the UL function with 𝑠0 , 𝜆, 𝜙1, (2) the GL+ function with 𝑠0 , 𝜉, 𝜙1, (3) the SL function
with 𝑠0 , 𝜉, 𝜙1, and the NL function with (4) 𝑠0 , 𝜙1, and (5) 𝑠0, respectively. The dashed lines portray (a) the least squares fit, (c) the 95% confidence limits of white noise, the
so-called (Anderson, 1941) limits, and (d) 1:1 line of the theoretical and empirical quantiles. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 10. Time series plot of observed (red dots) and simulated discharge: (a) UL: 𝑠0 , 𝜆, 𝜙1, (b) GL+: 𝑠0 , 𝜉, 𝜙1, (c) SL: 𝑠0 , 𝜉, 𝜙1, and (d) NL: 𝑠0 , 𝜙1 for a representative 365-day period
for the Leaf river basin. The dark and light shaded regions portray the 95% discharge uncertainty intervals due to parameter and total uncertainty, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
rules, and consequently, we can treat the selection of an adequate
likelihood function as a multi-criteria decision-making problem. The
spatial arrangement of the different colors in each dotty plot confirm
our earlier finding that the different formulations of the SL function
achieve, on average, the best performance, followed by the GL+ and
UL functions. Upon inspection of the Pareto ranks of the AR-based
formulations of the GL+, UL and SL functions listed in Table 8, we
conclude that the UL function with (1) 𝑠0, 𝜆, 𝑝, 𝑞, 𝜙1, 𝜙2, (2) 𝑠0, 𝜆, 𝜙1,
(4) 𝑠0, 𝑞, 𝜙1, (6) 𝑠0, 𝑝, 𝑞, 𝜙1 and (8) 𝑠0, 𝜆, 𝑝, 𝑞, 𝜙1, the GL+ function with
(10) 𝑠0, 𝛽, 𝜉, 𝜙1, 𝜙2, (11) 𝑠0, 𝛽, 𝜙1, (12) 𝑠0, 𝜉, 𝜙1, (14) 𝑠0, 𝛽, 𝜉, 𝜙1, and
the SL function with (18) 𝑠0, 𝜈, 𝜉, 𝜙1, 𝜙2, (19) 𝑠0, 𝜈, 𝜙1, (20) 𝑠0, 𝜉, 𝜙1
and (22) 𝑠0, 𝜈, 𝜉, 𝜙1 achieve a performance that is superior to the NL
function of Eq. (27) with 𝑠0, 𝜙1 (purple dot). At this time it is important
to reiterate that we could have also ranked the different likelihood
functions according to any of the three strictly proper scoring rules. Then
likelihood functions 18, 12 and 10, would have come on top for the LS,
CRPS and SS rules, respectively, and the so-ordered likelihood functions
19
would significantly overlap with the Pareto dominance-based selection
listed above. Of these solutions, we will investigate in more detail next,
the UL function with (2) 𝑠0, 𝜆, 𝜙1, the GL+ function with (12) 𝑠0, 𝛽, 𝜙1
and SL function with (20) 𝑠0, 𝜉, 𝜙1.

The scoring rules and/or performance metrics do not tell us whether
residual assumptions are satisfied and whether hymod accurately de-
scribes the measured discharge record. Next, we verify whether the
partial residuals of the UL, GL+, SL and NL functions satisfy assump-
tions of homogeneity and independence (among others). Fig. 9 presents
the results of our analysis. The left graph displays the studentized
partial residuals as a function of the hymod simulated discharge. The
second graph shows the assumed (solid line) and actual (vertical lines)
PDF of the studentized partial residuals. The third graph presents the
sample autocorrelation function of the studentized partial residuals.
The fourth and last graph compares theoretical and empirical quantiles
of the studentized partial residuals. To benchmark our findings, the
bottom panel visualizes the results of the NL function with 𝑠 (= 35).
0
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This likelihood function does not treat serial correlation, thus, we
expect that it will violate residual assumptions.

The scatter plots appear to suggest that the studentized partial
residuals are not homogeneous, but rather decrease in magnitude with
increasing value of the simulated flows. But this is an optical illusion.
Upon close inspection of the data scattering at different flow levels,
we can reveal that the variance of the studentized (partial) residuals
is rather constant and independent of the magnitude of the simulated
discharge. The near-zero slopes of the regression lines confirm the
homogeneous nature of the 𝜀𝑡(𝜽, 𝜹)’s. The empirical density functions
of the partial residuals follow a Laplacian distribution that is generally
well described by the respective PDFs of the likelihood functions. The
characteristic peak of the partial residuals is only duplicated by the
GL+ function. Note that the PDFs of the UL and SL functions exhibit
a small skew to the right, whereas the PDF of the GL+ function is
symmetric around zero. By definition, the PDFs of the NL function are
without skew. Autocorrelation is negligible at all lags for likelihood
functions 2, 12, 20 and 35. This is an immediate consequence of the
use of the AR operator in Eq. (12). The NL function in the bottom panel
does not treat serial correlation, hence, the studentized residuals violate
the independence assumption. The theoretical and empirical quantiles
of the studentized partial residuals are in close agreement within the
interquartile range. Outside this interval the empirical quantiles of the
likelihood functions deviate considerably from the 1:1 line. Indeed,
none of the likelihood functions characterize well the tails of the
residual distribution. This involves only a small number of residuals,
but these residuals are critically important in describing adequately the
prediction limits of the simulated discharge.

Fig. 10 presents time series plots of the observed (red dots) and
simulated discharge of the 𝑚 posterior realizations for a representative
1-year period of the training record of the Leaf river basin using
likelihood functions (a) 2, (b) 12, (c) 20, and (d) 34. The dark and light
shaded regions summarize the 95% credible intervals due to parameter
and total uncertainty, respectively.

For all four likelihood functions the hymod parameter uncertainty
makes up an insignificant part of the prediction uncertainty with 95%
credible intervals that collapse to a (dark) line with the exception
of a few peak flows. The discharge prediction uncertainty is largest
for the GL+ function with 95% intervals that extent to zero for the
largest streamflows. This is visually not particularly pleasing. The NL
function with 𝑠0, 𝜙1 provides a relatively good description of the uncer-
tainty with MAP solution (not shown) that tracks reasonably well the
measured discharge record. The prediction uncertainty of the UL and
SL functions depend most on the simulated flow level. The discharge
uncertainty is relatively small at low flows but increases substantially
during rainfall events with increasing discharge. The prediction uncer-
tainty of the NL function appears more constant with a comparatively
large uncertainty at low flows and comparatively small uncertainty
at the peak flows. Altogether, the prediction uncertainty of the UL
function is visually most pleasing with 95% intervals that are smallest
on average.

Finally, we investigate the effect of the choice of likelihood function
on the posterior marginal distribution of the hymod parameters (see
Fig. 11).

