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a b s t r a c t

In this paper, an analytical method is presented to study an initial-boundary value prob-

lem describing the transverse displacements of a vertically moving beam under boundary

excitation. The length of the beam is linearly varying in time, i.e., the axial, vertical veloc-

ity of the beam is assumed to be constant. The bending stiffness of the beam is assumed to

be small. This problem may be regarded as a model describing the lateral vibrations of an

elevator cable excited at its boundaries by the wind-induced building sway. Slow variation

of the cable length leads to a singular perturbation problem which is expressed in slowly

changing, time-dependent coefficients in the governing differential equation. By providing an

interior layer analysis, infinitely many resonance manifolds are detected. Further, the initial-

boundary value problem is studied in detail using a three-timescales perturbation method.

The constructed formal approximations of the solutions are in agreement with the numerical

results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Within the last decade, high-rise buildings have entered a new era of “megatall” buildings, which are over 600 m in height.

The construction of such tall buildings has many practical limitations due to various issues. The higher buildings rise, the more

vulnerable they become to wind influence. This wind-force can lead to building sway, which can initiate the motion of elevator

cables. Resonances in elevator cables can damage shaft devices or cause entanglements in the shaft. In fact, internal transporta-

tion systems play a crucial role in the building functionality. That is why considerable attention should be paid to improvement

of elevator technologies to prevent any damage, and consequently downtime of elevators. However, the increasing complex-

ity of the engineering structures increases the complexity of their analysis. Therefore, it is also important to develop advanced

analytical models in order to tackle this complexity; one of which is presented in this paper.

This work is an extension of the study by Sandilo and van Horssen [1], where the lateral vibrations of an elevator cable system

with a small sinusoidal excitation at its upper end was studied. The results showed that (𝜖) excitation at the upper end of the

cable resulted in (√𝜖) autoresonance responses. In contrast to that work, a mathematical model developed in the current

paper is made closer to reality. One of the reasons is that the formulation of the problem includes bending stiffness of the cable

allowing to obtain more accurate results for higher-order frequencies. The other reason is that both boundaries of the cable are

excited by a harmonic function representing wind-induced sway of the building. In reality, when the building is acted upon by

high velocity winds, it tends to sway in the lateral direction. This lateral motion translates into lateral motion of the cable. Note
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Fig. 1. Schematic of a vertically moving cable with an attached elevator car at the lower end in a swaying building.

that in our mathematical model the sway related harmonic function changes with the travel height of the elevator.

A lot of other research has been conducted on similar types of problems. Kaczmarczyk [2] analyzed resonance in a catenary-

vertical cable with slowly varying length under a periodic external excitation. Zhu and Ni [3] investigated a class of axially

moving continua with arbitrarily varying length. Zhu and Xu [4] studied the dynamics of elevator cables with small bending

stiffness. Zhu and Teppo [5] developed a new scaled model describing the lateral vibrations of an elevator cable with a variable

length for a high-rise, high-speed elevator. Kaczmarczyk and Ostachowicz derived a mathematical model [6] and provided

a numerical simulation of the dynamic response [7] for transient vibrations in deep mine hoisting cables. Zhu and Chen [8]

presented a control method to dissipate the vibratory energy of the cable. Moreover, the authors introduced a new experimental

method to validate the theoretical results for the (un) controlled lateral vibrations. Kimura et al. [9] studied forced vibrations

of an elevator rope with both ends excited by wind-induced displacement sway of the building. Kaczmarczyk [10] developed a

model describing the lateral dynamics of long vertically moving ropes for high-rise transportation. Crespo et al. [11] investigated

nonlinear responses of an elevator rope system coupled with the elevator car sheave motion. Bao et al. [12] studied the nonlinear

response of a flexible hoisting rope with time-varying length. Gaiko and van Horssen [13] considered lateral vibrations of a

vertically moving string with in time harmonically varying length.

In this paper we study, in particular, the lateral vibrations of a vertically moving beam (with linearly in time vary-

ing length) excited at both boundaries by a harmonic function in the horizontal direction (see Fig. 1). From the physical

point of view, the motivation of this work is described as follows. When the fundamental frequency of the building sway

matches one of the natural frequencies of elevator cable oscillations, then resonance emerges. This match happens due to a

slow variation of the cable’s length. In order to describe this phenomenon, an analytical methodology is developed in this

paper. First, an internal layer analysis is provided to study the behavior of the solution in the neighborhood of resonance.

To perform this analysis we introduce local variables in the vicinity of resonance and shift out of it on a value which fol-

lows from a certain balancing principle. Note that this value determines the size of the resonance interior layer. Next we

proceed with a detailed three-timescales perturbation method. The crucial step in the construction of an approximation by

this method is removing unbounded terms by providing the so-called secularity conditions. So, in order to obtain asymp-

totically valid approximations of the solution, one should distinguish between the behavior outside and inside resonance

zones.

This paper is organized as follows. In Section 2 we make some assumptions and present an initial-boundary value problem

describing the motion of the cable. Next, some transformations are introduced in order to simplify the construction of the

approximation of the solution in Section 3. Further, we proceed with an internal layer analysis to study resonance in Section 4.

Then, in Section 5 three-timescales are introduced to construct an accurate approximation of the solution on long timescales.

Section 6 summarizes the results and provides some numerical experiments for the cable with small bending stiffness. Finally,

in Section 7 we draw some conclusions based on both analytical and numerical results and also discuss future work.

2. Assumptions and mathematical model

In order to restrict the complexity of the analysis of the problem, it is necessary to make some assumptions:
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- the mass of the cable is small compared to the mass of the elevator car (otherwise, oscillations of the building have to be

coupled with the lateral motion of the elevator car);

- the elevator car is assumed to be a point mass;

- the cable is modeled as a uniform Euler-Bernoulli beam with small bending stiffness compared to its tension;

- the length of the cable is varying linearly in time, that is, l = l0 + 𝜖t, where l0 is a constant, pretensioned length of the cable,

𝜖 is a small parameter, and t is time;

- the motion of both ends of the cable in lateral direction is defined by the fundamental frequency of the building sway;

- the speed of the elevator car is smaller than the velocity of the wave propagation in the cable;

- the acceleration of the elevator car is smaller than the gravitational acceleration.

The lateral displacement, u, of the elevator cable modeled as a beam is governed by Ref. [3].

𝜌(utt + 2vuxt + v2uxx + v̇ux) − [P(x, t)ux]x + EIuxxxx = 0, (1)

where the overdot notation means differentiation with respect to time, and the axial loading, comprised of the car’s and the

cable’s weights and the longitudinal acceleration, is given by

P(x, t) ≔ (m + 𝜌[l − x])(g − v̇),

where v = v(t) is the axial velocity of the cable, 𝜌 is the mass-density of the cable material, m is the mass of the car, g is the

gravitational acceleration, EI is the flexural rigidity, where E is Young’s modulus and I is the second moment of inertia of the

cable section. The governing equation (1) can be rewritten as

𝜌(utt + 2vuxt + v2uxx) + 𝜌gux − P(x, t)uxx + EIuxxxx = 0. (2)

In order to nondimensionalize (2), we will use the following dimensionless quantities

x∗ = x

L
, u∗ = u

L
, l∗ = l

L
, 𝜇∗ = 𝜌L

m
, t∗ = t

L

√
mg

𝜌
, v∗ = v

√
𝜌

mg
, p = 1

L2

EI

mg
. (3)

We also introduce the sway related term as follows (see Appendix A):

s(x, t) ≔ A (sin(𝜆x) − sinh(𝜆x) − 𝛼[cos(𝜆x) − cosh(𝜆x)]) sin(𝜆2t), (4)

where 𝛼 = sin(𝜆H)+sinh(𝜆H)
cos(𝜆H)+cosh(𝜆H) , 𝜆 = 1.875

H
is the fundamental frequency of the building sway, and H is the elevator travel height (or a

height of the building). In summary, we obtain the following initial-boundary value problem describing the vibratory dynamics

of the elevator cable pinned (i.e., the rotary inertia is zero) at its boundaries. By substituting (3) into (1), omitting the asterisk

notation, the dimensionless governing partial differential equation (PDE) is considered for 0 < x < l(t), and t > 0 as follows:

utt + 2vuxt + v2uxx − (𝜇 − v̇)
(

l − x + 1

𝜇

)
uxx + 𝜇ux + puxxxx = 0, (5a)

subject to the boundary conditions (BCs):

u(0, t) = s(H, t), and uxx(0, t) = 0,

u(l, t) = s(H − l, t), and uxx(l, t) = 0,
(5b)

for t > 0, and with the initial conditions (ICs):

u(x, 0) = f (x),

ut(x, 0) = g(x),
(5c)

for 0 < x < l0. Note that according to the stated assumptions, the following orders of smallness (for the dimensionalized system

parameters) will be used further in the analysis of the problem

𝜇 ≔ 𝜖𝜇0, p ≔ 𝜖p0, A ≔ 𝜖A0, v = (𝜖), v̇ = (𝜖).
Note that 𝜇0 = 𝜇∗

𝜖
, p0 = p

𝜖
and A0 follow from (3) and are of (1). Initial displacement and velocity are also assumed to be small,

that is

f = (𝜖), g = (𝜖).
3. Problem transformation

For the sake of convenience, we slightly modify the initial-boundary value problem (5a)–(5c) in this section. First, we will

introduce a space coordinate transformation in order to be able to expand the solution in a Fourier series. Then, the WKBJ

method will be applied to remove the variable coefficients from the higher order terms in the initial value problem.



