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A B S T R A C T   

The consequences caused by bridge failures owing to the ship-bridge collision are always severe in terms of loss 
of life, economy, and environmental consequences to individuals and societies. The previous studies focused on 
the ship-bridge collision mainly concentrated on passive anti-collision, such as strengthening the bridge structure 
or setting anti-collision facilities. Compared with the previous research, the contribution of this work is to 
facilitate the reduction of collision risk of ship-bridge collision from the perspective of active anti-collision. A 
data-driven approach for ship-bridge collision candidate detection method in inland bridge waterways is pro
posed in this research. The approach is mainly divided into two steps: 1) The features (channel boundary, pier 
domain, and ship domain) of bridge waterways are identified using Kernel Density Estimation (KDE) method 
based on the historical AIS data; 2) Collision candidate detection with Velocity Obstacle (VO) method consid
ering the identified features. This work can provide beneficial support for the ship-bridge active collision 
avoidance system.   

1. Introduction 

Inland navigation is an important part of the comprehensive trans
portation system of China and plays an indispensable role in economic 
development. The Yangtze River has been the busiest inland waterway 
in the world, with a total length of 2838 km, and flows through 11 
provinces. In the wake of the development of modern cities, 140 bridges 
have been built on the Yangtze River. With the increase in the number of 
bridges, more and more bridge collapse events caused by ship collisions 
happened. The losses caused by bridge failures due to the ship-bridge 
collision are always enormous, e.g. loss of life, economic and social 
consequences. The advanced analyses to mitigate the losses of ship- 
bridge collisions have attracted much attention. 

In response to such attention, various methods have been proposed 
to minimize or eliminate the losses, which mainly from the perspective 
of passive anti-collision to provide effective protection from the damage 
to the bridge induced by the ships, such as strengthening the bridge 
structure or setting anti-collision facilities. It can effectively mitigate the 
damage to the bridge when the ship-bridge collision happened, but the 
probability of collision did not decrease. Moreover, once the impact 
force exceeds the load of bridge structures or anti-collision facilities, the 

role of protective measures is very limited. Hence, it is of great signifi
cance to carry out research from the perspective of reducing the ship- 
bridge collision probability. 

In recent years, collision candidate detection, one class method for 
detecting potential collision risk, has attracted much research interest. 
Such methods consider the occurrence of certain non-accident events in 
the traffic system as safety performance indicators from Automatic 
Identification System (AIS) data. Due to restricted navigable conditions 
and high traffic density, there are many potential collision risks in the 
bridge waterways. It’s helpful to decrease the probability of collision 
between ship-bridge by analyzing these risks. Nevertheless, fewer 
studies focused on collision candidate detection of bridge waterways for 
complex navigation features. This paper aims to perform collision 
candidate detection in the bridge waterways by considering the coupling 
effect of all navigation features. 

The contribution of this paper is two-fold: 1) The paper proposed an 
approach for collision candidate detection in bridge waterways from the 
perspective of active anti-collision. It contributes to facilitating the 
reduction of collision probability of ship-bridge collision, and lays a 
foundation for decision support system of ship-bridge collision avoid
ance; 2) The collision candidate detection method proposed in this paper 
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considers the coupling effect of all targets in the bridge waterways. In 
addition, it is more convenient for future collision avoidance decision- 
making research. 

The contents of the paper are arranged as follows: Section 2 presents 
a brief literature review concerning ship-bridge collision analysis and 
collision candidate detection of bridge waterways. Section 3 introduces 
the model design of the research and the details of the component of the 
proposed collision candidate detection approach in this paper. The case 
study is implemented in Section 4 to verify the effectiveness of the 
approach. Finally, the discussion and conclusion are drawn in Section 5 
and Section 6 respectively. 

2. Literature review 

The writer aims to focus on the development of related works in ship- 
bridge collision avoidance and collision candidate detection of bridge 
waterways. In this section, the research status and defects of the above 
topics will be presented by analyzing the relevant literature in recent 
years. With that in mind, the motivation of this paper will be put 
forward. 

2.1. Ship-bridge collision avoidance 

To mitigate the damage caused by ship-bridge collisions, various 
methods have been proposed. Among the related literature, the methods 
are mainly divided into passive and active anti-collision based methods. 

