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X-ray fluorescence spectroscopy (XRF) plays an important role for elemental analysis in a wide range of

scientific fields, especially in cultural heritage. XRF imaging, which uses a raster scan to acquire spectra

pixel-wise across artworks, provides the opportunity for spatial analysis of pigment distributions based on

their elemental composition. However, conventional XRF-based pigment identification relies on time-

consuming elemental mapping facilitated by the interpretation of measured spectra by experts. To

reduce the reliance on manual work, recent studies have applied machine learning techniques to cluster

similar XRF spectra in data analysis and to identify the most likely pigments. Nevertheless, it is still

challenging to implement automatic pigment identification strategies to directly tackle the complex

structure of real paintings, e.g. pigment mixtures and layered pigments. In addition, pigment

identification based on XRF on a pixel-by-pixel basis remains an obstacle due to the high noise level.

Therefore, we developed a deep-learning based pigment identification framework to fully automate the

process. In particular, this method offers high sensitivity to the underlying pigments and to the pigments

present in low concentrations, therefore enabling robust mapping of pigments based on single-pixel XRF

spectra. As case studies, we applied our framework to lab-prepared mock-up paintings and two 19th-

century paintings: Paul Gauguin's Poèmes Barbares (1896) that contains layered pigments with an

underlying painting, and Paul Cezanne's The Bathers (1899–1904). The pigment identification results

demonstrated that our model achieved comparable results to the analysis by elemental mapping,

suggesting the generalizability and stability of our model.
1 Introduction

X-ray uorescence spectroscopy (XRF) is a well-established
workhorse technique for elemental analysis in a wide range of
scientic elds,1 such as geochemistry,2–4 forensic science5,6 and
archaeology.7 Few areas of research benet from its use as much
as the investigation of cultural heritage that oen necessitates
in situ investigations that take place under ambient conditions
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as is offered by open-architecture and hand-held versions of the
XRF instrument. To fully characterize the heterogeneous nature
and complex history of many artworks, XRF oen requires
a high number of measurements that are best implemented in
the form of raster-based imaging. To form an XRF image, the
instrument moves across the surface of an object, such as
a painting, while collecting spectra point-by-point that are
spatially redressed to their 2-D locations.8 XRF imaging allows
for spatial analysis of pigment distributions based on their
elemental composition.

Conventional XRF-based pigment identication uses spec-
trum evaluation methods9 to generate elemental maps, which
existing XRF analysis soware, for example, PyMCA,10 can fully
support. However, identifying the pigments that cause these
elemental maps and their spectra requires input from experts
that have prior knowledge of the painting technique. Moreover,
many artworks consist of varying pigment mixtures layered in
complicated stratigraphies.11–13 To assist the manual work of
evaluating spectra, machine learning techniques have recently
been applied to pigment identication by clustering pigment-
related spectral features.14 For example, XRFast, an open-
This journal is © The Royal Society of Chemistry 2022
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source unsupervised sparse dictionary learning algorithm
developed recently by our group, nds maps of correlated
elements to help in pigment identication, which is an
improvement over the traditional approach that calculates
image correlations.15 Today, deep learning (DL) has been widely
applied to assist with XRF analysis and has the potential to
perform fully automatic identication of elements and their
sources. For example, Shugar et al. identied 48 different wood
species with the XRF dataset using convolutional neural
networks, reaching an accuracy of 99%.16 They found the range
between 0.7–1.7 keV the most important portion of the spectra
for wood classication, which covers the elements calcium,
aluminum and magnesium. Moreover, Kim et al. applied
a neural network on micro XRF data to generate mineral maps
on natural rocks. They showed that DL was a good way to
improve the description of mineral reactivity to rock samples of
different origin, size, and thickness.17 Most recently, Jones et al.
proposed a deep-learning-based method to directly identify
pigments from XRF spectra.18 By training a convolutional neural
network, they classied XRF spectra into one of the 15 pigment
classes with an high accuracy, but claimed that it was still
challenging to apply the model to more complex scenarios,
including layered pigments and pigment mixtures. Therefore,
focusing on the complicated stratigraphies of real paintings,
this work builds on these previous studies by proposing a con-
volutional neural networks to automatically identify pigment
mixtures in layered structures and to display 2D pigment maps
based on the probability of their occurrence.

Here we propose an end-to-end pigment identication
framework, including pigment library creation, XRF spectra
simulation, mock-up preparation, a pigment identication DL
model, and 2D pigment map generation. As a case study, we
applied our framework to a 19th-century painting, Paul Gau-
guin's Poèmes Barbares (1896), focusing on a set of 19-century
pigments previously identied in this painting.19 In addition,
previous analysis revealed a hidden painting beneath the
surface, which tremendously increased the difficulty of pigment
interpretation. Therefore, our DL model targets pigment iden-
tication in the multilayered matrices of the painting. By
training the DL model using 16 224 simulated XRF spectra of
three-layered pigments, followed by netuning of the model
using 20% of the experimental XRF spectra (i.e., 1320 XRF
spectra) from mock-ups, the DL model demonstrated satisfying
performance of pigment identication on the mock-ups as well
as the painting Poèmes Barbares. In particular, a high sensi-
tivity toward identifying pigments present in low concentra-
tions is shown.