275N.V. Gaiko and W.T. van Horssen / Journal of Sound and Vibration 424 (2018) 272–292

3.1. Notation

This work contains lengthy computations and sometimes some cumbersome expressions. Some of these terms are used

repeatedly through out this paper. That is why we introduce the most frequent notations here. First of all, we denote the sway

related terms as

S0 ≔ A0

l0
𝜆2
(
𝛽[1 − l0] + Φ(𝜆l0)

)
, (6)

S1(t) ≔ A0𝜆
4

l
(2𝛽[1 − l] + Φ(𝜆l)) sin(𝜆2t), (7)

S2(t) ≔ −A0𝜆
2

l
(2𝛽 + Φ(𝜆l)) cos(𝜆2t), (8)

where

𝛽 ≔ sin(𝜆H) cosh(𝜆H) − cos(𝜆H) sinh(𝜆H)
cos(𝜆H) + cosh(𝜆H)

, (9)

Φ(t) ≔ −𝛽[cosh(t) + cos(t)] − 𝛾1 sinh(t) + 𝛾2 sin(t), (10)

and where

𝛾i ≔ cos(𝜆H) cosh(𝜆H) + (−1)i sin(𝜆H) sinh(𝜆H) + 1

cos(𝜆H) + cosh(𝜆H)
for i = 1, 2. (11)

Related to (7) and (8) the following functions are defined:

Sk1(t) ≔ A0𝜆
4f

[1]
k

(2𝛽[1 − l] + Φ(𝜆l)) sin(𝜆2t), (12)

Sk2(t) ≔ −
A0𝜆

2f
[2]
k

l
(2𝛽 + Φ(𝜆l)) cos(𝜆2t), (13)

which depend on the mode number k, and terms which will follow from orthogonality properties:

f
[1]
k

≔ (−1)k

k𝜋
, f

[2]
k

≔ 1 − (−1)k

k𝜋
, f

[3]
nk

≔ 2nk

n2 − k2
, (14)

f
[4]
nk

≔ [(−1)n+k − 1]nk(n2 + k2)
(n2 − k2)2

, f
[5]
nk

≔ (−1)n+knk

(n2 − k2)
, (15)

where the superscripts are solely meant for notational purposes. In addition,

Lk(t) ≔ p0
k2𝜋2

l2
+ 𝜇0

2
l. (16)

3.2. A transformation to homogeneous boundary conditions on a fixed domain

The initial-boundary value problem with inhomogeneous boundary conditions can be put into a simpler form with homoge-

neous boundary conditions by introducing a transformation for the dependent variable. Moreover, the method of eigenfunction

expansion which will be used further needs homogeneous boundary conditions. Let us use the following transformation

û(x, t) ≔ u(x, t) − s(H, t) − s(H − l, t) − s(H, t)
l

x, (17)

where s is given by (4). Next, we substitute (17) into (5a)–(5c), and change the spatial coordinate by 𝜉 = x∕l. Hence û(x, t; 𝜖)
becomes a new function u(𝜉, t; 𝜖), and the initial conditions change as follows f (x) = f (𝜉) and g(x) = g(𝜉). So, the initial-boundary

value problem for 0 < 𝜉 < 1 and t > 0 becomes

utt −
1

l2
u𝜉𝜉 = −𝜖

(
p0

l4
u𝜉𝜉𝜉𝜉 −

2

l
(1 − 𝜉)u𝜉t +

𝜇0

l
(1 − 𝜉)u𝜉𝜉 +

𝜇0

l
u𝜉 + 𝜉lS1 + S2

)
+ (𝜖2), (18a)

subject to the BCs:

u(0, t; 𝜖) = u𝜉𝜉(0, t; 𝜖) = 0,

u(1, t; 𝜖) = u𝜉𝜉(1, t; 𝜖) = 0,
(18b)
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for t > 0, and subject to the ICs:

u(𝜉, 0; 𝜖) = 𝜖f (𝜉) +(𝜖2),

ut(𝜉, 0; 𝜖) = 𝜖
(

g(𝜉) + S0 +
𝜉
l0

u𝜉(𝜉, 0; 𝜖)
)
+ (𝜖2),

(18c)

for 0 < 𝜉 < l0.

3.3. The Fourier series expansion

In accordance with the homogeneous boundary conditions, we expand all functions in (18a)–(18c) in a Fourier sine series

u(𝜉, t; 𝜖) =
∞∑

n=1

un(t; 𝜖) sin(n𝜋𝜉). (19)

Substituting (19) into (18a)–(18c), multiplying the so-obtained equations by sin(k𝜋𝜉), integrating with respect to 𝜉 from 0 to 1,

and using the orthogonality of the sin-functions on 0 < 𝜉 < 1, we obtain the following ordinary differential equations (ODEs)

for k = 1, 2, 3,…, and t > 0:

ük +
k2𝜋2

l2
uk = −𝜖

⎛⎜⎜⎜⎝
1

l
u̇k +

k2𝜋2

l2
Lkuk + 2Sk1 + 2Sk2 +

2

l

∞∑
n=1
n≠k

[
f
[3]
nk

u̇n + 𝜇0f
[4]
nk

un

]⎞⎟⎟⎟⎠ + (𝜖2), (20a)

subject to the ICs:

uk(0; 𝜖) = 2𝜖Fk + (𝜖2),

u̇k(0; 𝜖) = 2𝜖

⎛⎜⎜⎜⎝Gk + f
[2]
k

S0 +
1

l0

∞∑
n=1
n≠k

f
[5]
nk

un(0; 𝜖)
⎞⎟⎟⎟⎠ + (𝜖2),

(20b)

where l = l(t), and the Fourier coefficients are given by

Fk ≔ ∫
1

0

f (𝜉) sin(k𝜋𝜉) d𝜉, Gk ≔ ∫
1

0

g(𝜉) sin(k𝜋𝜉) d𝜉. (21)

3.4. The Liouville-Green transformation

The homogeneous equation for (20a),

ük +
k2𝜋2

l2
uk = 0, (22)

can be interpreted as a linear oscillator (spring) with a slowly varying restoring force. Recall that l = l0 + 𝜖t. Equation (22) has

an infinite sequence of large eigenvalues corresponding to rapid oscillations. The high oscillatory behavior implies that the

variable coefficients in (22) may be approximated by constant ones over a few periods. Note that the periods are small due

to large frequencies. Thus, let us approximate equation (20a) by one with constant coefficients by using the Liouville-Green

transformation following from the WKBJ method [14,15]:

t̃(t) = ∫
t

0

ds

l(s)
= 1

𝜖
ln

(
1 + 𝜖t

l0

)
. (23)

In accordance with a new time variable, uk(t; 𝜖) becomes a new function ũk(̃t; 𝜖). The initial-value problem (20a)–(20b) becomes

d2ũk

d̃t2
+ (k𝜋)2ũk = −𝜖

⎛⎜⎜⎜⎝k2𝜋2L̃kũk + 2̃l
2 [̃

Sk1 + S̃k2

]
+ 2

∞∑
n=1
n≠k

[
f
[3]
nk

dũn

d̃t
+ 𝜇0f

[4]
nk

l̃ ũn

]⎞⎟⎟⎟⎠ + (𝜖2), (24a)

with the ICs:

ũk(0; 𝜖) = 2𝜖Fk + (𝜖2),
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dũk

d̃t
(0; 𝜖) = 2𝜖

⎛⎜⎜⎜⎝l0Gk + f
[2]
k

l0S0 +
∞∑

n=1
n≠k

f
[5]
nk

ũn(0; 𝜖)

⎞⎟⎟⎟⎠ +(𝜖2), (24b)

where l̃ = l̃ (𝜖t) ≔ l0e𝜖t , L̃k = L̃k (̃t) ≔ Lk(t), S̃k1 = S̃k1 (̃t) ≔ Sk1(t), and S̃k2 = S̃k2 (̃t) ≔ Sk2(t), where t(̃t) = l0
𝜖

(
e𝜖t − 1

)
.

4. Internal layer analysis

In this section, we determine the resonance manifolds and their corresponding timescales. Beforehand, one should observe

that the terms under the summation sign in the right-hand side of (24a) are nonsecular and can be omitted. At the same time,

the rest of the terms require a thorough analysis. Continuing with the analysis of the secular terms, we consider

d2ũk

d̃t2
+ (k𝜋)2ũk = −𝜖

(
k2𝜋2L̃kũk + 2̃l

2 [̃
Sk1 + S̃k2

])
, (25)

instead of (24a).

4.1. Variation of constants

When 𝜖 = 0, the solution for (25) is well known, and it is given by a linear combination of sin(k𝜋t) and cos(k𝜋t). For 𝜖 ≠ 0,

according to the Lagrange variation of constants method [16], we assume that the general solution to equation (25) has a similar

form

ũk (̃t) = Ak (̃t) cos(k𝜋 t̃) + Bk (̃t) sin(k𝜋 t̃), (26)

where Ak and Bk are arbitrary functions. Further we need the following derivative

dũk

d̃t
(̃t) = −k𝜋Ak(̃t) sin(k𝜋 t̃) + k𝜋Bk (̃t) cos(k𝜋 t̃), (27)

where without loss of generality were assumed that

Ȧk cos(k𝜋 t̃) + Ḃk sin(k𝜋 t̃) = 0. (28)

Then, substituting (26) and (27) into (25), we obtain

Ȧk sin(k𝜋 t̃) − Ḃk cos(k𝜋 t̃) = 𝜖

(
k𝜋L̃k

[
Ak cos(k𝜋 t̃) + Bk sin(k𝜋 t̃)

]
+ 2̃l

2

k𝜋

[̃
Sk1 + S̃k2

])
. (29)

Equations (28) and (29) constitute a system of two algebraic equations with respect to Ȧk and Ḃk. By solving this system and

using trigonometric identities, we find⎧⎪⎪⎨⎪⎪⎩
Ȧk = 𝜖

(
k𝜋L̃k

2

[
Ak sin(2k𝜋 t̃) − Bk cos(2k𝜋 t̃)

]
+ k𝜋L̃k

2
Bk +

2̃l
2

k𝜋

[̃
Sk1 + S̃k2

]
sin(k𝜋 t̃)

)
,

Ḃk = −𝜖

(
k𝜋L̃k

2

[
Ak cos(2k𝜋 t̃) + Bk sin(2k𝜋 t̃)

]
+ k𝜋L̃k

2
Ak +

2l2

k𝜋

[̃
Sk1 + S̃k2

]
cos(k𝜋 t̃)

)
.