The hymod parameters appear well defined by the measured dis-
charge. With exception of the NL function with 𝑠0, 𝜙1 we observe a close
agreement in the marginal parameter distributions derived from the
different likelihood functions. This is particularly true for the UL and SL
functions. We see nicely bell-shaped histograms with an approximately
similar mean and comparably small spread. Variations in the mean of
each hymod parameter among the different likelihood functions are rel-
atively small, certainly compared to the prior ranges of the parameters.
The hymod parameters exhibit a negligible correlation, with exception
of 𝑆 and 𝑏 of the NL function with 𝑠 , 𝜙 . This explains their much
20

u,max 0 1
enlarged uncertainty. These results confirm that the choice of likelihood
function has an effect on the posterior parameter values.

Note, in our analysis here we limit our attention to the performance
of hymod during the 5-year calibration period and do not present
performance statistics and/or analyze results for an independent evalu-
ation period. The calibration period suffices to illustrate the application
of the different likelihood functions and the comparison and/or ranking
of their predictive distributions. Furthermore, for a long data set and
parsimonious model such as hymod, we do not expect large changes to
the performance of the likelihood functions in an independent evalua-
tion period under the stationarity thesis. If model selection is of interest
then the user can resort to GAME sampling (Volpi et al., 2017). This
method numerically integrates the posterior distribution in pursuit of
the so-called marginal likelihood. This measure suffices to determine
which model and/or likelihood is most supported by the experimental
(discharge) data.

6. Conclusions

This paper was concerned with the formulation of herein called
distribution-adaptive likelihood functions in the application of Bayesian
epistemology to uncertainty quantification of hydrologic watershed
models. This class of likelihood functions does not require prior as-
sumptions about the expected distribution of the residuals. Inference
takes place over the model parameters and space of distribution func-
tions defined by the nuisance variables of the likelihood function.

The goals of this paper were threefold. First, we presented a revised
formulation of the generalized likelihood (GL) function of Schoups and
Vrugt (2010). By enacting the treatment of serial correlation on the
studentized raw residuals rather than the raw residuals, this so-called
GL+ function rectifies a critical deficiency of the GL function. This cor-
rection guarantees an accurate computation of the SEP log-likelihood
and allows for a much more robust joint inference of the autoregressive
coefficients and variance, skew and/or kurtosis of the residuals. As sec-
ondary goal, we presented a further generalization of the GL+ function,
coined the universal likelihood (UL) function. This likelihood function
uses as its main building block the skewed generalized Student’s 𝑡-
distribution of Theodossiou (2015) and extends applicability to a much
larger family of well-known probability distributions. As third and last
goal we introduced the use of strictly proper scoring rules to evaluate,
compare and rank the predictive distributions of different likelihood
functions. The logarithmic, continuous rank probability and spherical
score rules condense the accuracy of a distribution forecast to a single
value while retaining attractive statistical properties and incentivizing
a correct modeling of the predictive distribution.

The power and usefulness of the GL+ and UL functions were demon-
strated by application to two case studies. The first study involved a
simple autoregressive data generating process with SEP and/or SGT
innovations and was used to investigate the convergence properties of
the GL+ and UL functions. Both likelihood functions converge upon
the true values of the model parameters and shape coefficients of the
distribution of the innovations. The uncertainty in the autoregressive
coefficients and nuisance variables of the partial residuals dissipates
quickly with increasing length of the training data record. As the
AR(2)-operator does not preserve higher-order moments of the SEP
and/or SGT innovations, the mode of the marginal distributions of the
skew and/or kurtosis parameters may not coincide exactly with their
true values. Such discrepancies, however, are inconsequential as the
distribution of the innovations is perfectly described.

The second case study considered the application of distribution-
adaptive likelihood functions to a simple five-parameter watershed

model named hymod using daily discharge measurements of the Leaf
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Fig. 11. Histograms of the marginal posterior distributions of the hymod parameters, (a) 𝑆u,max, (b) 𝑏, (c) 𝑎, (d) 𝐾s and (e) 𝐾f for likelihood functions, (1) 2, (2) 12, (3) 20, (4)
4 and (5) 35. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
iver. Different formulations of the GL+ and UL functions were eval-
ated using the logarithmic, continuous rank probability and spheri-
al scoring rules and benchmarked against the GL function, the Stu-
ent 𝑡-likelihood (SL) of Scharnagl et al. (2015) and a normal likeli-
ood (NL) with first-order autoregressive model and/or heteroscedastic
easurement errors. Our most important results were as follows.

1. The GL+ function is superior to the GL function and has the
advantage of requiring the specification of one less nuisance
variable.

2. The performance of the GL+, SL and UL functions depends in
large part on the choice of nuisance variables. The most complex
formulations of the GL+, SL and UL functions (all nuisance
variables in active set) do not yield the best performance.

3. The internal nuisance variables of the GL+, SL and UL func-
tions enable a better description of the discharge residuals. This
reduces the width of the discharge prediction intervals.

4. The normal likelihood achieves a performance that is fairly com-
parable to several formulations of the GL+, SL and UL functions.

5. The treatment of autocorrelation deteriorates the values of the
scoring rules and performance metrics of the forecast distri-
bution. If, however, we switch to one-observation ahead fore-
casting and work with actual rather than simulated residuals,
then the use of autocorrelation improves substantially the qual-
ity of the predictive discharge distribution beyond the scoring
21
rules and performance metrics obtained for internal nuisance
variables only (e.g. see Evin et al., 2014).

5. Scoring rules are indispensable in our search for the true forecast
distribution

6. Strictly proper scoring rules facilitate a statistically rigorous eval-
uation and ranking of different likelihood functions.

7. We cannot single out a single best likelihood function whose
performance is uniformly excellent across all scoring rules and
performance metrics of the forecast distribution.

8. The use of one strictly proper scoring rule suffices, in principle,
for evaluation and ranking of the likelihood functions. The si-
multaneous use of the logarithmic, continuous rank probability
and spherical scores converts the selection of an adequate like-
lihood function into a multi-criteria problem. Care should be
exercised that each likelihood function satisfies residual assump-
tions.

9. The Pareto optimal likelihood functions produce fairly similar
marginal distributions of the hymod parameters.

Altogether, our results for hymod favored the use of a distribution-
adaptive likelihood function in describing the rainfall–discharge dy-
namics of the Leaf River. A leptokurtic distribution of the partial
residuals provided the overall best characterization of the measured
discharge record and associated uncertainties.
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Appendix A. Standardized skewed exponential power (SEP) den-
sity

We revisit Appendix A of Schoups and Vrugt (2010) and reiter-
ate how the standardized skew exponential power density function
in Eq. (9) can be obtained from the exponential power (EP) or general-
ized normal distribution of Subbotin (1923) and Box and Tiao (1992)
using the method of Fernandez and Steel (1998).