To further demonstrate the applicability of this approach, we
applied the netuned model to Paul Cezanne's The Bathers
(1899–1904). This is a single-layered painting created from
a comparable time period to Poèmes Barbares, composed of
similar but fewer pigments. The DL model achieved high
probabilities in identifying the pigments in The Bathers, sug-
gesting our model's generalizability and stability.

In all, our framework provides an automatic and quick
pigment identication strategy based on non-invasive XRF
imaging, in particular targeting the paintings' complex layered
This journal is © The Royal Society of Chemistry 2022
structure to the XRF response. The trained model does not
require expertise or extensive familiarity working with XRF and
pigments, but directly answers where the pigment might exist.
Although the type of pigments are limited to those trained in
the current work, our framework shows great potential for
extension to other types of pigments and paintings, as well as
XRF-based identication problems in the elds beyond cultural
heritage.
2 Experimental method

XRF data from gathered from three sources to build, train, and
test our framework: from existing paintings, from oil-paint
‘mock-ups’ of crossed paint stripes of different pigment
mixtures, and simulated spectra of multilayered pigments.
2.1 XRF datasets

Paul Gaugin's Poèmes Barbares (1896) was selected to test our
pigment identication approach. This painting is representa-
tive of the challenging pigment identication tasks present in
many 19th-century paintings, which oen involve a plethora of
pigments made available aer the industrial revolution. In
addition, the types of pigments and the structure of the paint
layers of Poèmes Barbares were studied previously by
combining XRF, reectance imaging spectroscopy and cross-
section analysis,19 therefore providing us with reliable ground-
truth measurements of this historical work.

These previous studies show that Poèmes Barbares consists
of a visible (top) painting and a hidden (bottom) painting, each
constructed with multiple paint layers and various mixtures of
pigments.19 To accommodate this complex layer structure for
the DL approach, we simplied it into a three-layer structure:
one top pigment layer, one bottom pigment layer, and one
ground layer. Referring to the chemical analysis of multiple
cross-sections of the painting, we chose 11 distinct pigments of
interest (Table 1) and calcium carbonate as the ground layer.

Next, we made our own set of layered oil paint mock-ups to
better measure how the layers affect the pigments' XRF spectra.
For these layered paintings (Fig. 1), we chose a range of the
pigment fractions, binder ratios, and layer thicknesses as
related to Poèmes Barbares. We then created sets of 3-layer
mock-ups consisting of crossed strips of paint with these values
and prepared them for XRF measurement, generating 6605 XRF
spectra including 64 pigment layer structures. Unfortunately,
the experimental data caused the overtting of the deep
learning model due to the lack of variation in the pigment layer
structure. To tackle this problem, we further generated a simu-
lation dataset for these same pigments and thicknesses to train
and validate the deep learning model.

2.1.1 Experimental dataset. The experimental dataset con-
tained XRF spectra of mock-ups with known pigment layer
structure and was used for training and testing the deep
learning model. We prepared the three-layered mock-ups with
various combinations of pigments: six pigment mixtures as the
bottom paint layer (mainly varying in the pigments' mass frac-
tions, providing 16 bottom layers in total) and four mixtures as
J. Anal. At. Spectrom., 2022, 37, 2672–2682 | 2673
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Table 1 Pigment library for selected pigments

Index Pigmenta Chemical formula

1 Calcium carbonate CaCO3

2 Chrome oxide green (CrG) Cr2O3

3 Chrome yellow (CrY) PbCrO4

4 Cobalt blue (CB) CoO$Al2O3

5 Emerald green (EG)b Cu(CH3COO)2$3Cu(AsO2)2
6 Iron oxide (IO) Fe2O3

7 Lead white (LW) 2PbCO3$Pb(OH)2
8 Prussian blue (PB) Fe[Fe2(CN)6]3
9 Red lead (RL) Pb3O4

10 Carmine (CM)c SnO2

11 Vermilion (VM) HgS
12 Zinc white (ZW) ZnO

a Calcium carbonate, chrome oxide green, cobalt blue, verdigris, iron
oxide red (120 M), lead white, Prussian blue, and vermilion were
purchased from Kremer Pigmente (New York, NY). Chrome yellow and
red lead were purchased from Rublev Colours (Willits, CA). Zinc oxide
was obtained from Gamblin Artists Colors (Portland, OR). Sodium
arsenite ($90%) and tin oxide (99.99%) were obtained from Sigma
Aldrich. b Due to the current unavailability of commercial emerald
green pigment, we mixed the copper carbonate pigment verdigris (VG,
CuCH3COO2$2Cu(OH)2) and sodium arsenite (SA, NaAsO2) to
approximate the XRF signal of emerald green, in which the Cu–As
mass ratio was set accordingly. c Since the chemical analysis
suggested that tin oxide (SnO2) was the support of carmine, we solely
used the SnO2 powder in preparing the mock-ups to represent
carmine in the XRF dataset.

Fig. 1 The structure of mock-up samples. The first and second layers
both contained multiple strips of pigment layers, each strip with its
pigment combination selected from Table 1; the third layer was
a ground layer consisting of calcium carbonate.

