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a b s t r a c t

The design of complex engineering systems is an often long and articulated process that highly relies
on engineers’ expertise and professional judgment. As such, the typical pitfalls of activities involving
the human factor often manifest themselves in terms of lack of completeness or exhaustiveness of
the analysis, inconsistencies across design choices or documentation, as well as an implicit degree
of subjectivity. An approach is proposed to assist systems engineers in the automatic generation
of systems diagrams from unstructured natural language text. Natural Language Processing (NLP)
techniques are used to extract entities and their relationships from textual resources (e.g., specifica-
tions, manuals, technical reports, maintenance reports) available within an organisation, and convert
them into Systems Modelling Language (SysML) diagrams, with particular focus on structure and
requirement diagrams. The intention is to provide the users with a more standardised, comprehensive
and automated starting point onto which subsequently refine and adapt the diagrams according
to their needs. The proposed approach is flexible and open-domain. It consists of six steps which
leverage open-access tools, and it leads to an automatic generation of SysML diagrams without
intermediate modelling requirement, but through the specification of a set of parameters by the user.
The applicability and benefits of the proposed approach are shown through six case studies having
different textual sources as inputs, and benchmarked against manually defined diagram elements.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Systems engineering is a crucial process in the design and
anagement of complex systems [1–5]. An integral part of de-
igning and architecting engineering systems involves producing
ormal documentation to both record and support the devel-
pment process (e.g. systems specifications [6], codified system
iagrams etc.). An open debate within the systems engineer-
ng community exists about the notion of completeness of spec-
fications (requirements in particular), and means to ‘‘check’’
or it. In this paper, the authors are not concerned with estab-
ishing a new paradigm for completeness verification. Instead,
he authors aim at facilitating a crucial step in achieving such
goal: the processing of the large amounts of documentation
nd engineering knowledge from which specifications are drawn.
aintaining document consistency and/or completeness while

∗ Corresponding author at: Depeartment of Engineering Structures, Delft
niversity of Technology, Stevinweg 1, Delft, 2628 CN, The Netherlands.

E-mail address: a.cicirello@tudelft.nl (A. Cicirello).
ttps://doi.org/10.1016/j.knosys.2022.110071
950-7051/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
gathering the necessary information to specify a system’s be-
haviour is both challenging and crucial to avoid unexpected con-
sequences that may result in uncontrolled hazards during the
system’s operations [7,8]. Errors and omissions in the initial de-
sign stages in particular can lead to costly product modifications
after manufacturing [8].

Typically, the synthesis of available knowledge into appropri-
ate engineering documentation and formats (e.g. requirements,
diagrams) is a manual process. With this comes a certain degree
of subjectivity and arbitrariness. In this paper, the authors pro-
pose a way of automating this manual process by using Natural
Language Processing (NLP) techniques: on the one hand, having
machine learning algorithms replacing manual work decreases
costs and processing times; on the other hand, systematising
the gathering of information and leaving the engineers with a
purely supervisory task could provide for better coverage and
consistency.

As a testbed for the concept just described, the authors focus
on automating the generation of a very commonly used tool in
systems design: SysML diagrams. SysML is a graphical modelling
language that is a subset of the Unified Modelling Language
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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UML) with extensions catered to systems engineering [2,4,5,9–
1]. It is able to support the specification, analysis, and design of
omplex systems such as hardware, software, and facilities [2].
ysML has also gained importance in recent years as a critical
nabler of Model-based Systems Engineering [2,3]. Like many
ther graphical modelling languages it still requires significant
anual input [2–4]. To the best of the authors’ knowledge, this is

he first study that focuses on the automatic generation of SysML
iagrams from unstructured natural language text.
The main contributions of the paper are as follows:

• The design of a versatile automated approach to generate
SysML diagrams from natural language text documents;

• The combined use of NLP techniques and the lexical
databases to facilitate and augment the generation of SysML
models;

• The mapping of textual entities (phrases and relationships)
to SysML model elements using NLP techniques and heuris-
tic rules.

The rest of this paper is structured as follows: a detailed
verview of the current state-of-the-art NLP-based strategies for
utomating systems engineering processes is provided in Sec-
ion 2. The proposed approach is presented in Section 3, and the
teps for its implementation are summarised in Section 4. The
ase studies and experimental procedures are then described in
ection 5. In Section 6, the results are discussed.

. Review of state-of-the-art NLP-based techniques for au-
omating system engineering diagram generation

To the best of the authors’ knowledge, the automatic gener-
tion of requirement diagrams and structure diagrams has not
een addressed in the literature yet. Therefore, this section fo-
uses on reviewing the state-of-the-art of three key topics: (i) NLP
n System Engineering for the generation of system engineering
odels; (ii) Automatic generation of Unified Modelling Language

UML) diagrams; (iii) Ontology learning for automatic extraction
f concepts, relations, attributes, and hierarchies from text.

.1. NLP in systems engineering for the generation of system engi-
eering models

NLP techniques have been used in requirements engineering,
here the majority of requirements documents and their sources,
uch as user reviews, are written in natural language [12–15].
ast studies have used NLP for requirement elicitation [16], re-
uirement enrichment [17], requirements tracing [18], require-
ent classification [19], requirement improvement [20,21],

dentifying the domain of requirement [22], ambiguity detec-
ion [23], generating test cases and use cases [24–26], and detec-
ion of low-quality requirements [27]. A more detailed review is
one in [12], which classified the function of NLP in requirement
ngineering as detection, extraction, classification, modelling,
racing and relating, and search and retrieval. Of specific interest
ere are studies that have attempted to extract requirements and
onstruct models from natural language text, which are briefly
eviewed in what follows.

Recent works, used NLP for mining concepts from a mix of
extual requirement assets such as documentation and manuals
28], product brochures [21], online reviews [13], app descrip-
ions and reviews [15]. However, these works rely on the user
o specify relations between identified concepts and to manually
onstruct the system engineering models [21], even when the
oal is to generate structure features diagrams [21].
The state-of-the-art approaches for the generation of systems
ngineering models from natural language text inputs are based

2

on the specification of a set of heuristics rules and by predefining
either a set of association phrases [29], or a mix of manually spec-
ified sentence patterns [14,30], or a predefined list of goal-specific
keywords and syntactic patterns [31]. Other studies have also
used NLP techniques such as dependency parsing and corefer-
ence resolution to identify type dependencies. The hierarchy was
then identified using predefined rules or classifiers [32,33]. How-
ever, these approaches are limited by their reliance on heuristics
rules [32]. Additionally, they also tended to put strict constraints
on the forms of inputs, either specifying complex syntactic rules
or restricting inputs to be of a certain format, for example, re-
quirement specification documents [14,29–31]. Such constraints
limit the flexibility of the approaches to adapt to the variety of
textual assets available for a systems engineer and require a sig-
nificant amount of prior work to produce structured requirement
documents for processing.

2.2. Modelling in SysML and UML

Unlike requirement diagrams, which are unique to the SysML
profile, structure diagrams in SysML bear a close resemblance to
UML diagrams such as class diagrams and composite structure
diagrams [2,9,11]. Thus, past studies aimed at generating UML
diagrams from natural language text are also reviewed.

In [34], the authors proposed a method to automatically gen-
erate UML class diagrams from natural language requirements
by employing a Recursive Object Model (ROM) as the interme-
diate step. The ROM is a graphical language that treats each
word and each sentence as objects and assigns semantic relations
from a predefined set to these objects using lexical and syntactic
rules [35]. The ROM model was then traversed and converted to
a class diagram using the noun objects and their relations [35].
Additionally, in [36], the authors used PoS tagging and semantic
role labelling combined with manually defined rules to generate
class diagrams from requirement specifications. However, similar
to past studies on generating requirement models, these studies
rely on using structure requirement documents of specific for-
mats as inputs and are thus limited in their flexibility [34,36].
In contrast, in [37], the authors proposed a method to auto-
matically generate UML class diagrams from natural language
stakeholder requests. They used a set of predefined syntactic rules
to decompose the inputs into simple sentences, then parsed the
resulting sentences and identified classes and relations using a
set of heuristic rules [37]. However, the reliance on predefined
rules on syntactic features to classify relations also limit the wider
applicability of this approach.