The density of the standardized EP distribution (zero-mean and unit
variance) at point 𝑎 may be computed as follows (Box and Tiao, 1992)

𝑓EP(𝑎|0, 1, 𝛽) = 𝜔𝛽 exp
(

−𝑐𝛽 |𝑎|
2∕(1+𝛽)), (A.1)

where 𝛽 ∈ (−1, 1] is a so-called kurtosis parameter which controls the
peakedness of the distribution7 and | ⋅ | denotes the absolute value or
modulus operator. The values of the scalars 𝑐𝛽 and 𝜔𝛽 depend on the
kurtosis parameter and are given by Box and Tiao (1992)

𝑐𝛽 =
(𝛤

(

3(1 + 𝛽)∕2
)

𝛤
(

(1 + 𝛽)∕2
)

)1∕(1+𝛽)
(A.2a)

𝜔𝛽 =
𝛤 1∕2(3(1 + 𝛽)∕2

)

(1 + 𝛽)𝛤 3∕2
(

(1 + 𝛽)∕2
) , (A.2b)

where 𝛤 (𝑏) signifies the incomplete Gamma function evaluated at 𝑏

𝛤 (𝑏) = ∫

∞

0
𝑥𝑏−1 exp(−𝑥)d𝑥 ∀𝑏 ∈ R+, (A.3)

which satisfies the recursion 𝛤 (𝑏+1) = 𝑏𝛤 (𝑏). The gamma function can
be approximated numerically

log
(

𝛤 (𝑏)
)

= −𝛾𝑏 − log(𝑏) +
∞
∑

𝑚=1

(

𝑏
𝑚

− log
(

1 + 𝑏
𝑚

)

)

, (A.4)

where 𝛾 = lim𝑚→∞

(

− log(𝑚) +
∑𝑚

𝑘=1
1
𝑘

)

≈ 0.5772 is the so-called
Euler–Mascheroni constant and log(⋅) signifies the natural logarithm.

The EP density, 𝑓 (𝑎|𝛽), in Eq. (A.1) is symmetric around 𝑎 = 0. This
ymmetry impairs our ability to describe accurately skewed residual

7 With −1 < 𝛽 ≤ 1 the residual norm, 𝓁2∕(1+𝛽), ranges between 𝓁1 and 𝓁∞.
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distributions with an upper or lower tail. Fernandez and Steel (1998)
developed a general solution for the treatment of skew in symmetric
distributions with closed-form mathematical expressions. Their tem-
plate density, 𝑓skew(𝑎|𝜉), with skewness parameter, 𝜉 ∈ R+, introduces
tails in an arbitrary symmetric density, 𝑓 (⋅), as follows

skew(𝑎|𝜉) =
2

𝜉 + 𝜉−1
𝑓
(

𝑎𝜉− sign(𝑎)) = 2
𝜉 + 𝜉−1

𝑓
( 𝑎
𝜉sign(𝑎)

)

, (A.5)

where sign(⋅) is the signum function

sign(𝑥) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑥 > 0
0 if 𝑥 = 0
−1 if 𝑥 < 0.

(A.6)

and the mean, 𝜇𝜉 , and variance, 𝜎2𝜉 , of 𝑎 satisfy the following relation-
ship (Fernandez and Steel, 1998)

𝜇𝜉 = 𝑀1(𝜉 − 𝜉−1) (A.7a)

𝜎2𝜉 = (𝑀2 −𝑀2
1 )(𝜉

2 + 𝜉−2) + 2𝑀2
1 −𝑀2, (A.7b)

wherein 𝑀𝑗 is the 𝑗th absolute moment of the standardized EP density,
𝑓EP(⋅|0, 1, 𝛽), of Eq. (A.1)

𝑀𝑗 = E(|𝑥𝑗 |) = ∫

∞

−∞
𝑥𝑗𝑓EP(𝑥|0, 1, 𝛽) d𝑥. (A.8)

We can now substitute the exponential power density, 𝑓EP(𝑎|0, 1, 𝛽),
f Eq. (A.1) into the skew distribution, 𝑓skew(𝑎|𝜉), of Eq. (A.5). The
esult is a non-standardized skewed exponential power (SEP) density
ith mean, 𝜇𝜉 , and variance, 𝜎2𝜉 , of 𝑎 determined by Eqs. (A.7a) and

A.7b). To negate changes in the mean and variance of 𝑎 imposed by the
se of the skew density of Eq. (A.5), we must scale the SEP density, and,
herefore, use as its input argument, 𝜇𝜉 + 𝜎𝜉𝑎, rather than 𝑎. This leads
o the following expression for the standardized SEP density (Schoups
nd Vrugt, 2010)

SEP(𝑎|0, 1, 𝛽, 𝜉) =
2𝜎𝜉𝜔𝛽

𝜉 + 𝜉−1
exp

(

−𝑐𝛽
|

|

|

|

𝜇𝜉 + 𝜎𝜉𝑎

𝜉sign(𝜇𝜉+𝜎𝜉𝑎)
|

|

|

|

2∕(1+𝛽))

, (A.9)

here 𝑐𝛽 , 𝜔𝛽 , 𝜇𝜉 , and 𝜎𝜉 , are a function of the kurtosis, 𝛽, and skewness,
, using Eqs. (A.2a), (A.2b), (A.7a) and (A.7b), respectively.

The derivation of the standardized SEP density function in Eq. (A.9)
ould not be complete without addressing the computation of the

irst and second moment, 𝑀1 and 𝑀2, in Eqs. (A.7a) and (A.7b),
respectively. As the EP distribution of Subbotin (1923) is symmetric
around zero, Eq. (A.8) may be written as follows

𝑀𝑗 = 2∫

∞

0
𝑥𝑗𝑓EP(𝑥|0, 1, 𝛽) d𝑥, (A.10)

and reduces to

𝑀𝑗 = 2𝜔𝛽 ∫

∞

0
𝑥𝑗 exp

(

−𝑐𝛽𝑥2∕(1+𝛽)
)

d𝑥, (A.11)

for the EP distribution in Eq. (A.1). The above integral appears in
integration tables

∫

∞

0
𝑥𝑗 exp(−𝑎𝑥𝑏) d𝑥 = 1

𝑏
𝑎−(𝑗+1)∕𝑏𝛤

(

(𝑗 + 1)∕𝑏
)

, (A.12)

where 𝑎 = 𝑐𝛽 and 𝑏 = 2∕(1 + 𝛽). If we enter this solution in Eq. (A.11)
then we obtain the following closed-form expression for the 𝑗th moment
f the EP distribution

𝑗 = 2𝜔𝛽

𝑐−(𝑗+1)∕(2∕(1+𝛽))𝛽

2∕(1 + 𝛽)
𝛤
(

(𝑗 + 1)∕
(

2∕(1 + 𝛽)
)

)

= 𝜔𝛽 (1 + 𝛽)𝑐
− 1

2 (𝑗+1)(1+𝛽)
𝛽 𝛤

(

(𝑗 + 1)(1 + 𝛽)∕2
)