Table 2 Summary of pigment mixtures in the mock-ups

Pigment mixture Compounda Mass fraction (%)

Top 1 LW, CM, PB, CB 55, 10, 25, 10
Top 2 VM, CM, CB 30, 30, 40
Top 3 VM, CrY, IO, VG, SA 39, 6, 39, 6, 10
Top 4 VM 100
Bottom 1A ZW, LW, RL, VM 10, 10, 10, 70
Bottom 1B ZW, LW, RL, VM 10, 20, 50, 20
Bottom 1C ZW, LW, RL, VM 10, 50, 20, 20
Bottom 2A ZW, LW, VM 10, 85, 5
Bottom 2B ZW, LW, VM 10.7, 88.7, 0.6
Bottom 2C ZW, LW, VM 10, 50, 40
Bottom 3A ZW, LW, CB, CrG 10, 15, 15, 60
Bottom 3B ZW, LW, CB, CrG 10, 15, 60, 15
Bottom 3C ZW, LW, CB, CrG 10, 60, 15, 15
Bottom 4A ZW, LW, CrY, VG, SA 10, 45, 15, 12, 18
Bottom 4B ZW, LW, CrY, VG, SA 10, 30, 30, 12, 18
Bottom 4C ZW, LW, CrY, VG, SA 10, 15, 15, 24, 36
Bottom 5A ZW, VM, CrY, VG, SA 10, 5, 5, 32, 48
Bottom 5B ZW, VM, CrY, VG, SA 78, 6, 6, 4, 6
Bottom 5C ZW, VM, CrY, VG, SA 10, 15, 15, 24, 36
Bottom 6 VM 100

a The pigments and their corresponding abbreviations used in this
manuscript are listed as below: CB: cobalt blue, CrG: chrome oxide
green, CM: carmine, CrY: chrome yellow, EG: emerald green, IO: iron
oxide, LW: lead white, PB: Prussian blue, RL: red lead, SA: sodium
arsenite, VG: verdigris, VM: vermilion, ZW: zinc white.
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the top paint layer, making up 64 different layer structures
(Table 2). Fig. 1 illustrated the structure of our mock-up
samples: the rst and second layer both contained multiple
strips of pigment layers, where the combination of pigments in
each strip was selected from Table 2; the third layer was a xed
ground layer of calcium carbonate.

A tape casting coater (model MSK-AFA-HC100, MTI Corpo-
ration (Richmond, CA)) was used to deposit the paint layer
sequentially with adjustable thicknesses. A new layer was
painted aer the previous layer completely dried. In all mock-
ups, we applied a calcium carbonate ground layer of 150–200
mm thickness to match that of Poèmes Barbares. As for the
2674 | J. Anal. At. Spectrom., 2022, 37, 2672–2682
pigment layers, the type of mixtures simulated the palette of
both the bottom and top painting in Poèmes Barbares. To
include the XRF effects commonly found in layered systems and
pigment mixtures, such as shielding and matrix effects, we
varied the pigment fractions in the bottom paint layers (e.g.
Bottom 1A, Bottom 1B, Bottom 1C in Table 2), while the top
paint layer differed in its layer thickness (30–200 mm).

In preparing the mock-ups, commercial pigments and the
binder were hand-ground for 10 min to obtain a uniform
mixture.20 Since the organic binder would not signicantly
affect the XRF signal, we used Galkyd Lite (Gamblin Artists
Colors (Portland, OR)) for its fast-drying property. A pigment-to-
binder ratio (w%/w%) of 3 : 1 was applied to achieve the
mobility required by the tape casting coater. For lead-
containing paint mixtures which appeared dryer, we added
drops of Gamsol odorless mineral spirits (Gamblin Artists
Colors) to further dilute the mixture. All pigment mixtures were
deposited on pH-neutral art boards (Crescent (Wheeling, IL)).

To collect the experimental XRF dataset, we scanned the
mock-ups with the XGLab ELIO XRF imaging spectrometer
system. The XRF spectra of the mock-ups were acquired at 40 kV
and 40 mA. We set the acquisition time at 10.0 s per point to
increase the signal-to-noise ratio required for deep learning.
The raster scan was executed using a 100 × 100 mm motorized
X–Y linear stage mount (Zaber T-LSM100A) with a step size of 1
× 1 mm.

2.1.2 Simulation dataset. To ensure a sufficient dataset size
for training our DL model, we generated a simulation dataset of
16 224 XRF spectra in total. The spectra were calculated using
the matrixSpectrum function in PyMca5.PyMcaGui.physics.xrf.
This journal is © The Royal Society of Chemistry 2022
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Fig. 2 The architecture of the deep learningmodel. It contained 1D convolutional layers (Conv), normalization layers (Norm), max pooling layers
(Max Pool), a flatten layer, a dropout layer and a fully-connected layer. The input size of each XRF spectrumwas 3815× 1. The output predictions
were in 11 classes (one per pigment). # kernel and kernel size stood for the number and the size of the kernel at the corresponding convolutional
layer, respectively.
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McaAdvancedFit of the PyMCA Python package.10 These func-
tions were used outside the PyMCA graphical user interface
(GUI) in a Jupyter Notebook running Python. Basic functionality
and use can be found on the NU-ACCESS Github (https://
github.com/NU-ACCESS). Based on the fundamental
parameter approach,21 the matrixSpectrum function simulates
XRF spectra for multilayer samples. In generating the
simulation dataset, we applied a three-layer structure (top
pigment layer – bottom pigment layer – ground layer) similar
with the mock-up paintings. Each of the top and the bottom
layers consisted of a single pigment from the pigment library
(Table 1), with a layer thickness of 50–200 mm (10 mm interval)
and 100–150 mm (10 mm interval), respectively.
Fig. 3 “Poèmes Barbares” (1896), oil on canvas, 64.8 × 48.3 cm
(unframed), painted by the French artist Paul Gauguin (1848–1903),
Harvard Art Museums/Fogg Museum, Bequest from the Collection of
Maurice Wertheim, Class of 1906. Object Number: 1951.49 © Presi-
dent and Fellows of Harvard College.
2.2 Data preprocessing