2.3. Ontology learning

Ontology learning refers to the automatic extraction of ‘con-
cepts, relations, attributes, and hierarchies’ from text [38,39].
State-of-the-art methods to automatically extract ontology mod-
els from natural language text include Text2Onto [40], Onto-
Gain [41], a graph-based algorithm [42], and CRCTOL [43].
Ontology Learning techniques could be used to enable the au-
tomatic generation of SysML diagrams. This is because, similarly
to Ontology Learning, System Engineering modelling approaches
employ an object-centred representation of the target domain
and use similar constructs such as classes/blocks and relations
[44]. However, as highlighted in [44], the techniques in ontology
generation need to be adapted to suit systems engineering. For
example, the primary source for generating an informative dia-
gram is a limited corpus, instead of relying on the web. Moreover,
the extracted structured information has to be classified into
different types of SysML diagrams [9].
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.4. An approach to overcome the limitations of the state-of-the-art

Based on the above review, it has been identified the need
or the development of an automatic approach to generate SysML
iagrams from unstructured natural language text. The proposed
pproach is based on natural language processing techniques
nd the semantic web, and goes beyond the state-of-the-art by
ackling the following research questions:

• How to extract information for developing system engi-
neering models without specifying restrictive syntactic rules
valid only for a specific domain?

• How to identify hierarchies with minimal reliance on heuris-
tic rules and predefined patterns?

• How to automate the generation of different types of SysML
diagrams with no human intervention or intermediate mod-
elling from a limited corpus of textual resources?

. Automatic generation of systems modelling language dia-
rams

The proposed approach focuses on automatically generating
subset of structure and requirements diagrams in SysML from
corpus of natural language text documents. Specifically, this
aper focuses on Block Definition Diagrams (BDD), Internal Block
iagrams (IBD), and Requirement Diagrams (REQ) [9]. The basic
lements of these three diagrams include blocks and their rela-
ionships. A block is an elemental modelling construct in SysML
hat represents both real entities, such as physical objects, and
bstract entities, such as concepts [2]. Relationships between
locks in SysML can be further classified into categories such as
ssociation or generalisation for BDD, and trace or containment
or REQ [2,9–11].

To generate these diagram elements, a parallel architecture is
roposed to extract two kinds of textual entities from natural
anguage text: (1) key phrases, where a key phrase is defined
s a list of one or more words that represent an important
ntity described in the text. (2) key relationships between the
ey phrases, where a key relationship is defined as one that
inks two key phrases. The key phrases and key relationships are
sed to generate blocks and the relationships between blocks,
espectively. The generated blocks and their relationships are
hen organised into desired SysML diagrams.

The procedures for automatic diagram generation are sum-
arised in Fig. 1a and it consists of six steps:

1. The first step is the manual selection and upload of a corpus
of text documents (Section 3.1).

2. The raw texts selected are then used as inputs for the key
noun extraction (Section 3.2).

3. The raw texts selected are used also as inputs relation
extraction (Section 3.3).

4. Steps 2 and 3 result in a collection of key nouns and a
collection of relations, respectively. The two collections
are then used to generate the list of key phrases and key
relations (Section 3.4).

5. The list of key phrases and key relations are subsequently
used to generate corresponding SysML model elements
and augmented according to the required diagram type
(Section 3.5).

6. Finally, the generated SysML model elements are then or-
ganised and plotted to the corresponding SysML profile
(Section 3.6).

An illustrative example is provided in Fig. 1b. Each step is

iscussed in detail in what follows. c

3

3.1. Raw texts selection

The algorithm takes as input a manually selected corpus of
text documents. These documents do not need to be structured
or follow a predefined writing style like requirement documents,
and the proposed approach can be applied to documents typi-
cally available to systems engineers, for example manuals [2,4].
Additionally, the corpus should be of sufficient size. Providing
a universal standard for the sufficient size of textual resources,
covering different domains and writing styles, is a challenging
task that goes beyond the present work. Nonetheless, based on
the experiments carried out by the authors (with the most salient
ones reported in Section 5), it is recommended that for the
successful generation of diagrams, the document count should be
larger than 100 and the average word count per document should
be larger than 500. A corpus can also be obtained by splitting
one large document, for example one manual book, into chapters
and sections, as illustrated in the case study on UK government
reports and a Windows manual in Section 5.

3.2. Key nouns extraction

This step of the approach aims to select key nouns, which are
nouns that represent important entities and that can serve as
constituents of the key phrases. The key nouns are automatically
extracted from the corpus by employing preprocessing and term
frequency–inverse document frequency (tf–idf) techniques [45].

3.2.1. Preprocessing
Preprocessing is needed to remove grammatical features in the

text to support noun extraction [45]. In this study, a combination
of preprocessing methods is applied to the text inputs:

Tokenisation: Tokenisation breaks down large textual content,
such as paragraphs or documents, into smaller chunks [45]. In this
study, the Natural Language Toolkit (NLTK) is used to tokenise
each input text document into individual sentences and then
tokenise each sentence into individual words. In particular, the
adapted Punkt sentence segmenter for sentence tokenisation [46]
and the Penn Treebank Tokeniser for word tokenisation [47]
available in NLTK are used. In this work, only one-word unigrams
are considered.

Part-of-speech (PoS) tagging: The NLTK package is used to
classify each word of a sentence into different lexical categories.
The PoS tagger assigns a PoS tag to each word based on its context
sentence [45]. The Greedy Averaged Perceptron tagger and the
Penn Treebank tagset are used [47]. Examples of PoS tags include
present tense verbs (‘VBP’) and adjectives (‘JJ’). After the PoS
tag for each word is assigned, the nouns are used for further
processing and words of other types are removed.

Lemmatisation: The individual nouns are further converted to
lower case and reduced to their root forms through the NLTK
WordNet Lemmatiser, e.g. from ‘sensors’ to ‘sensor’. The Word-
Net Lemmatiser employs a combination of predefined rules and
dictionary search in lemmatisation [47].

Stop word removal: As the last step, all stop words that are still
n the text are removed, using the NLTK list of English stop words
s a Ref. [47].

.2.2. Evaluation of term frequency–inverse document frequency
The term frequency–inverse document frequency (tf–idf) met-

ic is employed to evaluate the domain relevance of each noun
fter preprocessing [45,48,49]. Note that after the preprocess-
ng steps, the documents contain only nouns. Tf-idf treats each
ord as unigram, and word orders or document orders are not

onsidered. The tf–idf weighting w of a word t , in a document
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Fig. 1. Procedures and examples for automatic SysML diagram generation.
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belonging to a corpus of documents c , is a value computed
s [45,48,49]

t,d = tft,d × idft,c (1)

tft,d is given by

tft,d = log10(countt,d + 1) (2)

where countt,d is the total count of a word t in a given document
d, and the inverse document frequency idft,c is given by [45,49]

idft,c = log10(Nc/(1 + dft,c)) + 1 (3)

where Nc is the total number of documents in the corpus c , and
the document frequency dft,c is the number of documents in the
corpus c that contain the word t [45]. In this study, the tf–idf
weighting is normalised to the range 0 ≤ wt,d ≤ 1 by dividing
by the largest tf–idf weighting in a document. The inclusion of
inverse document frequency discriminates against words that are
common across the corpus [45,49], which are assumed to be less
representative of the document’s content, analogous to a set of
domain-specific frequency-dependent stop words. The weighting
wt,d obtained for each word of a document is used to identify
the collection of key nouns to be retained. In particular, a tf–
idf weighting threshold σtf−idf is specified by the user (usually
in terms of a user-defined percentile), and nouns with tf–idf
weighting higher than the threshold are added to the collection
of key nouns.

