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a b s t r a c t

For diffusions, a well-developed approach in rare event estimation is to introduce a
suitable factorization of the reach probability and then to estimate these factors through
simulation of an Interacting Particle System (IPS). This paper studies IPS based reach
probability estimation for General Stochastic Hybrid Systems (GSHS). The continuous-
time executions of a GSHS evolve in a hybrid state space under influence of combinations
of diffusions, spontaneous jumps and forced jumps. In applying IPS to a GSHS, simulation
of the GSHS execution plays a central role. From literature, two basic approaches in
simulating GSHS execution are known. One approach is direct simulation of a GSHS
execution. An alternative is to first transform the spontaneous jumps of a GSHS to
forced transitions, and then to simulate executions of this transformed version. This
paper will show that the latter transformation yields an extra Markov state component
that should be treated as being unobservable for the IPS process. To formally make
this state component unobservable for IPS, this paper also develops an enriched GSHS
transformation prior to transforming spontaneous jumps to forced jumps. The expected
improvements in IPS reach probability estimation are also illustrated through simulation
results for a simple GSHS example.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A Stochastic Hybrid System (SHS) as defined by Hu et al. [1] involves two dynamically interacting state components,
.e. a discrete-valued θt and a continuous-valued xt . The θt component may switch when xt hits a θt-dependent boundary.
The xt component evolves under influence of θt-dependent Brownian motion and forced jumps at moments of hitting a
θt-dependent boundary. Bujorianu and Lygeros [2] define a General SHS (GSHS) by extending an SHS with spontaneous
jumps, the rate λ of which depends on the joint state (xt , θt ). Well-known sub-classes of GSHS executions are solutions of
SDE’s driven by Brownian motion and spontaneous jumps generated by Poisson random measure. Specific subclasses
are Markov switching diffusions [3], hybrid switching diffusions [4] and hybrid switching jump-diffusions [5]. These
developments include methods for the numerical integration of both spontaneous jumps and Brownian motion. Teel et al.
[6] provide an in-depth survey regarding stability analysis of GSHS and various sub-classes.

A GSHS can be transformed to an SHS of Hu et al. [1] by capturing each spontaneous jump as a forced jump at an
exit time condition [7]. More specifically, an auxiliary state component qt , representing ‘‘remaining local time’’, starts at
each exit time as an exponentially distributed random variable, subsequently evolves as dqt = −λ(θt , xt )dt , and defines
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new exit time upon reaching value zero. As shown in the stochastic hybrid systems survey by Lygeros and Prandini
7], the mainstream of stochastic hybrid control developments address diffusion and forced jumps only; e.g. [8,9]. A key
xception is optimal control of a Markov switching diffusion via its SDE coefficients and spontaneous jump rate [10].
As will be shown in this paper, there may be unexpected effects when transforming spontaneous jumps in a GSHS

o forced jumps in an SHS. This paper studies the role played by these unexpected effects in estimating stochastic reach
robability for a GSHS using the Interacting Particle System (IPS) approach of Cérou et al. [11]. The objective is to learn
nderstanding the effect on IPS of transforming spontaneous jumps to forced jumps.
Bujorianu [12] provides an in-depth overview of stochastic reachability analysis for hybrid systems, including GSHS.

tochastic reach probability estimation is a safety verification problem (e.g. [13–15]) that has been well studied in the
ontrol systems domain and in the safety domain. In the control domain the focus is on developing an (approximate)
bstraction of the system for which it can be shown that the reach probability problem is sufficiently similar [16,17].
pproximate abstractions typically make use of a finite partition of the state space (e.g. [13,18,19]).
In the safety domain, reach probability is evaluated using a finite partition method or statistical simulation. For realistic

pplications, the latter requires support from analytical methods to reduce variance. Literature on such variance reduction
istinguishes two main approaches: importance sampling (IS) and multi-level importance splitting (ISp). IS draws samples
rom a reference stochastic system model in combination with analytical compensation for sampling from the reference
odel instead of the intended model. Bucklew [20] gives an overview of IS and analytical compensation mechanisms. For
omplex models analytical compensation mechanisms typically fall short and multi-level ISp is the preferred approach
e.g. [21–24]).

The basic idea of multi-level ISp is to enclose the target set, i.e., the set for which the reach probability has to be
stimated by a series of nested subsets. Each time a simulated particle hits one of the nested subsets, the particle may be
plit into multiple copies. This multi-level setting allows to express the small reach probability of the inner level set as a
roduct of larger reach probabilities for the sequence of nested subsets (see, e.g., [25]). Cérou et al. [11,26] embedded this
ulti-level factorization in the Feynman–Kac factorization equation for strong Markov processes [27]. This Feynman–Kac
etting subsequently supported the evaluation of the reach probability through sequential Monte Carlo simulation in
he form of an Interacting Particle System (IPS), including proof of convergence [11]. Krystul et al. [28] have used the
eynman–Kac setting to prove convergence of IPS using sampling per mode for a switching diffusion.
Because the theoretical setting of IPS [11] includes strong Markov processes, and a GSHS execution is strong Markov

2], IPS theory applies to GSHS. Blom et al. [29,30] apply IPS to rare event estimation for an SHS model of an advanced air
raffic scenario, which is obtained through applying a Lygeros and Prandini [7] type of transformation to the underlying
SHS. The hybrid state space of this SHS model is very large, i.e., 490 discrete states and a 28-dimensional Euclidean state
pace. To prevent particle depletion or impoverishment, a very large number of particles is used. In an attempt to improve
he quality of the set of particles, Blom et al. [31,32] develop and apply a further IPS extension for an SHS with a large
umber of modes. Complementarily, Prandini et al. [33] investigate the integration of air traffic complexity model with
PS. For a true GSHS setting, Blom et al. [34] showed that the use of different numerical integration methods in applying
PS to a true GSHS may have unexpected effects on reach probability estimation. However, these studies did not lead to
basic understanding of the underlying mechanisms. This paper aims to close this gap in basic understanding.
This paper is organized as follows. Section 2 presents background of GSHS and the transformation to SHS. Section 3

eviews IPS theory and presents the algorithmic steps and particle splitting options for an arbitrary GSHS. Section 4
pecifies three IPS-FAS algorithms for GSHS, two of which make use of the transformation to SHS of Hu et al. [1]. Section 5
llustrates results of IPS-FAS algorithms from Section 4 applied to a simple GSHS example. Section 6 draws conclusions.

. General Stochastic Hybrid System (GSHS)

Throughout this and the following sections, all stochastic processes are defined on a complete stochastic basis
Ω, F ,F, P, T ) with (Ω, F , P) being a complete probability space and F an increasing sequence of sub-σ -algebras on the
ime line T = R+, i.e., F ≜ {J, (Ft , t ∈ R+), F }, with J containing all P-null sets of F and J ⊂ Fs ⊂ Ft ⊂ F for every s < t .