Before feeding the experimental and simulation datasets into
the DL model, several preprocessing steps were necessary. First,
based on preliminary ablation studies, the overlaps between the
sulfur-K lines (2.31 keV) and the lead-M (2.34 keV) or mercury-M
lines (2.20 keV) confused the DL model in distinguishing these
elements. As a result, both the experimental and simulation
Table 3 The classification results for each pigment class among the models trained from three different datasets: the simulation dataset, the
experimental dataset without finetuning, and the experimental dataset acquired from the mock-ups with finetuninga

Pigment class

Simulation Experimental (no netune) Experimental (netune)

Accuracy Sensitivity F1 Accuracy Sensitivity F1 Accuracy Sensitivity F1

Cobalt blue 0.950 0.997 0.782 0.870 0.973 0.890 0.899 0.985 0.916
Emerald green 0.964 1.0 0.861 0.773 0.821 0.820 0.859 0.870 0.871
Iron oxide 0.882 0.732 0.687 0.659 0.506 0.550 0.998 0.995 0.997
Prussian blue 0.878 0.572 0.592 0.869 0.771 0.746 0.996 0.994 0.993
Carmine 1.0 1.0 1.0 0.653 0.664 0.685 0.995 0.992 0.995
Vermilion 0.987 0.997 0.955 0.918 0.994 0.952 0.947 0.978 0.970
Zinc white 0.952 1.0 0.813 0.916 0.918 0.956 0.916 0.953 0.954
Chrome yellow 0.933 0.981 0.708 0.631 0.642 0.687 0.831 0.862 0.842
Chrome oxide green 0.942 0.982 0.781 0.563 0.569 0.587 0.798 0.887 0.620
Red lead 0.871 0.653 0.626 0.508 0.458 0.556 0.868 0.687 0.634
Lead white 0.858 0.634 0.629 0.755 0.767 0.860 0.836 0.957 0.886

a The results sum up the number of pigment class predictions of both the top- and bottom-layered pigments. The results are averaged from ve-fold
cross-validation.

This journal is © The Royal Society of Chemistry 2022 J. Anal. At. Spectrom., 2022, 37, 2672–2682 | 2675
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Fig. 4 The Bathers (1899–1904), oil on canvas, 51.3 × 61.7 cm,
painted by the French artist Paul Cezanne (1839–1906), The Art
Institute of Chicago, Amy McCormick Memorial Collection. Object
Number: 1942.457 © The Art Institute of Chicago.
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datasets were adonized to start at 2.80 keV to improve the
performance of the DL model.

Also, the simulated XRF spectra lacked the underlying
spectral background signal caused by X-ray scattering and the
equipment properties. Therefore, we estimated this spectral
background from the mean of the measured spectra using
Statistics-sensitive Non-linear Iterative Peak-clipping (SNIP)
algorithm,22 which contains a low statistics digital lter and
a multipass peak clipping loop. Then we added the estimated
background to the simulation dataset to better mimic their
experimental counterpart, without signicantly changing the
key elemental peaks.

Since the XRF sensitivity to different elements varies, both
the experimental and simulated spectra exhibited skewness of
more than one order of magnitude, while the elemental
concentrations were generally comparable. To reduce this
skewness, a log–log square root transformation (eqn (1)) of the
original spectrum X followed by normalization to X′ was
applied. This normalization step further enhanced the recog-
nition of the elements with low peak intensities in the spec-
trum. X′ was the nal input features to the DL model.

X
0 ¼ loge

�
1þ loge

�
1þ

ffiffiffiffi
X

p ��
; (1)
2.3 Model architecture

The model consisted of 5 convolutional blocks, where each
block was made up of a 1D convolutional layer, an activation
function LeakyReLU,23 a batch normalization layer, and a max-
pooling layer, as shown in Fig. 2. According to preliminary
ablation studies, the number and size of the kernels of each 1D
convolutional layer were set at 64, 64, 64, 64, 128 and 5, 3, 3, 3, 3,
respectively. The activation function LeakyReLU, i.e., f(x) =

max(0.01x, x), kept the positive part of its input while preventing
“the dead ReLU issue” by using a small value when the input
was negative.23 The batch normalization layer sped up the
training process by distributing the input for every layer around
the same mean and standard deviation. The max-pooling layer
downsampled the dimension of the input to half. Finally, the
model was followed by a post-convolutional layer with 128
kernels with a size of 3, a normalization layer, a dropout layer
2676 | J. Anal. At. Spectrom., 2022, 37, 2672–2682
with a rate of 0.25, and one fully-connected layer of 11 classes,
outputting the probabilities of each class (each pigment)
between 0 to 1. The output layer used a sigmoid activation
function sðzjÞ ¼ 1