3.3. Relationship extraction

The input text is first tokenised into sentences using the NLTK
package. After sentence tokenisation, open information extrac-
tion techniques are used to extract relationships from individual
sentences [45,50].

3.3.1. Open Information Extraction (IE)
In this study, the OpenIE toolbox is used for relationship

extraction [51–54]. The toolbox assigns a confidence value to each
extracted relation, and in the proposed approach, a confidence
threshold σrelationship between 0 and 1 is manually defined to
preliminarily filter the extracted relationships.

For each sentence, the toolbox generates a set of possible
relations, where each relation is a list of textual phrases r =

(p1, p2, p3, p4, . . . , pNr ). In an extracted relation r , p2 is the rela-
tion phrase, p1 and p3 are akin to subject and object phrases, and
p4 to pNr are secondary argument phrases, sometimes appearing
in long sentences, where Nr is the number of phrases in an
extracted relationship [50]. The OpenIE toolbox is implemented
as a combination of four methods [51–54], which are briefly
explained:

Semantic Role Labelling (SRL) based IE SRL consists of detecting
semantic arguments and their roles associated with a verb in a
sentence. For example, given the sentence ‘I ordered a cake’, SRL
identifies ‘I’ and ‘cake’ as arguments for the verb ‘order’, where
‘I’ is the agent and ‘cake’ is the patient. This component of the
OpenIE tool is based on the SRL system by [55,56].

Relational noun based IE Relational noun based IE identifies re-
lations that are mediated by nouns. For example, given the phrase
‘Rowing Club President James’, it extracts the relation (James, be
President of, Rowing Club). This is implemented by encoding a
predefined set of relational nouns and nominal patterns in the
OpenIE tool [52].

Numerical IE Numerical IE identifies the numerical relations
in a sentence. For example, given the sentence ‘The company
has 100,000 employees’, it extracts the relation (The company;
has number of employees; 100,000). This is implemented by
5

a combination of machine-learned patterns and customisations
specific to numerical relations in the OpenIE tool [53].

Coordination analyser This method is used to split conjunctive
sentences. It first uses a dependency parser to extract candidate
conjuncts, and then score their coherence based on the Berkeley
Language Model [57]. Additional linguistic constraints are also
imposed to improve selection results [54].

3.4. Key phrases and key relationships selection

To obtain the key phrases and key relationships useful for gen-
erating SysML model elements, a three-step selection mechanism
is used. The first step is to select and refine candidate key phrases
using the key nouns obtained in Section 3.2. The second step is
based on scoring the candidate phrases based on a combination
of metrics to obtain key phrases [45,58,59]. The third step is to
select key relationships based on the selected key phrases.

3.4.1. Selecting candidate key phrases
For simplicity, only subject and object phrases (p1 and p3) of

he extracted relationships are used for identifying the key phrase
andidates. The phrases are first preprocessed using procedures
escribed in Section 3.2.1. This results in tokenised phrases where
= (t1, t2, . . . , tNp ), and each phrase comprises only nouns in

oot forms; Np refers to the number of nouns in a phrase. Then,
n intersection is taken between each processed phrase and the
ist of key nouns. Nouns in these phrases that do not map to any
ey nouns are removed. The user is further able to determine
he specificity of the key phrases by setting a parameter Lphrase
or the maximum number of nouns in one key phrase, where
ength(p) ≤ Lphrase. If the number of nouns in a candidate key
hrase exceeds Lphrase, the nouns are ranked according to tf–idf
alues and the top Lphrase key nouns are kept. This results in a
ollection of candidate key phrases for further processing.

.4.2. Key phrase selection based on tf–idf, WordNet depth, and
hrase frequency
The candidate key phrases are further selected by using a met-

ic based on the frequency of the phrase, average tf–idf weighting,
nd average WordNet score [58,59].
The count of a phrase, countp,d, refers to the total count of a

hrase p in the ‘bag of phrases’ of a document d, normalised with
espect to the most frequent phrase in the document. This is used
o account for the importance of each phrase. Only the candidate
ey phrases that are outputs of Section 3.4.1 are considered.
The WordNet depth h′ of a word t refers to its semantic depth

ssigned by WordNet based on its synsets, and is used to account
or semantic meaning when evaluating a phrase [58,59]. A general
erm such as ‘entity’ would be assigned a small depth value,
hereas a more specific term such as ‘pancreas’ would be as-
igned a high depth value. The WordNet is a large lexical database
f English, where the meanings of each word are represented as a
ognitive synonym set called synsets [58,59]. The LESK algorithm
s used to identify the most relevant synset for words in the input
ocument based on the document as context [60]. For simplicity,
t is assumed that each word in one document has only one
ynset. The WordNet depth of each word is normalised to range
≤ h′

≤ 1 by dividing by the largest depth value in a document,
nd the one complement of the normalised depth h = 1 − h′ is
sed as the WordNet score.
As both tf–idf weighting w (already introduced in

ection 3.2.2) and the WordNet score h are assigned to individual
ords t , an average value is taken for each candidate key phrase.
ence, for each candidate key phrase p, containing N number of
p
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ouns, from a document d, a score λ is computed by using the
ollowing formula:

p,d =

Np∑
i

wti,d/Np +

Np∑
i

hti,d/Np + countp,d (4)

The first term computes the average tf–idf weighting, the sec-
nd term computes the average WordNet depth, and the last term
efers to the normalised count of the phrase. A score threshold
p can then be specified by the user, where candidates with
cores higher than the threshold are selected as key phrases. It
s worth mentioning that when documents contain many broken
entences (as in the document 7 of Table 2), many key phrases
ight not be found. Since this is an important step in the proce-
ure, in order to support the engineers using the proposed tool,
t is recommended to setup an alarm to warn the user when the
ool fails to extract relations from more than 50% of the sentence
okens in one document.

.4.3. Key relationship selection
Relationships are selected as key relationships only when both

heir subject and object phrases are key phrases. This is to prevent
pen-ended relationships and ‘floating’ blocks that do not connect
o any other block in SysML diagrams.

.5. Mapping and augmentation

The selected key phrases and key relationships are textual.
or plotting SysML diagrams, they need to be first mapped to
ysML model elements. The authors focus on the Block Definition
iagrams (BDD), Internal Block Diagrams (IBD), and Requirement
iagrams (REQ) in this study. The key phrases are used to gen-
rate blocks B, which form a fundamental unit of SysML [2]. The
extual relationships are first classified into different categories
ccording to the SysML diagram type, and then used to generate
he different types of relationships R between blocks. The textual
elationships are also used to generate requirements that the
locks satisfy.
To make diagrams more complete in both structure and se-

antics, the textual phrases and relationships are also augmented
ccording to the required SysML diagram type. The augmenta-
ions are used to generate additional blocks and relationships for
he diagrams.