2.1. GSHS definition

Bujorianu and Lygeros [2] formalized the concept of GSHS or general stochastic hybrid automata as follows:

Definition 1 (GSHS). A GSHS is a collection (Θ, d, X,f , g, Init, λ, R) where

• Θ is a countable set of discrete-valued variables;
• d : Θ → N is a map giving the dimensions of the continuous state spaces;
• X : Θ → Rd(·) maps each θ ∈ Θ into an open subset X θ of Rd(θ );
• f : Ξ → Rd(·) is a vector field, where Ξ ≜

⋃
θ∈Θ

{θ} × X θ ;

• g : Ξ → Rd(·)×mdim is an X (·)-valued matrix, mdim ∈ N;
• Init : β(Ξ ) → [0, 1] an initial probability measure on Ξ ;
• λ : Ξ → R+ is a transition rate function;
• R : Ξ × β(Ξ ) → [0, 1] is a transition measure.
2
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.2. GSHS execution

efinition 2 (GSHS Execution). A stochastic process {θt , xt} is called a solution of GSHS execution if there exists a sequence
f stopping times s0 = 0 < s1 < s2 < · · · such that:

• (θ0, x0) is a Ξ-valued random variable satisfying the probability measure Init;
• For t ∈

[
sj−1, sj

)
, j ≥ 1, θt , xt is a solution of the SDE:

dθt = 0

dxt = f (θt , xt )dt + g(θt , xt )dWt
(1)

with Wt m-dimensional standard Brownian motion;

• sj is the minimum of the following two stopping times: (i) first hitting time > sj−1 of the boundary of X θsj−1 by the
phase process {xt}; and (ii) first moment > sj−1 of a transition event to happen at rate λ(θt , xt ).

• At stopping time sj the novel hybrid state {θsj , xsj} satisfies the conditional probability measure pθsj ,xsj |θsj−,xsj−
(A|θ, x) =

R((θ, x), A) for any A ∈ β(Ξ ).

In order to assure that a GSHS execution has a solution the following assumptions are adopted:
A1 (non-Zeno property): E{sj − sj−1} > 0, P-a.s.
A2: For each (θ0, x0) ∈ Ξ , Eq. (1) has a pathwise unique solution on a finite time interval [0, T ].
A3 λ is measurable and finite valued.
A4 Init(Ξ ) = 1, and R((θ, x), Ξ ) = 1 for each (θ, x) ∈ Ξ .
Bujorianu and Lygeros [2] show that the stochastic process {θt , xt} generated by execution of a GSHS satisfies the strong

arkov property.

.3. Stochastic analysis background of GSHS execution

Complementary to the probabilistic characterizations of GSHS [2,12,35], various subclasses of GSHS have been studied
s solutions of stochastic differential equations on a hybrid state space that are driven by Brownian motion and Poisson
andom measure. These studies derive conditions for the existence of pathwise unique solutions, continuity of solutions
elative to initial condition (Feller property), and convergent numerical integration schemes.

The best known subclass is Markov switching diffusion [3]; which forms a GSHS subclass satisfying the following
estrictions:

(i) There are no boundary hittings, i.e. X θ
= Rd(θ );

(ii) Transition measure R does not support jumps in {xt}, i.e. R(θ, x; Θ, dy) = 0 if x ∩ dy = 0; and
(iii) Transition rate function λ(θ, x) is x− invariant.
By dropping the third restriction, we get the subclass of hybrid switching diffusions [4]. As is well addressed by Yin and

hu [4], the dependency of the mode process {θt}on the phase process {xt} asks for complementary derivations regarding
xistence of pathwise unique solutions and Feller property. Yin and Zhu [4] also show weak converge of an adapted
uler–Maruyama integration scheme to hybrid switching diffusions.
By dropping both restriction (ii) and (iii), the subclass of hybrid switching diffusions emerges. Pathwise unique

olutions have been derived by Blom [36], Ghosh and Bagchi [37] and Xi et al. [38]. Feller property has been derived by
rystul et al. [39], Xi et al. [38], Kunwai and Zhu [5] and Blom [40]. Convergent numerical integration has been addressed
y Krystul [41, chapter 4], including approximation of the first hitting time of a boundary. The final step is to also drop
estriction (i). This allows the generation of instantaneous jumps upon hitting boundaries of X θ ; pathwise unique solutions
ave been addressed by Krystul et al. [42].

.4. Probabilistic transformation to an SHS

As explained by Lygeros and Prandini [7] a GSHS can be transformed to an SHS of Hu et al. [1]. This transformation
onsists of the following four changes: (i) An auxiliary state component qt , representing ‘‘remaining local time’’, starts at
n applicable stopping time τ at initial condition qτ ∼ exp(1), and subsequently evolves as dqt/dt = −λ(θt , xt ); (ii) The

exit boundary of X θ is extended with an extra boundary of the form qt− = 0; and (iii) Spontaneous probabilistic jumps in
xt , θt} are replaced by forced probabilistic jumps at moment qt− = 0; and (iv) Upon reaching the extended exit boundary
t stopping time τ ′ the ‘‘remaining local time’’ is resampled, i.e. qτ ′ ∼ exp(1).
Hence, transformation of GSHS (Θ, d, X, f , g, Init, λ, R) to SHS (Θ∗, d∗, X∗,f ∗, g∗, Init∗, R∗) works as follows:

• Θ∗
= Θ

• d∗
= d + 1

• X∗
= X × (0, ∞)

• f ∗(θ, x, .) =
[
f (θ, x) −λ(θ, x)

]T

3
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• g∗(θ, x, .) =
[
g(θ, x) 0

]T
• Init∗ =

[
Init q0

]T with q0 ∼ exp(1);
• R∗((θ, x, .); A × dq) = R((θ, x); A) × e−qdq

Execution of this SHS yields the SHS execution process {θ∗
t , x∗

t , q
∗
t }, which is a strong Markov process relative to its

underlying increasing sequence of sigma algebras σ {θ∗
s , x∗

s , q
∗
s ; s ∈ [0, t]}, t ∈ T .

It should be noticed that from a stochastic perspective the process {θ∗
t , x∗

t } differs from the process {θt , xt}. The key
difference is that the sigma algebra σ {θ∗

s , x∗
s , q

∗
s ; s ∈ [0, t]} includes ‘‘remaining local time’’, which implies (partial)

information about the next hitting time of the boundary 0 of (0, ∞), while the sigma algebra σ {θs, xs; s ∈ [0, t]} ⊂ Ft , i.e. it
does not include any information about such future event. To avoid abusing the extra information, the ‘‘remaining local
time’’ component {q∗

t } should be treated as being unobservable for other processes that depend on the GSHS execution.
An illustrative example is {x∗

t } being a diffusion, the coefficients of which are a function of a Markov chain {θt}. Under
the above transformation, the coefficients of the new diffusion process {x∗

t } still are a function of the new mode switching
process {θ∗

t }. However, the original Markov chain {θt} is transformed to a hybrid process {θ∗
t , q∗

t }. The process {θ∗
t } switches

when the Euclidean-valued “remaining local time” process {q∗
t } hits the boundary 0 of (0, ∞), i.e. {q∗

t } foretells the next
jump time of {θ∗

t , q∗
t }.

3. IPS based reach probability estimation

3.1. GSHS reach probability

The problem is to estimate the probability γ that {θt , xt} reaches a closed subset D ⊂ Ξ within finite period [0, T ], i.e.

γ = P(τ < T ) (2)

with τ being the first hitting time of D by {θt , xt}:

τ = inf{t > 0, (θt , xt ) ∈ D} (3)

Remark. Cérou et al. [11] and L’Equyer et al. [22] also address the more general situation that T is a P-a.s. finite stopping
time.

Cérou et al. [11] developed the IPS theory and algorithmic steps for estimating reach probability for a strong Markov
process on a general Polish state space. Thanks to the strong Markov property of the process {θt , xt} defined by the
execution of the GSHS in Section 2, the IPS approach applies to the estimation of GSHS reach probability.

3.2. Multi-level factorization of reach probability

The principle in factorizing the reach probability γ = P(τ < T ) is to introduce a sequence Dk, k = 0, . . . ,m, of nested
closed subsets of Ξ , i.e. D = Dm ⊂ Dm−1 ⊂ · · · ⊂ D1 ⊂ D0 = Ξ , with D1 such that P{ (θ0, x0) ∈ D1} = 0. Let τk be the first
moment in time that {θt , xt} reaches Dk, i.e.