(30)

In (30) one should observe that the terms
(

S̃k1 + S̃k2

)
sin(k𝜋 t̃) and

(
S̃k1 + S̃k2

)
cos(k𝜋 t̃) contain products of trigonometric func-

tions which lead to secular terms in ũk (̃t).

4.2. Resonance manifold detection

To study resonances in the system, we introduce the following time-like variables

𝜏 ≔ 𝜖t, 𝜙k ≔ k𝜋 t̃, 𝜓 ≔ 𝜆2l0
𝜖

(e𝜏 − 1), and 𝜃 ≔ 𝜆l0e𝜏 .

Note that these time-like variables monotonically increase with time. Accordingly, we rewrite system (30) as⎧⎪⎪⎨⎪⎪⎩
Ȧk = 𝜖

(
k𝜋L̃k

2

[
Ak sin 2𝜙k − Bk cos 2𝜙k

]
+ k𝜋L̃k

2
Bk +

2̃l
2

k𝜋

[
S̆k1 sin𝜓 + S̆k2 cos𝜓

]
sin𝜙k

)
,

Ḃk = −𝜖

(
k𝜋L̃k

2

[
Ak cos 2𝜙k + Bk sin 2𝜙k

]
+ k𝜋L̃k

2
Ak +

2̃l
2

k𝜋

[
S̆k1 sin𝜓 + S̆k2 cos𝜓

]
cos𝜙k

)
,

(31)
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combined with the slow/fast variables⎧⎪⎪⎨⎪⎪⎩
𝜏̇ = 𝜖, 𝜏(0) = 0,

𝜃̇ = 𝜖𝜆l0e𝜏 , 𝜃(0) = 𝜆l0,

𝜙̇k = k𝜋, 𝜙k(0) = 0,

𝜓̇ = 𝜆2l0e𝜏 , 𝜓(0) = 0.

(32)

Remark that we introduced 𝜃 more for convenience than necessity in the slow-fast analysis. Note that here the dot notation

means differentiation with respect to t̃ and not to t, l̃ = l̃ (𝜏), L̃ = L̃(𝜏), and S̆k1, S̆k2 are given by

S̆k1(𝜏, 𝜃) ≔ A0𝜆
4f

[1]
k

(
2𝛽[1 − l̃ ] + Φ(𝜃)

)
, (33)

S̆k2(𝜏, 𝜃) ≔ −A0𝜆
2

l̃
f
[2]
k

(2𝛽 + Φ(𝜃)) . (34)

Note the last two variables 𝜙k and 𝜓 in (31) are fast-varying, while the rest, 𝜏 and 𝜃, are slow. Keep in mind that the sys-

tem can be averaged over the fast variables [16]. Combining sin𝜙k and cos𝜙k with sin 𝜓 and cos 𝜓 , we obtain the following

combinations of arguments 𝜙k + 𝜓 , 𝜙k − 𝜓 . So the resonance zone is active when

𝜙̇k − 𝜓̇ ≈ 0, (35)

corresponding to the manifold 𝜏 ≈ ln
(

k𝜋
𝜆2 l0

)
, where k𝜋 > 𝜆2l0 for k ∈ ℕ. Note that when k𝜋 = 𝜆2l0, resonance occurs at time

𝜏 = 0 and the system can stabilize after the timescale of order 𝜖−
1

2 . In case when k𝜋 < 𝜆2l0, the system is stable for that partic-

ular k-th mode. Observe that 𝜙k, 𝜓 , and 𝜙k + 𝜓 are time-like; consequently, they do not play a part in resonance. Next, the

size of the emerged resonance zones has to be established. Note that this size will also be used as a new asymptotic scale in the

subsequent section for the construction of a formal approximation.

4.3. Averaging inside the resonance zone

For the sake of convenience let us introduce the following combination argument 𝜒k = 𝜙k −𝜓 , and a distinguished parame-

ter 𝛿(𝜖) = o(1) as 𝜖 → 0 to be determined later. In order to study the behavior of the solution in the resonance zone, we rescale

𝜏 as follows:

𝜏 = 𝛿(𝜖)𝜏k + ln

(
k𝜋
𝜆2l0

)
, (36)

where 𝜏k is a new local variable. Observe that

𝜒̇k = 𝜙̇k − 𝜓̇k = −𝛿(𝜖)k𝜋𝜏k + (𝛿2(𝜖)
)
.

Let us rewrite system (31), using trigonometric identities, as⎧⎪⎪⎨⎪⎪⎩
Ȧk = 𝜖

(
k𝜋L̃k

2

[
Ak sin 2𝜙k − Bk cos 2𝜙k

]
+ k𝜋L̃k

2
Bk +

l̃
2

k𝜋
Sk1[cos𝜒k − cos(𝜙k + 𝜓k)] +

l̃
2

k𝜋
Sk2[sin𝜒k + sin(𝜙k + 𝜓k)]

)
,

Ḃk = −𝜖

(
k𝜋L̃k

2

[
Ak cos 2𝜙k + Bk sin 2𝜙k

]
+ k𝜋L̃k

2
Ak +

l̃
2

k𝜋
Sk1[sin(𝜙k + 𝜓k) − sin𝜒k] +

l̃
2

k𝜋
Sk2[cos𝜒k + cos(𝜙k +𝜓k)]

)
,

combined with the slow/fast variables⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜏̇k = 𝜖
𝛿(𝜖)

, 𝜏k(0) = − 1

𝛿(𝜖)
ln

(
k𝜋
𝜆2l0

)
,

𝜃̇k = 𝜖𝜆l0e𝛿(𝜖)𝜏k , 𝜃k(0) = 𝜆l0,

𝜒̇k = −𝛿(𝜖)k𝜋𝜏k, 𝜒k(0) = 0,

𝜙̇k = k𝜋, 𝜙k(0) = 0,

𝜓̇k = 𝜆2l0e𝛿(𝜖)𝜏k , 𝜓k(0) = 0.

(37)

Note the dot notation means differentiation with respect to t̃, l̃ = l̃ (𝜏k), Sk1 = S̆k1(𝜏k, 𝜃k), and Sk2 = S̆k2(𝜏k, 𝜃k). In order to balance

the equations of system (37), we have to choose 𝛿(𝜖) =
√
𝜖. This value determines the size of the resonance layer. With this

choice, the equations for the time-like variables become

𝜏̇k =
√
𝜖, 𝜒̇k = −

√
𝜖k𝜋𝜏k + (𝜖) , 𝜓̇k = 𝜆2l0e

√
𝜖𝜏k , and 𝜃̇k = 𝜖𝜆l0e

√
𝜖𝜏k . (38)
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The right-hand sides of the equations for Ak and Bk in (37) are 2𝜋-periodic in 𝜙k and 𝜓k. So let us average system (37), taking

into account (38), over the fast variables. The system takes the following form⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ȧ
a

k = 𝜖
⎛⎜⎜⎝

k𝜋L̃a
k

2
Ba

k
+

l̃
2

a

k𝜋

[
Sa

k1
cos 𝜒a

k
+ Sa

k2
sin 𝜒a

k

]⎞⎟⎟⎠ ,
Ḃ

a

k = −𝜖
⎛⎜⎜⎝

k𝜋L̃a
k

2
Aa

k
+

l̃
2

a

k𝜋

[
−Sa

k1
sin 𝜒a

k
+ Sa

k2
cos 𝜒a

k

]⎞⎟⎟⎠ ,
(39)

combined with the slow/fast variables⎧⎪⎪⎨⎪⎪⎩
𝜏̇a

k
=
√
𝜖, 𝜏a

k
(0) = − 1√

𝜖
ln

(
k𝜋
𝜆2l0

)
,

𝜃̇
a

k
= 𝜖𝜆l0e

√
𝜖𝜏a

k , 𝜃a
k
(0) = 𝜆l0,

𝜒̇a
k
= −

√
𝜖k𝜋𝜏a

k
, 𝜒a(0) = 0,

(40)

where l̃ = l̃ a(𝜏a
k
), Sa

k1
= S̆k1(𝜏a

k
, 𝜃a

k
), and Sa

k2
= S̆k2(𝜏a

k
, 𝜃a

k
). Note that we have replaced Ak , Bk, 𝜏k , 𝜃k, 𝜒k, l̃ , and L̃k by Aa

k
, Ba

k
, 𝜏a

k
, 𝜃a

k
,

𝜒a
k

, l̃ a, and L̃a
k

respectively, since the averaged equations define different vector functions but are still valid on the timescale of

(𝜖− 1
2 ) as long as we do not leave the (√𝜖)-neighborhood of the resonance manifold.

4.4. Averaging outside the resonance zone

Outside the resonance manifold, we average the right-hand side of the first equations in (31) over 𝜙k and 𝜓 while keeping

Ak and Bk fixed. Note that second terms,
k𝜋
2

L̃kBk and
k𝜋
2

L̃kAk , are slowly varying, therefore they will not average out; at the same

time the average of the first terms over 𝜙k is zero. The last terms consist of the fast varying terms outside the resonance zone.