.5.1. Block definition diagrams
Block Definition Diagrams are the most common diagrams

sed in SysML and are used to define the types of elements of
ther diagrams [2,9]. Blocks in BDD can have many features such
s parts, references, and operations, whereas relations in BDD
an belong to categories such as associations, generalisations, and
ependencies [2,9]. For simplicity, the authors choose to focus on
he composite association, generalisation, and reference associa-
ion, and on identifying the operations features of blocks in BDD.
he composite association relationship represents a structural
omposition where one block is part of another block [2,9]. On
he other hand, generalisation relationship means an inheritance
elationship, where one block is the generalisation of the other,
ore specialised, block [2,9]. Additionally, reference association
onveys a connection between blocks where one block can access
nother [2,9].
Relationship mapping for BDD
The steps used to map textual relationships to inter-block

elationships in BDD are:

1. Identification of operation: for every subject phrase p1
in the textual relationships, the relation phrase p2 be-
tween the subject and its object phrase is considered as the
operation of the block B defined by p .
p1 1
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2. Classification based on relation phrase: the textual rela-
tionships are first classified according to the meaning of
the relation phrase p2 in the relationship. A pre-selected
list of WordNet synsets that define composite associations
are used, for example ‘include.v.01’. If the relation phrase’s
synset belongs to the predefined list, then the relation is
mapped to a composite association with the corresponding
hierarchy.

3. Classification based on overlap: the rest of the textual re-
lationships are then classified by the string representations
of the subject and object phrases (p1, p3). If the string rep-
resentation of one phrase is contained in the other phrase
in the relation (e.g. the phrase ‘prediction model’ includes
the single word phrase ‘prediction’ in string representa-
tion), then the relationship is mapped to a generalisation
relationship, with the block defined by the shorter phrase
being the generalisation (the other being specialisation).

4. Classification based on score: the remaining textual rela-
tions are then classified according to the score of the sub-
ject and the object phrase according to Eq. (4). If the differ-
ence in score is above a user-defined threshold σrel−difference,
the relation is mapped to a composite relationship where
blocks defined by the lower-scored phrase is considered a
part of the block defined by the higher-scored phrase.

5. Classification of remaining relations: the remaining textual
relations which are not yet classified are then mapped to
reference associations.

Augmentation for BDD
The steps used to augment the list of textual phrases and

elationships for plotting BDDs are:

1. Identification of top-level phrases: The key phrases whose
corresponding blocks do not form sub-blocks of another are
first compiled to a set P , where a sub-block is defined as
the block at the part end of a composite relationship, or at
the specialised end of a generalisation relationship. These
phrases are used for the next abstraction step.

2. Abstraction: Algorithm 1 is used to iteratively abstract
higher-level phrases from the top-level phrases based on
a per-word score γ that is a combination of the tf–idf
weighting w and WordNet score h of a word t in a doc-
ument d.

Algorithm 1: Phrase Abstraction
Identify set of top-level phrases P
for phrase p in P do

if length of phrase Np > 1 then
Initialise score set Γ

for noun t in p do
γt,d = wt,d + ht,d
Γp,d = Γp,d ∪ {γt,d}

end
sort(Γp,d)
pabstract = p \ t , where γt,d is smallest in Γp,d
P = P ∪ {pabstract}

end
end

Additionally, generalisation relationships are assigned to
the blocks defined by the top-level phrases and their ab-
stractions.

3. Relationship augmentation: After the abstraction step, all
of the resultant sets of top-level phrases are now unigrams.
The WordNet is then used to identify hypernym/hyponym
(corresponding to generalisation) and holonym/meronym
(corresponding to composite association) relationships be-
tween these phrases and corresponding relationships are
assigned between their blocks [58,59].
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4. Phrase augmentation: As the final step, the lowest com-
mon hypernyms between the phrases that remain at the
top level are found using WordNet [58,59]. The blocks
defined by these remaining top-level phrases are assigned
a generalisation relationship with blocks defined by their
hypernyms.

3.5.2. Internal block diagrams
Internal Block Diagrams are used to specify the internal struc-

tures of blocks, and display the parts and references of a specific
block as well as the connections between its parts and Refs. [2,9].
In this study, the parts of a block are defined as the block’s
composites, and the references of a block are defined as other
blocks connected to it through the reference association. A con-
nection means that two blocks are able to access each other in
an operational system [2,9]. To leverage the connection between
IBD diagrams and BDD diagrams, the augmented list of textual
relationships and phrases from the BDD are used as inputs to the
IBD algorithm.

Relationship mapping for IBD
The steps to map textual relationships to inter-block relation-

ships for IBD are:

1. Parent block generation: The user can first choose to spec-
ify a parent block to draw the IBD for. Then, all blocks
that are sub-blocks or sub-sub-blocks of the user-specified
block are selected. If no parent block is manually selected,
IBDs will be drawn for all blocks.

2. Relationship selection: The textual relationships whose
subject or object phrases correspond to a sub-block of the
user-specified block are selected, except in cases where the
phrase is in the lower hierarchy in the textual relationship.

3. Connection classification: For each of the selected textual
relationship, if the relation phrase is not empty, then blocks
defined by its subject and object phrases are assigned a
port connection between each other.

Augmentation for IBD
The steps used to augment the list of textual phrases and

relationships for plotting IBDs are:

1. Phrase augmentation: Pairs of key phrases that share a
non-empty intersection (i.e. include one or more identical
nouns) are identified and are added to the list of phrases
for IBD, except when the intersection corresponds to the
user-specified block.

2. Relationship augmentation: After the phrase augmenta-
tion step, a generalisation relationship is assigned to the
block defined by the intersection and the intersection’s par-
ent blocks, with the intersection block at the generalised
end. The new relationships are added to the list of IBD
relationships.

Importantly, the augmentation mechanism used in IBD is dif-
ferent to the abstraction mechanism in BDD. This is done as a
redundancy measure to ensure the completeness of the plotted
diagrams. For example, a phrase ‘prediction mode’ may be only
abstracted to ‘prediction’ in the BDD step. However, in the IBD
step, it could be additionally abstracted to ‘model’ if any of the
other selected key phrases also include the word ‘model’.

3.5.3. Requirement diagram
Requirement Diagrams are a unique feature of SysML diagrams

that represent the requirements of the system and its com-
ponents [2,9]. Relationships relevant to requirements in SysML
include containment, trace, derive, refine, satisfy, and verify [2,9].

For simplicity, the authors focus on the satisfy relationships and
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the trace relationships between the requirements, which repre-
sents a weak dependency where a change at one end may result
in the need to modify the requirement at the other end [2,9].

Mapping for REQ
The following steps are used to map textual relationships to

requirements and requirement relationships for REQ diagrams.

1. Requirement identification: For each of the key relation-
ships, if the relation phrase is not empty, then its corre-
sponding raw relationship output from OpenIE is consid-
ered a requirement.

2. The requirements are assumed to be satisfied by their
subject phrase blocks, and their requirement blocks are
named after the subject phrases. There can be multiple
requirements with the same subject phrase, and these are
grouped together in the same requirement block.

3. Relationship identification: A trace relationship is assigned
to requirements whose corresponding relationships share
the same subject phrases or object phrases, or have subject
phrases equal to object phrases of other relationships, and
vice versa.

Relationship augmentation for REQ
The WordNet is used to identify any hypernym, hyponym, en-

tailment, and causes relationship between the relation phrases of
relationships that have been identified as a requirement [58,59].
If a relationship is identified, the corresponding pair of require-
ments are considered to have a trace relationship

3.6. Diagram generation

Prior to plotting the diagram, the user can choose to select
a parent block for plotting the desired diagram. For IBD, this
would be the parent block used to select sub-blocks and sub-
sub-blocks. For BDD, all blocks at a lower hierarchy than the
parent block (e.g. the parent block’s sub-blocks and their sub-
blocks, etc.) will be iteratively selected, and the resultant selected
blocks and their relationships will be plotted instead of the full di-
agram comprising all generated blocks. For REQ, all requirements
that contain the phrase corresponding to the selected block, and
the relationships between these requirements, are extracted for
plotting.