τk = inf{t > 0; (θt , xt ) ∈ Dk ∨ t ≥ T } (4)

Next, we define {0,1}-valued random variables {χk, k = 0, . . . ,m} as follows:

χk = 1, if τk < T

= 0, else
(5)

By using this χk definition we get the desired factorization.

Proposition 3.1.
The reach probability satisfies the factorization:

γ =

m∏
k=1

γk (6)

where γk ≜ E{χk = 1
⏐⏐χk−1 = 1} = P(τk < T

⏐⏐τk−1 < T ).

Proof. Because Dk−1 ⊃ Dkwe have:

inf{t > 0; (θt , xt ) ∈ Dk−1 ∨ t ≥ T } ≤ inf{t > 0; (θt , xt ) ∈ Dk ∨ t ≥ T }
Substituting (4) at left and at right yields: τk−1 ≤ τk.

4
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Hence we can derive:

γ = P(τ < T ) = P (τm < T )

= P (τm < T ∧ τm−1 ≤ τm) = P (τm < T ∧ τm−1 < T )

= P (τm < T | τm−1 < T ) P (τm−1 < T )

=

m∏
k=1

P (τk < T | τk−1 < T ) P (τ0 < T )

=

m∏
k=1

P (τk < T | τk−1 < T )

=

m∏
k=1

E{χk = 1 | χk−1 = 1} =

m∏
k=1

γk □

3.3. Recursive estimation of the multi-level factors

By using the strong Markov property of {θt , xt}, we develop a recursive estimation of γ using the factorization in (6).
First we define Ξ ′ ≜ R×Ξ , ξk ≜ (τk, θτk , xτk ), Qk ≜ (0, T )×Dk, for k = 1, . . .,m, and the following conditional probability
measure πk(B) for an arbitrary Borel set B of Ξ ′:

πk(B) ≜ P(ξk ∈ B|ξk ∈ Qk)

Cérou et al. [11] show that πk is a solution of the following recursion of transformations:

πk−1(·)
I.mutation
−−−−−→ pk(·)

III. selection
−−−−−−→ πk(·)

↓
γk

II. conditioning

where pk(B) is the conditional probability measure of ξk ∈ B given ξk−1 ∈ Qk−1, i.e.,

pk(B) ≜ P(ξk ∈ B|ξk−1 ∈ Qk−1)

Because {θt , xt} is a strong Markov process, {ξk} is a Markov sequence. Hence, the mutation transformation (I) satisfies
a Chapman–Kolmogorov equation prediction for ξk:

pk(B) =

∫
E′

pξk|ξk−1 (B|ξ )πk−1(dξ ) for all B ∈ β(Ξ ′) (7)

For the conditioning transformation (II) this means:

γk = P(τk < T |τk−1 < T ) =

∫
E′

1{ξ∈Qk}pk(dξ ). (8)

Hence, selection transformation (III) satisfies:

πk(B) =

∫
B 1{ξ∈Qk}pk(dξ )∫

E′ 1{ξ ′∈Qk}pk(dξ ′)
= [

∫
B
1{ξ∈Qk}pk(dξ )]/γk. (9)

With this, the γk terms in (6) are characterized as solutions of a recursive sequence of mutation Eq. (7), conditioning
q. (8) and selection Eq. (9).

.4. IPS algorithmic steps for a GSHS

Following Cérou et al. [11], Eqs. (6)–(9) yield the IPS algorithmic steps for the numerical estimation of γ :

π k−1(·)
I.mutation
−−−−−→ pk(·)

III. selection
−−−−−−→ π̃k(·)

IV. splitting
−−−−−→ π k(·)

↓
γ k

II. conditioning

A set of NP particles is used to form empirical density approximations γ k, pk and π k of γk, pk and πk respectively. By
ncreasing the number NP of particles in a set, the errors in these approximations decrease. When simulating particles
rom Qk−1 to Qk, only a fraction γ k of the simulated particle trajectories will reach Qk within the time period [0, T ]

considered; these particles form π̃k. In order to start the next IPS cycle with NP particles, the classical way is to perform
a multinomial resampling (MR) of π̃ to produce π . More effective splitting methods are: multinomial splitting (MS),
k k

5
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p
r

residual multinomial splitting (RMS) and fixed assignment splitting (FAS). MS generates π k by starting with the particles
in π̃k, and subsequently adding randomly selected particles from π̃k (with replacement). RMS first makes

⌊
1/γ k

⌋
copies

from each particle in π̃k, and subsequently complements the residual number NP
(
1 − γ k

⌊
1/γ k

⌋)
by randomly selected

articles from π̃k (with replacement). FAS also follows the two step approach of RMS, though during the second step the
andom selection from π̃k is done without replacement.

Cérou et al. [11] prove that using IPS with multinomial splitting (MS) for a strong hybrid state Markov process, γ forms
an unbiased γ estimate, i.e.

E {γ } = E

{
m∏

k=1

γ k

}
=

m∏
k=1

E
{
γ k

}
=

m∏
k=1

γk = γ (10)

Moreover, Cérou et al. [11] derive second and higher order asymptotic bounds for the error (γ − γ ) based on the
multi-level Feynman–Kac analysis, e.g. [27, Theorem 12.2.2].

For a diffusion process {xt}, Ma and Blom [43] have proven that IPS using FAS yields a lower or equal variance in the
estimated reach probability γ than IPS using MR, MS or RMS. In the next section we extend these results for an IPS applied
to a GSHS.

4. IPS algorithmic steps for GSHS

4.1. IPS application for a GSHS

The algorithmic steps of IPS application for a GSHS are specified in Algorithm 1 below. For the splitting step IV, use is
made of FAS.

By extending the results of Ma and Blom [43] for IPS application to a diffusion, in Appendix we proof the following
regarding the use of different splitting methods in IPS application to GSHS.
6
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Theorem 4.1. Replacing the FAS splitting step IV in algorithm 1 by RMS splitting, MS splitting or MR splitting has the following
effects on the variance V {γ }:

VFAS {γ } ≤ VRMS {γ } ≤ VMS {γ } ≤ VMR {γ } (11)

roof. See Appendix.

Next we address the details of mutation step I of Algorithm 1, i.e. the Monte Carlo simulation of the GSHS from particle
tate ξ i

k−1 to particle state ξ
i
k. Section 4.2 addresses simulation of the execution of an SHS transformed version of GSHS

within IPS. Section 4.3 develops an algorithm that takes into account that the ‘‘remaining local time’’ process {q∗
t } should

be unobservable for the IPS process. For reference purpose, Section 4.3 addresses the more demanding direct simulation
of the execution of a GSHS, i.e. without using the transformation to SHS.

4.2. Simulation of execution of SHS transformed version of GSHS in mutation step I

The process {θt , xt} is assumed to be the SHS transformed version of the GSHS, i.e. {θt , xt} = {θ∗
t , x∗

t , q
∗
t } as defined in

Section 2.3. Then in step I of Algorithm 1, the evolution of {θt , xt} = {θ∗
t , x∗

t , q
∗
t } is executed on interval [τ i

k−1, τ
i
k], starting

with ξ i
k−1 and delivering ξ i

k. Mutation step I is conducted using Euler–Maruyama integration of Eq. (1) along small time
steps △, i.e.

θt+△ = θt

xt+△ = f (θt , xt ) △ +g(θt , xt )(Wt+△ − Wt )
(12)

The algorithm for the execution of an SHS transformed version of GSHS within mutation step I is specified below.

Remark. Convergence of the Euler–Maruyama integration scheme (12) is guaranteed iff the SDE coefficients satisfy certain
Lipschitz conditions, e.g. [44].