Thus, averaging of (31) over 𝜙k and 𝜓 results in the following approximate equations

⎧⎪⎪⎨⎪⎪⎩
dAa

k

d̃t
− 𝜖

k𝜋L̃a
k

2
Ba

k
= 0,

dBa
k

d̃t
+ 𝜖

k𝜋L̃a
k

2
Aa

k
= 0,

(41)

with Aa
k
(0) = Ak(0) and Ba

k
(0) = Bk(0), and where L̃a

k
is a function of 𝜖t. The solution of system (41) can be readily found by using

the method of separation of variables, and it is given by

Aa
k
(̃t) =

√
A2

k
(0) + B2

k
(0) cos

(
− k𝜋

4
rk (̃t) + qk

)
,

Ba
k
(̃t) =

√
A2

k
(0) + B2

k
(0) sin

(
− k𝜋

4
rk (̃t) + qk

)
,

where rk and qk are given by

rk (̃t) =

(
−p0

k2𝜋2

l̃
2
(𝜖t)

+ 𝜇0 l̃ (𝜖t)

)
,

qk = arctan

(
Bk(0)
Ak(0)

)
+ k𝜋

4

(
−p0

k2𝜋2

l2
0

+ 𝜇0l0

)
,

for k ∈ ℕ.

5. Formal approximation

In the previous section we found that the resonances emerged repeatedly in the neighborhood of time instants 𝜏k for k ∈ ℕ.

First of all, in order to construct accurate approximations in the neighborhood of 𝜏k, we rescale it as follows:

𝜏k = t̂ + 1

𝜖
ln

(
k𝜋
𝜆2l0

)
, (42)
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where t̂ is a new local variable. Consequently, ũk(̃t; 𝜖) becomes a new function yk (̂t; 𝜖) in (24a)–(24b). Correspondingly, the

initial-value problem takes the following form up to (𝜖). The ODE is considered for t > 0:

ÿk + (k𝜋)2yk = −𝜖
⎛⎜⎜⎜⎝k

2𝜋2L̂kyk + 2̂l
2

k

[̂
Sk1 + Ŝk2

]
+ 2

∞∑
n=1
n≠k

[
f
[3]
nk

ẏn + 𝜇0f
[4]
nk

l̂ nyn

]⎞⎟⎟⎟⎠ , (43a)

and subject to the ICs:

yk(ak; 𝜖) = 2𝜖Fk ,

ẏk(ak; 𝜖) = 2𝜖

⎛⎜⎜⎜⎝l0Gk + f
[2]
k

l0S0 +
∞∑

n=1
n≠k

f
[5]
nk

yn(an; 𝜖)

⎞⎟⎟⎟⎠ , (43b)

where ak ≔ − 1

𝜖
ln
(

k𝜋
𝜆2 l0

)
, l̂ k(𝜖t) ≔ k𝜋

𝜆2 e𝜖t , and

L̂k(𝜖t) ≔ p0
k2𝜋2

l̂
2
(𝜖t)

+ 𝜇0

2
l̂ (𝜖t), (44)

Ŝk1(̂t) ≔ A0𝜆
4f

[1]
k

(
2𝛽[1 − l̂ k] + Φ(𝜃k)

)
sin 𝜓̂k, (45)

Ŝk2(̂t) ≔ −
A0𝜆

2f
[2]
k

l̂ k

(
2𝛽 +Φ(𝜃k)

)
cos 𝜓̂k, (46)

where the time-like variables 𝜓̂k and 𝜃k have the form, respectively,

𝜓̂k = 1

𝜖

(
k𝜋e𝜖t − 𝜆2l0

)
, and 𝜃k = k𝜋

𝜆
e𝜖t, (47)

respectively.

It has been shown in the previous section that the (𝜖) excitations produce an unexpected timescale of (𝜖− 1

2

)
. Therefore

we introduce the following three timescales

t0 = t̂, t1 =
√
𝜖t, and t2 = 𝜖t (48)

as natural timescales for this problem. As a consequence, the solution yk (̂t; 𝜖) is rewritten as a function of three timescales

wk(t0, t1, t2;
√
𝜖). Time derivatives of yk will transform, correspondingly, as follows:

ẏk = 𝜕wk

𝜕t0

+
√
𝜖
𝜕wk

𝜕t1

+ 𝜖 𝜕wk

𝜕t2

, (49)

ÿk = 𝜕2wk

𝜕t2
0

+ 2
√
𝜖
𝜕2wk

𝜕t0𝜕t1

+ 𝜖

(
𝜕2wk

𝜕t2
1

+ 2
𝜕2wk

𝜕t0𝜕t2

)
+ 2𝜖

√
𝜖
𝜕2wk

𝜕t1𝜕t2

. (50)

As a next step, according to the three-timescales perturbation method, wk(t0, t1, t2;
√
𝜖) can be approximated by the follow-

ing formal asymptotic expansion

wk(t0, t1, t2;
√
𝜖) ∼

√
𝜖wk0(t0, t1, t2) + 𝜖wk1(t0, t1, t2) + 𝜖

√
𝜖wk2(t0, t1, t2) + · · · . (51)

Substituting (51) into the recently obtained initial value problem and collecting terms of like powers of 𝜖, we will obtain a

set of problems of different order of smallness. Note that one has to distinguish between the solutions inside and outside the

resonance zones while constructing a formal approximation.

5.1. The (√𝜖)-problem

Equating the coefficients of like powers of
√
𝜖, we obtain an equation which can be interpreted as a simple harmonic oscil-

lator for the k-th oscillation mode of the PDE:

𝜕2wk0

𝜕t2
0

+ (k𝜋)2wk0 = 0, for t > 0, (52a)
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with the ICs:

wk0(ak, bk, ck) = 0,

𝜕wk0

𝜕t0

(ak, bk, ck) = 0,
(52b)

where ak is introduced in (43b), bk ≔ −
√
𝜖
𝜖

ln
(

k𝜋
𝜆2l0

)
, and ck ≔ − ln

(
k𝜋
𝜆2 l0

)
. The general solution of this problem is given by

wk0(t0, t1, t2) = Ak0(t1, t2) cos(k𝜋t0) + Bk0(t1, t2) sin(k𝜋t0), (53)

where Ak0 and Bk0 are unknown functions yet, and can be obtained from the secularity conditions for the higher-order problems.

It can be observed from the initial conditions (52b) that Ak0(bk, ck) = Bk0(bk, ck) = 0.

5.2. The (𝜖)-problem

By collecting terms of equal powers in 𝜖, we obtain the following problem to solve:

𝜕2wk1

𝜕t2
0

+ (k𝜋)2wk1 = −2
𝜕2wk0

𝜕t0𝜕t1

− 2̂l
2

k

[̂
Sk1 + Ŝk2

]
, for t > 0, (54a)

with the ICs:

wk1(ak, bk, ck) = 2Fk,

𝜕wk1

𝜕t0

(ak, bk, ck) = −𝜕wk0

𝜕t1

(ak, bk, ck) + 2l0Gk − f
[2]
k

l0S0.
(54b)

Using (53), we rewrite (54a) as follows:

𝜕2wk1

𝜕t2
0

+ (k𝜋)2wk1 = 2k𝜋

[
𝜕Ak0

𝜕t1

sin(k𝜋t0) −
𝜕Bk0

𝜕t1

cos(k𝜋t0)
]
− 2̂l

2

k

[̂
Sk1 + Ŝk2

]
. (55)

We will find an explicit solution for this problem inside and outside the resonance zone.

5.2.1. Inside the resonance zone

First of all let us take a closer look at the functions Ŝk1 and Ŝk2 given by (45) and (46), respectively. They contain products of

trigonometric functions, which might cause secular terms. These products lead to sums or differences of their arguments namely

𝜓̂k + 𝜃k or 𝜓̂k − 𝜃k, respectively. In accordance with the timescale of (𝜖− 1
2

)
, it is convenient to expand these arguments in a

Taylor series in 𝜖:

𝜓̂k = k𝜋t0 +
1

2
k𝜋t2

1
+ 𝜎[0]

k
+ (√𝜖) with 𝜎[0]

k
≔ 1

𝜖
(k𝜋 − 𝜆2l0), (56)

𝜓̂k − 𝜃k = k𝜋t0 +
1

2
k𝜋t2

1
+ 𝜎[−]

k
+(√𝜖) with 𝜎[−]

k
≔ 1

𝜖
(k𝜋 − 𝜆2l0) −

k𝜋
𝜆
, (57)

𝜓̂k + 𝜃k = k𝜋t0 +
1

2
k𝜋t2

1
+ 𝜎[+]

k
+(√𝜖) with 𝜎[+]

k
≔ 1

𝜖
(k𝜋 − 𝜆2l0) +

k𝜋
𝜆
, (58)

where 𝜎[0]
k
, 𝜎[−]

k
, 𝜎[+]

k
are the phases. With these new notations, we rewrite (55) as follows

𝜕2wk1

𝜕t2
0

+ (k𝜋)2wk1 =
(

2k𝜋
𝜕Ak0

𝜕t1

+ Ŝ
[1]
k1

− Ŝ
[2]
k2

)
sin(k𝜋t0) −

(
2k𝜋

𝜕Bk0

𝜕t1

− Ŝ
[2]
k1

+ Ŝ
[1]
k2

)
cos(k𝜋t0), (59)

where

Ŝ
[1]
k1
(t1, t2) ≔ A0𝜆

4 l̂
2

k f
[1]
k

(
4𝛽 l̂ k cos

(
1

2
k𝜋t2

1
+ 𝜎[0]

k

)
− Ŝ

[1]
k2

)
, (60)

