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A B S T R A C T

We examine identifiability and distinguishability in Decision Field Theory (DFT) models and
highlight pitfalls and how to avoid them. In the past literature, the models’ parameters have
been put forward as being able to capture the psychological processes in a decision maker’s
mind during deliberation. DFT models have been widely used to analyse human decision
making behaviour, and many empirical applications in the choice modelling domain rely solely
on data concerning the observed final choice. This raises the question if such data are rich
enough to allow for the identification of the model’s parameters. Insight into identifiability
and distinguishability is crucial as it allows the researcher to determine which behavioural and
psychological conclusions can or cannot be drawn from the estimated DFT model and how a DFT
model can be specified in such a way that resulting parameters have meaningful interpretations.
In this paper, we address this issue. To do this, we first show which specifications of DFT are
equivalent to conventional probit models. Then, building on this equivalence result, we apply
established analytical methods to highlight and explain the identification and distinguishability
issues that arise when estimating DFT models on conventional choice data. We find evidence
that some of the DFT models’ special cases suffer from identifiability issues. Our results warrant
caution when DFT models are used to infer psychological processes and human behaviour from
conventional choice data, and they help researchers choose the correct specification of DFT
models.

. Introduction

Decision Field Theory (DFT) models are dynamic cognitive process1 models that have been used in mathematical psychology
or almost three decades (Busemeyer and Townsend, 1993). They have been used to analyse human response to monetary gambles
Scheibehenne et al., 2009; Hey et al., 2010), risk-taking in sports (Raab and Johnson, 2004), and consumer decisions (Noguchi
nd Stewart, 2014; Berkowitsch et al., 2014), for instance. Recently several contributions have been made to adapt it to the
ield of discrete choice analysis (Hancock et al., 2018a,b). DFT models are put forward as a more behaviourally rich alternative
o conventional Discrete Choice Models (DCMs) (Busemeyer et al., 2014). The DFT model consists of three main ingredients.
irstly, weight parameters that are associated with attributes are similar to the taste parameters in conventional DCMs. Secondly,
sychological parameters represent deliberation processes in the decision maker’s mind. Specifically, a memory parameter captures
ow the previous state of preference for an alternative affects the current one, and a sensitivity parameter captures how the presence
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1 Cognitive psychologists use process models to explain and describe mental processes, such as deliberation.
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and performance of an alternative affects the decision maker’s preference for another alternative. The third ingredient is the timestep
parameter that stands for the number of times the decision maker updates their state of mind during deliberation.

Despite the fact that the DFT model has been around for over two decades and has been widely cited and used in an abundance
f studies into choice behaviour, its inner workings and econometric properties are not yet fully understood. Since the model
n several applications is put forward as being able to capture a psychological (decision-making) process, based only on data
oncerning observed final decision outcomes,2 it is a crucial question whether the parameters that are representing this process
re in fact identifiable. The identifiability of a model means that there are no two different sets of parameters capable of being
stimated that give the same probability distribution function on any data; this notion has also been called observational equivalence
e.g. Rothenberg, 1971). In the context of choice behaviour, this implies that there are no two sets of parameters that generate the
ame choice probabilities for choice alternatives in the data set. It is widely accepted that in a case where a model tries to reconstruct
eaningful state variables that cannot be measured directly (e.g. memory or preference), identifiability and distinguishability (a

losely related concept, meaning two different structures of a model do not produce the same input–output combination) are crucial
or drawing meaningful behavioural conclusions from the data (Walter and Pronzato, 1996). In existing DCM literature, conditions
or identifiability have been addressed extensively and thoroughly (e.g. Bunch, 1991; Walker, 2002), highlighting that identification
ssues can lead to biased estimates in choice models and a loss of model fit (Walker, 2002). Therefore, for DFT models to become
viable addition to the choice modeller’s toolbox, in-depth understanding on their identifiability is compulsory.

This research note investigates the identifiability and distinguishability of DFT models using analytical derivations. First we show
hat four DFT specifications can be recast as special cases of a probit model, one of the classic DCMs. More generally, we derive
he conditions under which the theoretical equivalence of DFT and probit models holds. This enables us to build on the existing,
ell-developed techniques of identifiability in Discrete Choice Theory in order to obtain robust results concerning the identifiability
f the DFT model. This method (i.e. establishing conditions for equivalence between a process model and a classical DCM, and
ubsequently using identifiability results from discrete choice theory to obtain corresponding results for the process model) has not
een applied previously in existing literature for process models. We show it to be a promising avenue that may help pave the way
owards incorporating alternative models from mathematical psychology to the choice modelling domain. Applying our method to
FT, we have found four cases where the probit equivalence holds: (1) when there is just one timestep, (2) when the sensitivity
arameter is relatively high, (3) when the memory decay parameter is zero and (4) when there are only two alternatives. If one of
hese conditions is met, then the DFT model can be considered a probit model with a particular structure of its covariance matrix.3
sing analytic derivations which capitalize on the probit equivalence, we found that the high sensitivity case is unidentifiable, and

s indistinguishable from the zero memory decay case.
The remaining part of the paper is organized as follows. Section 2 introduces our methodology, starting from the parameters

FT model under examination. Then Section 2.2 briefly introduces probit models and their identifiability steps used in this paper.
e present our results in Section 3. Here, we first establish the theoretical equivalence between special cases of DFT and probit
odels, then study the DFT model’s identifiability and distinguishability issues using analytical derivations for the special cases.

ection 4 discusses the implications of our results in terms of the estimation of DFT models, shows how DFT models in the literature
an solve identification issues, and, more generally discusses the making of behavioural inferences based on process models which
re estimated on outcome data.

. Methodology

.1. Decision field theory parameters

DFT was developed by Busemeyer and Townsend (1992) and over the last few decades it has had several variations applied in
ifferent fields for different problems. Its parameters are often put forward as capturing behavioural phenomena such as memory
ecay (𝜙2), and competition (through the sensitivity parameter, 𝜙1) and time (through the timestep parameter, 𝑡). For instance,
ancock et al. (2018b) writes ‘‘details of chosen and unchosen alternatives are often forgotten’’, ‘‘𝑠𝑖,𝑖 < 1 indicates that memory
ecays’’,4 and ‘‘sensitivity parameter, 𝜙1, affects how much alternatives compete with each other’’. Berkowitsch et al. (2014) writes
hat ‘‘sensitivity parameter 𝜙1 determines the similarity as a function of the distance D between the options in the attribute space’’
nd Busemeyer and Diederich (2002) writes ‘‘the popular option tends to get chosen during the early stages when attention is focused
n the more important attribute, and the less popular option tends to get chosen during the later stages after attention has switched
o the less important attribute’’ in their studies. Such statements, that imply these parameters capture meaningful concepts, motivate
s to find out about parameter identifiability of DFT models on choice data. In this paper we examine the identifiability of these
hree psychologically interpretable parameters (𝜙1, 𝜙2, 𝑡), based on the model variation that has appeared in the choice modelling
omain in recent years, following the developments and notation of Hancock et al. (2018b).5

2 There are exceptions that also take things like eye-tracking data into account (Noguchi and Stewart, 2014).
3 Note that this is a technical equivalence, as the particular structure on the covariance matrix still uses parameters and notation building on DFT, and not

robit.
4 𝑠𝑖,𝑖 is a function of the memory decay parameter, 𝜙1.
5 For the model details, see Section 2.1 of Hancock et al. (2018b).
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2.2. Probit models and identifiability

It has been established that identifiability and distinguishability are crucial criteria for a parametric model in order to draw
onclusions from the data (e.g. Rothenberg, 1971; Walter and Pronzato, 1996). It is especially important when the parameters are
sed to reconstruct meaningful concepts, such as preference, that cannot be measured directly. Probit is one of the most general
CMs (Daganzo, 1979), that often uses meaningful parameters in the covariance matrix structure. Therefore its identifiability
as been extensively studied. The equivalence between DFT and probit derived in Section 3 allows us to apply such methods to
nvestigate identifiability in DFT models.