If during any of the small time steps △ one of the boundaries of X∗ or Q ∗

k is passed, then additional MC simulation
steps may be conducted to get a better approximation st or τ k of the first hitting time. As an alternative for using a
ower △ value, Glasserman [45, p. 367] proposes an interpolation of the solution of Eq. (1) on the △ interval considered,
y simulating a Brownian bridge between the already simulated Brownian motion points Wt and Wt+△. The resulting
rownian bridge yields a more accurate approximation of the first hitting time.

.3. Accounting for unobservability of remaining local time

As has been identified at the end of Section 2.4, the ‘‘remaining local time’’ process {q∗
t } of the SHS transformed

ersion of a GSHS should be treated as being unobservable for the IPS process. To formalize this, the transformation
o SHS is applied to a enriched version of the original GSHS. The GSHS enrichment consists of adding IPS hitting levels
k, k = 1, . . . ,m, to the original GSHS, with reset (θτk , xτk ) = (θτk−, xτk−), at a hitting time τk. Thanks to the continuity
f the latter reset, the execution of the enriched GSHS yields the same pathwise solutions as execution of the original
SHS does. Subsequent application of the transformation of Lygeros and Prandini [7] to this enriched GSHS yields a SHS,
7



H. Ma and H.A.P. Blom Nonlinear Analysis: Hybrid Systems 47 (2023) 101303

t
a
p

t
i
w

‘

that also resets the remaining local time upon reaching an IPS hitting level Qk, k = 1, . . . ,m. For algorithm 2 this means
hat it can be improved by adding a reset of local remaining time at the beginning of each IPS cycle; this is specified in
lgorithm 3 below. Hence, at the begin of mutation step I within an IPS cycle, the remaining local time value of each
article is freshly sampled from exp (1).
The combination of algorithms 1&3 starts at each IPS cycle with Np particles, each of which has a different sample

of remaining local time q∗i
k−1, k = 1, ..m. This differs significantly from the combination of algorithm combination 1&2,

where the Np particles having different remaining local time q0∗i applies at the start of the first IPS cycle only. Hence,
with increasing IPS level k, under algorithm combination 1&3 particle diversity will gain relative to particle diversity under
algorithm combination 1&2.

4.4. Simulation of original GSHS execution in mutation step I

For reference purpose, we also specify an algorithm for the simulation of the original GSHS execution. For this we follow
the numerical integration scheme of Krystul ([41], Chapter 4). In addition to fixed small time steps △, random time steps
are generated at which potential jumps may happen. Realizations of the these random time steps are obtained through
Monte Carlo sampling of an in-homogeneous Poisson process on [0, T ] ×

[
0, λ

]
, with λ ≥ sup(θ,x)∈Ξλ(θ, x). Subsequently

he potential Poisson points are thinned by rejecting points that lie above the graph of λ(θt , xt ). The remaining points,
.e., those at or below the graph of λ(θt , xt ), are projected onto the time-axis [0, T ]. The resulting execution of the GSHS
ithin an IPS cycle, starting from ξ i

k−1, on the interval [τ i
k−1, τ

i
k] is specified in algorithm 4.

In case of a stop during step 4 of GSHS algorithm 4, there is a ‘‘remaining integration time’’ t + ∆t − τ k. Because this
‘remaining integration time’’ does not make part of the Markov state ξτ k , it does not influence the GSHS execution during
the next IPS cycle. The latter coincides with ignoring ‘‘remaining local time’’ in algorithm 3. Hence it is expected that
algorithm combination 1&4 estimates reach probability similarly well as algorithm combination 1&3 does.
8
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Table 1
Analytical γ results for various µ.
µ (s) γ

0.9 5.19976 × 10−4

0.8 6.97696 × 10−5

0.7 3.72665 × 10−6

0.6 4.08284 × 10−8

5. Application of IPS to GSHS example

5.1. Hypothetical car example

A car driver in dense fog is heading to a wall at position dwall. If the car is at distance dfog from the wall, then the driver
sees the wall for the first time. Then, it takes the driver a random reaction delay to start braking, with a density pdelay(s).
During the reaction delay, the velocity of the car does not change; after the reaction delay, the car decelerates at constant
value amin. The aim is to estimate the probability γ that the car hits the wall.

From the moment that the car reaches distance dfog from the wall at velocity v0, it takes the sum of reaction delay
Tdelay and the time of deceleration Tdec = −v0/amin until the car is at a standstill. This implies

γ = P{v0Tdelay + v0Tdec +
1
2
aminT 2

dec ≥ dfog} (13)

Elaboration of (13) yields:

γ = P{Tdelay ≥
1
2
v0/amin + dfog/v0} (14)

If we assume a Rayleigh density pdelay(s) =
s

µ2 e−s2/(2µ2), and we write TC =
1
2v0/amin + dfog/v0, evaluation of (14)

yields:

γ =

∫
+∞

TC

t
µ2 e

−t2/(2µ2)dt = −e−t2/(2µ2)
⏐⏐⏐+∞

t=TC
= e−t2/(2µ2)

|t=TC (15)

Table 1 gives the analytically obtained γ results for various mean reaction delays µ, and parameter settings dwall =

300 m, dfog = 120 m, v0 = 72 km/h = 20 m/s, amin = −4 m/s2.
For this example, Section 5.2 specifies the GSHS model and the transformation of Section 2.4 to an SHS model.

Section 5.3 estimates γ using straightforward MC simulation and IPS-FAS algorithm combinations 1&2, 1&3 and 1&4.

5.2. GSHS model and transformation to SHS model

For this example, the discrete set of the GSHS is:

Θ = {−1, 0, delay, stop, hit} (16)

where −1 indicates decelerating mode, 0 indicates uniform mode, delay is a reaction delay mode, stop indicates stopping
mode, and hit indicates the wall has been hit. A transition diagram representing the transitions between these modes is
given in Fig. 1.

The continuous state components are xt = Col(zt , yt , vt ), where zt is the amount of time passed since the driver could
see the wall for the first time, yt is the position of the car at time t , and vt is the velocity at time t . Hence, the dimension
of the continuous state space is d(.) = 3. The subsets X θ are defined as follows:

X0
= R × (−∞, dwall − dfog ) × R

X−1
= R × (−∞, dwall) × (0, ∞)

Xdelay
= R × (−∞, dwall) × R

X stop
= R × (−∞, dwall) × 0

Xhit
= R3

(17)

The initial measure Init generates θ0 = 0, z0 = 0, y0 = 0. Between switching moment of {θt}, xt evolves as (1) with
f
(
θ, [z, y, v]

T
)

= [1, v, 1{θ = −1}amin]
T and g (θ, .) = [0, g2, 0]T if θ ∈ {0, delay, −1}, else g (θ, .) = [0, 0, 0]T . The

analytical results in Table 1 apply for g2 = 0, i.e. no Brownian motion.
The instantaneous transition rate λ(θt , (zt , yt , vt )) satisfies:

λ(θ, (z, y, v)) = χ (θ = delay)pdelay(z)/
∫

∞

pdelay(s)ds (18)

z

9
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t

t

Fig. 1. State transition diagram of GSHS model.

The transition measure R((θ, (z, y, v)), (., .)) satisfies:

R((−1, (z, y, v)), {stop} × {0, y, v}) = 1 iff v = 0

R((0, (z, y, v)), {delay} × {0, y, v}) = 1 iff y = dwall − dfog

R((delay, (z, y, v)), {−1} × {0, y, v}) = 1, iff λ generates a point ,

R((delay, (z, y, v)), {hit} × {0, y, 0}) = 1, iff y = dwall

R((−1, (z, y, v)), {hit} × {0, y, 0}) = 1, iff y = dwall..