Ŝ
[2]
k1
(t1, t2) ≔ A0𝜆

4 l̂
2

k
f
[1]
k

(
4𝛽 l̂ k sin

(
1

2
k𝜋t2

1
+ 𝜎[0]

k

)
− Ŝ

[2]
k2

)
, (61)

where l̂ = l̂ k(t2), and

Ŝ
[1]
k2
(t1, t2) ≔ 2

[
2𝛽 − 𝛽 cosh𝜃k − 𝛾1 sinh 𝜃k

]
cos

(
1

2
k𝜋t2

1
+ 𝜎[0]

k

)
+ 𝛽

[
cos

(
1

2
k𝜋t2

1
+ 𝜎[−]

k

)
+ cos

(
1

2
k𝜋t2

1
+ 𝜎[+]

k

)]
+ 𝛾2

[
sin

(
1

2
k𝜋t2

1
+ 𝜎[−]

k

)
− sin

(
1

2
k𝜋t2

1
+ 𝜎[+]

k

)]
, (62)
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Ŝ
[2]
k2
(t1, t2) ≔ 2

[
2𝛽 − 𝛽 cosh𝜃k − 𝛾1 sinh 𝜃k

]
sin

(
1

2
k𝜋t2

1
+ 𝜎[0]

k

)
− 𝛽

[
sin

(
1

2
k𝜋t2

1
+ 𝜎[−]

k

)
+ sin

(
1

2
k𝜋t2

1
+ 𝜎[+]

k

)]
+ 𝛾2

[
cos

(
1

2
k𝜋t2

1
+ 𝜎[−]

k

)
− cos

(
1

2
k𝜋t2

1
+ 𝜎[+]

k

)]
. (63)

The solution wk1 produces unbounded terms in t0 unless

𝜕Ak0

𝜕t1

+ 1

2k𝜋

(
Ŝ
[1]
k1

− Ŝ
[2]
k2

)
= 0, (64)

𝜕Bk0

𝜕t1

− 1

2k𝜋

(
Ŝ
[2]
k1

+ Ŝ
[1]
k2

)
= 0. (65)

By straightforward integration we obtain

Ak0(t1, t2) = − A0𝜆
4 l̂ k

2k
√

k𝜋

(
f
[1]
k

Î
[1]
k1

+ f
[2]
k

Î
[2]
k2

)
+ Ck0(t2), (66)

Bk0(t1, t2) =
A0𝜆

4 l̂ k

2k
√

k𝜋

(
f
[1]
k

Î
[2]
k1

+ f
[2]
k

Î
[1]
k2

)
+ Dk0(t2), (67)

where Ck0 and Dk0 are unknown functions which can be obtained from the (𝜖√𝜖)-problem, and where

Î
[1]
k1
(t1, t2) ≔ l̂ k

[
4𝛽 l̂ k

(
cos𝜎[0]

k
CFr(

√
kt1) − sin𝜎[0]

k
SFr(

√
kt1)

)
− Î

[1]
k2

]
, (68)

Î
[2]
k1
(t1, t2) ≔ l̂ k

[
4𝛽 l̂ k

(
cos𝜎[0]

k
SFr(

√
kt1) + sin𝜎[0]

k
CFr(

√
kt1)

)
+ Î

[2]
k2

]
, (69)

where

Î
[1]
k2
(t1, t2) ≔ 2

[
2𝛽 − 𝛽 cosh𝜃k − 𝛾1 sinh 𝜃k

] [
cos𝜎[0]

k
CFr(

√
kt1) − sin𝜎[0]

k
SFr(

√
kt1)

]
− 𝛽

[
(cos𝜎[−]

k
+ cos𝜎[+]

k
)CFr(

√
kt1)

− (sin𝜎[−]
k

+ sin𝜎[+]
k

)SFr(
√

kt1)
]
− 𝛾2

[
(cos𝜎[−]

k
− cos𝜎[+]

k
)SFr(

√
kt1) + (sin𝜎[−]

k
− sin𝜎[+]

k
)CFr(

√
kt1)

]
,

(70)

Î
[2]
k2
(t1, t2) ≔ −2

[
2𝛽 − 𝛽 cosh𝜃k − 𝛾1 sinh 𝜃k

][
cos 𝜎[0]

k
SFr(

√
kt1) + sin𝜎[0]

k
CFr(

√
kt1)

]
+𝛽

[
(cos𝜎[−]

k
+ cos𝜎[+]

k
)SFr(

√
kt1)

+ (sin𝜎[−]
k

+ sin𝜎[+]
k

)CFr(
√

kt1)
]
− 𝛾2

[
(cos𝜎[−]

k
− cos𝜎[+]

k
)CFr(

√
kt1) − (sin𝜎[−]

k
− sin𝜎[+]

k
)SFr(

√
kt1)

]
,

(71)

where SFr and CFr are the Fresnel integrals given by

SFr(t) ≔ ∫
t

0

sin
(

1

2
𝜋x2

)
dx, and CFr(t) ≔ ∫

t

0

cos
(

1

2
𝜋x2

)
dx. (72)

Actually the presence of the Fresnel integrals in the expressions for amplitudes of vibrations cause resonance jumps in the

system causing the effect of autoresonance. These integrals are plotted for the third oscillation mode with l0 = 0.7 and 𝜆 = 1.875

in Fig. 2.

5.2.2. Outside the resonance zone

It should be observed that the last two terms in (55) do not give rise to secular terms in wk1. To prevent secular terms there,

Ak0 and Bk0 have to satisfy the following conditions

𝜕Ak0

𝜕t1

= 0, and
𝜕Bk0

𝜕t1

= 0, (73)

which have, respectively, the following solutions

Ak0(t1, t2) = C̃k0(t2), and Bk0(t1, t2) = D̃k0(t2), (74)

where C̃k0 and D̃k0 are unknown functions and can be obtained by removing secular terms from the (𝜖√𝜖)-problem. From the

initial conditions (52b), it follows that C̃k0(ck) = D̃k0(ck) = 0.
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Fig. 2. Fresnel integrals (a) SFr and (b) CFr for the third oscillation mode (k = 3).

5.2.3. General solution

Taking into account the secularity conditions (64) and (65), the general solution for (54a) is given by

wk1(t0, t1, t2) = Ak1(t1, t2) cos(k𝜋t0) + Bk1(t1, t2) sin(k𝜋t0), (75)

where Ak1 and Bk1 are unknown functions and may be determined from higher-order problems. The initial values of Ak1 and Bk1

are found from the initial conditions (54b) as follows:

Ak1(bk, ck) = 2Fk cos(k𝜋ak) +
sin(k𝜋ak)

k𝜋

(
𝜕Ak0

𝜕t1

(bk, ck) cos(k𝜋ak) +
𝜕Bk0

𝜕t1

(bk, ck) sin(k𝜋ak) − 2l0G + f
[2]
k

l0S0

)
, (76)

Bk1(bk, ck) = 2Fk sin(k𝜋ak) −
cos(k𝜋ak)

k𝜋

(
𝜕Ak0

𝜕t1

(bk, ck) cos(k𝜋ak) +
𝜕Bk0

𝜕t1

(bk, ck) sin(k𝜋ak) − 2l0G + f
[2]
k

l0S0

)
, (77)

where, inside the resonance manifold,

𝜕Ak0

𝜕t1

(bk, ck) = − 1

2k𝜋

(
Ŝ
[1]
k1
(bk, ck) − Ŝ

[2]
k2
(bk, ck)

)
, (78)

𝜕Bk0

𝜕t1

(bk, ck) =
1

2k𝜋

(
Ŝ
[2]
k1
(bk, ck) + Ŝ

[1]
k2
(bk, ck)

)
, (79)

where Ŝ
[i]
k1

and Ŝ
[i]
k2

for i = 1, 2 are given by (60)–(63). Outside the resonance manifold,
𝜕Ak0

𝜕t1
(bk, ck) and

𝜕Bk0

𝜕t1
(bk, ck) are equal to

zero.

5.3. The (𝜖√𝜖)-problem

Here we collect terms of equal powers of 𝜖
3
2 and consider the last problem in this paper finalizing the construction of the

formal approximation:

𝜕2wk2

𝜕t2
0

+ (k𝜋)2wk2 = −2
𝜕2wk1

𝜕t0𝜕t1

− 2
𝜕2wk0

𝜕t0𝜕t2

− 𝜕2wk0

𝜕t2
1

− (k𝜋)2L̂kwk0 + 2

∞∑
n=1
n≠k

(
f
[3]
nk

𝜕wn0

𝜕t0

+ 𝜇0f
[4]
nk

l̂ nwn0

)
, for t > 0,

(80a)

subject to the ICs:

wk2(ak, bk, ck) = 0,

𝜕wk2

𝜕t0

(ak, bk, ck) = −𝜕wk1

𝜕t1

(ak, bk, ck) −
𝜕wk0

𝜕t2

(ak, bk, ck).
(80b)

Substituting (53) and (75) into (80a) and rearranging the so-obtained equation, we obtain
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𝜕2wk2

𝜕t2
0

+ (k𝜋)2wk2 = 2k𝜋

(
𝜕Ak1

𝜕t1

+ 𝜕Ak0

𝜕t2

− 1

2k𝜋

𝜕B2
k0

𝜕t2
1

− k𝜋
2

L̂kBk0

)
sin(k𝜋t0)

− 2k𝜋

(
𝜕Bk1

𝜕t1

+ 𝜕Bk0

𝜕t2

+ 1

2k𝜋

𝜕A2
k0

𝜕t2
1

+ k𝜋
2

L̂kAk0

)
cos(k𝜋t0)

+ 2

∞∑
n=1
n≠k

((
𝜇0f

[4]
nk

l̂ nBn0 − n𝜋f
[3]
nk

An0

)
sin(n𝜋t0) +

(
𝜇0f

[4]
nk

l̂ nAn0 + n𝜋f
[3]
nk

Bn0

)
cos(n𝜋t0)

)
. (81)

Next, we analyze this equation inside and outside the resonance manifold.