An open-source diagram generation tool (PlantUML [61,62])
is used to plot the generated blocks and their relationships. The
augmented blocks and relationships are plotted with dotted lines
to indicate that these do not directly map to phrases and relation-
ships in the input text documents. The diagram generation tool
uses GraphViz as its graphical engine [63].

4. Steps for the implementation of the proposed approach

The following steps are performed for the generation of SysML
diagrams using the proposed approach:

1. Select the corpus of textual materials;
2. Select the document to draw the SysML diagram for;
3. Set threshold values for five hyperparameters

(a) 0 < σtf−idf < 1 for key noun selection. This sets the
tf–idf threshold for a noun to be considered a key
noun.

(b) 0 < σrelationship < 1 for relationship extraction. This
sets the confidence threshold for a relation extracted
by OpenIE and can be used to remove an excessive
number of duplicated relationships.

(c) 0 < σp < 3 for key phrase selection. This sets the
minimum score for a phrase to be considered a key
phrase via the proposed formula in Eq. (4).
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(d) 0 < σrel−difference < 3 for composite relationship clas-
sification. This sets the minimum score difference
for connected phrases to be mapped to composite
relationships.

(e) Lphrase > 0 for length of phrases. This sets the maxi-
mum number of words in a phrase;

4. Select the type of SysML diagram to generate (optional);
5. Select the phrase to define the parent block in the SysML

diagram (optional);
6. Run the end-to-end six-steps approach as described in

Section 3 to automatically generate SysML diagrams, which
will generate the following outputs in sequence:

(a) List of key nouns;
(b) List of extracted relationships;
(c) List of key phrases and key relationships;
(d) Mapping of key textual relationships to SysML rela-

tionships;
(e) Required diagrams.

7. Evaluate the quality of the results through the following
steps:

(a) Evaluation of key phrase selection;
(b) Evaluation of key relation mapping;
(c) Evaluation of diagram generation.

4.1. Quantification of the success of phrase extraction

To evaluate the success in key phrase extraction, manually
selected lists of key phrases based on OpenIE extractions are
created for each of the selected documents and used as the
ground truth. The automatically extracted lists of phrases are
then evaluated by precision and recall. Precision is defined as
the percentage of extracted key phrases that match a phrase in
the ground truth. Recall refers to the percentage of ground truth
phrases that match a phrase in the extracted list. As the key
relationships are extracted together with the key phrases, the key
relationships are not evaluated separately because it is strongly
coupled with the key phrases.

4.2. Quantification of the success of relationship mapping

To evaluate the effectiveness of the approach in mapping
textual relationships to SysML relationships, the ground truth for
the type of relationship between blocks defined by the subjects
and objects is defined manually. This is used as a benchmark to
evaluate the results from the relationship mapping algorithm. The
algorithm is evaluated for its accuracy in determining the type
of SysML relationship (e.g. composite association, generalisation
or reference association) and the relative hierarchy between the
blocks defined by the subject and the object phrase in the textual
relationship (e.g. whether block defined by the subject phrase is
a composite of that defined by the object, or vice versa).

4.3. Hyperparameter selection

The following values for the hyperparameters are suggested,
and applied to the six case studies investigated:

1. σtf−idf = 0. This means that all the nouns in the input
text are treated as key nouns. This is done to illustrate the
effect of selection in the subsequent steps. However, it is
envisioned that the parameter can be adjusted according
to the user’s needs;

2. σrelationship = 0.5. This is to filter out relationships with low
confidence of being valid relationships.
8

3. σp = 0.6. This implies most phrases are selected as key
phrases, to ensure the completeness of results.

4. σrel−difference = 0.5. This ensures that only connected
phrases with a sufficient score difference are mapped to
composite relationships.

5. Lphrase = 3. This sets the maximum length of a phrase to be
three nouns.

4.4. User interface

An illustrative example of the user interface for the proposed
tool is shown in Fig. 2. The main panel features the list of up-
loaded documents on the left. On the top, the users are able to
vary the hyperparameters according to need, and generate the
desired SysML diagram at the bottom, below the hyperparame-
ters.

5. Experiments

Six case studies are investigated to evaluate the effectiveness
of the proposed approach in automatically generating SysML
diagrams from texts. The details of the datasets used, the ex-
perimental procedure, the evaluation procedure, and the choice
of hyperparameters are discussed in this section. The results
from the extraction of key phrases and classification of relation-
ships are validated against manually constructed benchmarks.
Additionally, the generated diagrams are also compared against
manually designed ground truth diagrams.

It is worth emphasising here that the aim of the proposed
approach is not to replace systems engineers but rather to aid
them in gaining an overview of the system. Therefore, the goal
is not a perfect extraction of phrases or relationships. Rather, it
is to provide an overview of the selected document and system
through the profiles in SysML diagrams.

5.1. Datasets

The applicability of the proposed approach is tested on six
case studies to cover different dataset sizes, domains, and writing
styles:

(1) Patent descriptions from the European Patent Office (EPO)
[64]. Patent files in English are downloaded from the EPO pub-
lic database in txt format. Each patent includes sections such
as patent name, abstract, and patent description. The patent
files are first parsed to remove constructs such as HTML tags
and figure references. Then, only the patent description section
is used as textual input to the algorithm. Each description is
treated as a separate document, and 345 separate patent de-
scription documents are obtained. The patents cover areas such
as data transmission devices, devices for drug admission, and
bioinformatics.

(2) Windows manual. A digital book named Windows 10 Field
Guide in pdf format is used [65]. The book is split into 28 sections
according to the chapter, and converted to individual txt files
with images removed. Each file is treated as a separate document.
The book is a manual for the Microsoft operating system Win-
dows 10 and describes its different functions and applications, for
example Skype and Maps.

(3) UK government report. A series of UK government report
on the Future of Manufacturing is downloaded as pdf files [66].
A total of 37 reports are downloaded, and each of them is fur-
ther split into different chapters, with cover pages, acknowledge-
ments, content pages and references removed. This results in a
total of 284 chapters. Each chapter is converted to txt format
and treated as a separate document. The contents cover areas
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Fig. 2. An example of the user interface for the proposed tool.
such as technology trends in manufacturing and investment in
innovation.

(4) App descriptions. App descriptions from the Apple App
Store are downloaded from an online public dataset [67]. A total
of 346 app descriptions in txt format with a file size larger than
4 KB are selected from a dataset of 4075 app descriptions. This is
done to ensure that each document has sufficient length. Each de-
scription is treated as a separate document. The app descriptions
included apps of different genres and included contents such as
user reviews and feature descriptions.

(5) Research publications from IEEE. 285 papers are down-
loaded using IEEE Xplore [68]. The search criteria were to have
the words ‘design’ and ‘manipulator’ in the title of the paper and
the range was from 2015 to 2021. The papers were downloaded
as pdfs and converted to txt files. Each paper is treated as a
separate document. The papers covered areas in the design of
robotic manipulators, for example mechanics and control.

(6) Description of countries on Wikipedia. 193 English
Wikipedia pages about countries are parsed from the parent
Wikipedia page Member states of the United Nations [69]. Each
page is saved as a separate txt file and all formatting and images
were removed. Each page is also treated as a separate document.
The descriptions include each country’s economy, geography,
government, etc.

Details of each dataset are summarised in the table below. Two
documents are selected from each of the datasets for demonstra-
tion.1 The documents are selected based on their word counts
being close to the average word count of the dataset. Additionally,
one block is selected for each document as the parent block, and
the phrases that correspond to the parent blocks are listed in
Table 1. The use of these phrases is explained in Section 3.6.