IPS-FAS algorithm combination 1&4 makes use of this GSHS model. By applying the transformation from Section 2.3,
he above GSHS model transforms to an SHS model. The resulting SHS has continuous state components (zt , yt , vt , qt ),
with {qt} evolving as dqt = −λ(θt , (zt , yt , vt ))dt in between discontinuities, and qs ∼ exp(1) at a mode switch and if qt−
hits 0.

IPS-FAS algorithm combinations 1&2 and 1&3 make use of this SHS transformed version of the GSHS model. Though
algorithm combination 1&3 also refreshes the ‘‘remaining time’’ qτk− at the start of a mutation during the next IPS cycle.

5.3. Simulation results

By conducting each of the approaches Nγ times we get γ i, i = 1, . . . ,Nγ . These results are used to assess the mean γ̂ ,
he percentage ρS of successful IPS runs, and the normalized root-mean-square error (RMSE), i.e.

γ̂ =
1
Nγ

Nγ∑
i=1

γ i (19)

ρS =
1
Nγ

Nγ∑
i=1

1(γ i > 0) (20)

RMSE =

√ 1
Nγ

Nγ∑
i=1

(γ i
− γ )2 (21)

In the subsequent IPS cycles the following levels are used: Dk = {0, delay, hit} × R × [Lk, ∞) × R ∪ {−1, stop} × R ×

[dwall, ∞) × R, with the µ-dependent Lk values shown in Table 2.
For g2 = 0 and g2 = 1, Tables 3 and 4 respectively show simulation results of straightforward MC and of IPS-FAS using

algorithm combinations 1&2, 1&3 and 1&4. These results show that IPS-FAS combination 1&2 performs similar or slightly
better than straightforward MC simulation. Both in Table 3 and in Table 4, IPS-FAS combinations 1&3 and 1&4 perform
far better than MC and IPS-FAS combination 1&2.

For g2 = 0 and µ = 0.8 s, Tables 5, 6 and 7 present average counts of particles per IPS level, over successful IPS-FAS
runs of algorithm combinations 1&2, 1&3 and 1&4 respectively. Comparison of Tables 5 and 6 show a steady increase in
particle diversity under algorithm combination 1&3 relative to combination 1&2. Comparison of Tables 6 and 7 show that
diversity of particles after mutation step I is similar under algorithm combinations 1&3 and 1&4.

For the GSHS example g2 = 0, µ = 0.8 s, the differences in particle diversity in Tables 5–7 correspond with the
theory-based expectations in Sections 4.3 and 4.4.
10
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Table 2
Values of Lk for various µ values.
k µ

0.9 s 0.8 s 0.7 s 0.6 s

1 181 181 181 181
2 217 215 210 205
3 230 230 220 215
4 240 241 230 223
5 300 300 237 230
6 244 236
7 300 243
8 300

Table 3
Simulation results for MC and IPS-FAS algorithm combinations 1&2, 1&3 and 1&4 applied to the GSHS
example g2 = 0 at simulation settings ∆ = 0.01 s, Np = 1000, and Nγ = 100.

µ = 0.9 s γ̂ ρS RMSE/γ

MC (m = 1) 5.300 × 10−4 44% 137.2%
IPS-FAS combination 1&2 3.859 × 10−4 33% 116.7%
IPS-FAS combination 1&3 5.096 × 10−4 100% 13.4%
IPS-FAS combination 1&4 5.125 × 10−4 100% 15.2%

µ = 0.8 s γ̂ ρS RMSE/γ

MC (m = 1) 4.000 × 10−5 4% 284.1%
IPS-FAS combination 1&2 3.811 × 10−5 4% 271.7%
IPS-FAS combination 1&3 6.968 × 10−5 100% 20.6%
IPS-FAS combination 1&4 6.948 × 10−5 100% 19.8%

µ = 0.7 s γ̂ ρS RMSE/γ

MC (m = 1) / / /
IPS-FAS combination 1&2 / / /
IPS-FAS combination 1&3 3.605 × 10−6 100% 20.9%
IPS-FAS combination 1&4 3.757 × 10−6 100% 20.4%

µ = 0.6 s γ̂ ρS RMSE/γ

MC (m = 1) / / /
IPS-FAS combination 1&2 / / /
IPS-FAS combination 1&3 4.055 × 10−8 100% 28.30%
IPS-FAS combination 1&4 4.029 × 10−8 100% 28.47%

Table 4
Simulation results for MC and IPS-FAS algorithm combinations 1&2, 1&3 and 1&4 applied to the GSHS
example g2 = 1 at simulation settings ∆ = 0.01 s, Np = 1000, and Nγ = 100.

µ = 0.9 s γ̂ ρS RMSE/γ̂

MC (m = 1) 7.000 × 10−4 50% 120.37%
IPS-FAS combination 1&2 6.306 × 10−4 94% 110.11%
IPS-FAS combination 1&3 6.829 × 10−4 100% 13.95%
IPS-FAS combination 1&4 6.832 × 10−4 100% 15.60%

µ = 0.8 s γ̂ ρS RMSE/γ̂

MC (m = 1) 4.000 × 10−5 3% 604.15%
IPS-FAS combination 1&2 1.266 × 10−4 49% 244.33%
IPS-FAS combination 1&3 1.027 × 10−4 100% 18.62%
IPS-FAS combination 1&4 1.022 × 10−4 100% 17.37%

µ = 0.7 s γ̂ ρS RMSE/γ̂

MC (m = 1) 1.000 × 10−5 1% 994.99%
IPS-FAS combination 1&2 1.316 × 10−5 14% 666.32%
IPS-FAS combination 1&3 6.921 × 10−6 100% 16.52%
IPS-FAS combination 1&4 7.021 × 10−6 100% 18.93%

µ = 0.6 s γ̂ ρS RMSE/γ̂

MC (m = 1) / / /
IPS-FAS combination 1&2 / / /
IPS-FAS combination 1&3 1.199 × 10−7 100% 28.34%
IPS-FAS combination 1&4 1.140 × 10−7 100% 25.39%
11
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Table 5
Average counts of particles per level over successful IPS-FAS runs of combination 1&2, for g2 = 0, µ = 0.8 s.
k No. of particles No. of different No. of different No. of survived No. of different % of successful

at start of particles at start particles after particles after particles after IPS runs through
Step I of Step I Step I Step III Step III level k

1 1000 1 999.99 997.96 997.96 100%
2 1000 997.96 971.46 92.84 92.62 100%
3 1000 92.62 92.15 82.58 7.59 100%
4 1000 7.59 13.26 184.40 1.41 49%
5 1000 1.41 18.51 592.16 1 6%

Table 6
Average counts of particles per level over successful IPS-FAS runs of combination 1&3, for g2 = 0, µ = 0.8 s.
k No. of particles No. of different No. of different No. of survived No. of different % of successful

at start of particles at start particles after particles after particles after IPS runs through
Step I of Step I Step I Step III Step III level k

1 1000 1 999.98 998.25 998.25 100%
2 1000 998.25 974.03 92.14 92.14 100%
3 1000 92.14 929.76 82.10 82.10 100%
4 1000 82.10 906.45 92.28 92.28 100%
5 1000 92.28 889.19 100.17 98.80 100%

Table 7
Average counts of particles per level over successful IPS-FAS runs using combination 1&4, for g2 = 0, µ = 0.8 s.
k No. of particles No. of different No. of different No. of survived No. of different % of successful

at start of particles at start particles after particles after particles after IPS runs through
Step I of Step I Step I Step III Step III level k

1 1000 1 3.15 997.85 1 100%
2 1000 1 909.74 91.26 1 100%
3 1000 1 917.58 83.42 1 100%
4 1000 1 908.38 92.62 1 100%
5 1000 1 999.41 99.01 98.42 100%

For the GSHS example g2 = 1, µ = 0.8 s, in addition to random delays, Brownian motion creates small differences
n the position component of particles, as a result of which almost all particles will differ from each other. As shown
n Table 4, in spite of this Brownian motion effect, algorithm combination 1&2 falls short in capturing proper effect on
article diversity and reach probability by the spontaneous jumps in the original GSHS.