Specifically we build on the most general method (meaning it can be used always) described by Train (2009), where the
dentifiability of parameters depends on whether they can be computed from the elements of the normalized covariance matrix
f utility differences. The steps are the following:

(1) Take the covariance matrix of utility differences;
(2) Normalize it;
(3) Retrieve the estimable parameters from the elements of the normalized covariance matrix of utility differences.

. Results: equivalence, identifiability and distinguishability

In this section we present our results in the following order. In Section 3.1 we present the specifications needed in a DFT model
o that it is equivalent to a heteroskedastic6 probit model. Then, in Section 3.2 we examine each of these cases by applying the

analytical procedure derived for the probit model identifiability by Train (2009). Finally, in Section 3.3 we present our approach
to establish distinguishability of the different cases.

3.1. Equivalence of DFT and probit models

First we show the general conditions that must hold in order to get equivalent DFT and probit models. As both of them use the
integral of the multivariate normal distribution’s probability density function to compute choice probabilities, they can be formulated
as:

𝑃𝑟[𝑖] = ∫

∞

0
𝑓 (𝑋)𝑑𝑋 (1)

where 𝑓 (𝑋) stands for the probability density function of the multivariate normal distribution. Variable 𝑋 in the DFT model is

𝑋𝐷𝐹𝑇 ∼ 𝑁(𝜉𝑖, 𝛬𝑖) (2)

where 𝜉𝑖 is the vector of differences between the expected preference value of alternative 𝑖 and that of each of the other alternatives.
𝛬𝑖 is the corresponding covariance matrix.

In probit 𝑋 is

𝑋𝑝𝑟𝑜𝑏𝑖𝑡 ∼ 𝑁(𝑉𝑖, 𝛺∗
𝑖 ) (3)

where 𝑉𝑖 is the vector of differences between the systematic utility of alternative 𝑖 and that of each of the other alternatives. 𝛺∗
𝑖 is

the corresponding covariance matrix.
Therefore when

𝜉𝑖 = 𝑉𝑖 (4)

and

𝛬𝑖 = 𝛺∗
𝑖 (5)

the two models are equivalent. The condition on the covariance matrices (Eq. (5)) can be obtained with structural assumptions on
the probit’s covariances. Probit provides a flexible framework in which structured covariance matrices are often used to capture
interdependencies between alternatives, and DFT’s behavioural assumptions result in such covariances. Therefore we can impose
the same structure as that of DFT on the elements of the probit covariance matrix. This structural restriction on probit results
in a different covariance matrix in each choice scenario (as the covariance matrix of DFT depends on the attribute differences of
alternatives), therefore a probit model that is equivalent to DFT is heteroskedastic.

As for the mean, the well-known utility difference of probit (right-hand-side of Eq. (4)) can be written in the linear-additive form
of the betas multiplied by the corresponding attribute differences, or formally:

𝑉𝑖 − 𝑉𝑗 =
∑

𝑚
𝛽𝑚(𝑥𝑖𝑚 − 𝑥𝑗𝑚) ∀𝑗 ≠ 𝑖 (6)

6 Note that heteroskedasticity here (contrary to many DCM applications, where the variance of the unobserved factors vary across alternatives) means that
3

he covariance matrix varies across choice scenarios.
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Table 1
The different cases of DFT examined in depth. 𝑡 is the number of timesteps, 𝜙1 is the sensitivity, 𝜙2 is the memory parameter and 𝑁 is the number of alternatives.
𝛼 is an arbitrarily small number, D is the distance between alternatives. In Cases 1 and 3 some process parameters drop out of the model (denoted by N/A). 𝑁
is an integer, all other variables have real values. Parentheses denote open sets.

𝑡 𝜙1 𝜙2 𝑁

Case 1: One timestep 1 N/A N/A 𝑁 ≥ 2
Case 2: High sensitivity ∀𝑡 ∈ (1,∞) 𝜙1 > − ln 𝛼

𝐷2 ∀𝜙2 ∈ (0, 1) 𝑁 ≥ 2
Case 3: Zero memory decay ∀𝑡 ∈ (1,∞) N/A 0 𝑁 ≥ 2
Case 4: Two alternatives ∀𝑡 ∈ (1,∞) ∀𝜙1 ∈ R+ ∀𝜙2 ∈ (0, 1) 2

In the following subsections we show that the left-hand-side of equation (i.e. condition) (4), in several cases (see Table 1), takes
he form of a vector with elements:

𝜉𝑖 − 𝜉𝑗 = 𝜋
∑

𝑚
𝑤𝑚(𝑥𝑖𝑚 − 𝑥𝑗𝑚) ∀𝑗 ≠ 𝑖 (7)

𝜋 stands for a scale term, (that includes the psychological parameters and time) that we multiply the weighted sum of the attribute
differences by. For the derivations to find which specifications can be written in this form (Eq. (7)), see Appendix A. Note that here
we set the initial preference value (𝑃0) to zero as in several applications it is not estimated. Its effects are discussed in Section 4. As
the probabilities are calculated using the multivariate normal distribution function, we can eliminate this scale term from the mean
by multiplying the covariance matrix by the scale term’s inverse square, 𝜋−2. This means, that in the special cases that we focus on,
the mean of the MVN (Eq. (2)) takes the linear additive form of attribute differences multiplied by their weights (similar to probit:
Eq. (6)), and the covariance matrix of the MVN (Eq. (2)) is structured by the assumed underlying process of attention wandering,
time, and psychological parameters.

Below, we introduce the four cases of DFT which correspond to probit models with linear additive utility and structured,
heteroskedastic covariance matrix. These four cases are the following: (1) when there is only one timestep (i.e. updating is omitted),
(2) when the sensitivity parameter is relatively high, (3) when there is a constraint on the memory decay parameter, or (4) when
there are two alternatives in the choice set. If any of these four conditions apply, a DFT model is equivalent to a heteroskedastic,
structured covariance probit model. Table 1 shows the four cases and indicates what they mean for the four parameters.

The following subsection introduces the scale terms for the special cases shown in Table 1. In the first case (𝑡 = 1, Section 3.2.1)
e elaborate on the derivation steps, while in the rest of the cases we only present the final result for 𝜋 for the sake of brevity. The

steps we use are the same as in the first case, which are the following: we take a special case of DFT (restricted number of timesteps,
sensitivity or memory parameter), take the difference in preference values (𝜉𝑖), and bring it to the form of Eq. (7), so that the scale
erm can be pointed out. Furthermore, we also present the identifiability analysis in each case.