. (A.13)

For 𝑗 = 1, we yield the first moment, 𝑀1, of the EP distribution
−(1+𝛽)
𝑀1 = 𝜔𝛽 (1 + 𝛽)𝑐𝛽 𝛤 (1 + 𝛽). (A.14)
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We can enter Eqs. (A.2a) and (A.2b) for 𝜔𝛽 and 𝑐𝛽 , respectively, to
yield

𝑀1 =
𝛤 1∕2(3(1 + 𝛽)∕2

)

(1 + 𝛽)

(1 + 𝛽)𝛤 3∕2
(

(1 + 𝛽)∕2
)

(

(𝛤
(

3(1 + 𝛽)∕2
)

𝛤
(

(1 + 𝛽)∕2
)

)1∕(1+𝛽)
)−(1+𝛽)

𝛤 (1 + 𝛽)

=
𝛤 1∕2(3(1 + 𝛽)∕2

)

𝛤 3∕2
(

(1 + 𝛽)∕2
)

(𝛤
(

3(1 + 𝛽)∕2
)

𝛤
(

(1 + 𝛽)∕2
)

)−1
𝛤
(

1 + 𝛽
)

=
𝛤 1∕2(3(1 + 𝛽)∕2

)

𝛤
(

3(1 + 𝛽)∕2
)

𝛤
(

(1 + 𝛽)∕2
)

𝛤 3∕2
(

(1 + 𝛽)∕2
)𝛤

(

1 + 𝛽
)

, (A.15)

and, thus, the first moment of the EP distribution simplifies to

𝑀1 =
𝛤 (1 + 𝛽)

𝛤 1∕2
(

3(1 + 𝛽)∕2
)

𝛤 1∕2
(

(1 + 𝛽)∕2
) . (A.16)

For the second moment, 𝑀2, of the EP distribution we must enter,
= 2, in Eq. (A.13)

2 = 𝜔𝛽 (1 + 𝛽)𝑐
− 3

2 (1+𝛽)
𝛽 𝛤

(

3(1 + 𝛽)∕2
)

, (A.17)

After substitution of Eqs. (A.2a) and (A.2b) the above expression sim-
plifies to

𝑀2 =
𝛤 1∕2(3(1 + 𝛽)∕2

)

(1 + 𝛽)

(1 + 𝛽)𝛤 3∕2
(

(1 + 𝛽)∕2
)

(

(𝛤
(

3(1 + 𝛽)∕2
)

𝛤
(

(1 + 𝛽)∕2
)

)1∕(1+𝛽)
)− 3

2 (1+𝛽)

𝛤
(

3(1 + 𝛽)∕2
)

=
𝛤 3∕2(3(1 + 𝛽)∕2

)

𝛤 3∕2
(

(1 + 𝛽)∕2
)

(𝛤
(

3(1 + 𝛽)∕2
)

𝛤
(

(1 + 𝛽)∕2
)

)− 3
2

= 1. (A.18)

This concludes the derivation.

Appendix B. The Student 𝒕 likelihood function

The GL and GL+ functions rely on the generalized normal (or EP)
distribution to characterize nontraditional residual distributions with
different degrees of skew and kurtosis. Scharnagl et al. (2015) replaced
the EP distribution of Eq. (7) with a standardized Student’s 𝑡-density

ST(𝑎|0, 1, 𝜈) =
𝛤
(

(𝜈 + 1)∕2
)

𝛤 (𝜈∕2)
1

√

𝜋(𝜈 − 2)

(

1 + 𝑎2

𝜈 − 2

)− 𝜈+1
2
, (B.1)

where 𝜇𝑎 = 0, 𝜎2𝑎 = 1 and 𝜈 > 2 denotes the degrees of freedom.
If we combine Eq. (B.1) with the skew density of Eq. (8) we yield
the following expression for the standardized skewed Student’s 𝑡 (SST)
ensity (Scharnagl et al., 2015)

SST(𝑎|0, 1, 𝜈, 𝜉)

=
2𝜎𝜉

(𝜉 + 𝜉−1)
𝛤
(

(𝜈 + 1)∕2
)

𝛤 (𝜈∕2)
√

𝜋(𝜈 − 2)

(

1 + 1
𝜈 − 2

( 𝜇𝜉 + 𝜎𝜉𝑎

𝜉sign(𝜇𝜉+𝜎𝜉𝑎)

)2
)− 𝜈+1

2

, (B.2)

here 𝜉 > 0 is the skewness parameter and 𝜇𝜉 and 𝜎2𝜉 are shift and scale
onstants, respectively, which standardize the SST density.

The shift and scale constants, 𝜇𝜉 and 𝜎2𝜉 , respectively, must satisfy
qs. (A.7a) and (A.7b)

𝜇𝜉 = 𝑀1(𝜉 − 𝜉−1) (B.3a)
2
𝜉 = (𝑀2 −𝑀2

1 )(𝜉
2 + 𝜉−2) + 2𝑀2

1 −𝑀2, (B.3b)

herein 𝑀𝑗 is the 𝑗th absolute moment of the standardized ST density,
𝑓ST(⋅|0, 1, 𝜈), of Eq. (B.1)

𝑀𝑗 = E(|𝑥𝑗 |) = 2∫

∞

0
𝑥𝑗𝑓ST(𝑥|0, 1, 𝜈) d𝑥. (B.4)

This results in Kirkby et al. (2019)

𝑀𝑗 =
𝛤
(

(𝑗 + 1)∕2
)

𝛤
(

(𝜈 − 𝑗)∕2
)

(𝜈 − 2)𝑗∕2
√

, (B.5)
23

𝜋𝛤 (𝜈∕2) i
nd leads to the following expressions for the first two absolute mo-
ents of the ST distribution

1 =
𝛤
(

(𝜈 − 1)∕2
)

√

𝜈 − 2
√

𝜋𝛤 (𝜈∕2)
and 𝑀2 =

𝛤 (3∕2)𝛤
(

(𝜈 − 2)∕2
)

(𝜈 − 2)
√

𝜋𝛤 (𝜈∕2)
.

(B.6)

If we enter the above expressions for 𝑀1 and 𝑀2 into Eqs. (B.3a) and
(B.3b) and simplify and rearrange the resulting Equations we yield (see
also Scharnagl et al. 2015)

𝜇𝜉 =
𝛤
(

(𝜈 − 1)∕2
)

√

𝜈 − 2 (𝜉 − 𝜉−1)
√

𝜋 𝛤 (𝜈∕2)
(B.7a)

𝜎2𝜉 = −𝜇2
𝜉 + 𝜉2 + 𝜉−2 − 1. (B.7b)

he so-obtained shift and scale constants standardize the SST distribu-
ion, 𝜇𝑎 = 0 and 𝜎2𝑎 = 1.