1þ e�zj
, where zj was the predicted score from

the model of each class. The probabilities as predicted further
built the pigment maps of the paintings. Two datasets, the
simulation and experimental datasets, were used to train the
model and compared. The two training processes applied the
same architecture as described but differed in the initial
weights. The model trained with the simulation dataset used
randomly initialized weights. It was then applied as a pre-
trained model, its weights used as the initial value and
further netuned in training the model with the experimental
dataset, a strategy known as Transfer Learning (TL).24

TL is a popular technique that uses the pre-trained weights
from an initial model as the starting point on another model,
which reduces or eliminates the risk of overtting and allows
for better training speed andmodel performance.25 Therefore in
this paper, we pre-trained the model on the simulation dataset
and then rened it using the experimental dataset. Specically,
when training with the experimental dataset, the pre-trained
weights from the simulation dataset were rst xed (i.e.,
untrainable) in all convolutional layers, whereas only the fully
connected layers were netuned with the targeted dataset. Next,
all layers were trainable and were further netuned with the
experimental dataset. The model performances with and
without netuning were compared in the result section to show
the effectiveness of TL.

Moreover, the loss was calculated to optimize the perfor-
mance of the model by averaging the binary cross entropy of
each predicted class, as dened in eqn (2).

Loss ¼ � 1

N

XN
i¼1

XK
j¼1

�
ẑj$log

�
zj
�þ �

1� ẑj
�
$log

�
1� zj

��
; (2)

where ẑ was the ground truth label, z was the score predicted
from the model for each class, K was the number of the class,
and N was the number of batch size.
2.4 Training strategy

The training process was completed in two steps. The model
proposed in Fig. 2 was rst pre-trained on the simulation
dataset. A total of 16 224 simulated XRF spectra were split into
a testing dataset and a training dataset with a ratio of 1 : 4. In
training the model, we applied the ve-fold cross-validation26 by
further dividing the training dataset into ‘5’ groups of equal size
and iteratively selecting one group as the validation set, while
the rest remaining as the training set. Therefore, with the full
iteration, the model's performance was evaluated by the testing
dataset ve times. All cohorts of the dataset were preprocessed
following Section 2.2. The model was trained with the Adam
optimizer27 with an initial learning rate of 0.001. Adam was
chosen for the model due to its robustness, less convergence
time and fewer parameters for tuning. The batch size was 64,
and on average, it took about 0.95 hours for each fold in the 5-
fold cross-validation for 150 epochs with early stopping
settings. Next, the experimental dataset had 6604 XRF spectra
This journal is © The Royal Society of Chemistry 2022
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Fig. 5 Pigment identification results of Poèmes Barbares from the model without finetuning (left half), and the results from the finetuned model
(right half), with results from one pigment on each row. The first column of images in each row shows the pigment map, with highest probability
in red. The second column of images show the elemental map(s) for the pigment calculated by PyMCA, with highest concentrations in green or
blue. The third column images overlay the first two for comparison: it combines the red pigment map with the elements maps in green and
(sometimes) blue. Yellow or white areas depict strong agreement between pigment maps and their corresponding elemental maps. The fourth
column scatter plot compares pigment probability and element concentration data for all image points, where element concentration sets the x-
axis value (or for the bottom row, the minimum concentration of two elements), and the pigment probability sets the y-axis value. The right half
of the figure shows how finetuning our DL model improves its results, and depicts images in the same arrangement used in the figure's left half.
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from the two-layer pigment areas, which we manually picked
from all mock-ups with known ground truth. To conrm the
effect of netuning on pigment identication, we tested the
model before and aer netuning by the experimental dataset.
Specically, to test the model before netuning, which was
trained with the simulation dataset, all experimental datasets
This journal is © The Royal Society of Chemistry 2022
were used as the testing dataset. The model aer netuning was
initialized with the weights that performed the best among the
ve-fold cross-validation and was further netuned with 20% of
the randomly selected data from the experimental dataset, i.e.
1320 XRF spectra. The remaining 80% (5284 XRF spectra) was
used as the testing dataset. Similar to the training process of the
J. Anal. At. Spectrom., 2022, 37, 2672–2682 | 2677
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Fig. 6 Pigment identification results of The Bathers from the finetuned model, including cobalt blue, vermilion, and emerald green from top to
bottom. The first, second and third columns display the pigment map, element map(s) and the comparison figure and scatter plots, respectively.

Fig. 7 Photo image of one mock-up that contains top 2, top 1, top 3,
top 4 (from top to bottom) as top layers and bottom 2 with three
differentmass fractions (A, B and C), bottom 1with three differentmass
fractions (A, C and B) (from left to right) as bottom layers.