.2. Identifiability in DFT’s special cases

The identifiability steps of Train (2009) translates as follows when used in DFT models. First we need to transform our DFT
odel by multiplying the covariance matrix of the preference value differences by the scale term’s inverse square. This way, all
arameters will be exclusively in the covariance, except for the weights that appear in the preference value differences, in a similar
ay to betas in probit utilities. If 𝜃s are the estimable parameters, Train argues that in order to set the scale of utility, we need to
ormalize one of these 𝜃s by dividing all 𝜃s by it. We show that in DFT this step is unnecessary, as the normalization takes place
hrough normalizing the weights (for proof see Appendix B). Once we have the model of interest converted into utility-differences
hereafter referred to as preference-value differences, in accordance with DFT terminology), and it is normalized (it is by definition),
e can examine the elements of the covariance matrices. In three alternative cases7 we have three 𝜃s that can be identified (one
ore than in a conventional probit):

𝛬 =
[

𝜃1,1 𝜃1,2
⋅ 𝜃2,2

]

nd we examine how these 𝜃s relate to the estimable parameters, i.e. whether the psychological parameters and timesteps can be
etrieved from these 𝜃s.

.2.1. Case 1: One timestep
The first special case is when there is only one timestep. This case was referred to as being nested within the probit model by

erkowitsch et al. (2014). As we can omit the feedback matrix, DFT’s preference value at timestep one (𝜉1) reduces to:

𝜉1 = 𝜇 (8)

nd the corresponding covariance to:

𝛺1 = 𝛷 (9)

7 We use three alternative cases for illustration purposes, extension to more alternatives is straightforward.
4



Journal of Choice Modelling 45 (2022) 100358T. Szép et al.

𝛹
a

3

H
s

p

𝜇 stands for the expected valence, that can be written as

𝜇𝑖 =
∑

𝑚
𝑤𝑚

(

𝑋𝑖𝑚 − 1
𝑁 − 1

∑

𝑛≠𝑖
𝑋𝑛𝑚

)

(10)

for the 𝑖th alternative. 𝑁 is the number of alternatives in the choice set. The expected preference value differences between the
alternatives is a vector with elements:

𝜉𝑖 − 𝜉𝑗 = 𝜇𝑖 − 𝜇𝑗 =
∑

𝑚
𝑤𝑚

(

𝑋𝑖𝑚 − 1
𝑁 − 1

∑

𝑛≠𝑖
𝑋𝑛𝑚

)

−
∑

𝑚
𝑤𝑚

(

𝑋𝑗𝑚 − 1
𝑁 − 1

∑

𝑛≠𝑗
𝑋𝑛𝑚

)

=
∑

𝑚
𝑤𝑚

(

(𝑋𝑖𝑚 −𝑋𝑗𝑚) −
1

𝑁 − 1
(𝑋𝑗𝑚 −𝑋𝑖𝑚)

)

=
∑

𝑚
𝑤𝑚

(

(𝑋𝑖𝑚 −𝑋𝑗𝑚) +
1

𝑁 − 1
(𝑋𝑖𝑚 −𝑋𝑗𝑚)

)

𝜉𝑖 − 𝜉𝑗 =
∑

𝑚
𝑤𝑚

(

1 + 1
𝑁 − 1

)

(𝑋𝑖𝑚 −𝑋𝑗𝑚) (11)

which, with

𝜋 =
(

1 + 1
𝑁 − 1

)

(12)

takes the form of (7). Therefore, it is equivalent to a heteroskedastic, structured covariance probit model. In this case, DFT and
probit differ in terms of structure, however no additional parameters (for memory, sensitivity or time) are necessary for them to be
equivalent.

In order to establish identifiability in this special case, we take the vectorized form of 𝛬:

�̄� = 𝜋−2 ⋅ (𝐿⊗𝐿) ⋅ [(𝐶 ×𝑀 ⊗𝐶 ×𝑀)�̄� + �̄�] (13)

̄ includes the weight parameters (𝑤1, 𝑚 assumed to be 2), �̄� includes the error term’s variance (𝜎). 𝜋 contains the number of
lternatives (𝑁 , in this illustration, being 3) and none of the estimable parameters in this case.

This covariance matrix can be written in the following expanded form:

�̄� =
⎛

⎜

⎜

⎝

8𝜎
9 −

(

𝑤1 − 1
)

𝑤1
(

𝑋1,2
)2 4𝜎

9 −
(

𝑤1 − 1
)

𝑤1
(

𝑋1,2
) (

𝑋1,3
)

⋅ 8𝜎
9 −

(

𝑤1 − 1
)

𝑤1
(

𝑋1,3
)2

⎞

⎟

⎟

⎠

where

𝑋𝑖,𝑗 =
(

𝑥𝑖,1 − 𝑥𝑖,2 − 𝑥𝑗,1 + 𝑥𝑗,2
)

There is only one parameter to be identified by this covariance matrix, and that is 𝜎 which, for example, can be expressed by
the first estimable parameter 𝜃1,1 as:

𝜎 =
9 ⋅ (𝜃1,1 +

(

𝑤1 − 1
)

𝑤1
(

𝑋1,2
)2)

8
(14)

Therefore the model is identifiable.

.2.2. Case 2: High sensitivity
The second special case is when the feedback matrix of DFT is diagonal. In the feedback matrix parametrization developed by

otaling et al. (2010) and used for transport data analysis in several cases (by e.g. Hancock et al. (2018b)), this means that the
ensitivity parameter is relatively high (i.e. 𝑒−𝜙1𝐷2 is very close to zero). As 𝐷 is the distance between alternatives in the multi-

attribute space, the sensitivity parameter’s size (whether or not it can be considered ‘‘high’’) depends on the data. However, if we
establish that it is high, the following applies.

For any number of timesteps and alternatives, the scale term is:

𝜋𝑡 =
1 − (1 − 𝜙2)𝑡

𝜙2

(

1 + 1
𝑁 − 1

)

(15)

Multiplying the covariance matrix by 𝜋−2
𝑡 results in a structured covariance probit model. The covariance matrix includes

arameters for time and memory. In this case, the covariance matrix takes the form of:

�̄�𝑡 = 𝜋−2
𝑡 ⋅ (𝐿⊗𝐿) ⋅ [(𝐼 − 𝑆 ⊗ 𝑆)−1(𝐼 − 𝑆𝑡 ⊗𝑆𝑡) ×

(

(𝐶 ×𝑀 ⊗𝐶 ×𝑀)�̄� + �̄�
)

] (16)

which can be expanded to:

𝛬𝑡 =

⎛

⎜

⎜

⎜

𝜙2
((

(𝜙2−1)2
)𝑡−1

)(

8𝜎−9(𝑤1−1)𝑤1(𝑋1,2)2
)

9(𝜙2−2)((1−𝜙2)𝑡−1)2
𝜙2

((

(𝜙2−1)2
)𝑡−1

)

(4𝜎−9(𝑤1−1)𝑤1(𝑋1,2)(𝑋1,3))
9(𝜙2−2)((1−𝜙2)𝑡−1)2

⋅
𝜙2

((

(𝜙2−1)2
)𝑡−1

)(

8𝜎−9(𝑤1−1)𝑤1(𝑋1,3)2
)

⎞

⎟

⎟

⎟

5

⎝
9(𝜙2−2)((1−𝜙2)𝑡−1)2 ⎠
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Fig. 1. The two horizontal axes show timesteps and memory parameters, and the vertical axis shows the log-likelihood generated by these combinations, all
other parameters being equal. The choice data of this specific plot is based on randomly generated attributes between 0 and 1, 2 alternatives and 2 attributes.
The choices are generated with DFT (𝑤1 = 0.6899745; 𝑤2 = 0.3100255; 𝜙1 = 3; 𝜙2 = 0.1; 𝑠 = 1; 𝑡 = 5). The log-likelihood is calculated with the following parameters
being fixed: 𝑤1 = 0.6899745; 𝑤2 = 0.3100255; 𝜙1 = 𝑒𝑥𝑝(100); 𝑠 = 1. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