The autoregressive model of Eq. (12) may be used to treat serial
orrelation of the studentized raw residuals, 𝐞(𝜽, 𝜹). We can use Eq. (21)

to derive the corresponding SST likelihood function

𝐿(𝜽, 𝜈, 𝜉, 𝜎2𝜀 |�̃�,𝝈
2
𝜖 ) ≃

𝑛
∏

𝑡=1

1
𝜎𝜖𝑡

1
𝜎𝜀

𝑓SGT
(

𝜀𝑡(𝜽, 𝜹)|𝜈, 𝜉
)

≃ 𝜎−𝑛𝜀

𝑛
∏

𝑡=1

2𝜎𝜉𝛤
(

(𝜈 + 1)∕2
)

𝜎𝜖𝑡 (𝜉 + 𝜉−1)𝛤 (𝜈∕2)
√

𝜋(𝜈 − 2)

×

(

1 + 1
𝜈 − 2

( 𝜇𝜉 + 𝜎𝜉𝜀𝑡(𝜽, 𝜹)

𝜉sign(𝜇𝜉+𝜎𝜉𝜀𝑡(𝜽,𝜹))

)2)− 𝜈+1
2

, (B.8)

where 𝜎2𝜀 equals the variance of the partial residuals in Eq. (13). The
above formulation of the SST likelihood function, 𝐿(𝜽, 𝜈, 𝜉, 𝜎2𝜀 |�̃�,𝝈

2
𝜖 ),

assumes prior knowledge of the measurement error variances, 𝝈2
𝜖 . We

can relax this assumption and infer the 𝑛 entries of 𝝈2
𝜖 along with the

model parameters, 𝜽, using the measurement error function of Eq. (24).
The SST likelihood function then becomes

𝐿(𝜽, 𝑠0, 𝜈, 𝜉, 𝜎2𝜀 |�̃�) ≃ 𝜎−𝑛𝜀

𝑛
∏

𝑡=1

2𝜎𝜉𝛤
(

(𝜈 + 1)∕2
)

(

𝑠0 + 𝑠1𝑦𝑡(𝜽)
)

(𝜉 + 𝜉−1)𝛤 (𝜈∕2)
√

𝜋(𝜈 − 2)

×

(

1 + 1
𝜈 − 2

( 𝜇𝜉 + 𝜎𝜉𝜀𝑡(𝜽, 𝜹)

𝜉sign(𝜇𝜉+𝜎𝜉𝜀𝑡(𝜽,𝜹))

)2)− 𝜈+1
2

, (B.9)

where 𝑠1 equals the zero-point of the residual function, ℏ(𝑠1|𝜹) = 1 −
𝑔(𝑠1|𝜹), and satisfies the constraint explicated in Eq. (25). The SST
og-likelihood, (𝜽, 𝑠0, 𝜈, 𝜉, 𝜎2𝜀 |�̃�), now becomes

(𝜽, 𝑠0, 𝜈, 𝜉, 𝜎2𝜀 |�̃�) ≃ − 𝑛
2
log(𝜎2𝜀 ) −

1
2

𝑛
∑

𝑡=1

{

log
(

(

𝑠0 + 𝑠1𝑦𝑡(𝜽)
)2
)}

+ 𝑛 log(2) + 𝑛 log(𝜎𝜉 )

+ 𝑛 log
(

𝛤
(

(𝜈 + 1)∕2
)

)

− 𝑛 log(𝜉 + 𝜉−1) − 𝑛 log
(

𝛤 (𝜈∕2)
)

− 𝑛
2
log(𝜋)

− 𝑛
2
log(𝜈 − 2) − 𝜈 + 1

2

𝑛
∑

𝑡=1

{

log

(

1 + 1
𝜈 − 2

( 𝜇𝜉 + 𝜎𝜉𝜀𝑡(𝜽, 𝜹)

𝜉sign(𝜇𝜉+𝜎𝜉𝜀𝑡(𝜽,𝜹))

)2
)}

.

(B.10)

This concludes our derivation of the SST log-likelihood function, abbre-
viated as SL function.

Appendix C. Special and limiting cases of the SGT distribution

The skewed generalized 𝑡-distribution of Theodossiou (1998) defines
a large family of continuous probability distributions which includes
several well-known distributions. These special or limiting cases of the
SGT distribution, 𝑓SGT(𝑎|𝜇, 𝜎, 𝜆, 𝑝, 𝑞), may be derived by fixing one or

ore of its shape parameters, 𝜆, 𝑝 and 𝑞, to preset values. What follows
s a summary of twelve well-known probability distributions.
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C.1. The skewed generalized error distribution

The skewed generalized error (SGE) distribution of Theodossiou
(2015) is defined as follows

lim
𝑞→∞

𝑓SGT(𝑎|𝜇, 𝜎, 𝜆, 𝑝, 𝑞), (C.1)

nd yields the following PDF

SGE(𝑎|𝜇, 𝜎, 𝜆, 𝑝) =
𝑝

2𝑣𝜎𝛤 (1∕𝑝)
exp

(

−
(

|𝑎 − 𝜇 + 𝑚|
𝑣𝜎

(

1 + 𝜆 sign(𝑎 − 𝜇 + 𝑚)
)

)𝑝
)

,

(C.2)

where

𝑚 =
2

2
𝑝 𝑣𝜎𝜆𝛤 (1∕2 + 1∕𝑝)

√

𝜋
and

𝑣 =

√

√

√

√

𝜋𝛤 (1∕𝑝)

𝜋(1 + 3𝜆2)𝛤 (3∕𝑝) − 16
1
𝑝 𝜆2𝛤 (1∕2 + 1∕𝑝)2𝛤 (1∕𝑝)

, (C.3)

affix the mean, 𝜇, and variance, 𝜎2, of the SGE distribution.

C.2. The generalized Student’s 𝑡-distribution

The generalized Student’s 𝑡-distribution of McDonald and Newey
1988) is defined as follows

SGT(𝑎|𝜇, 𝜎, 𝜆 = 0, 𝑝, 𝑞), (C.4)

nd yields the PDF

GT(𝑎|𝜇, 𝜎, 𝑝, 𝑞) =
𝑝

2𝑣𝜎𝑞1∕𝑝𝐵(1∕𝑝, 𝑞)

(

|𝑎 − 𝜇|𝑝

𝑞(𝑣𝜎)𝑝
+ 1

)−
(

1
𝑝+𝑞

)

, (C.5)

here

= 1
𝑞1∕𝑝

√

𝐵(1∕𝑝, 𝑞)
𝐵(3∕𝑝, 𝑞 − 2∕𝑝)

, (C.6)

ffixes the variance, 𝜎2, of the GT distribution.