1 The demonstration documents are available at https://github.com/
haohongZ/NLP-for-Systems-Engineering
9

6. Results

6.1. Key phrase extraction

The results from the key phrase extraction are detailed in
Table 2. It can be seen that the number of phrases extracted
from a document is around the same order of magnitude as the
number of unique nouns in the document. The possible reason
why the number of phrases tends to be less than the number of
nouns, except for one case, is that many of the phrases are in
descriptive sentences or sentences with pronouns. For example,
in a descriptive sentence such as ‘The device is expensive’, the
candidate phrase ‘device’ will not be considered as a key phrase as
no relationship can be extracted from the sentence. Additionally,
in sentences that involve pronouns such as ‘You can turn on the
computer’ and ‘It is used to predict motion’, the candidate phrase
‘computer’ or ‘motion’ will not be selected because detecting
pronoun references is out of the scope of this paper. Requiring
all key phrases to be related to at least one other phrase is useful
because it avoids the case of ‘floating blocks’ where a given block
is not connected to any other block in the SysML diagram. Such
floating blocks are not conducive to helping the user understand
the dependencies within the system or the hierarchies between
the different blocks within the system, and may confuse the user.

As can be seen from Table 2, the precision and recall rates
indicate that the algorithm has successfully extracted key phrases
from the document. The algorithm is especially useful with doc-
uments that tend to be more carefully written, as can be seen
from the higher success rates in extracting phrases from patent
descriptions. The failure case of key phrases that are not identi-
fied includes those in descriptive sentences, those connected to
pronouns, and incomplete sentences. Incomplete sentences are
probably the main reason for the low recall in extracting key

https://github.com/ShaohongZ/NLP-for-Systems-Engineering
https://github.com/ShaohongZ/NLP-for-Systems-Engineering
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Table 1
Details of datasets, selected documents, and selected phrases.

Doc.
no.

Word count Selected phrase

EPO patent 8370 (average)

A state estimator 1 8418 Prediction

A body fluid leakage detection
aqueous composition

2 8343 Starch

Windows manual 3027 (average)

Devices 3 3061 Display

Maps 4 2859 Map

UK government report 1982 (average)

Knowledge spillover — knowledge
sources manufacturing Part5

5 1993 Intangible asset

De-industrialisation and balance-of
payments Part3

6 1958 Manufacturing

App description 559 (average)

Infinity Blade II 7 559 Entity

Ebates: Cash Back, Coupons & Rebate
Shopping App

8 559 Entity

Research paper 3414 (average)

Design of a weight-compensated and
coupled tendon-driven articulated
long-reach manipulator

9 3430 Actuator

Multi criteria design of a spherical
3-DoF parallel manipulator for
optimal dynamic performance

10 3413 Optimisation

Wikipages 9830 (average)

Bhutan 11 9867 Industry

India 12 9811 Religion
Table 2
Results from key phrase extraction.
Document
no.

Word
Count

Unique
nouns

No. of
key phrases

Precision
%

Recall
%

1 8418 345 401 80.8 76.8
2 8343 430 351 91.5 77.3
3 3061 214 141 70.2 57.9
4 2859 193 119 66.4 49.7
5 1993 214 157 55.4 81.3
6 1958 223 140 70.7 71.2
7 559 122 12 66.7 34.8
8 559 105 33 84.8 63.6
9 3430 216 131 61.8 54.0
10 3413 367 211 81.0 82.6
11 9867 1198 992 77.3 72.9
12 9811 1224 854 58.7 69.3

phrases from Document No. 7 because the descriptions contained
many broken sentences such as ‘The best game ever’. Addition-
ally, the algorithm is able to achieve relatively high precision,
across most of the document types, validating the proposed al-
gorithm for selecting key phrases. The precision and recall rates
can be further improved by adjusting the hyperparameters. The
success in extracting key phrases contributes to helping the user
gain an initial understanding of the system.

As no other approach automatically generates SysML diagrams
irectly from text, the comparison with the literature can only
e made by considering the extraction of key phrases for similar
urposes. It was observed, that the precision and recall results
re comparable with or outperform most prior works. Specifically
n [7], which aimed to extract domain terms as UML classes, a
recision of 40% and recall of 50% were reported. In the ontology
omain, the CRCTOL [43] reports more than 90% in precision
nd less than 5% in recall (in different ablations). The proposed
ethod also achieves comparable results to [13] (precision of 62%
10
Table 3
Results from key relationship extraction.
Document
No.

No. of
sentences

No. of
extracted
relations

No. of
key
relations

1 409 670 425
2 463 681 309
3 186 257 102
4 174 289 107
5 92 286 137
6 98 158 100
7 20 21 7
8 34 43 25
9 301 251 115
10 217 207 150
11 508 1179 799
12 443 1106 689

and recall of 82.2%), [29] (precision between 40% and 73%, and
recall between 57% and 93%), and [70] (precision between 82.5%
and 85.0%, and recall between 68.0% and 53.2%).

On the other hand, the proposed approach under-performs
compared to [14] (precision and recall rates around 90%) and [36]
(precision of 83.82% and 91.01%). This is because, [14] assumes
a fixed format for the user stories, thus making the extraction
process much simpler. Similarly, [36] assumes a structure in the
input text, arguably simplifying the extraction.

6.2. Key relationship extraction

The results from key relationship extraction are detailed in
Table 3. As can be seen from the table, the OpenIE tool extracts
multiple semantic relations from the same sentence even after
applying a relation likelihood threshold of 0.5 on the OpenIE tool.
This is likely attributed to the combination of different methods
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Table 4
Results from key relationship classification.
Document
No.

Generalisation Composite
association

Reference
association

Classification
accuracy %

1 26 168 226 75.8
2 11 92 204 70.9
3 3 31 68 64.7
4 6 45 55 70.1
5 4 39 93 84.7
6 1 26 72 71.0
7 0 2 5 57.1
8 0 11 13 68.0
9 7 34 73 62.6
10 1 33 115 73.3
11 12 209 577 73.0
12 5 187 497 73.6

used in OpenIE [51–54]. This is helpful in capturing the complete
semantic meaning of each sentence. It can also be seen that the
key relation selection algorithm is effective in removing from
27% to 65% of the extracted relations. This can also be manually
adjusted by tuning the parameters sigmatf−idf , σp, and σrelationship.
he use of multiple parameters is aimed at giving the user more
ontrol over the completeness of the generated SysML diagrams.

.3. Relationship mapping

The results from the mapping of key relationships for BDD
iagram are detailed in Table 4. A majority of the extracted
extual relationships are mapped to either composite associations
r reference associations. This is expected because a textual rela-
ionship is only mapped to generalisation if one phrase contains
nother, which is assumed to be a stricter criterion. At a dif-
erence threshold of 0.2, the number of composite associations
nd the number of reference associations are around the same
rder of magnitude, with the number of composite associations
enerally larger. At a difference threshold of 0.5, the number
f composite and reference associations are around the same
rder of magnitude, with the number of reference associations
enerally larger.
Having a sufficient number of composite relationships and

eneralisation relationships is useful because they also serve as
axonomic relationships which provide structures to the SysML
iagrams. This helps the algorithm to identify the hierarchy be-
ween blocks and facilitates the graphic layout algorithm. Having
uch a hierarchical structure is useful in helping the user un-
erstand the overall structure of the system. Additionally, the
lgorithm can also be seen to have achieved high accuracy in
apping the correct relationship types. The outlier in the app
escription dataset is potentially due to the small number of key
elations for the document. This contributes to creating a more
bjective starting point in SysML diagrams for users.
Due to the differences in the proposed approach, comparisons

re made with methodologies that aim to leverage NLP tech-
iques for extracting/classifying requirements and relationships.
or extracting relationships, the results are comparable to those
eported in [43] (F-score of around 69%) and [29] (F-score from
8.0% to 81.1%). Similar results were also obtained in [41], report-
ng results in taxonomy construction with F-scores of between
6.7% and 69.2%. The proposed approach under-performs com-
ared to [14], which reports a precision between 67.2% and 83.7%
n extracting relationships (F-score∼80%). This is because in [14]
s assumed a fixed input format, thus making the extraction pro-
ess simpler. Similarly, [33] reports results with F-score of 80.3%,
y making assumptions on the structure of the input documents.
dditionally, when considering requirement classification results,
he results obtained are comparable to [19] that uses 5%–15% of
he dataset for training.
11
6.4. Augmentation