This can be written in the form of a constant term (across the sample) multiplied with a matrix that includes the error term
variance, the weights and the attributes of alternatives in a structured form:

�̄�𝑡 =
𝜙2

(

1 +
(

1 − 𝜙2
) 𝑡)

(

2 − 𝜙2
)

(

1 −
(

1 − 𝜙2
)𝑡
)

⎛

⎜

⎜

⎝

8𝜎−9(𝑤1−1)𝑤1(𝑋1,2)2
9

4𝜎−9(𝑤1−1)𝑤1(𝑋1,2)(𝑋1,3)
9

⋅
8𝜎−9(𝑤1−1)𝑤1(𝑋1,3)2

9

⎞

⎟

⎟

⎠

(17)

The multiplicative term contains the memory parameter and the timesteps. If we name this term 𝑧, we can derive that several
combinations of 𝜙2 and 𝑡 can result in the same 𝑧, therefore, these two parameters are not jointly identifiable. Eq. (18) shows 𝑡
as a function of 𝜙2, 𝑧 is constant. As this relationship is not dependent on the data, we can state that the parameter combinations
generated by this relationship will give the same input–output combination for any data.

𝑡 =
ln
(

𝑧𝜙2−2𝑧+𝜙2
𝑧𝜙2−2𝑧−𝜙2

)

ln
(

1 − 𝜙2
) (18)

To corroborate this finding, we have plotted the log-likelihood as a function of 𝑡 and 𝜙2 in Fig. 1. We find that along several
combinations of 𝑡 and 𝜙2 (along the red line) the log-likelihood is flat, and these (𝑡, 𝜙2) pairs satisfy relation (18).

This shape of the log-likelihood as a function of 𝑡 and 𝜙2 holds for any data, as long as the estimated sensitivity in the model
being examined can be considered high. For different data sets, the scales on the axes might differ, but the shape and the flatness is
a characteristic that is independent of the data. Therefore, when the sensitivity is high, the memory and timestep parameters are not
jointly identifiable. This issue, however, is most likely to be an empirical issue, because DFT models have not been estimated with
a sensitivity parameter fixed to a high value, it only becomes one through estimation. In these cases the time and memory decay
parameters are unidentifiable. Therefore the identifiability issue in this special case is of an empirical nature; and not a theoretical
nature. An empirical example can be found in Appendix D.

3.2.3. Case 3: Zero memory decay
The third special case is when the feedback matrix is an identity matrix. Using the parametrization of Hotaling et al. (2010),

that means that the memory parameter is zero (𝜙 = 0). This also means that the feedback matrix’s eigenvalues are equal to 1,
6
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therefore the geometric matrix series formula cannot be used as in equations 6a, 6b, 7a, and 7b in Hancock et al. (2018b). Instead,
the formulas for 𝜉 and 𝛺 reduce to:

𝜉𝑡 =
𝑡−1
∑

𝑘=0
𝑆𝑘𝜇 = 𝑡 ⋅ 𝜇 (19)

𝛺𝑡 =
𝑡−1
∑

𝑘=0
[𝑆𝑘𝛷𝑆𝑘′ ] = 𝑡 ⋅𝛷 (20)

We note that these formulas are the same as in the one timestep case, only multiplied by scalar 𝑡. The scale term therefore is:

𝜋𝑡 =
(

1 + 1
𝑁 − 1

)

⋅ 𝑡 (21)

The vector of the covariance matrix elements is:

�̄�𝑡 = 𝜋−2
𝑡 ⋅ 𝑡 ×

(

(𝐿 × 𝐶 ×𝑀 ⊗𝐿 × 𝐶 ×𝑀)�̄� + (𝐿⊗𝐿)�̄�
)

(22)

hich can be written in an extended form as:

�̄�𝑡 =
1
𝑡

⎛

⎜

⎜

⎝

8𝜎−9(𝑤1−1)𝑤1(𝑋1,2)2
9

4𝜎−9(𝑤1−1)𝑤1(𝑋1,2)(𝑋1,3)
9

⋅
8𝜎−9(𝑤1−1)𝑤1(𝑋1,3)2

9

⎞

⎟

⎟

⎠

From these three estimable 𝜃s, it is straightforward to express 𝜎 and 𝑡 in a similar way to the one timestep case (3.2.1):

𝑡 =
(𝑤1 − 1)𝑤1(𝑋1,2𝑋1,3 −𝑋2

1,2,)

𝜃1,1 − 𝜃1,2
(23)

and

𝜎 = 9
8
(𝑤1 − 1)𝑤1

( 𝜃1,1
𝜃1,1 − 𝜃1,2

𝑋1,2𝑋1,3 −
𝜃1,2

𝜃1,1 − 𝜃1,2
𝑋2

1,2

)

(24)

We conclude that the model is identifiable in this case.

.3. Distinguishability in DFT’s special cases

In order to test distinguishability we compared the covariance matrices we had previously analysed for identifiability. The one
imestep case is distinguishable from all the others (i.e. the only way to get equivalent covariance matrices in high sensitivity, zero
emory decay or two alternative cases, iff 𝑡 = 1). Similarly, we find that the two alternatives case is distinguishable from the others,

s the data-dependent 𝐷 can only be eliminated if there is only 1 timestep, the memory parameter is zero, or when the sensitivity is
elatively high. The last two special cases to compare are the high sensitivity and the zero memory decay cases. Comparing Eqs. (22)
nd (16) and their expanded forms we can see that both of them are essentially the same matrix, one multiplied by 1

𝑡 the other
multiplied by 𝜙2(1+(1−𝜙2)𝑡)

(2−𝜙2)
(

1−(1−𝜙2)𝑡
) .

If we now denote the zero memory decay model’s timestep parameter with capital 𝑇 , and make the two multiplicative terms
equal, we find that

𝑇 =

(

2 − 𝜙2
)

(

1 −
(

1 − 𝜙2
)𝑡
)

𝜙2
(

1 +
(

1 − 𝜙2
)

𝑡
) (25)

This means, that for any (𝑡, 𝜙2) combination in a high sensitivity model, there is an equivalent zero memory decay model with
𝑇 timesteps, that generates exactly the same choice probabilities for any input data.

We can solve this for 𝑡 as well:

𝑡 =
ln
(

2 − 𝜙2 − 𝑇 ∗ 𝜙2
2 − 𝜙2 + 𝑇 ∗ 𝜙2

)

ln(1 − 𝜙2)
(26)

similar to Eq. (18). To sum up the two consequences of these two formulas (Eqs. (25) and (26)):

• For any combination of 𝜙2 and 𝑡 in a high sensitivity model, there is a 𝑇 , that will result in an equivalent zero memory decay
model.

• For one zero memory decay model with timestep parameter 𝑇 , there are several combinations of 𝜙2 and 𝑡 that will result in
equivalent models in a high sensitivity case.

Fig. 2 shows the (𝑡, 𝜙2) combinations with the corresponding 𝑇 s that satisfy Eq. (26).
We also examine an empirical example (for details, see Appendix D), which can be summarized as follows. We take an estimated

odel from the literature (Hancock et al., 2018b, Table 3, model 4), that potentially fits our high sensitivity case (Section 3.2.2
7

nd generate choice probabilities with the estimated parameters (the relevant psychological parameters being 𝜙1 = 142.6043, 𝜙2 =
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Fig. 2. In each facet we can see that for a zero memory decay model with timestep 𝑇 = 2, 3, 4, 5, which combinations of 𝜙2 and 𝑡 in a high sensitivity model
give the same output. On the 𝑥-axis we have the memory (𝜙2), on the 𝑦-axis the timestep parameter (𝑡). The observational equivalence of these combinations
is not dependent on the data we use. This corresponds to Fig. 1, where the log-likelihood function is flat along the exponential shape, which we can see here
as well.