Fig. 8 Comparison between pigment maps and elemental maps for
themock-up. (a) The ground truth of the location of vermilion (VM). (b)
The Hg-L element map directly generated from PyMCA. (c) The VM
pigment map generated from the model without finetuning identifies
Hg in the 1, 3, and 4 rows and the 3 and 4 columns. It can barely detect
Hg in the 5 and 6 columns. (d) The VM pigment map generated from
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model trained with the simulation dataset, the netuned model
was trained with the Adam optimizer with a lower learning rate
of 0.0005. The batch size was 64, and it took an average of 0.2
hours for each of the 5 groups or ‘folds'. All training and testing
processes were performed on an NVIDIA GeForce RTX 2070 GPU
using Tensorow 2.0 in Python 3.7.
the finetuned model indicates VM presence in the 1, 3, and 4 rows and
1, 3, 4, 5, and 6 columns with high probabilities. The only missing
column of the VM pigment map is the second column, which contains
0.6% of vermilion.
3 Results
3.1 Pigment identication model performance

Table 3 shows the effectiveness of different training approaches
for pigment classication; rst trained solely with simulation
2678 | J. Anal. At. Spectrom., 2022, 37, 2672–2682 This journal is © The Royal Society of Chemistry 2022
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Fig. 9 Our model distinguishes Prussian blue (PB) and iron oxide (IO)
in onemock-up. (a) The ground truth of PB and IO locations. (b) The Fe
elementmap directly generated from PyMCA contains both PB and IO.
(c) The PB pigment map generated from our model. (d) The IO
pigment map generated from our model.

Fig. 10 XRF spectra of the mock-up painting comparing the effect of
highly absorbing pigments. (a) One single layer M that contains lead
white (LW), red lead (RL), vermilion (VM) and zinc white (ZW). The lead
peaks marked in red have high intensities. (b) The single layer M
covered by one layer of vermilion (VM). The existence of VM in the top
layer significantly blocks the XRF signal of the lead-containing
pigments at the bottom, challenging our model's ability to detect the
hidden lead element.
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data, then with experimental data without netuning, then with
the experimental data with netuning. The overall accuracy,
sensitivity, and F1 score were calculated for each class (each
pigment) averaged from the ve fold validation groups of
experimental data on the testing datasets. Accuracy and sensi-
tivity are dened in eqn (3) and (4).

Accuracy ¼ TPþ TN

TPþ TNþ FNþ FP
; (3)

Sensitivity ¼ TP

TPþ FN
: (4)
This journal is © The Royal Society of Chemistry 2022
F1 score (the harmonic mean of precision and sensitivity)
evaluates the imbalanced classes, as dened in eqn (5).

F1 ¼ 2� Precision� Sensitivity

Precisionþ Sensitivity
; (5)

where

Precision ¼ TP

TPþ FP
: (6)

The output predictions are classied into TP, TN, FP, and
FN, which are short for true positive, true negative, false posi-
tive, and false negative, respectively. True or false denotes
whether the class exists or not according to the ground truth.
Positive or negative suggests if the (pigment) class is predicted
as existing or non-existing. All four evaluation metrics range
from 0 to 1, and the closer to 1, the better the performance of
the model. The analyses are performed on the same GPU using
the scikit-learn package in Python 3.7.

As shown in Table 3, the model trained from the simulation
dataset generally provided satisfactory accuracy, which ranges
from 0.858 to 1.0. Sensitivity varies from 0.572 to 1.0, and F1
score varies from 0.592 to 1.0. According to the sensitivity and
F1 score, two groups of pigments – iron-containing-only Prus-
sian blue and iron oxide, and lead-containing-only red lead and
lead white – perform worse than other pigments due to the
similar elemental proles within each group. This model can be
generalized to the experimental data without netuning but
with relatively worse performance on carmine (tin-based,
according the cross-section analysis), chrome oxide green, and
chrome yellow. Compared with the simulation data, tin has
a much lower concentration in carmine,28 causing a bigger error
and therefore a lower accuracy for the experimental data. In the
simulation dataset, there is no pigment mixture. Chrome oxide
green only contains Cr and chrome yellow contains Cr and Pb,
which helps the model to separate them. But Pb also exists in
other pigments in the mock-ups, which confuses the model.
However, netuning the model on the experimental data
signicantly improves the classication results, reaching an
overall accuracy ranging from 0.798 to 0.998, sensitivity from
0.687 to 0.995, and F1 from 0.634 to 0.997. The next section will
further explain our netuning strategy.

3.2 Tests on Paul Gauguin's Poèmes Barbares

Building on the ability to identify the pigments in the mock-up
samples, we applied the models to the XRF dataset obtained
from Poèmes Barbares (Fig. 3), which was collected also by the
XGLab ELIO XRF imaging spectrometer system.19 The red rect-
angle Fig. 3 marks the area of investigation.

As shown in Fig. 5, the pigment maps suggest the probability
of pigments' existence as predicted by the pigment identica-
tion model, where an increased pixel brightness suggests
a higher probability. The probability ranges from 0–100%,
calculated directly from the XRF spectrum image. Their corre-
sponding 2D elemental maps generated from PyMCA are also
shown in Fig. 5 for comparison, where a brighter pixel suggests
a higher elemental concentration. In addition, each pigment
J. Anal. At. Spectrom., 2022, 37, 2672–2682 | 2679
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map and its corresponding elemental map were merged to
better visualize their pixel differences. Note here that as the
elemental maps have a higher dynamic range than the pigment
maps, we adjusted the max limit of the color bar to 99th
percentile of the concentration data to balance the brightness
between the two maps. To further evaluate the performance of
the pigment identication model, Fig. 5 also includes a series of
scatter plots, which summarize the relationship between the
predicted pigment probability and its actual elemental
concentration at each pixel location. With a higher accuracy in
identifying the pigments, the points remain higher in the plot.
If the model identies a pigment accurately, the probability (y
value) will approach to zero at zero concentration, but will
rapidly increase with any non-zero elemental concentration (x
value).