The results from augmentation for BDD diagrams are de-
tailed in Table 5. As can be seen, the abstraction step adds a
high number of augmented relationships and phrases. It helps
provide a higher-level overview of the entire system and more
structure to the SysML diagrams through taxonomic generalisa-
tion relationships. This also enables the user to quickly identify
higher-level phrases within the document to plot other diagrams,
for example package diagrams. Additionally, abstraction is based
on the extracted phrases, ensuring that the abstracted phrases
and relationships are relevant to the original corpus. This provides
users with a more complete starting point to understand and
design the complex system.

It can be seen that only a small number of relationships
are identified between the top-level unigram phrases after the
abstraction step, potentially due to the criteria used as only
WordNet hypernyms/hyponyms and meronyms/holonyms rela-
tionship are identified [58,59]. It can also be seen that a large
number of common hypernyms and hypernym relationships are
augmented. The common hypernyms are able to provide another
level of abstraction to the selected phrases based on semantics
that are different from the abstraction based on lexical terms,
helping the system engineer to gain a more complete high-level
picture of the system and its different abstract categories in
addition to contributing more structure to the SysML diagrams.

6.5. Requirement identification

The results from requirement identification are detailed in
Table 6. The number of requirements identified is the same as
the number of key relationships, which is expected because the
requirements in this study are derived from relationships. This
contributes to a more complete set of candidate requirements
for the user to consider. Additionally, it can also be seen that a
large number of relationships between requirements are identi-
fied and augmented through the algorithm. This leads to most
of the requirements being connected using the augmented re-
lationships, which is useful because even though relationships
between phrases may be found through using sentences explicitly
stated in the text, relationships between requirements, which are
derived from sentences, can be difficult to identify. The proposed
algorithm is able to suggest candidate relationships between
requirements, allowing the user to build on the knowledge to
classify relationships between requirements further. Addition-
ally, the relationships also provide structure to the requirement
diagrams by connecting the requirements and bringing related
requirements to the same cluster.

6.6. BDD diagram generation

A few examples of BDD diagrams generated in the case studies
are illustrated in Fig. 3 below. It can be seen that the augmen-
tation steps were useful in building the structure of the BDD
diagrams. For example, many blocks have corresponding phrases
that share the same abstracted phrase, which defines the par-
ent block that clusters these blocks together. This can also be
tuned by the choice of specificity Lphrase. This is useful because
these phrases are not explicitly related in the original document,
yet they are connected via the parent blocks in the generated
diagrams. For example, in Fig. 3(b), the block defined by the
abstracted phrase ‘display’ clusters the sub-blocks such as ‘display
option’ and ‘taskbar display’ into one branch. In Fig. 3(a), the block
defined by the abstracted phrase ‘prediction’ clusters multiple
sub-blocks into one branch. Additionally, blocks corresponding
to top-level unigram phrases can also be connected to the same
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Table 5
Results from phrase and relationship augmentation.
Document
no.

No. of
abstraction
relations

No. of
abstracted
phrases

No. of
augmented
top-level
relationships

No. of lowest
common
hypernym
relationships

No. of
lowest
common
hypernyms

1 246 125 1 276 96
2 224 145 3 569 168
3 98 61 1 159 58
4 66 45 0 112 53
5 104 62 1 235 85
6 107 69 0 249 80
7 10 10 0 14 9
8 19 16 0 43 23
9 83 51 2 121 51
10 182 117 0 316 104
11 736 462 26 1678 403
12 595 376 37 1672 399
Table 6
Results from requirement identification and augmentation.
Document
no.

No. of
requirements

No. of relationships
between requirements

1 425 636
2 309 450
3 102 84
4 107 52
5 137 85
6 100 56
7 7 1
8 25 2
9 115 149
10 150 161
11 799 469
12 689 575

block defined by their common hypernyms such as ‘entity’ in
Fig. 3(c), where ‘entity’ is a high-level common hypernym for
many synsets in the WordNet [58,59].

These high-level phrases are augmented based on semantics,
hich ensures that they are relevant to the document, in addition
o providing a hierarchical structure that aids user understanding.
ithout the augmented phrases, these extracted key phrases
ay become open-ended, which makes it harder for the user to
nderstand the structure of the system from the SysML diagrams.
dditionally, the two levels of abstraction capabilities, both lex-
cal and semantic, are useful to help the systems engineer in
aining an overview of the higher-level abstract concepts in the
ystem that are not explicitly stated in the text, and offer sug-
estions for candidate high-level phrases and their corresponding
locks to the systems engineers.
It can also be seen that there is a mix of extracted relationships

nd augmented relationships in the diagram, which implies that
oth steps are useful for the construction of the SysML diagrams.
y combining the taxonomy derived from both generalisation and
omposite association relationships and both extracted and aug-
ented relationships, the algorithm ensures a strong structure in

he generated diagrams.

.7. IBD diagram generation

The IBD diagram specifies the connection between different
ub-blocks of a given parent block. An example of the IBD diagram
s illustrated in Fig. 4. It is assumed that two blocks are connected
ith ports if an action phrase exists in the relationship whose
ubject and object phrases define these two blocks. The presence
f action phrases and corresponding ports is useful to show the
nteraction between different blocks, in addition to their hierar-
hical relationship described by the BDD diagram. Additionally,
12
it can be seen that there are more blocks in the IBD than in the
BDD diagram, because the IBD diagram uses a different algorithm
to identify sub-blocks. This acts as a redundancy measure for
the identification of sub-blocks that are not captured by the
BDD algorithm, to help generate a more complete overview of
the system. Additionally, reference relationships with blocks that
are outside the user-specified block are also included in the
IBD to highlight potential interactions and communications with
external blocks.

6.8. REQ diagram generation

The REQ diagram specifies the requirements satisfied by the
blocks and the relationships between different requirements. An
example of the REQ diagram is illustrated in Fig. 5. It can be
seen that some of the requirements share the same name and.
are satisfied by the same block, implying that the algorithm has
successfully clustered them together. Additionally, most of the
requirements are connected to each other via augmented trace
relationships. These can serve as candidates for more specific
types of relationships for the user. The relationships also help
create a hierarchical structure in the requirement diagram, where
the most connected requirement is assumed to be placed higher
in the hierarchy. Moreover, because the requirements are derived
from relationships extracted from individual sentences, they are
mostly functional requirements. The extraction of non-functional
requirements is out of the scope of this study. By presenting the
extracted relationships as requirements to the user, the algorithm
is also able to provide more sentence context to help the users
understand the phrases and relationships presented in BDD and
IBD diagrams.

From the generated figures, it can be seen that the algorithm is
able to generate structured SysML diagrams that can potentially
aid engineers in designing and architecting complex systems,
alongside any existing diagrams and documentations they already
possess. By defining the steps and procedures in extracting key
phrases and classifying relationships, the approach provides a
standardised, and arguably objective starting point for the user
to understand and design different systems. Additionally, the
approach also provides a degree of versatility in allowing the user
to freely choose and mix the textual materials to upload, and to
adjust the multiple parameters to achieve the desired specificity.