0.1835, 𝑡 = 112.2185). Then we generate two other parameter sets: one based on Eq. (18) and one based on Eq. (25) (all the non-
included parameters are kept the same), and calculate the choice probabilities based on these parameter-sets too. We confirm that
for almost the whole dataset, the generated choice probabilities are the same for the three distinct parameter-sets. This means that a
parameter-set that has high sensitivity, and other parameter-sets, which correspond to ‘‘better memory’’, or even ‘‘perfect memory’’
(i.e. 𝜙2 = 0), and less timesteps during deliberation, are indistinguishable.

4. Conclusion

This research note examines identifiability and distinguishability in Decision Field Theory (DFT) models and highlights two
issues. Our study is motivated by the fact that DFT models are increasingly used in the choice modelling field traditionally relying
on choice (outcome) data to estimate models while at the same time aiming for more behavioural (process) realism of its models. DFT
models are routinely applied as so-called process models, which presumably give insight into the process of decision-making. Such
models being estimated based only on outcome data (i.e. the choices made) raises the question of whether process parameters, such
as memory decay, can be inferred from the estimated model. Our paper sheds light on this question by using analytical techniques.
First, we show that four types of specifications of the DFT model are equivalent to structured covariance probit models. Then we use
this equivalence to study the parameter identifiability of DFT models’ parameters, based on well-established methods from the field
of micro-econometrics (classical discrete choice theory). Specifically, we show that when the DFT model’s sensitivity parameter is
very high, its memory and time parameters are not jointly identifiable. Furthermore, we establish that the high sensitivity and the
zero memory decay specifications of DFT are indistinguishable.

Our main methodological contribution lies in deriving the conditions under which the DFT model is equivalent to probit models,
which allows for rigorous analytical methods to examine the identifiability of parameters in several cases. We believe this approach
holds potential to be applied to other process models or alternative models proposed in mathematical psychology literature, helping
to incorporate such models into the toolbox of choice modellers in general and travel behaviour researchers in particular. The
main conclusion of our application of this probit-equivalence based technique, is that when estimating DFT models, it is very
important to choose an appropriate model set-up which guarantees a solution to identification issues, or to collect data beyond
choice observations, (concerning attention-wandering and decision time, for instance) to avoid misguided behavioural inferences.

Our findings are well aligned with results and intuitions that have already been found and discussed in existing literature.
Below, we discuss these earlier insights, and we specify how our results are connected to them, highlighting the contributions of
this research note. First we discuss the probit-equivalence-related results, then the identifiability investigations. First Roe et al.
8
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Table 2
Studies that connect DFT’s special cases to classic Discrete Choice Models models or identification issues.

Case 1: One timestep Roe et al. (2001) and Berkowitsch et al. (2014)

Case 2 and 4: High sensitivity and two alternatives Hancock (2019) (Chapter 6, 2.2) (Sensitivity parameter loses its meaning due
to two alternatives, conceptual reasoning)

Case 3 and 4: Zero memory decay and two alternatives Busemeyer et al. (2006) (not only zero memory, but also two alternative-restriction
in the demonstration)

(2001) described the relationship between DFT and the Thurstone model (which was later introduced to economics as the RUM
model): with a feedback matrix fixed to identity, at any timestep (one moment in the deliberation process, i.e. 𝑡 = 1) DFT reduces
to the Thurstone model. Similarly, Berkowitsch et al. (2014) stated that the probit model is nested within the DFT model, when
there is only one timestep. This case can be considered as an identity feedback matrix case, which is constrained by 𝑡 = 1. As such,
this specification satisfies the generic conditions we derive in Appendix A (Eqs. (A.7) and (A.8)). To contribute to this strand of
literature, we formally derive which structure needs to be imposed on the covariance matrix for the two models to be equivalent.
Busemeyer et al. (2006) pointed out the similarity between RUM models and DFT for a special case, where there are only two
alternatives and the feedback matrix is identity. Our work extends this finding by showing that these two conditions are sufficient
on their own to prove equivalence between DFT and the RUM probit model. Furthermore, we find that the equivalence condition
reported in our Appendix A is satisfied by a fourth case: when the feedback matrix is diagonal but not necessarily identity. This
is the case when the sensitivity parameter is relatively high and the distance between competing alternatives does not play a role.
Our probit-equivalence findings derived in Appendix A are generic in the sense that they are applicable to feedback matrices which
are not necessarily in the form of Eq. (8) in Hancock et al. (2018b). To study the identifiability of the parameters we applied this
generic result for the above specification as it is most often used in recent literature. This results in four special cases that allow for
a formal identifiability analysis based on analytical derivations. Hancock et al. (2021) also presents identification issues related to
DFT, our results are complementary to their findings.

We find that if the sensitivity parameter is relatively high, the memory and timestep parameters are unidentifiable. A similar
finding also appears in recent literature: Hancock (2019) (Chapter 6, 2.2) found, based on conceptual reasoning, that for two
alternatives the sensitivity parameter loses its meaning, and that therefore the process will only depend on the memory and time,
which then cannot be identified jointly. We show that this applies to multinomial cases as well, if the feedback matrix is diagonal
(i.e. the sensitivity parameter is relatively high). This is important, because such a matrix can be an outcome of an estimation,
without imposing it in advance (e.g. Hancock et al. (2018b), Table 3, Model 4). This identifiability problem is therefore primarily
an empirical problem. Recent empirical investigations in current literature (Chapter 3 in Hancock (2019)) also showed that in some
cases a non-restricted DFT generates similar results to a scaled multinomial logit (MNL) model, where the scale is a function of time.
This is in line with our theoretical result that the zero memory decay model and the high sensitivity model are indistinguishable.
In both these cases a more complicated version of a DFT model can be reduced to a simpler one with fewer parameters, where the
covariance matrix is scaled. The scale can capture how deterministic the choice process is, but it is not possible to establish whether
this is a result of more deliberation time or better memory. Our analytical result proves this for two special cases of DFT, while the
empirical result of Hancock (2019) also extends to the domain of MNL, and indicates that a non-restrictive DFT might also exhibit
the identification problem of memory and time. Table 2 summarizes these results.

In terms of guidance to avoid the mentioned identifiability problems, we propose several solutions that can be applied in the DFT
framework. Based on the wide variety of DFT models proposed in existing literature, we provide an overview on the specifications
that can ensure that the identification issues discussed above will not arise.

(1) A zero memory decay model where only the timesteps are estimated. This specification was used by Hancock (2019), to
demonstrate that the psychological parameters do not always result in an improvement in model fit. Our results show that
this specification also serves as a solution to identification issues, when sensitivity is relatively high. This specification comes
with the assumption that the decision maker has perfect memory, and that previous preference states matter just as much as
the current one.

(2) Assuming that the number of timesteps go to infinity. Berkowitsch et al. (2014) used this specification when estimating their
model, to avoid computationally intensive simulations in DFT estimation. Our results suggest that this assumption will also
eliminate identification issues when the memory and timestep parameters are not jointly identifiable. Behaviourally, this
specification presumes that decision makers make a choice once their preferences have converged.