5.3.1. Inside the resonance zone

𝜕2wk2

𝜕t2
0

+ (k𝜋)2wk2 = 2k𝜋

(
𝜕Ak1

𝜕t1

+ 𝜕Ak0

𝜕t2

− 1

2k𝜋

𝜕B2
k0

𝜕t2
1

− k𝜋
2

L̂kBk0

)
sin(k𝜋t0)

− 2k𝜋

(
𝜕Bk1

𝜕t1

+ 𝜕Bk0

𝜕t2

+ 1

2k𝜋

𝜕A2
k0

𝜕t2
1

+ k𝜋
2

L̂kAk0

)
cos(k𝜋t0) + “NST”, (82)

where “NST” stands for nonsecular terms. Substituting (66) and (67) into (82), we obtain the following secularity conditions:

dCk0

dt2

− k𝜋
2

L̂kDk0 +
𝜕Ak1

𝜕t1

+ A0𝜆
2 l̂ k√
k

{
1

2k𝜋

(
𝜆2 l̂ kf

[1]
k

𝜕I
[1]
k2

𝜕t2

− f
[2]
k

𝜕I
[2]
k2

𝜕t2

)
−

L̂kf
[2]
k

4

(̂
I
[2]
k2

+ Î
[1]
k2

)

− 1

4(k𝜋)2

(
𝜆2 l̂ kf

[1]
k

[
4k
√

k𝜋𝛽 l̂ kt1 cos
(

1

2
k𝜋t2

1
+ 𝜎[0]

)
+
𝜕2 Î

[2]
k2

𝜕t2
1

]
− f

[2]
k

𝜕2 Î
[1]
k2

𝜕t2
1

)}
= 0, (83)

and

dDk0

dt2

+ k𝜋
2

L̂kCk0 + 𝜕Bk1

𝜕t1

+ A0𝜆
2 l̂ k√
k

{
1

2k𝜋

(
𝜆2 l̂ kf

[1]
k

𝜕I
[2]
k2

𝜕t2

+ f
[2]
k

𝜕I
[1]
k2

𝜕t2

)
+

L̂kf
[2]
k

4
(̂I [1]

k2
+ Î

[2]
k2
)

− 1

4(k𝜋)2

(
𝜆2 l̂ kf

[1]
k

[
4k
√

k𝜋𝛽 l̂ kt1 sin
(

1

2
k𝜋t2

1
+ 𝜎[0]

)
+
𝜕2 Î

[1]
k2

𝜕t2
1

]
− f

[2]
k

𝜕2 Î
[2]
k2

𝜕t2
1

)}
= 0. (84)

Observe that integration of these equations with respect to t1 produces unbounded solutions because of t2 depending terms.

Hence, from (83) and (84) the secularity conditions follow:⎧⎪⎨⎪⎩
dCk0

dt2

− k𝜋
2

L̂kDk0 = 0,

dDk0

dt2

+ k𝜋
2

L̂kCk0 = 0,
(85)

together with

𝜕Ak1

𝜕t1

+ A0𝜆
2 l̂ k√
k

{
1

2k𝜋

(
𝜆2 l̂ kf

[1]
k

𝜕I
[1]
k2

𝜕t2

− f
[2]
k

𝜕I
[2]
k2

𝜕t2

)
−

L̂kf
[2]
k

4

(̂
I
[2]
k2

+ Î
[1]
k2

)

− 1

4(k𝜋)2

(
𝜆2 l̂ kf

[1]
k

[
4k
√

k𝜋𝛽 l̂ kt1 cos
(

1

2
k𝜋t2

1
+ 𝜎[0]

k

)
+
𝜕2̂I

[2]
k2

𝜕t2
1

]
− f

[2]
k

𝜕2̂I
[1]
k2

𝜕t2
1

)}
= 0, (86)

and

𝜕Bk1

𝜕t1

+ A0𝜆
2 l̂ k√
k

{
1

2k𝜋

(
𝜆2 l̂ kf

[1]
k

𝜕I
[2]
k2

𝜕t2

+ f
[2]
k

𝜕I
[1]
k2

𝜕t2

)
+

L̂kf
[2]
k

4

(̂
I
[1]
k2

+ Î
[2]
k2

)

− 1

4(k𝜋)2

(
𝜆2 l̂ kf

[1]
k

[
4k
√

k𝜋𝛽 l̂ kt1 sin
(

1

2
k𝜋t2

1
+ 𝜎[0]

k

)
+
𝜕2̂I

[1]
k2

𝜕t2
1

]
− f

[2]
k

𝜕2̂I
[2]
k2

𝜕t2
1

)}
= 0, (87)
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where L̂k = L̂k(t2) is given by (44). Ak1 and Bk1 can be readily found by straightforward integration of (86) and (87), but we omit

the details because of cumbersome expressions. One should only observe that after integration, the arbitrary functions depend-

ing on t2 appear in the expressions for Ak1 and Bk1. These functions may be determined from the (𝜖2)-problem. Similar to

(41), system (85) can be readily solved analytically. Imposing the secularity conditions, we obtain the following inhomogeneous

equation inside the resonance zone

𝜕2wk2

𝜕t2
0

+ (k𝜋)2wk2 = 2

∞∑
n=1
n≠k

((
𝜇0f

[4]
nk

l̂ nBn0 − n𝜋f
[3]
nk

An0

)
sin(n𝜋t0) +

(
𝜇0f

[4]
nk

l̂ nAn0 + n𝜋f
[3]
nk

Bn0

)
cos(n𝜋t0)

)
. (88)

The solution of this equation readily follows

wk2 = Ak2 cos(k𝜋t0) + Bk2 sin(k𝜋t0) + 2

∞∑
n=1
n≠k

1

𝜋2(k2 − n2)

((
𝜇0f

[4]
nk

l̂ nBn0 − n𝜋f
[3]
nk

An0

)
sin(n𝜋t0)

+
(
𝜇0f

[4]
nk

l̂ nAn0 + n𝜋f
[3]
nk

Bn0

)
cos(n𝜋t0)

)
, (89)

where Ak2 and Bk2 are arbitrary functions of (t1, t2) which can be determined from the solution wk3(t0, t1, t2), and where An0 and

Bn0 are given by (66) and (67), respectively.

5.3.2. Outside the resonance zone

In the (𝜖)-problem we obtained that outside the resonance zone Ak0 = C̃k0(t2), and Bk0 = D̃k0(t2); see (74). Hence, (81) takes

the following form

𝜕2wk2

𝜕t2
0

+ (k𝜋)2wk2 = 2k𝜋

(
𝜕Ak1

𝜕t1

+ dC̃k0

dt2

− k𝜋
2

L̂kD̃k0

)
sin(k𝜋t0) − 2k𝜋

(
𝜕Bk1

𝜕t1

+ dD̃k0

dt2

+ k𝜋
2

L̂kC̃k0

)
cos(k𝜋t0) + “NST”.

(90)

To avoid secular terms the following should hold

𝜕Ak1

𝜕t1

+ dC̃k0

dt2

− k𝜋
2

L̂kD̃k0 = 0, (91)

𝜕Bk1

𝜕t1

+ dD̃k0

dt2

+ k𝜋
2

L̂kC̃k0 = 0. (92)

Likewise in the previous case, solving these equations with respect to t1 will produce unbounded solutions because of t2 depend-

ing terms unless C̃k0 and D̃k0 satisfy to⎧⎪⎪⎨⎪⎪⎩
dC̃k0

dt2

− k𝜋
2

L̂kD̃k0 = 0,

dD̃k0

dt2

+ k𝜋
2

L̂kC̃k0 = 0,
(93)

where L̂k = L̂k(t2) is given by (44). Similar to (41), this system can be solved analytically. Then, from (91) and (92) it follows that

𝜕Ak1

𝜕t1

= 0, and
𝜕Bk1

𝜕t1

= 0, (94)

for which the solutions are given by Ak1(t1, t2) = C̃k1(t2), and Bk1(t1, t2) = D̃k1(t2), respectively, where C̃k1 and D̃k1 are arbitrary

functions which can be determined from the (𝜖2)-problem. Employing the secularity conditions (89), we obtain the following

inhomogeneous equation outside the resonance zone

𝜕2wk2

𝜕t2
0

+ (k𝜋)2wk2 = 2

∞∑
n=1
n≠k

((
𝜇0f

[4]
nk

l̂ nD̃n0 − n𝜋f
[3]
nk

C̃n0

)
sin(n𝜋t0) +

(
𝜇0f

[4]
nk

l̂ nC̃n0 + n𝜋f
[3]
nk

D̃n0

)
cos(n𝜋t0)

)
. (95)

The solution has a similar form as the solution inside the resonance zone:

wk2 = Ãk2 cos(k𝜋t0) + B̃k2 sin(k𝜋t0) + 2

∞∑
n=1
n≠k

1

𝜋2(k2 − n2)

((
𝜇0f

[4]
nk

l̂ nD̃n0 − n𝜋f
[3]
nk

C̃n0

)
sin(n𝜋t0)
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+
(
𝜇0f

[4]
nk

l̂ nC̃n0 + n𝜋f
[3]
nk

D̃n0

)
cos(n𝜋t0)

)
, (96)

where Ãk2 and B̃k2 are arbitrary functions of (t1, t2) which can be determined from the solution wk3(t0, t1, t2).