As shown in Fig. 5, the DL model trained and netuned
solely on the mock-ups is applicable to the paintings and
simulations as well. Fig. 5 displays the results of six pigments:
cobalt blue, carmine, vermilion, zinc white, and emerald green,
each with a unique elemental spectral prole. By comparing the
models with and without netuning, the scatter plots suggest
signicant effect of netuning on improving the sensitivity and
accuracy in identifying all pigments, particularly for the situa-
tion of low elemental concentrations such as carmine. As for the
remaining six pigments (chrome oxide green, chrome yellow,
iron oxide, Prussian blue, red lead, lead white), the current
model has not yet been able to distinguish the pigments that
share the same elements (Fig. S2 and S3 in ESI†), as discussed
below.
3.3 Tests on Paul Cezanne's The Bathers

To further demonstrate that our model is also applicable to
other paintings, we applied our same netuned model to the
XRF dataset of Paul Cezanne's The Bathers (Fig. 4). The XRF
mapping was executed with a MA-XRF system at 40 kV and 1 A,
with an acquisition time of 100 ms per point and a step size of 1
mm. As shown in Fig. 6, pigment maps of cobalt blue, camine
and emerald green perfectly match with their elemental maps
and achieve high probabilities with concentrations increasing.
The pigment identication of this painting shows results
comparable to the Gauguin painting, highlighting the general-
izability and stability of our model. A complete set of the
elemental maps and the pigment maps with and without ne-
tuning are given in Fig. S4 and S6 in ESI.†
4 Discussion
4.1 Finetune the model

Finetuning is a general technique popularized in deep learning
models, especially on 2D images, to take advantage of weights
trained on a huge dataset for another similar but smaller
dataset. This technique has shown success in many elds, such
as image recognition,29 medical diagnosis30 and unsupervised
learning.31 In applying this method, the model initially learned
the spectral features from the large simulation dataset followed
by netuning on the limited experimental data. Table 3
2680 | J. Anal. At. Spectrom., 2022, 37, 2672–2682
suggests that netuning, even using a small subset of the
dataset, can signicantly improve the performance of pigment
identication. In particular for the cases of low elemental
concentrations, such as carmine, the accuracy, sensitivity, and
F1 score increased from 0.653 to 0.995, 0.664 to 0.992, and 0.685
to 0.995, respectively.

To better visualize the effect of netuning, we generated 2D
pigment maps for one mock-up painting (Fig. 7) as an example.
As shown in Fig. 8(a), the vermilion pigment (VM) was present
in three horizontal paint strips (top pigment layer) and all six
vertical strips (bottom pigment layer), but at different concen-
trations. However, neither the Hg elemental map nor the VM
pigment map detected it reliably without netuning. While
Fig. 8(b) and (c) may reveal the existence of VM at low concen-
trations, netuning signicantly improved the identication
result of VM at low concentrations in Fig. 8(d), reaching its limit
near 0.6% concentration as shown in the second vertical strip.

To our best knowledge, this work is the rst to apply transfer
learning to pigment classication using XRF spectra. By ne-
tuning on only 20% randomly selected of the experimental data,
we observed signicant improvements in pigment identica-
tion. On one hand, it improved the model performance even
with a limited training dataset. On the other hand, since mock-
ups are hard to make, it releases the pressure of preparing
a huge experimental dataset. However, as mentioned previ-
ously, since the pigment combination in the experimental
dataset is limited, the netuned model may overt. Neverthe-
less, the netuning technique contributes to extracting the
features related to some specic pigment mixtures in the
painter's palette, which helps the identication of pigments,
especially in a specic painting, with similar painting styles.
Therefore, this netuning technique can be applied to many
different elds using XRF spectra.
4.2 Pigments with similar elemental proles

Three groups of pigments in our pigment library posed chal-
lenges due to similar elemental proles: the chromium-
containing group (chrome oxide green and chrome yellow),
the iron-containing-only group (Prussian blue and iron oxide),
and the lead-containing-only group (lead white and red lead).
Although the two pigments in the chromium-containing group
slightly vary in their elemental map (chrome oxide green only
contains Cr and chrome yellow contains Cr and Pb), the model
failed to distinguish between these two pigments. This is
possibly caused by Pb, which exists almost everywhere in the
painting, oen mixed with other pigments (e.g. lead white).