(3) Including an initial preference state (which implies the behavioural assumption that the decision maker had an initial
preference value towards the alternatives in the choice set). Hancock (2019) (Chapter 6) argues the identifiability of this
specification in the context of binary choices (which implies in their study that the sensitivity parameter is not playing a
role). Our results show that very high sensitivity can also lead to an identifiability problem, and that including an initial
preference state ensures that the DFT model cannot be written in the form of Eq. (7). As such this identifiability issue can be
avoided.

(4) Scaling of the attributes. When done the right way, this eliminates the issue of relatively high sensitivity, as the relative
magnitude depends on the attribute differences of alternatives. Scaling can take several different forms (for an overview see
9

Chapter 4, 3.5 by Hancock (2019)). It has been suggested as a technique to gain better model fit and to avoid the necessity
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of a priori knowledge on whether an attribute has a positive or negative effect on the preference value (Hancock, 2019).
We showed that identifiability issues can occur due to the interaction between the distance between alternatives and the
sensitivity parameter, and that therefore scaling the attribute levels is also a technique to eliminate identification issues. It
is important to note however, that even scaled attributes can lead to high sensitivity estimates, as it is the relative size of
distance and sensitivity that matters.

These solutions each represent different underlying processes; as such, the behavioural conclusions that would be drawn from
the resulting model specifications can be very different. This is especially important to keep in mind when one has limited data (for
instance when the only observation is the final choice) and when the primary goal is not to find the best model fit or prediction,
but rather to actually interpret the parameters and draw behavioural inferences. In this case, our results warrant for caution when
estimating the DFT model and interpreting its parameters.

These behavioural notions also urge further exploration of the identifiability of the general DFT model (i.e. without imposing
any restrictions on parameters), to gain insight into what steps need to be taken to ensure that the unrestricted DFT model is
identifiable. This thorny problem should, preferably, be approached using both empirical and simulated (process) data, while at the
same time building on the analytical results provided in this paper. As a first step, collecting empirical data on attention-wandering
and deliberation times will help develop suitable DFT-models (e.g. by testing different transformations on the parameters in the
estimation or by developing alternative parameterizations for the feedback matrix). Then, to test whether the parameters of the
resulting empirically supported models can be recovered without bias, the analytical steps laid out in this paper can be applied,
together with analyses based on simulated data.
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Appendix A. Derivation of probit-like formulas

In order to find DFT specifications where conditions (4) and (5) hold, we need to examine the left-hand-side of condition (4).
The aim is to get to Eq. (7), so that the model can be connected to the RUM specification of probit models. For this, we start with
equation 6b in Hancock et al. (2018b) assuming 𝑃0 = 0, 𝑆∗ = (𝐼 − 𝑆)−1(𝐼 − 𝑆𝑡) (due to this formulation, we leave subscript 𝑡 out
from the following derivations), and 𝑁 is the number of alternatives. These reduce preference value equation to:

𝜉 = 𝑆∗ ⋅ 𝜇 (A.1)

which in matrix form is:

𝜉 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑆∗
11 𝑆∗

12 … 𝑆∗
1𝑁

𝑆∗
21 𝑆∗

22
⋮ ⋱

𝑆∗
𝑁1 𝑆∗

𝑁𝑁

⎤

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎣

𝜇1
𝜇2
⋮
𝜇𝑁

⎤

⎥

⎥

⎥

⎥

⎦

The generic element of the preference differences (i.e. the difference between alternative 𝑖 and 𝑗) is:

𝜉𝑖 − 𝜉𝑗 = (𝑆∗
𝑖1 − 𝑆∗

𝑗1)𝜇1 +⋯ + (𝑆∗
𝑖𝑁 − 𝑆∗

𝑗𝑁 )𝜇𝑁 (A.2)

Substituting Eq. (10) as the generic element of vector 𝜇,

𝜉𝑖 − 𝜉𝑗 = (𝑆∗
𝑖1 − 𝑆∗

𝑗1)
∑

𝑚
𝑤𝑚(𝑥1𝑚 − 1

𝑁 − 1
∑

𝑛≠1
𝑥𝑛𝑚) +⋯ + (𝑆∗

𝑖𝑁 − 𝑆∗
𝑗𝑁 )

∑

𝑚
𝑤𝑚(𝑥𝑁𝑚 − 1

𝑁 − 1
∑

𝑛≠𝑁
𝑥𝑛𝑚) (A.3)

This can be written concisely as:

𝜉𝑖 − 𝜉𝑗 =
∑

𝑚
𝑤𝑚

𝑁
∑

𝑘=1

(

(𝑆∗
𝑖𝑘 − 𝑆∗

𝑗𝑘) −
1

𝑁 − 1
∑

𝑙≠𝑘
(𝑆∗

𝑖𝑙 − 𝑆∗
𝑗𝑙)

)

𝑥𝑘𝑚 (A.4)
10

From this equation we gain two conditions that ensure probit-equivalence:
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• That the coefficient (multiplicative term) of 𝑥𝑖𝑚 is equal to the opposite of the coefficient of 𝑥𝑗𝑚 (i.e. attribute 𝑚 of alternative
𝑗, when we examine the difference between alternative 𝑖 and 𝑗) for all m

• The coefficient of 𝑥𝑘𝑚 when 𝑘 ≠ 𝑖, 𝑗 is zero for all 𝑚.

The first condition can be formalized as:

(𝑆∗
𝑖𝑖 − 𝑆∗

𝑗𝑖) −
1

𝑁 − 1
∑

𝑙≠𝑖
(𝑆∗

𝑖𝑙 − 𝑆∗
𝑗𝑙) = −

(

(𝑆∗
𝑖𝑗 − 𝑆∗

𝑗𝑗 ) −
1

𝑁 − 1
∑

𝑙≠𝑗
(𝑆∗

𝑖𝑙 − 𝑆∗
𝑗𝑙)

)

(A.5)

which can be simplified to:
(

1 − 1
𝑁 − 1

)

(𝑆∗
𝑖𝑖 − 𝑆∗

𝑗𝑖 + 𝑆∗
𝑖𝑗 − 𝑆∗

𝑗𝑗 ) −
( 2
𝑁 − 1

)

∑

𝑙≠𝑖≠𝑗
(𝑆∗

𝑖𝑙 − 𝑆∗
𝑗𝑙) = 0 ∀𝑖, 𝑗, 𝑙 (A.6)

If we assume a symmetric matrix with the same elements on the diagonal (which is the case in all DFT applications so far), then
he above condition reduces to:

∑

𝑙≠𝑖≠𝑗
(𝑆∗

𝑖𝑙 − 𝑆∗
𝑗𝑙) = 0 ∀𝑖, 𝑗, 𝑙 (A.7)

meaning the off-diagonal elements of the matrix must be equal.
The second condition, written as a formula is:

(

(𝑆∗
𝑖𝑘 − 𝑆∗

𝑗𝑘) −
1

𝑁 − 1
∑

𝑙≠𝑘
(𝑆∗

𝑖𝑙 − 𝑆∗
𝑗𝑙)

)

= 0 ∀𝑘 ≠ 𝑖, 𝑗 (A.8)

Which is satisfied once all the off-diagonal elements are equal. In the parametrization we use in this paper, this means either
here must be only two alternatives, or the feedback matrix must be diagonal. The reason for this is that the off-diagonal elements
re dependent on the attribute distances (therefore the data). The only way they all become equal for any data in a multi-alternative
ase, is that the sensitivity parameter is very high (relative to the data), or the memory decay is zero.

ppendix B. Normalization

In probit models, we need to normalize the covariance matrix in order to have an identifiable model. In general the problem
s that the multivariate normal probability distribution gives the same probability for the left and right hand side of the following
quation:

𝛷(0|𝑉 ,𝛴) = 𝛷(0|𝑘𝑉 , 𝑘2𝛴) (B.1)

where 𝑉 is the systematic utility difference between the two alternatives and 𝛴 is the corresponding covariance matrix. In the
following we use the 2 alternative, 2 attribute example for illustration. Let us call the following two equations ‘model 1’:

𝑉 = 𝛽1𝑋1 + 𝛽2𝑋2 (B.2)

𝛴 = 𝛺 (B.3)

where 𝛽s are the taste parameters and 𝑋s are the attribute differences between the two alternatives. 𝛺 is the estimated covariance
without further specification.