6. Results

In this section, we summarize the results obtained in the previous section. Besides, we compute the lateral displacements

and the vibratory energy of the cable by using the constructed formal approximation as well as by applying a numerical scheme

to present some numerical results.

6.1. Analytic approximation

6.1.1. Analytic results

All in all, we constructed a formal approximation in the form (51) for ũk (̃t;
√
𝜖). Introducing the following notation

𝜔n(t) ≔ 1

𝜖
ln

(
𝜆2(l0 + 𝜖t)

n𝜋

)
, (97)

and using (23) and (42), we finally obtain the approximate solution of the initial-boundary value problem (18a)–(18c) as

u(x, t, t1, t2; 𝜖) =
∞∑

n=1

(√
𝜖un0(t, t1, t2) + 𝜖un1(t, t1, t2) + 𝜖

√
𝜖un2(t, t1, t2)

)
× sin

(
n𝜋x

l0 + 𝜖t

)
, (98)

where t1 and t2 are given by (48), and where

un0 (t, t1, t2) = An0

)
(t1, t2) cos(n𝜋𝜔n(t)) + Bn0(t1, t2) sin(n𝜋𝜔n(t)), (99)

where functions An0 and Bn0 are given by (66) and (67);

un1(t, t1, t2) = An1(t1, t2) cos(n𝜋𝜔n(t)) + Bn1(t1, t2) sin(n𝜋𝜔n(t)), (100)

where functions An1 and Bn1 are given by (86) and (87);

un2(t, t1, t2) = An2(t1, t2) cos(n𝜋𝜔n(t)) + Bn2(t1, t2) sin(n𝜋𝜔n(t)) + 2

∞∑
k=1
k≠n

1

𝜋2(n2 − k2)

[(
𝜇0f

[4]
kn

l̂ Bk0(t1, t2) − k𝜋f
[3]
kn

Ak0(t1, t2)
)

× sin𝜔k(t) +
(
𝜇0f

[4]
kn

l̂ Ak0(t1, t2) + k𝜋f
[3]
kn

Bk0(t1, t2)
)

cos𝜔k(t)
]
, (101)

where functions An2 and Bn2 can be found from higher-order approximations.

Remark that the constructed formal approximations are asymptotic. Their accuracy is strongly connected with the timescales.

Thus, un − (
√
𝜖un0 + 𝜖un1 + 𝜖

√
𝜖un2) = (𝜖2), un − (

√
𝜖un0 + 𝜖un1) = (𝜖√𝜖), and un −

√
𝜖un0 = (𝜖) on a timescale of order

𝜖−1 for n ∈ ℕ, where un is given by (19). It is worth mentioning that (98) is a convergent series. An interested reader can observe

that, for example, (√𝜖) term in (98) is similar to
∑∞

n=1

√
𝜖

n5∕2 sin
(

n𝜋x

l0+𝜖t

)
which is convergent.

6.1.2. Numerical results

The numerical results simulating the vibration response and the energy are computed based on the analytical expres-

sions (98), (99), and (117), respectively. The computations are performed by using the following parameters 𝜖 = 0.01, H = 1,

𝜆 = 1.875, l0 = 0.7, A0 = 1. For simplicity, let us assume only the initial displacement is prescribed, so that f = 𝜖 sin2 𝜋𝜉, and

the initial velocity g = 0 for 0 ≤ 𝜉 ≤ 1. In numerical computations we neglect bending stiffness of the cable because its contri-

bution is assumed to be small. It is also worth mentioning that the following numerical results are computed based on (𝜖)
approximations. Higher-order approximations are neglected due to their insignificant contribution into the solution. By using

(23) and (42), we obtain that the resonance occurs periodically in time at time instants

Tk = 1

𝜖

(
k𝜋
𝜆2

− l0

)
for k ∈ ℕ, (102)

with an interval

ΔT = 𝜋
𝜖𝜆2

. (103)

Note that the resonance time depends on the mode number k. For the first three oscillation modes, resonance emerges at times

T1 ≈ 19.36, T2 ≈ 108.72, and T3 ≈ 198.08 with ΔT = 89.36. They are illustrated in Figs. 3–6.
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Fig. 3. Lateral displacements of the middle point of the cable up to the first three oscillation modes on timescales up to (a) t = 150, and (b) t = 250. The shadowed bands

represent the resonance zones.

Fig. 4. Vibratory energy of the middle point of the cable up to the first three oscillation modes on timescales up to (a) t = 150, and (b) t = 250. The shadowed bands

represent the resonance zones.

Figs. 3–4 depict the lateral displacements and the vibratory energy of the cable on timescales up to t = 150 and t = 250. Note

that subfigures (b) are simply enlarged version of subfigures (a), that is why all explanations for (b) are automatically inherent

to (a). From the analytical results we can distinguish three main stages in time of resonance evolution such as the transition

of the cable to the resonance zone, capture of the cable into resonance, and transition of the cable out of the resonance zone,

the autoresonance stage, where the lateral displacements and the vibratory energy of the cable increases to a certain level

and remains phase-locked until it meets another resonance zone. One can see this type of behavior in Figs. 3–4, where three

resonances are detected corresponding to time instants T1, T2, and T3. The shadowed bands represent the resonance layers which

have the size of (𝜖− 1

2

)
as was obtained analytically. In the current example the resonance layers are found in the following

intervals ∣ t − Ti ∣ ≤ 10 for i = 1, 2, 3. Note that in (a) and (b) these layers are visually different but with respect to the scale of the

figures they are the same.

6.2. Numerical approximation

Since we neglected by bending stiffness, the governing equation (18a) for 0 < 𝜉 < 1 takes the following form:

utt −
1

l2
u𝜉𝜉 = −𝜖

(
−2

l
(1 − 𝜉)u𝜉t +

𝜇0

l
(1 − 𝜉)u𝜉𝜉 +

𝜇0

l
u𝜉 + 𝜉lS1 + S2

)
, (104)
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Fig. 5. Lateral displacements of the middle point of the cable up to the first three oscillation modes on timescales up to (a) t = 150, and (b) t = 250. The shadowed bands

represent the resonance zones.

Fig. 6. Vibratory energy of the middle point of the cable up to the first three oscillation modes on timescales up to (a) t = 150, and (b) t = 250. The shadowed bands

represent the resonance zones.

where the upper bar notation is omitted for convenience, S1 and S2 are given by (7) and (8). To solve (104) numerically, we first

discretize it in space by using the central finite difference scheme. Then, we rewrite the so-obtained discretized equation in a

matrix form and use the numerical time integration by the Crank-Nicolson method (see Appendix B). Note that the same values

of parameters as for the analytic approximations are used here for computation. Thus, Figs. 5–6 show the lateral displacements

and the vibratory energy of the cable, respectively, on timescales up to t = 150 and t = 250. Note that as before Fig. 5 is enlarged

Fig. 6. From these figures one can see that in the resonance zones the lateral displacements and the vibratory energy increase

and, between these zones, stay phase-locked. We can make a conclusion that the general dynamic behavior of the solution

approximated numerically is in agreement with the analytic approximation.

7. Conclusions and future results

In this paper, the lateral vibrations and resonances emerging in an elevator cable system due to the excitation at its bound-

aries initiated by the wind-induced building sway were studied. In order to prescribe the boundary conditions of the problem,

the exact solution representing the sway of the building was found in Appendix A. Further, an initial-boundary value problem

describing the lateral vibrations of a vertically moving beam with small bending stiffness and (in time) linear length variations

was considered. In order to tackle the initial-boundary value problem and to construct a formal approximation of the solution,

an advanced analytic scheme consisting of many elementary steps has been developed. From an internal layer analysis, it fol-
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lowed that an additional natural timescale inside the resonance zone is
√
𝜖t, and outside the resonance layer it is 𝜖t. Moreover,

we also predicted exact instants of time when resonance emerged. Note that from the physical point of view resonance occurs,

when the length of the cable becomes such that the one of the natural frequencies of its oscillations match with the fundamental

frequency of the building sway (or boundary excitation). Further, we constructed an accurate approximation of the solution on

a timescale of order 𝜖−1 by the three-timescales perturbation method, and the following conclusions could be drawn:

- order 𝜖 boundary excitations of the cable result in
√
𝜖-order vibration responses;

- the Fresnel integrals involved in the solution cause autoresonance phenomena in the system;

- since the solution contains infinitely many modes, there are infinitely many autoresonances in the system;

- for smaller 𝜖 values, more time is needed to catch resonance and more time is needed to pass through a resonance zone;

- higher-order modes have smaller amplitudes (than lower order modes), carrying low impact into the system, due to the

factor k−5∕2 in the expressions for the amplitudes of vibrations in the
√
𝜖-order approximation.

The numerical results confirmed these conclusions. Moreover, the constructed analytic approximations are in agreement

with the numerical approximations.

The analytical scheme developed for this problem can readily be extended to other, more complicated and realistic, types

of elevator motion. For instance, one can investigate the sway dynamics of the elevator cable under three different states of

the elevator motion. The first state is acceleration, when the lift begins to accelerate from the resting position. Then, after

acceleration, it can move at a constant velocity. Finally, the elevator decelerates before stopping at a certain floor. This example

might add extra resonance manifolds and might produce new asymptotic timescales in the dynamics of the cable. One should be

also aware of intersection of resonance zones [17], what makes the analysis of the problem even more interesting, but complex.

In conclusion, the analytic methodology developed in this paper can be implemented in other types of gyroscopic systems which

are governed by differential equations with in time slowly varying coefficients.