.3. The skewed Student’s 𝑡-distribution

The skewed Student’s 𝑡 (ST)-distribution of Hansen (1994) is defined
s follows

SGT(𝑎|𝜇, 𝜎, 𝜆, 𝑝 = 2, 𝑞), (C.7)

nd yields the following PDF

ST(𝑎|𝜇, 𝜎, 𝜆, 𝑞)

=
𝛤 (1∕2 + 𝑞)

𝑣𝜎(𝜋𝑞)1∕2𝛤 (𝑞)

⎛

⎜

⎜

⎝

|𝑥 − 𝜇 + 𝑚|2

𝑞(𝑣𝜎)2
(

𝜆 sign(𝑥 − 𝜇 + 𝑚) + 1
)2

+ 1
⎞

⎟

⎟

⎠

−( 12+𝑞)

, (C.8)

here

=
2𝑣𝜎𝜆𝑞1∕2𝛤 (𝑞 − 1∕2)

𝜋1∕2𝛤 (𝑞)
and

𝑣 = 1

𝑞1∕2
√

(3𝜆2 + 1)( 1
2𝑞−2 ) −

4𝜆2
𝜋

(

𝛤 (𝑞−1∕2)
𝛤 (𝑞)

)2
, (C.9)

ffix the mean, 𝜇, and variance, 𝜎2, of the ST distribution.

.4. The skewed Laplace distribution

The skewed Laplace (SL) distribution is given by

lim 𝑓 (𝑎|𝜇, 𝜎, 𝜆, 𝑝 = 1, 𝑞), (C.10)
24

→∞ SGT
and results in the following PDF

𝑓SL(𝑎|𝜇, 𝜎, 𝜆) =
1

2𝑣𝜎
exp

(

−
(

|𝑎 − 𝜇 + 𝑚|
𝑣𝜎

(

1 + 𝜆 sign(𝑎 − 𝜇 + 𝑚)
)

)

)

, (C.11)

where

𝑚 = 2𝑣𝜎𝜆 and 𝑣 =
(

2(1 + 𝜆2)
)− 1

2 , (C.12)

ffix the mean, 𝜇, and variance, 𝜎2, of the SL distribution.

.5. The generalized error (normal) distribution

The exponential power (EP) distribution (Subbotin, 1923; Box and
iao, 1992) is defined as follows

lim
→∞

𝑓SGT(𝑎|𝜇, 𝜎, 𝜆 = 0, 𝑝, 𝑞), (C.13)

nd yields the following PDF

EP(𝑎|𝜇, 𝜎, 𝑝) =
𝑝

2𝑣𝜎𝛤 (1∕𝑝)
exp

(

−
(

|𝑥 − 𝜇|
𝑣𝜎

)𝑝
)

. (C.14)

where

𝑣 =

√

𝛤 (1∕𝑝)
𝛤 (3∕𝑝)

, (C.15)

affixes the variance, 𝜎2, of the EP distribution. For 𝜇 = 0 and 𝜎 = 1,
Eq. (C.14) simplifies to the PDF of the standardized EP distribution
in Eq. (7). Indeed, if we substitute Eq. (C.15) into Eq. (C.14) and
rearrange the resulting expression we yield

𝑓EP(𝑎|𝜇, 𝜎, 𝑝) =
𝑝𝛤 1∕2(3∕𝑝)
2𝜎𝛤 3∕2(1∕𝑝)

exp

(

−
(

𝛤 (3∕𝑝)
𝛤 (1∕𝑝)

)𝑝∕2(
|𝑥 − 𝜇|

𝜎

)𝑝
)

. (C.16)

For 𝜇 = 0 and 𝜎 = 1 this expression simplifies to Eq. (7)

𝑓EP(𝑎, 𝑝) = 𝜔𝑝 exp(−𝑐𝑝|𝑥|
𝑝), (C.17)

with constants 𝜔𝑝 and 𝑐𝑝

𝑐𝑝 =
(

𝛤 (3∕𝑝)
𝛤 (1∕𝑝)

)𝑝∕2
and 𝜔𝑝 =

𝑝𝛤 1∕2(3∕𝑝)
2𝛤 3∕2(1∕𝑝)

, (C.18)

equal to Eqs. (A.2a) and (A.2b), respectively and 𝑝 = 2∕(1 + 𝛽).

C.6. The skewed normal distribution

The skewed normal (SN) distribution is defined as follows

lim
→∞

𝑓SGT(𝑎|𝜇, 𝜎, 𝜆, 𝑝 = 2, 𝑞), (C.19)

nd has the following PDF

SN(𝑎|𝜇, 𝜎, 𝜆) =
1

𝑣𝜎
√

𝜋
exp

(

−
(

|𝑎 − 𝜇 + 𝑚|
𝑣𝜎

(

1 + 𝜆 sign(𝑎 − 𝜇 + 𝑚)
)

)2
)

, (C.20)

where

𝑚 = 2𝑣𝜎𝜆
√

𝜋
and 𝑣 =

√

2𝜋
(𝜋 − 8𝜆2 + 3𝜋𝜆2)

, (C.21)

affix the mean, 𝜇, and variance, 𝜎2, of the SN distribution.

C.7. The Student’s 𝑡-distribution

The Student’s 𝑡-distribution (Student, 1908) is given by

𝑓SGT(𝑎|𝜇 = 0, 𝜎 = 1, 𝜆 = 0, 𝑝 = 2, 𝑞), (C.22)

nd yields the PDF

T(𝑎|𝜈) =
𝛤
(

(𝜈 + 1)∕2
)

(

1 + 𝑥2
)− 𝜈+1

2
. (C.23)
(𝜋𝜈)1∕2𝛤 (𝜈∕2) 𝜈
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C.8. The skewed Cauchy distribution

The skewed Cauchy distribution is defined as follows

𝑓SGT(𝑎|𝜇, 𝜎, 𝜆, 𝑝 = 2, 𝑞 = 1), (C.24)

nd yields the following PDF

SC(𝑎|𝜇, 𝜎, 𝜆) =
1
𝜎𝜋

(

|𝑥 − 𝜇|2

𝜎2
(

𝜆 sign(𝑥 − 𝜇) + 1
)

2
+ 1

)

−1. (C.25)

C.9. The Laplace distribution

The Laplace (1774) distribution is given by

lim
𝑞→∞

𝑓SGT(𝑎|𝜇, 𝜎, 𝜆 = 0, 𝑝 = 1, 𝑞), (C.26)

which results in the following PDF

𝑓L(𝑎|𝜇, 𝜎) =
1
2𝜎

exp
(

−
|𝑎 − 𝜇|

𝜎

)

, (C.27)

here 𝜎 is the scale parameter of the Laplace distribution.

.10. The uniform distribution

The uniform distribution is given by

lim
𝑝→∞
𝑞→∞

𝑓SGT(𝑎|𝜇, 𝜎, 𝜆 = 0, 𝑝, 𝑞), (C.28)

nd results in the following PDF

U(𝑎) =

⎧

⎪

⎨

⎪

⎩

1
2𝑣𝜎

if |𝑎 − 𝜇| < 𝑣𝜎

0 otherwise.
(C.29)

he standard uniform distribution is obtained by setting 𝜇 = (𝑎 + 𝑏)∕2,
= 1, and 𝜎 = (𝑏 − 𝑎)∕2.