For the other two pigment groups that share similar
elemental proles, the model before netuning cannot distin-
guish them and shows low to medium probability for all areas
that contain the element(s). However, the netuned model can
distinguish between those pigments when present in different
pigment mixtures, but this only applies when the testing dataset
contains the same pigment mixtures as the netuning dataset.
One special case in our result is that the netune model can
distinguish Prussian blue (PB) and iron oxide (IO) in our mock-
ups. For example, in the mock-up in Fig. 7, PB exists in the
This journal is © The Royal Society of Chemistry 2022
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second row, and IO appears in the third row (Fig. 9(a)). The only
element detectable by XRF in Prussian blue and iron oxide is Fe.
Therefore, the Fe element map (Fig. 9(b)) shows the location of
both pigments and cannot be used to separate one from the
other. However, Prussian blue pigment map (Fig. 9(c)) and iron
oxide pigment map (Fig. 9(e)), generated from our netuned
model, show promising results of distinguishing these two
pigments. The two pigment maps both have high probabilities
at the ground truth location of the pigment and fairly low
probabilities at the ground truth location of the other pigment.
At the same time, we notice the pigment maps incorrectly
identify where the Fe element has low concentration or does not
exist, especially for the Prussian blue pigment map, which may
be related to the high tinting strength, and therefore low
concentration where used, of Prussian blue.19,32,33 This situation
also appears in the Gauguin and Cezanne painting results:
when the pigment concentration is low, the probability might
vary from 0 to 100%. We infer that this is due to the normali-
zation process during the spectrum preprocessing. Specically,
the small peaks (low intensities) are enlarged aer the
normalization, enhancing both useful information and noise
level. In the Fe element map (Fig. 9(b)), Fe concentration is
much higher in iron oxide than in Prussian blue. Therefore, the
iron oxide pigment map only has a few noisy points at the blank
area (only the ground layer), while the Prussian blue pigment
map shows high probabilities at the 1, 2, 5, 6 columns and the
blank area.
4.3 X-ray absorbent materials

Some pigments can strongly absorb photons at energies needed
for X-ray uorescence measurements, and absorption by top
layers of a painting can severely distort the spectra detected
from uorescence of elements in the bottom layers. For
example, the presence of vermilion in the top layer diminishes
the lead peaks of lead white and red lead in the bottom layer
(Fig. 10). In particular, as the energy of the Pb-Lb radiation is
above the Hg-L3 edge, it is absorbed by vermilion in the top
layer, decreasing the Pb-Lb to Pb-La ratio. At the same time, the
absorption gives rise to orescent emission from Hg-La,
increasing the Hg-La to Hg-Lb ratio. The shis in line ratios for
both elements create an extraordinary case the simulated data
did not adequately describe and our model cannot distinguish
from the underlying lead-containing pigments. This effect was
previously observed in manual data evaluation as well.34
5 Conclusions

XRF-based pigment identication problems have long required
expert analysis and previous knowledge. In this paper, we
pursued an automatic XRF data evaluation framework using
deep learning. Our initial attempts at automatically identifying
individual and overlapped pigments directly from XRF spectra
show promise. While our model only tests a small number of
pigments (11) and a small number of layers (2 + base) in this
current stage, it automatically identied pigments in two
different 19th-century paintings and in the training mock-ups
This journal is © The Royal Society of Chemistry 2022
and simulations they inspired. We intend this paper to stimu-
late further work in deep-learning assisted XRF studies for
layered-pigment identication, and prompt more discussion of
their feasibility and practicality for broader uses.

We focused on a set of representative pigments identied or
considered present in Paul Gauguin's Poèmes Barbares (1896)19

as a starting point and then created mock-ups to generate
experimental datasets to capture nonlinear effects of layer
structures. We added a simulation dataset to reduce the need
for prohibitively tedious and difficult mock-up preparation.
Aer data preprocessing, we trained the convolutional neural
network with the simulation dataset and then netuned it with
the experimental dataset, therefore obtaining the pigment
identication model.

Pigment maps are the visualization of the probability output
of our model. The comparison of pigment maps and their cor-
responding element maps shows that our model can success-
fully identify pigments, especially in low concentration or in
overpainted layers. However, the model still has some short-
comings: (a) the model cannot always distinguish pigments
with similar elemental proles; (b) it does not work when high
absorbing pigments block the radiation emitted from the
hidden layer; (c) the netuned model needs experimental data
with at least a small set of ground truth measurements to
prevent limited pigment mixtures in the mock-ups from
causing model overtting and wrong predictions.

This research is still in its early stages, and there are multiple
directions to extend the current work. First of all, including data
from other techniques, such as spectral imaging to get molec-
ular structures, might better differentiate pigments and
compensate for shortcomings (a) and (b) which are common
problems with using XRF to identify pigments. Second, we only
try to identify presence or absence of pigments, and not their
depth or the layers' sequence from front-to-back, an important
but much more challenging problem. Third, the current
pigment library is limited, and training the model with a larger
range of pigments can make it more accessible to different
paintings. With a sufficient pigment dataset, more advanced
deep learning algorithms can be applied to further boost the
pigment identication performance of the model. For example,
Recurrent Neural Networks (RNNs)35 typically solve problems
with sequential input signals because their internal cells store
the information retrieved from the previous point in time and
use them to generate the next point in time. It will be interesting
to try how RNNs work on XRF data with similar time series
structures. In addition, some unsupervised learning methods,
such as autoencoders,36 have been proposed to extract latent
features of signals without any ground truth labels. This is
another interesting approach to try in future work that may
solve the problem of limited unlabeled datasets in this research
area.
Data availability

The related data and code for this paper can be found at the
following Github repository: deep learning assisted XRF.
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