Following on from Eq. (B.1), we can specify ‘model 2’ to be equivalent with ‘model 1’:

𝑉 ′ = 𝛽′1𝑋1 + 𝛽′2𝑋2 = 𝑘(𝛽1𝑋1 + 𝛽2𝑋2) (B.4)

𝛴′ = 𝛺′ = 𝑘2𝛺 (B.5)

This shows, that if the estimable parameters of ‘model 2’ take the values listed below, the resulting distribution function is
quivalent to that of ‘model 1’.

𝛽′1 = 𝑘𝛽1

𝛽′2 = 𝑘𝛽2

𝛺′ = 𝑘2𝛺

Without further restrictions, this implies that there are an infinite number of (𝛽1, 𝛽2, 𝛺) combinations that give the exact same
hoice probabilities, therefore the model is unidentifiable. The probit model handles it by fixing 𝛺 = 1, then all 𝛽s are uniquely

defined.
11
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In the following, we show that using the DFT restrictions (two kinds of specifications in particular) on weight parameters
ill ensure that there is only one 𝑘 that gives the same choice probabilities, and that is 𝑘 = 1. Therefore the estimable

parameters are uniquely defined.
The choice probability in DFT can also be expressed as in Eq. (B.1). In DFT, the taste parameters are named 𝑤s, and the estimable

parameters as 𝛽s. In DFT these two are not (necessarily) the same.

𝑉 = 𝑤1𝑋1 +𝑤2𝑋2 (B.6)

𝛴 = 𝛺 (B.7)

where

𝑤1 =
𝑒𝑥𝑝(𝛽1)

𝑒𝑥𝑝(𝛽1) + 𝑒𝑥𝑝(𝛽2)
(B.8)

and

𝑤2 =
𝑒𝑥𝑝(𝛽2)

𝑒𝑥𝑝(𝛽1) + 𝑒𝑥𝑝(𝛽2)
(B.9)

As an infinite number of (𝛽1, 𝛽2) combinations would give us the same (𝑤1, 𝑤2), 𝛽1 is normalized to 0.
Therefore, ‘DFT model 1’ is:

𝑉 = 1
1 + 𝑒𝑥𝑝(𝛽2)

𝑋1 +
𝑒𝑥𝑝(𝛽2)

1 + 𝑒𝑥𝑝(𝛽2)
𝑋2 (B.10)

𝛴 = 𝛺 (B.11)

and ‘DFT model 2’ (a model that is equivalent to ‘DFT model 1’) is:

𝑉 ′ = 1
1 + 𝑒𝑥𝑝(𝛽′2)

𝑋1 +
𝑒𝑥𝑝(𝛽′2)

1 + 𝑒𝑥𝑝(𝛽′2)
𝑋2 = 𝑘( 1

1 + 𝑒𝑥𝑝(𝛽2)
𝑋1 +

𝑒𝑥𝑝(𝛽2)
1 + 𝑒𝑥𝑝(𝛽2)

𝑋2) (B.12)

𝛴 = 𝛺′ = 𝑘2𝛺 (B.13)

In order for this to hold for any 𝑋:
1

1 + 𝑒𝑥𝑝(𝛽′2)
= 𝑘

1 + 𝑒𝑥𝑝(𝛽2)
(B.14)

from which 𝑘 can be expressed as:

𝑘 =
1 + 𝑒𝑥𝑝(𝛽2)
1 + 𝑒𝑥𝑝(𝛽′2)

(B.15)

from Eq. (B.12) it also follows that:
𝑒𝑥𝑝(𝛽′2)

1 + 𝑒𝑥𝑝(𝛽′2)
= 𝑘

𝑒𝑥𝑝(𝛽2)
1 + 𝑒𝑥𝑝(𝛽2)

(B.16)

which can be rewritten as:

𝑘 =
𝑒𝑥𝑝(𝛽′2)
𝑒𝑥𝑝(𝛽2)

⋅
1 + 𝑒𝑥𝑝(𝛽2)
1 + 𝑒𝑥𝑝(𝛽′2)

(B.17)

Substituting Eq. (B.15) gives:

1 =
𝑒𝑥𝑝(𝛽′2)
𝑒𝑥𝑝(𝛽2)

(B.18)

𝛽′2 = 𝛽2 (B.19)

which also means:

𝑘 = 1

When the weights are the estimated parameters so that (𝑤1, 𝑤2 = 1−𝑤1) (in this case only 𝑤1 is estimated), the following should
hold:

𝑤′
1 = 𝑘𝑤1

𝑤′
2 = 𝑘𝑤2 = 𝑘(1 −𝑤1)

lso, the condition that 𝑤′
1 +𝑤′

2 = 1 must hold, therefore:
′ ′
12

𝑤2 = 1 −𝑤1 = 1 − 𝑘𝑤1
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(

merging the latter two equations we find:

𝑘(1 −𝑤1) = 1 − 𝑘𝑤1

𝑘 = 1

ppendix C. Identification in case 4: Two alternatives

The fourth special case of DFT-probit equivalence is when there are only two alternatives. In this case the scale term is dependent
n all psychological parameters and the timesteps as well.

𝜋𝑡 =
1 −

(

1 − 𝜙2(1 − 𝑒−𝜙1𝐷2 )
)𝑡

𝜙2(1 − 𝑒−𝜙1𝐷2 )
⋅ 2 (C.1)

The scale term is dependent on the number of alternatives, the distance between the attributes of alternatives (𝐷), sensitivity
𝜙1), memory (𝜙2) and also timesteps (𝑡). The covariance matrix consists of a single 𝜃, which is the following:

�̄�𝑖 = 𝜃𝑖 =
𝜙2

(

𝑒𝐷𝑖𝜙1 − 1
) ((

𝑒−2𝐷𝑖𝜙1
(

𝜙2 −
(

𝜙2 − 1
)

𝑒𝐷𝑖𝜙1
) 2) 𝑡 − 1

) (

𝜎 − 2
(

𝑤1 − 1
)

𝑤1
(

𝑋1,2,𝑖
) 2)

2
((

𝜙2 − 2
)

𝑒𝐷𝑖𝜙1 − 𝜙2
) ((

𝜙2
(

𝑒−𝐷𝑖𝜙1 − 1
)

+ 1
)

𝑡 − 1
)

2
(C.2)

for 𝑖 ∈ 1,… , 𝑛, where 𝑛 is the size of the data. Although the above equation contains four unknown variables (𝜙1, 𝜙2, 𝑡, 𝜎), due to
the heteroskedasticity we cannot eliminate the parameter identifiability based on the number of equations. Following up on our
previous results (high sensitivity case, where 𝑡 can be expressed as a function of 𝜙2), we solve the equation for 𝑡. In order to express
𝑡 as a function of the other parameters, first let us reformulate the following term from the numerator:

((

𝑒−2𝐷𝑖𝜙1
(

𝜙2 −
(

𝜙2 − 1
)

𝑒𝐷𝑖𝜙1
) 2) 𝑡 − 1

)

=
(

𝜙2𝑒
−𝐷𝑖𝜙1 − (𝜙2 − 1)

)2𝑡 − 1 (C.3)

and the following term from the denominator:
((

𝜙2
(

𝑒−𝐷𝑖𝜙1 − 1
)

+ 1
) 𝑡 − 1

) 2 =
(

(

𝜙2𝑒
−𝐷𝑖𝜙1 − (𝜙2 − 1)

)𝑡 − 1
)2

(C.4)

Let 𝐴 be defined as:

𝐴 = 𝜙2𝑒
−𝐷𝑖𝜙1 − (𝜙2 − 1) (C.5)

By substituting 𝐴 and using the well-known identity, 𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏), we can reformulate Eq. (C.3) as:

𝐴2𝑡 − 1 = (𝐴𝑡 + 1)(𝐴𝑡 − 1) (C.6)

and Eq. (C.4) as:

(𝐴𝑡 − 1)2 (C.7)

Substituting the above two formulas, and simplifying the numerator and denominator by (𝐴𝑡 − 1), Eq. (C.2) becomes:

𝜃𝑖 =
𝜙2

(

𝑒𝐷𝑖𝜙1 − 1
) (

𝜎 − 2
(

𝑤1 − 1
)

𝑤1
(

𝑋1,2,𝑖
) 2) (𝐴𝑡 + 1)

2
((

𝜙2 − 2
)

𝑒𝐷𝑖𝜙1 − 𝜙2
)

(𝐴𝑡 − 1)
(C.8)

Rearranging this to express 𝐴𝑡 we find:

𝐴𝑡 =
𝜙2

(

𝑒𝐷𝑖𝜙1 − 1
) (

𝜎 − 2
(

𝑤1 − 1
)

𝑤1
(

𝑋1,2,𝑖
) 2) + 𝜃𝑖 ⋅ 2 ⋅

((

𝜙2 − 2
)

𝑒𝐷𝑖𝜙1 − 𝜙2
)

𝜃𝑖 ⋅ 2 ⋅
((

𝜙2 − 2
)

𝑒𝐷𝑖𝜙1 − 𝜙2
)

− 𝜙2
(

𝑒𝐷𝑖𝜙1 − 1
) (

𝜎 − 2
(

𝑤1 − 1
)

𝑤1
(

𝑋1,2,𝑖
)

2
) (C.9)

from which it follows that:

𝑡 = log𝐴

(

𝜙2
(

𝑒𝐷𝑖𝜙1 − 1
) (

𝜎 − 2
(

𝑤1 − 1
)

𝑤1
(

𝑋1,2,𝑖
) 2) + 𝜃𝑖 ⋅ 2 ⋅

((

𝜙2 − 2
)

𝑒𝐷𝑖𝜙1 − 𝜙2
)

𝜃𝑖 ⋅ 2 ⋅
((

𝜙2 − 2
)

𝑒𝐷𝑖𝜙1 − 𝜙2
)

− 𝜙2
(

𝑒𝐷𝑖𝜙1 − 1
) (

𝜎 − 2
(

𝑤1 − 1
)

𝑤1
(

𝑋1,2,𝑖
)

2
)

)

(C.10)

We find that 𝑡 is dependent on 𝐷𝑖, which is not constant across the data. Therefore, with sufficient amount of data, there is no
evidence for a theoretical identification problem of time and memory in this case.

Appendix D. Empirical example

The high sensitivity case is not a very common issue in published literature. In this section we investigate an estimated model,
where the estimated sensitivity parameter is unusually high (i.e. above hundred). In Hancock et al. (2018b) Table 3, model 4, we see
that 𝜙 = 142.6043, and the two other psychological parameters are 𝜙 = 0.1835, 𝑡 = 112.2185. After standard score normalization of
13
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the data,8 we generate DFT choice probabilities based on the above parameters. Then, to establish whether there is an identification-
ssue, we test whether other parameter-sets result in the same choice probabilities. To find such parameter-sets, we use Eqs. (18)
nd (25).

First, we examine a high sensitivity case with the memory decay parameter set approximately to half its size (i.e. people have
‘better memory’’ when deliberating). We set 𝜙′

2 = 0.09, and apply Eq. (26) to get 𝑡′ = 10.72. We generate DFT choice probabilities
with this new parameter-set (𝜙′

2 = 0.09 and 𝑡′ = 10.72, everything else kept the same as before), and examine the difference compared
to the choice probabilities generated by the original parameter-set.

We see that the mean difference in choice probabilities (generated by the original and the newly calculated parameter-set) is
0.00162883 (less than 1 percentage point). Although the highest difference we see in the data is 12 percentage point, out of the total
of 3492 data points, in 3380 instances the difference is less than 1 percentage point. This means basically, that for the most part
of the data, the original parameter-set and the one corresponding to ‘‘better memory’’ and ‘‘less timesteps spent on deliberation’’
generate the same choice probabilities. Examining the 112 data points where the choice probabilities have larger difference (than
1 percentage point), we find that the average Eucledian distance between the alternatives is 25 times smaller compared to the
lower-difference (than 1 percentage point) part of the data. This is because if the distance (𝐷) is very small (i.e. close to 0), then
exp(−𝜙1 ∗ 𝐷2) ≈ 1. This illustrates why we define high sensitivity as relatively high sensitivity in Section 3.2.2; the smaller the distance
between alternatives, the higher sensitivity parameter is ‘needed’ for the model to become unidentifiable.

Next, we test the distinguishability from the zero-memory decay model, applying Eq. (25), and generating DFT choice
probabilities with 𝜙′′

2 = 0 and 𝑡′′ = 9.899183. The mean choice probability difference from the original estimated model is
0.001776593 (less than 1 percentage point), and out of 3492 data points, in 3373 the difference is less than 1 percentage point.

We can conclude, that although it is not a perfectly-high-sensitivity case, for a substantial part of the data (96.6% of the total
sample), the generated choice probabilities are almost the same, whether we assume there is no memory decay at all and the decision
is made quickly, or when there is some memory decay and more time is spent on deliberation.

Appendix E. Relation to order and rank conditions

Rank and order conditions (Bunch, 1991; Walker et al., 2007) were also suggested in the literature as ways to find identification
issues in probit models.

The order condition states that in a probit model’s covariance matrix there are maximum 𝐽 (𝐽 − 1)
2

− 1 identifiable parameters,
𝐽 being the number of alternatives. In the probit-equivalent DFT specifications this is not applicable as the covariance matrix is
structured: it varies across the data.

The rank condition states that in a probit model’s covariance matrix there are maximum 𝑅𝑎𝑛𝑘(𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝑣𝑒𝑐𝑢(𝛺𝛥)))−1 identifiable
arameters (Walker et al., 2007). In the probit-equivalent DFT specifications this condition should be modified because the scale
s already set by the weight normalization (Appendix B); thus 1 should not be subtracted at the end. The rank condition can be
sed to confirm our findings. For instance, the rank of the jacobian of the vectorized covariance matrix in Eq. (17) is 2, while 3
arameters should be estimated. This is a direct result of the multiplicative term involving two parameters in Eq. (17). As the rank
ondition takes into account the structure of the covariance matrix (and not just the number of alternatives), it is also suitable for
dentification analysis in DFT.
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