.11. The normal distribution

The Gaussian distribution is defined as follows

lim
→∞

𝑓SGT(𝑎|𝜇, 𝜎, 𝜆 = 0, 𝑝 = 2, 𝑞), (C.30)

nd yields the familiar PDF

N(𝑎|𝜇, 𝜎) =
1

𝑣𝜎
√

𝜋
exp

(

−
(

𝑎 − 𝜇
𝑣𝜎

)2
)

, (C.31)

here 𝑣 =
√

2 affixes the variance, 𝜎2, of the normal distribution.

.12. The Cauchy-Lorentz distribution

The Cauchy-Lorentz (CL) distribution of Poisson (1824) is given by

SGT(𝑎|𝜇, 𝜎, 𝜆 = 0, 𝑝 = 2, 𝑞 = 1), (C.32)

nd results in the following PDF

CL(𝑎|𝜇, 𝜎) =
1
𝜎𝜋

(

(

𝑥 − 𝜇
𝜎

)2
+ 1

)−1

. (C.33)

his concludes Appendix C.
25
Appendix D. The SGT likelihood with normally distributed resid-
uals

If the partial residuals, 𝜀𝑡(𝜽, 𝜹), are believed to be normally dis-
ributed, then we must set, 𝜆 = 0, 𝑝 = 2 and 𝑞 → ∞. Unfortunately,
e cannot submit an infinite value of 𝑞 to Eqs. (39) and/or (41) as this
ill induce numerical problems. A pragmatic remedy is to enter a large
alue of 𝑞 instead, say, the default value of 𝑞 = 1010 in Table 4. This will

do in practice. We must still demonstrate the theoretical equivalence of
the SGT log-likelihood function with 𝜆 = 0, 𝑝 = 2 and 𝑞 → ∞ and the
NL function of Eq. (27).

To support limit analysis, we print below the SGT log-likelihood
function of Eq. (41) and label the three terms that require limit analysis

(𝜽, 𝑠0, 𝜆, 𝑝, 𝑞,𝜱2|�̃�) ≃ − 𝑛
2
log(𝜎2𝜀 ) −

𝑛
∑

𝑡=1

{

log
(

|𝑠0 + 𝑠1𝑦𝑡(𝜽)|
)}

+ 𝑛 log(𝑝)

− 𝑛 log(2) − 𝑛 log(𝜅𝜆𝑝𝑞)
(i)

− 𝑛 log
(

𝐵(1∕𝑝, 𝑞∕𝑝)
)

(ii)

−
𝑞 + 1
𝑝

𝑛
∑

𝑡=1

{

log
(

1 +
|

|

|

|

𝜀𝑡(𝜽, 𝜹) + 𝜇𝜆𝑝𝑞
𝜅𝜆𝑝𝑞

(

1 + 𝜆 sign(𝜀𝑡(𝜽, 𝜹) + 𝜇𝜆𝑝𝑞)
)

|

|

|

|

𝑝 )}

(iii)

. (D.1)

We use the labels, (i), (ii) and (iii) in the analysis below.
For 𝜆 = 0, 𝑝 = 2 and 𝑞 → ∞, the shift constant, 𝜇02∞, in Eq. (35a)

mounts to zero. For the scale constant, 𝜅02∞, in Eq. (35b) we yield
q. (D.2) (see Box II). We can take advantage of the following limit of
he beta function

lim
→∞

𝐵(𝑎, 𝑏) = 𝛤 (𝑎) 𝑏−𝑎, (D.3)

o simplify the expression of the scale constant, 𝜅02∞, to yield

02𝑞 =

√

√

√

√

𝛤 (1∕2) (𝑞∕2)−1∕2

𝛤 (3∕2)
(

(𝑞 − 2)∕2
)−3∕2

if 𝑞 → ∞

=

√

√

√

√

2𝛤 (1∕2) (𝑞∕2)−1∕2

𝛤 (1∕2)
(

(𝑞 − 2)∕2
)−3∕2

if 𝑞 → ∞

=

√

2(𝑞∕2)−1∕2

(𝑞∕2)−3∕2
if 𝑞 → ∞

=
√

𝑞 if 𝑞 → ∞. (D.4)

Thus, for 𝑞 → ∞, term (i) in Eq. (D.1) is equal to 𝑛 log(
√

𝑞).
The limit of the beta function in Eq. (D.3) can also be applied to

term (ii) of Eq. (D.1). We yield

lim
𝑞→∞

𝑛 log
(

𝐵(1∕2, 𝑞∕2)
)

= 𝑛 log
(

𝛤 (1∕2)(𝑞∕2)−1∕2
)

= 𝑛
2
log(𝜋) − 𝑛

2
log(𝑞∕2)

= 𝑛
2
log(2𝜋) − 𝑛 log(

√

𝑞) (D.5)

Thus, in the limit of 𝑞 → ∞, term (ii) of Eq. (D.1) may be replaced
with 𝑛

2 log(2𝜋) − 𝑛 log(
√

𝑞).
This leaves us with term (iii) of the SGT log-likelihood function

in Eq. (D.1). The following limit is well-known in elementary calculus

lim
𝑥→∞

(

1 + 𝑎
𝑥

)𝑥
= exp(𝑎). (D.6)

If we take the natural logarithm of both sides of this limit and then
divide by 𝑝, we yield the corollary

lim
𝑥→∞

𝑥
𝑝
log

(

1 + 𝑎
𝑥

)

= 𝑎
𝑝
. (D.7)

For 𝑞 = 𝑥, 𝑝 = 2, and 𝑎 = 𝜀𝑡(𝜽, 𝜹)
2, the left-hand side reduces to term

iii) of Eq. (D.1), but without the sum operator. As a result, we yield

lim
𝑞→∞

𝑞 + 1 𝑛
∑

{

log
(

1 +
𝜀𝑡(𝜽, 𝜹)

2 )}
𝑝 𝑡=1 𝑞
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𝜅02∞ = lim
𝑞→∞

𝐵(1∕2, 𝑞∕2)
√

(1 + 3 × 02)𝐵(1∕2, 𝑞∕2)𝐵
(

3∕2, (𝑞 − 2)∕2
)

− 4 × 02 × 𝐵
(

1, (𝑞 − 1)∕2
)2

= lim
𝑞→∞

√

𝐵(1∕2, 𝑞∕2)
𝐵
(

3∕2, (𝑞 − 2)∕2
)

=

√

lim𝑞→∞ 𝐵(1∕2, 𝑞∕2)

lim𝑞→∞ 𝐵
(

3∕2, (𝑞 − 2)∕2
) . (D.2)

Box II.
=
𝜀1(𝜽, 𝜹)

2

2
+

𝜀2(𝜽, 𝜹)
2

2
+⋯ +

𝜀𝑛(𝜽, 𝜹)
2

2

= 1
2

𝑛
∑

𝑡=1
𝜀𝑡(𝜽, 𝜹)

2, (D.8)

and, thus, in the limit of 𝑞 → ∞, term (iii) of Eq. (D.1) simplifies to
half the sum of squares of the standardized partial residuals.