Appendix A. Boundary sway

As it is mentioned in the introduction of this paper, the motion of the elevator cable’s boundaries in horizontal direction is

induced by the building sway. So, to prescribe the boundary conditions for the cable, we need to determine the exact solution

of the building motion. We model the building as a vertical, cantilevered at the bottom, Euler-Bernoulli beam of length H (see

Fig. 1). The PDE representing the motion of the building is given by a beam-like equation for 0 < x < H, and t > 0 as follows:

utt + uxxxx = 0, (105a)

subject to the boundary conditions:

u(0, t) = ux(0, t) = 0,

uxx(H, t) = uxxx(H, t) = 0,
(105b)

for t > 0, and with the initial conditions:

u(x, 0) = 𝜙1(x),

ut(x, 0) = 𝜙2(x),
(105c)

for 0 < x < l0.

This well-known IBV-problem can be solved by the method of separation of variables, where u(x, t) = X(x)T(t), yielding

X(4)

X
= − T̈

T
= 𝜈2. (106)

From (106) two equations, for T and X, follow. First, the equation for T is given by T̈ + 𝜈2T = 0, for which the solution can

be readily found as T(t) = A cos 𝜈t + B sin 𝜈t, where A and B are constants. For convenience we will use the following notation

𝜆4 = 𝜈2. The mode-equation for X is given by X(4) − 𝜆4X = 0, which has a well-known solution X(x) = C1 sin𝜆x + C2 cos𝜆x +
C3 sinh𝜆x + C4 cosh 𝜆x, corresponding to the following roots of the characteristic equation ±𝜆 and ±i𝜆. So using the boundary

conditions (105b) and the fact of the existence of a non-trivial solution, we obtain the following equation for the eigenval-

ues 1 + cos𝜆nH cosh𝜆nH = 0, which are actually the natural frequencies of the cantilever beam. This transcendental equa-

tion can be solved numerically, providing the following results 𝜆1H = 1.875, 𝜆2H = 4.694, 𝜆3H = 7.855, 𝜆4H = 10.996, 𝜆5H =
14.137,… . Corresponding eigenfunctions are given by Xn(x) = C1,n sin𝜆nx + C2,n cos𝜆nx + C3,n sinh𝜆nx + C4,n cosh𝜆nx. To find

the constants of integration, we use the boundary conditions (105b). Then, the eigenfunctions are given by

Xn(x) = sin(𝜆nx) − sinh(𝜆nx) − 𝛼n(cos(𝜆nx) − cosh(𝜆nx)), (107)

for n ∈ ℕ, where 𝛼n ≔ sin(𝜆nH)+sinh(𝜆nH)
cos(𝜆nH)+cosh(𝜆nH) . A solution for T can be also rewritten in accordance with the eigenvalues as follows

Tn(t) = An cos(𝜆2
nt) + Bn sin(𝜆2

nt), (108)
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where An and Bn are constants following from the initial conditions (105c). Thus, the sway of the building is given by u(x, t) =∑∞
n=1

Tn(t)Xn(x) or in a full form, using (107)–(108), as follows:

u(x, t) =
∞∑

n=1

(
An cos(𝜆2

n
t) + Bn sin(𝜆2

n
t)
) (

sin(𝜆nx) − sinh(𝜆nx) − 𝛼n[cos(𝜆nx) − cosh(𝜆nx)]
)
. (109)

Appendix B. Discretization and time integration

Here we solve (104) numerically. In order to make the numerical integration easier, it is more convenient to rewrite this

equation as a system of coupled first-order partial differential equations:{
ut = 𝜈,

𝜈t = 1

l2
𝜈𝜉𝜉 − 𝜖

(
−2

l
(1 − 𝜉)𝜈𝜉 +

𝜇0

l
(1 − 𝜉)u𝜉𝜉 +

𝜇0

l
u𝜉 + 𝜉lS1 + S2

)
.

(110)

Next, let us use equispaced mesh grids 𝜉j = jΔ𝜉 for j = 1, 2,… , n with nΔ𝜉 = 1. Introducing the differences,

u𝜉(𝜉j, t) =
uj+1 − uj−1

2Δ𝜉
+  ((Δ𝜉)2

)
,

u𝜉𝜉(𝜉j, t) =
uj+1 − 2uj + uj−1

(Δ𝜉)2
+ ((Δ𝜉)2

)
,

𝜈𝜉(𝜉j, t) =
𝜈j+1 − 𝜈j−1

2Δ𝜉
+  ((Δ𝜉)2

)
,

we discretize (110) as follows:⎧⎪⎨⎪⎩
du

dt
(𝜉j, t) = 𝜈j,

d𝜈
dt

(𝜉j, t) = rj

𝜈j+1 − 𝜈j−1

2Δ𝜉
+ qj

uj+1 − 2uj + uj−1

(Δ𝜉)2
− h

uj+1 − uj−1

2Δ𝜉
− sj,

(111)

where rj ≔ 2𝜖
l
(1 − 𝜉j), qj ≔ 1

l

(
1

l
− 𝜖𝜇0(1 − 𝜉j)

)
, h ≔ 𝜖𝜇0

l
, and sj ≔ 𝜖𝜉jlS1 + S2 for j = 1, 2,… , n. Further, we denote a zero

matrix by ∅, the identity matrix by I, and also introduce the following two matrices,

Q ≔ 1

(Δ𝜉)2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2q1 q1 − Δ𝜉
2

h 0 … … 0

q2 +
Δ𝜉
2

h −2q2 q2 −
Δ𝜉
2

h ⋱ ⋮

0 ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ 0

⋮ ⋱ qn−1 +
Δ𝜉
2

h −2qn−1 qn−1 −
Δ𝜉
2

h

0 … … 0 qn +
Δ𝜉
2

h −2qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R ≔ 1

2Δ𝜉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 r1 0 … … 0

−r2 0 r2 ⋱ ⋮

0 ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ 0

⋮ ⋱ −rn−1 0 rn−1

0 … … 0 −rn 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

in ℝn×n. The introduced four matrices compose a system matrix of (111) as follows:

M ≔
[
∅ I

Q R

]
∈ ℝ2n×2n.

In addition, let us introduce the following vectors:

w = (u1(𝜉1, t), u2(𝜉2, t),… , un(𝜉n, t), 𝜈1(𝜉1, t), 𝜈2(𝜉2, t),… , 𝜈n(𝜉n, t))T,

s = (0, 0,… , 0
⏟⏞⏟⏞⏟

n

, s1, s2,… , sn)T.
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Thus, system (111) can be written in a matrix form as follows:

dw

dt
= Mw − s. (112)

In order to perform a time integration of (112), we apply the Crank-Nicolson method; note that this method is basically based

on the trapezoidal rule. Introducing the equispaced mesh grid in time tk = kΔt for k = 1, 2,… , n, and using the Crank-Nicolson

method, we obtain

wk+1 = Dwk − Δt

2

sk+1 + sk

I − Δt

2
Mk+1

, (113)

where D ∈ ℝ2n×2n is the amplification factor

D =
I + Δt

2
Mk

I − Δt

2
Mk+1

, (114)

and where the identity matrix I∈ ℝ2n×2n.

Appendix C. Energy

Analytic expressions

The total mechanical energy of the cable is given by

E(t) = 1

2 ∫
l

0

[
𝜌(ut + vux)2 + Pu2

x
+ EIu2

xx

]
dx, (115)

where l = l(t), and P is given by (2). Using the dimensionless quantities (3), we rewrite the energy in a dimensionless form:

E(t) = 1

2 ∫
l

0

(
(ut + vux)2 +

(
1 + (𝜇 − v̇)(l − x) − v̇

𝜇

)
u2

x
+ pu2

xx

)
dx. (116)

In order to define the energy on the interval (0, 1), we change variables by using the following transformation x = l𝜉:

E(t) = 1

2 ∫
1

0

1

l

((
lut + v[1 − 𝜉]u𝜉

)2 +
(

1 + l[𝜇 − v̇][1 − 𝜉] − v̇

𝜇

)
u2
𝜉 + pu2

𝜉𝜉

)
d𝜉. (117)

Numerical integration

In order to compute integral (117) numerically, let us use the forward differences for u𝜉 and u𝜉𝜉 , respectively:

u𝜉(𝜉i, t) =
ui+1 − ui

Δ𝜉
+ (Δ𝜉), and u𝜉𝜉(𝜉i, t) =

ui+2 − 2ui+1 + ui

(Δ𝜉)2
+ (Δ𝜉), (118)

for i = 1, 2,… , n, and the trapezoidal rule for ut:

ut(𝜉, t) = 𝜅i𝜈i + 𝜅i+1𝜈i+1, (119)

where 𝜅i ≔ 𝜉−𝜉i+1

𝜉i−𝜉i+1
and 𝜅i+1 ≔ 𝜉−𝜉i

𝜉i+1−𝜉i
. The integrals of u𝜉 , u2

𝜉
, and u2

𝜉𝜉
over 𝜉 can be readily computed. That is why we skip

further details for this part and turn to the integration of ut and u2
t
. Their integrals over 𝜉 are computed by using (119) and the

Holand-Bell theorem [18]:

∫
1

0

utd𝜉 =
n∑

i=1
∫

𝜉i+1

𝜉i

(𝜅i𝜈i + 𝜅i+1𝜈i+1)d𝜉 =
n∑

i=1

𝜈i+1 + 𝜈i

2
Δ𝜉, (120)

∫
1

0

u2
t d𝜉 =

n∑
i=1

∫
𝜉i+1

𝜉i

(𝜅2
i
𝜈2

i
+ 2𝜅i𝜅i+1𝜈i𝜈i+1 + 𝜅2

i+1
𝜈2

i+1
)d𝜉 =

n∑
i=1

1

3

(
𝜈2

i
+ 1

4
𝜈i𝜈i+1 + 𝜈2

i+1

)
Δ𝜉. (121)
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