. Conclusion

In many application domains, processes have a hybrid state space and their evolution involves diffusion as well as
orced and spontaneous jumps. This explains why GSHS and its subclasses play a key role in formal modeling and analysis.
owever in simulation and control of such systems, common practice is to use an SHS model, i.e. a hybrid system that
nvolves diffusion and forced jumps, though no spontaneous jumps. Hence a relevant question is: ‘‘Can a GSHS model
e transformed to an SHS model without changing process behavior that is relevant for the application considered?’’
his paper has addressed this question in using the Interacting Particle System (IPS) framework of Cérou et al. [11] for
umerically estimating the reach probability γ of an unsafe set D in a GSHS model.
In Section 2 stochastic process executions of GSHS have been defined, as well as their relation to solutions of SDE’s on

hybrid space. Also explained is that the transformation of GSHS to an SHS by Lygeros and Prandini [7] has as side-effect
hat it produces ‘‘remaining local time’’ information that should be treated as being not observable for other process(es)
han the GSHS execution considered.

Section 3 explains the IPS setting for a GSHS, by adopting a nested sequence of increasing subsets of D, and an implied
factorization of the reach probability γ . Because a GSHS may jump over a subset boundary it is shown that this does not
hinder the factorization (Proposition 3.1).

Section 4 develops IPS algorithms for application to GSHS. First, Section 4.1 specifies the IPS algorithm cycles for a
GSHS using Fixed Assignment Splitting (FAS). Theorem 4.1 proves that this yields lower or equal variance than using
other IPS with splitting options. Section 4.2 addresses IPS evaluation of a GSHS by using an SHS version, that follows
from the Lygeros and Prandini [7] transformation. The side-effect is that each IPS cycle makes use of the ‘‘remaining local
time’’ information that is non-existing in the original GSHS. Section 4.3 mitigates this side-effect, by an enrichment of
12
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he original GSHS, prior to applying the transformation of Lygeros and Prandini [7] with the first hitting times of the IPS
ubsets. Thanks to this enrichment, the resulting SHS refreshes ‘‘remaining local time’’ at the start of each next IPS cycle.
he latter refreshment induces a significant improvement in particle diversity at the start of each IPS cycle. As a result of
his improved particle diversity IPS performance in reach probability estimation is expected to significantly improve when
each probability estimation becomes a challenge. For purpose of comparison, in Section 4.4 an algorithm for the direct
imulation of a GSHS execution within IPS cycles is specified. Based on theory, use of this algorithm in IPS for GSHS will
ield similar good performance as the algorithm of Section 4.3. In Section 5, the expected differences in IPS performance
ave been illustrated for a GSHS example.
The findings in Section 4 mean that for IPS based reach probability estimation for an arbitrary GSHS model, can be

pplied to a properly derived SHS version of the GSHS model. The proper way in deriving such SHS consists of three steps.
he first step is to specify a GSHS model of the practical system. The second step is to enrich this GSHS with the first
itting times of the IPS subsets, without affecting the pathwise behavior of the GSHS execution. The third step is to apply
he transformation by Lygeros and Prandini [7] to the enriched GSHS from step 2.

In view of this positive finding for the limited scope of IPS application to GSHS, a logical follow-on question is if there
lso exists an improved transformation of a GSHS to SHS for stochastic control problems. Such transformation would
ake optimal control policies developed for SHS applicable to GSHS.
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ppendix. Proof of Theorem 4.1

In this appendix we compare the variance of applying IPS to GSHS under FAS versus multinomial resampling (MR),
ultinomial splitting (MS), and residual multinomial splitting (RMS). In doing so it becomes clear that the earlier
omparison by Ma and Blom [43] for diffusion process extends to GSHS executions.
The first proof starts with a characterization of the conditional distribution of particles that reach level k+1, given that

t level k the ith successful particle ξ̃ i
k is copied K i

k times, i = 1, . . . ,NSk .

roposition A.1. If NSk > 0 and K i
k, with i = 1, 2, . . . ,NSk , denote the number of particles that copies ξ̃ i

k at level k. Then the
umber Y k,i

k+1, of the K i
k particle copies of ξ̃ i

k that reach level k+1, has a conditional Binomial distribution of size K i
k and success

robability γk+1(ξ̃ i
k), i.e.

pY k,i
k+1|K i

k,ξ̃
i
k
(n; K i

k, ξ̃
i
k) = Bin(n; K i

k, γk+1(ξ̃ i
k)) (22)

with

γk+1(ξ̃ i
k) ≜ P(τk+1 < T |ξk = ξ̃ i

k) (23)

Proof. Similar to the proof of Proposition 1 in [43].

Theorem A.1. If NSk ≥ 1 and K i
k, i = 1, ..NSk , denotes the number of copies made of the ith successful particle ξ̃ i

k during the
splitting step at level k of the IPS algorithm, then

E
{
γ k+1|ξ̃

j
k, all j

}
=

1
N

NSk∑[
E

{
K i
k|ξ̃

j
k, all j

}
γk+1(ξ̃ i

k)
]

(24)

p i=1

13
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P

P

P

P

P

P

Var
{
γ k+1|ξ̃

j
k, all j

}
=

1
N2

p

NSk∑
i=1

[
E

{
K i
k|ξ̃

j
k, all j

}
γk+1(ξ̃ i

k)
(
1 − γk+1(ξ̃ i

k)
)]

+
1
N2

p

NSk∑
i=1

[
Var

{
K i
k|ξ̃

j
k, all j

}
γk+1(ξ̃ i

k)
2
]

+
1
N2

p

NSk∑
i=1

NSk∑
i′=1
i′ ̸=i

[
Cov

{
K i
k, K

i′
k |ξ̃

j
k, all j

}
γk+1(ξ̃ i

k) γk+1(ξ̃ i′
k )

]
(25)

roof. Similar to the proof of Theorem 1 in [43].

roposition A.2. If NSk ≥ 1, and we use multinomial resampling at IPS level k then

E
{
γ k+1|ξ̃

1
k , . . . , ξ̃

NSk
k

}
=

1
NSk

NSk∑
i=1

γk+1(ξ̃ i
k) (26)

Var
{
γ k+1|ξ̃

1
k , . . . , ξ̃

NSk
k

}
=

1
NpNSk

NSk∑
i=1

[
γk+1(ξ̃ i

k)
(
1 − γk+1(ξ̃ i

k)
)]

+
1

NpNSk

⎡⎣ NSk∑
i=1

[(
γk+1(ξ̃ i

k)
)2]

−
1
NSk

NSk∑
i=1

NSk∑
i′=1

[(
γk+1(ξ̃ i

k)γk+1(ξ̃ i′
k )

)]⎤⎦
(27)

roof. Similar to the proof of Proposition 2 in [43].

roposition A.3. If NSk ≥ 1, and we use multinomial splitting at IPS level k then

E
{
γ k+1|ξ̃

1
k , . . . , ξ̃

NSk
k

}
=

1
NSk

NSk∑
i=1

γk+1(ξ̃ i
k) (28)

Var
{
γ k+1|ξ̃

1
k , . . . , ξ̃

NSk
k

}
=

1
NpNSk

NSk∑
i=1

[
γk+1(ξ̃ i

k)
(
1 − γk+1(ξ̃ i

k)
)]

+

(
Np − NSk

)
Np

2NSk

⎡⎣ NSk∑
i=1

[(
γk+1(ξ̃ i

k)
)2]

−
1
NSk

NSk∑
i=1

NSk∑
i′=1

[
γk+1(ξ̃ i

k)γk+1(ξ̃ i′
k )

]⎤⎦
(29)

roof. Similar to the proof of Proposition 3 in [43].

roposition A.4. If NSk ≥ 1, and we use residual multinomial splitting at IPS level k then

E
{
γ k+1|ξ̃

1
k , . . . , ξ̃

NSk
k

}
=

1
NSk

NSk∑
i=1

γk+1(ξ̃ i
k) (30)

Var
{
γ k+1|ξ̃

1
k , . . . , ξ̃

NSk
k

}
=

1
NpNSk

NSk∑
i=1

[
γk+1(ξ̃ i

k)
(
1 − γk+1(ξ̃ i

k)
)]

+

(
Np modNSk

)
N2

pNSk

.