If we replace terms (i), (ii) and (iii) in Eq. (D.1) with their coun-
terparts of Eqs. (D.4), (D.5) and (D.8) we yield the SGT log-likelihood
function, (𝜽, 𝑠0,𝜱2|�̃�, 𝜆 = 0, 𝑝 = 2, 𝑞 → ∞), for normally-distributed
partial residuals

(𝜽, 𝑠0,𝜱2|�̃�, 𝜆 = 0, 𝑝 = 2, 𝑞 → ∞)

≃ − 𝑛
2
log(𝜎2𝜀 ) −

𝑛
∑

𝑡=1

{

log
(

|𝑠0 + 𝑠1𝑦𝑡(𝜽)|
)}

+ 𝑛 log(2) − 𝑛 log(2)

− 𝑛 log(
√

𝑞) −
( 𝑛
2
log(2𝜋) − 𝑛 log(

√

𝑞)
)

− 1
2

𝑛
∑

𝑡=1
𝜖𝑡(𝜽, 𝜹)

2. (D.9)

This expression of the SGT log-likelihood function reduces to the NL
function of Eq. (27)

(𝜽, 𝑠0,𝜱2|�̃�, 𝜆 = 0, 𝑝 = 2, 𝑞 → ∞)

≃ − 𝑛
2
log(2𝜋) −

𝑛
∑

𝑡=1

{

log
(

|𝑠0 + 𝑠1𝑦𝑡(𝜽)|
)}

− 𝑛
2
log(𝜎2𝜀 ) −

1
2

𝑛
∑

𝑡=1
𝜖𝑡(𝜽, 𝜹)

2, (D.10)
26
with variance of the partial residuals, 𝜎2𝜀 , which is derived from Eq. (13).
Thus, the SGT distribution is the key ingredient of a large family of
likelihood functions, which includes the normal likelihood function.

This concludes the derivation.

Appendix E. Algorithmic recipe for the predictive distributions

Algorithm E.1 presents a step-by-step recipe for determining the
predictive distribution, 𝑝(𝑦𝑡|�̃�), of Eq. (3) from the posterior realizations
sampled with DREAM Suite. This recipe is specifically written for the
SEP likelihood of the GL+ function, but easy to adapt to the SL and UL
functions of Eqs. (31) and (41), respectively.

The algorithmic recipe uses as input arguments, (i) the (𝑑 + 𝑠) × 𝑚
matrix, [𝜣∗ ; 𝜟∗ ], of 𝑚 posterior samples of 𝑑 model parameters, 𝜽 =
[ 𝜃1 𝜃2 … 𝜃𝑑 ]⊤, concatenated vertically with the 𝑠 nuisance variables,
𝜹 = [𝑠0 𝛽 𝜉 𝜙1 𝜙2]⊤, of the SEP likelihood function and (ii) the
initial conditions, 𝑒−1 and 𝑒0, of the second order autoregressive scheme
in Eq. (12), and returns 𝑛 × 𝑚 matrices of posterior model simulations,
𝐘s∗, and predictions, 𝐘∗.

Predictive percentiles, 𝑦∗𝑡,𝛼∕2 and 𝑦∗𝑡,1−𝛼∕2, are readily derived from
the 𝑚 entries, 𝑦∗𝑡𝑗 ∈ R𝑛×𝑚, in the 𝑡th row of 𝐘∗

∫

𝑦∗𝑡,1−𝛼∕2

𝑦∗𝑡,𝛼∕2

𝑝(𝑦𝑡|�̃�) = 𝑝(𝑦∗𝑡,𝛼∕2 ≤ 𝑦∗𝑡𝑗 ≤ 𝑦∗𝑡,1−𝛼∕2|�̃�) = 1 − 𝛼 ∀ 𝑗 = (1, 2,… , 𝑚),

(E.1)

by truncating 𝛼∕2 of the left and right tails of the predictive distribu-
tion, 𝑝(𝑦𝑡|�̃�). This must be repeated for all 𝑡 = (1, 2,… , 𝑛) and produces
two 𝑛 × 1-vectors, 𝐲∗ and 𝐲∗ , respectively, which together define
𝛼∕2 1−𝛼∕2



Journal of Hydrology 615 (2022) 128542J.A. Vrugt et al.
Table F.1
Matrix of Pearson’s linear correlation coefficients of the scoring rules and performance metrics of the UL, SL, GL+ and NL functions of Table 8.

Unit Scoring rules, (F, ỹ) Performance metrics, (F, ỹ)

LS CRPS SS IS RLBL CV 𝐶 𝑊

LS log(d∕mm) 1.00 0.32 0.36 −0.03 0.03 −0.19 0.68 0.53
CRPS mm∕d 1.00 0.47 0.67 −0.33 −0.11 0.05 0.71
SS – 1.00 −0.11 −0.82 − 0.73 −0.04 0.10
IS mm∕d 1.00 0.02 0.41 −0.17 0.65
RLBL – 1.00 0.82 0.49 0.25
CV – 1.00 0.19 0.36
𝐶 – 1.00 0.54
𝑊 mm∕d 1.00
Table F.2
Matrix of Spearman’s rank correlation coefficients of the scoring rules and performance metrics of the UL, SL, GL+ and NL functions of Table 8.

Unit Scoring rules, (F, ỹ) Performance metrics, (F, ỹ)

LS CRPS SS IS RLBL CV 𝐶 𝑊

LS log(d∕mm) 1.00 0.42 0.27 0.03 0.02 −0.04 0.73 0.49
CRPS mm∕d 1.00 0.24 0.62 −0.18 0.07 0.28 0.87
SS – 1.00 0.02 −0.76 −0.68 −0.16 0.10
IS mm∕d 1.00 0.08 0.27 −0.13 0.69
RLBL – 1.00 0.91 0.48 0.14
CV – 1.00 0.35 0.33
𝐶 – 1.00 0.48
𝑊 mm∕d 1.00
the 100(1−𝛼)% prediction uncertainty. If we admit instead to Eq. (E.1)
the 𝑛 × 𝑚 matrix 𝐘s∗ of posterior model simulations then we yield
prediction percentiles due to parameter uncertainty only.

Appendix F. Correlation of scoring rules and performance metrics

To determine whether the scoring rules and/or performance metrics
measure independent information about the discharge forecast distri-
bution, we compute pairwise correlation coefficients of the different
scoring rules and performance metrics of Table 8.
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