6.9. Time and space complexity of the SysML diagrams generation

The time taken for the automatic generation of SysML di-
agrams depends on the length of the document and on the
computational resources available. For example, in the patent
documents with around 9000 words and using a laptop machine



S. Zhong, A. Scarinci and A. Cicirello Knowledge-Based Systems 259 (2023) 110071

w
5
r
o
i
(
d
h

Fig. 3. Automatically generated BDD diagrams.
ith 8 GB RAM, the generation of SysML diagrams took around
min. However, the majority of the time was spent on extracting
elationships using the OpenIE tool, which only needs to be done
nce for each document, and which does not require human
nvolvement. In deployment, once the relationships are extracted
and saved to separate files), the time required to generate SysML
iagrams is less than 1 min, enabling the user to adjust the
yperparameters and visualise updated SysML outputs quickly.
13
Additionally, in deployment, the operational space required
for generating the SysML diagrams is also minimal, as the inter-
mediate files are all text documents, and the resolution of the
generated SysML images can be adjusted according to the user’s
need. The space required is less than 9 GB in total. However, most
of the space needed is from the OpenIE toolbox and language
models (8.76 GB), which can live on a server and not necessarily
on the user’s local machine.
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Fig. 3. (continued).
Fig. 4. IBD diagram for research paper dataset, selected phrase = ‘actuator’.
. Discussion

The work presented addresses the three research questions set
n Section 2.4 by yielding an approach that is

• Flexible and open-domain. By using techniques from open
information extraction, it does not require the input doc-
ument to follow specific syntactic rules or to belong to a
specific domain. Instead, it is able to extract the required
14
information for plotting from free, unstructured natural lan-
guage text.

• Automated: Takes natural language text as input and di-
rectly generates different types of SysML diagrams with no
human intervention or intermediate modelling required.

• Parameter-based: The proposed approach has minimal re-
liance on heuristic rules and predefined patterns to iden-
tify hierarchies. Instead, the approach parameterises the
extraction of key entities and relationships and allows the
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Fig. 5. REQ diagram for Windows manual dataset, selected phrase = ‘display’.
];
user to adjust the degree of specificity using a set of param-
eters.

From the results presented in Section 6 it is possible to state
hat according to both quantitative and qualitative criteria the
roposed approach is capable of outputting reasonable SysML
iagrams, similar enough to those that could emerge from an
ngineer-made first draft. It is difficult to directly compare the
esults to similar work since, to the best of our knowledge, no
ttempts have been made, so far, to automatically generate SysML
iagrams from natural text documents. Nevertheless, we regard
his work as an encouraging first step towards enabling further
nd better automation of other systems engineering processes.
Some extensions of the current work could include:

• Development of an interactive tool from which engineers
can correct and provide learning feedback to the algorithm
as to what constitutes a good result or not. Such a tool could
also allow for more explicit calibration and experimenting
by the user of the various parameters that need tuning in
order for the results to achieve sufficient quality;

• Quantification of the notion of completeness and consis-
tency in some meaningful way to allow comparison against
human-designed diagrams;

• Adaptation of the method to other types of system mod-
elling languages (e.g. Object Process Methodology (OPM)) [71

• Adaptation of the method to include Named Entity Recogni-
tion functionality.

ne other aspect that is worth exploring (and that would per-
aps call for an experimental setup including actual engineers
orking on a given task) would be to test how much of a detri-
ental impact could the reliance on automation have on the
ngineers’ capacity to acquire and, most importantly, structure
echnical knowledge in the minds. As often happens when a pre-
iously manual task is automated, there is a risk of progressively
eteriorating the level of preparation of the involved operators.

. Conclusions

In this study, an approach to automatically generate SysML
iagrams end-to-end directly from unstructured natural language
ext was proposed. This approach consists of six steps, and it
everages open-access tools such as NLTK, OpenIE, and Plan-
UML. One of the key strengths of the proposed approach is the
ombined use of Natural Language Processing techniques and
he WordNet (available in NLTK) with the OpenIE toolbox. This
nabled the automatic extraction of key textual relationships and
hrases, and for the first time, the mapping and augmentation
f these phrases and relationships to SysML model elements.
he results are successfully leveraged to plot different structured
ysML diagrams, by using the PlantUML tool. This approach re-
uires five hyperparameters to be specified by the user, and
15
it is open-domain. The versatility of the approach was demon-
strated through the use of six case studies from different domains
and using different writing styles. The results obtained with the
proposed approach were validated against manually extracted
results, which achieved high recall and precision in key phrase ex-
traction, high accuracy in relationship classification, and success
in generation of high-quality SysML diagrams.

This approach would benefit systems engineers in gaining a
detailed graphical overview of the system dependencies at the
initial design phase, since it provides a standardised, compre-
hensive and automated starting point from textual resources
(e.g., specifications, manuals, technical reports, maintenance re-
ports). This will support systems engineers in understanding
complex systems and in quickly assessing and designing the
SysML diagrams for these systems. As far as the authors are
aware, this study is the first attempt at directly generating SysML
diagrams from natural language text.

CRediT authorship contribution statement

Shaohong Zhong: Methodology, Software, Data curation, Val-
idation, Visualization, Investigation, Writing – original draft. An-
drea Scarinci: Conceptualization, Methodology, Validation, Su-
pervision, Writing – original draft. Alice Cicirello: Conceptualiza-
tion, Methodology, Validation, Writing – original draft, Supervi-
sion, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data is made available at https://github.com/ShaohongZ/NLP-
for-Systems-Engineering.

Acknowledgements

The authors would like to thank Prof. Janet Pierrehumbert
(University of Oxford) and Prof. Youssef Marzouk (MIT) for the
helpful comments and insights at the early stages of this project.
Part of this work was supported by the Department of Engi-
neering Science at the University of Oxford, United Kingdom
through the Engineering Undergraduate Research Opportunities
(EUROP) in 2019 (recipient SZ, supervisors AC and AS), and by
Balliol College, University of Oxford, United Kingdom through the
Career Development Fellowship in Engineering Science of AC and
a research bursary to SZ.

Appendix. Table of symbols

See Table A.7.
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Table A.7
The definition of symbols used in the paper.
Symbol Meaning

w Tf-idf weighting
t Word
d Document
c Corpus of documents
wt,d Tf-idf weighting of a word in a document
tft,d Term frequency of a word in a document
idft,c Inverse document frequency of a word in a corpus of

documents

Nc Total number of documents in a corpus
dft,c Document frequency, the number of documents in the

corpus that contain a particular word

σtf−idf Manually specified tf–idf weighting threshold for
selection of key nouns

σrelationship Manually specified confidence threshold to preliminarily
filter extracted relationships

r Textual relationships
p Phrases
p1,2,3,... Ordered phrases in a textual relationship
Nr Number of phrases in an extracted relationship
t1,2,3,... Ordered words in a phrase
Np Number of words in a phrase
Lphrase Manually specified maximum number of nouns in a key

phrase

countp,d Frequency of a phrase, referring to the total count of a
phrase in a document

h′ WordNet depth, the semantic depth assigned by
WordNet to an individual word given a context

h WordNet score, 1-complement of the normalised
WordNet depth of a word

λp,d Score of a candidate key phrase given a document
σp Manually specified score threshold for selection of key

phrases from candidate key phrases

B SysML block
R SysML relationship between blocks
Bp SysML block defined by a phrase
σrel−difference Manually specified score threshold for classifying

between composite and reference relationships

P Top level phrases, the set of key phrases whose
corresponding blocks do not form a sub-block of another

γ Score of a word, which is a sum of tf–idf weighting and
WordNet score

γt,d Score of a word in a document
Γp,d List of the scores of words in a phrase of a document
pabstract Abstracted phrase
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