⎡⎣ NSk∑[(
γk+1(ξ̃ i

k)
)2]

−
1
NSk

NSk∑ NSk∑[(
γk+1(ξ̃ i

k)γk+1(ξ̃ i′
k )

)]⎤⎦
(31)
i=1 i=1 i′=1
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roof. Similar to the proof of Proposition 4 in [43].

roposition A.5. If NSk ≥ 2, and we use fixed assignment splitting at IPS level k then

E
{
γ k+1|ξ̃

1
k , . . . , ξ̃

NSk
k

}
=

1
NSk

NSk∑
i=1

γk+1(ξ̃ i
k) (32)

Var
{
γ k+1|ξ̃

1
k , . . . , ξ̃

NSk
k

}
=

1
NpNSk

NSk∑
i=1

[
γk+1(ξ̃ i

k)
(
1 − γk+1(ξ̃ i

k)
)]

+

(
Np modNSk

) [
NSk −

(
Np modNSk

)]
Np

2NSk

(
NSk − 1

)
.

⎡⎣ NSk∑
i=1

[(
γk+1(ξ̃ i

k)
)2]

−
1
NSk

NSk∑
i=1

NSk∑
i′=1

[
γk+1(ξ̃ i

k)γk+1(ξ̃ i′
k )

]⎤⎦
(33)

Proof. Similar to the proof of Proposition 5 in [43].

Theorem A.2. Given successful particles ξ̃ 1
k , . . . , ξ̃

NSk
k at IPS level k with NSk ≥ 1. The dominance of the four splitting methods

MR, MS, RMS, FAS) in terms of Var
{
γ k+1|ξ̃

1
k , . . . , ξ̃

NSk
k

}
is:

Vk
FAS ≤ Vk

RMS ≤ Vk
MS ≤ Vk

MR (34)

roof. Similar to the proof of Theorem 2 in [43].

heorem A.3. If IPS levels 1 to k-1 make use of the same type of splitting (either MR, MS, RMS or FAS), then the dominance
f the four splitting methods at level k, in terms of Var

{∏k
k′=1 γ k′

}
satisfies:

VFAS_k ≤ VRMS_k ≤ VMS_k ≤ VMR_k (35)

roof. Similar to the proof of Theorem 3 in [43].

heorem A.4. Under the same type of Splitting (either MR, MS, RMS or FAS) at all levels, then the dominance of the four
plitting methods in terms of variance V = Var {γ } satisfies:

VFAS ≤ VRMS ≤ VMS ≤ VMR (36)

roof. Similar to the proof of Theorem 4 in [43].

eferences

[1] J. Hu, J. Lygeros, S.S. Sastry, Towards a theory of stochastic hybrid systems, in: N. Lynch, B.H. Krogh (Eds.), Proc. Hybrid Systems in Computation
and Control 2000, in: LNCS number 1790, Springer, 2000, pp. 160–173, 2000.

[2] M.L. Bujorianu, J. Lygeros, Toward a general theory of stochastic hybrid systems, in: H.A.P. Blom, J. Lygeros (Eds.), Stochastic Hybrid Systems,
Springer, Berlin, 2006, pp. 3–30.

[3] X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006, 2006.
[4] G.G. Yin, C. Zhu, Hybrid Switching Diffusions; Properties and Applications, Springer, 2010, 2010.
[5] K. Kunwai, C. Zhu, On feller and strong feller properties and irreducibility of regime-switching jump diffusion processes with countable regimes,

Nonlinear Anal. Hybrid Syst. 38 (2020) 100946, 21 pages.
[6] A.R. Teel, A. Subbaraman, A. Sferlazza, Stability analysis for stochastic hybrid systems: A survey, Automatica 50 (2014) 2435–2456.
[7] J. Lygeros, M. Prandini, Stochastic hybrid systems: a powerful framework for complex, large scale applications, Eur. J. Control 16 (6) (2010)

583–594.
[8] A. Bensoussan, J.L. Menaldi, Stochastic hybrid control, J. Math. Anal. Appl. 249 (2000) 261–288.
[9] X.D. Koutsoukos, Optimal control of stochastic hybrid systems based on locally consistent Markov decision processes, Int. J. Hybrid Syst. (4)

(2004) 301–318.
[10] M.K. Ghosh, A. Arapostathis, S.I. Marcus, Optimal control of switching diffusions with application to flexible manufacturing systems, SIAM J.

Control Optim. 31 (1993) 1183–1204.
[11] F. Cérou, P. Del Moral, F. Legland, P. Lezaud, Genetic genealogical models in rare event analysis, Lat. Am. J. Probab. Math. Stat. 1 (2006) 181–203.
[12] L.M. Bujorianu, Stochastic Reachability Analysis of Hybrid Systems, Springer, London, 2012.
[13] M. Prandini, J. Hu, Stochastic reachability: Theory and numerical approximation, in: C.G. Cassandras, J. Lygeros (Eds.), Stochastic Hybrid Systems,

Taylor & Francis, 2007, pp. 107–137.
15

http://refhub.elsevier.com/S1751-570X(22)00098-X/sb1
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb1
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb1
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb2
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb2
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb2
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb3
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb4
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb5
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb5
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb5
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb6
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb7
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb7
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb7
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb8
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb9
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb9
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb9
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb10
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb10
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb10
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb11
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb12
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb13
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb13
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb13


H. Ma and H.A.P. Blom Nonlinear Analysis: Hybrid Systems 47 (2023) 101303
[14] A. Abate, M. Prandini, J. Lygeros, S. Sastry, Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems, Automatica
44 (2009) 2724–2734.

[15] A. Lavaei, S. Soudjani, A. Abate, M. Zamani, Automated verication and synthesis of stochastic hybrid systems: A survey, 2021, pp. 1–59, arXiv
preprint arXiv:2101.07491.

[16] R. Alur, T. Henzinger, G. Laffierriere, G. Pappas, Discrete abstractions of hybrid systems, Proc. IEEE 88 (2000) 971–984.
[17] A.A. Julius, G.J. Pappas, Approximations of stochastic hybrid systems, IEEE Trans. Automat. Control 54 (2009) 1193–1203.
[18] A Abate, A. D’Innocenzo, M. Di Benedetto, Approximate abstractions of stochastic hybrid systems, IEEE Trans. Autom. Control 56 (2011)

2688–2694.
[19] M.D. Di Benedetto, S. Di Gennaro, A. D’Innocenzo, Hybrid systems and verification by abstraction, in: M. Djemai, M. Defoort (Eds.), Hybrid

Dynamical Systems, Springer, 2015, pp. 1–25.
[20] J.A. Bucklew, Introduction to Rare Event Simulation, Springer, New York, 2004.
[21] Z.I. Botev, D.P. Kroese, An efficient algorithm for rare-event probability estimation, combinatorial optimization, and counting, Methodol. Comput.

Appl. Probab. 10 (4) (2008) 471–505.
[22] P. L’Ecuyer, F. LeGland, P. Lezaud, B. Tuffin, Splitting techniques, in: B. Tuffin G. Rubino (Ed.), Rare Event Simulation using Monte Carlo Methods,

Wiley, 2009, pp. 39–61.
[23] R. Rubinstein, Randomized algorithms with splitting: Why the classic randomization algorithms do not work and how to make them work,

Methodol. Comput. Appl. Probab. 12 (2010) 1–50.
[24] J. Morio, M. Balesdent (Eds.), Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems, Woodhead Publishing, 2016.
[25] P. Glasserman, P. Heidelberger, P. Shahabuddin, T. Zajic, Multilevel splitting for estimating rare event probabilities, Oper. Res. 47 (1999) 585–600.
[26] F. Cérou, F. Legland, P. Del Moral, P. Lezaud, Limit theorems for the multilevel splitting algorithm in the simulation of rare events, in: Proc.

Winter Simulation Conference. OrlandO, FL, 2005, pp. 682–691.
[27] P. Del Moral, Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications, Springer, 2004.
[28] J. Krystul, F. Le Gland, P. Lezaud, Sampling per mode for rare event simulation in switching diffusions, Stochastic Process. Appl. 122 (7) (2012)

2639–2667.
[29] H.A.P. Blom, J. Krystul, G.J. Bakker, A particle system for safety verification of free flight in air traffic, in: Proc. IEEE Conf. Decision and Control,

San Diego, CA, 2006, pp. 1574–1579.
[30] H.A.P. Blom, J. Krystul, G.J. Bakker, Free flight collision risk estimation by sequential MC simulation, in: C.G. Cassandras, J. Lygeros (Eds.),

Stochastic Hybrid Systems, Taylor & Francis, 2007a, pp. 249–281.
[31] H.A.P. Blom, G.J. Bakker, J. Krystul, Probabilistic reachability analysis for large scale stochastic hybrid systems, in: Proc. IEEE Conf. on Decision

and Control, Vol. 318, 2007b, pp. 2–3189.
[32] H.A.P. Blom, G.J. Bakker, J. Krystul, Rare event estimation for a large scale stochastic hybrid system with air traffic application, in: G. Rubino,

B. Tuffin (Eds.), Rare Event Simulation using Monte Carlo Methods, Wiley, 2009, pp. 193–214.
[33] M. Prandini, H.A.P. Blom, G.J. Bakker, Air traffic complexity and the interacting particle system method: An integrated approach for collision

risk estimation, in: Proc. American Control Conf., San Francisco, CA, 2011, pp. 2154–2159.
[34] H.A.P Blom, H. Ma, G.J. Bakker, Interacting particle system-based estimation of reach probability for a generalized stochastic hybrid system,

IFAC-PapersOnLine 51 (16) (2018) 79–84.
[35] J.P. Hespanha, A model for stochastic hybrid systems with application to communication networks, Nonlinear Anal. 62 (2005) 1353–1383, 2005.
[36] H.A.P. Blom, Stochastic hybrid processes with hybrid jumps, in: Proc. IFAC Conf. Analysis and Design of Hybrid Systems, Saint-Malo, Brittany,

France, 2003, 16-18 2003.
[37] M.K. Ghosh, A. Bagchi, Modeling stochastic hybrid systems, in: J. Cagnol, J.P. Zolèsio (Eds.), System Modeling and Optimization. Proc. 21st IFIP

TC7 Conference, Sophia Antipolis, France, July 2004, 2004, pp. 269–279.
[38] F. Xi, G. Yin, C. Zhu, Regime-switching jump diffusions with non-lipschit coefficients and countably many switching states: existence and

uniqueness, feller, and strong feller properties, in: G. Yin, Q. Zhang (Eds.), Modeling, Stochastic Control, Optimization and Applications, Springer,
2019, pp. 571–599.

[39] J. Krystul, A. Bagchi, H.A.P. Blom, On Strong Markov Property of Solutions To Stochastic Differential Equations on Hybrid State Spaces, Report
28th 2011, U. of Twente, 2011, https://repository.tudelft.nl/islandora/object/uuid%3A948fc4dd-66f5-42bc-82e6-8770d371add3.

[40] H.A.P. Blom, Feller property of regime-switching jump diffusion processes with hybrid jumps, in: Stochastic Analysis and Applications, 2022,
Forthcoming.

[41] J. Krystul, Modelling of Stochastic Hybrid Systems with Applications to Accident Risk Assessment (Ph.D. thesis), University of Twente, The
Netherlands, 2006, 2006.

[42] J. Krystul, H.A.P. Blom, A. Bagchi, Stochastic differential equations on hybrid state spaces, in: C.G. Cassandras, J. Lygeros (Eds.), Stochastic Hybrid
Systems: Recent Developments and Research Trends, Taylor & Francis/CRC Press, 2007, pp. 15–45, 2007.

[43] H. Ma, H.A.P. Blom, Fixed assignment vs. random assignment in multilevel importance splitting for estimating stochastic reach probability,
Methodol. Comput. Appl. Probab. (2021) Accepted 17th 2021.

[44] M. Hutzenthaler, A. Jentzen, P.E. Kloeden, Strong and weak divergence in finite time of Euler’s method for stochastic differential equations
with non-globally Lipschitz continuous coefficients, in: Proc. R. Soc. a., Vol. 467, 2011, pp. 1563–1576.

[45] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer Science & Business Media, 2004.
16

http://refhub.elsevier.com/S1751-570X(22)00098-X/sb14
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb14
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb14
http://arxiv.org/abs/2101.07491
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb16
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb17
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb18
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb18
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb18
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb19
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb19
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb19
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb20
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb21
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb21
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb21
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb22
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb22
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb22
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb23
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb23
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb23
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb24
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb25
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb26
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb26
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb26
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb27
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb28
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb28
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb28
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb29
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb29
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb29
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb30
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb30
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb30
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb31
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb31
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb31
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb32
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb32
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb32
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb33
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb33
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb33
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb34
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb34
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb34
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb35
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb36
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb36
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb36
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb37
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb37
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb37
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb38
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb38
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb38
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb38
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb38
https://repository.tudelft.nl/islandora/object/uuid%3A948fc4dd-66f5-42bc-82e6-8770d371add3
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb40
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb40
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb40
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb41
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb41
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb41
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb42
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb42
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb42
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb43
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb43
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb43
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb44
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb44
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb44
http://refhub.elsevier.com/S1751-570X(22)00098-X/sb45

	Interacting Particle System based estimation of reach probability of General Stochastic Hybrid Systems
	INTRODUCTION
	GENERAL STOCHASTIC HYBRID SYSTEM (GSHS)
	GSHS definition
	GSHS execution
	Stochastic analysis background of GSHS execution
	Probabilistic transformation to an SHS

	IPS BASED REACH PROBABILITY ESTIMATION
	GSHS reach probability
	Multi-level factorization of reach probability
	Recursive estimation of the multi-level factors
	IPS algorithmic steps for a GSHS

	IPS ALGORITHMIC STEPS FOR GSHS 
	IPS application for a GSHS
	Simulation of execution of SHS transformed version of GSHS in mutation step I
	Accounting for unobservability of remaining local time
	Simulation of original GSHS execution in mutation step I

	APPLICATION OF IPS TO GSHS EXAMPLE
	Hypothetical car example
	GSHS model and transformation to SHS model
	Simulation results

	CONCLUSION
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix. Proof of Theorem 4.1
	References