At present, the studies on ship-bridge collision avoidance mainly 
focus on passive anti-collision, which can minimize the damage caused 
by collision from the perspective of installing anti-collision facilities. 
The facilities include direct structures and indirect structures. The basic 
working principle of direct structures is to absorb the kinetic energy of 
the ship through the local plastic deformation and failure of the struc
ture in the process of ship-bridge collision (Fan et al., 2015). More 
typical and commonly used are the steel fender system (Jiang and 
Chorzepa, 2015; Jiang and Chorzepa, 2016; Sha et al., 2019; Sha et al., 
2021) and the fiber-reinforced plastic system (Fang et al., 2016; Zhu 
et al., 2019; Svensson, 2009). Indirect structure, as the name suggests, 
means that the anti-collision facilities are separate from piers, such as 
pile-supported structures, artificial islands, and floating protection 
(Chen et al., 2021; Svensson, 2009). Relatively speaking, the disad
vantages of such facilities are expensive and have great impact on 
navigation. 

Some studies focused on the active anti-collision research between 
ship and bridge. The studies can be divided into macro and micro active 
anti-collision according to different research angles (Ma et al., 2022). 
The macro research is to assess the probability that the bridge may 
collide with the ships in a certain period of time. The statistical analysis 
method was generally used to assess the collision probability based on 
the traffic flow. The standard of AASHTO. (1991), published by the 
American Association of State Highway and Transportation Officials, 
provided an approach for assessing the probability assessment of 
ship-bridge collision and was widely used. The standards of Larsen 
(1993) was proposed by the International Association for Bridge and 
Structural Engineering also provides an assessment approach. Besides, 
the Eurocode model and KUNZI model also provided the approaches for 
the probability assessment of collision. This kind of method can provide 
a reference and basis for the anti-collision decision making in the whole 
construction and service period. 

The micro active anti-collision is a qualitative or quantitative eval
uation of the ship–bridge collision risk during the period when the ship 
passes the bridge according to the real-time behavior characteristics of 
the ship and the environment, which is from the perspective of the 
specific ship (Ma et al., 2022). There are fewer researches on micro 
active anti-collision that have contributed to ship-bridge collision 
avoidance. Wu et al. (2019) proposed a fuzzy logic-based approach for 
ship-bridge collision alerts by considering ship particulars, bridge 

parameters, and the natural environment. Xiao et al. (2015) analyzed 
the AIS data in the waters of Rotterdam port and the Sutong bridge to 
reduce the probability of collision between ships and bridges in the 
future by analyzing the spatial, speed and heading distribution charac
teristics of traffic flow. Rutkowski (2021) summarized the marine 
practices and the author’s research for estimating the ship’s best 
possible speed when passing under bridges by analyzing the relationship 
between the overhead clearance, draft and speed. Du (2018) established 
a bridge anti-collision system, which mainly analyzes whether the 
clearance height and the clear width of bridge waters meet the naviga
tion requirements of ships. Pedersen et al. (2020) outlined a rational 
design procedure for bridge piers and pylons against ship collision im
pacts. Liu and Xiao. (2014) proposed a collision risk model of 
ship-bridge based on collision avoidance theory. Both the Distance at 
Closest Point of Approach (DCPA) and Time to Closest Point of Approach 
(TCPA) are integrated into an index called the degree of collision risk. 

2.2. Collision candidate detection 

Various works on collision candidate detection in the field of navi
gation have been done in recent years. Collision candidate detection is a 
situation in which there is the danger of collision between ships 
approaching each other, but with no collision eventually occurring, 
either due to deceleration, or evasion by the change of course (Li et al., 
2021). Collision candidate detection is of great significance for the risk 
analysis of maritime transportation. It gives early warnings to encoun
tering ships by evaluating collision risk (Yoo, 2018). As for the region, 
the collision risk can be measured by collision candidate detection due 
to the number of actual collision accidents is usually very small (Shu and 
Yu, 2007). In general, there are two categories of methods, namely 
indicator-based methods, and Ship Domain (SD) based methods. 

The Closest Point of Approach (CPA) is the most classical indicator- 
based method (Debnath and Chin, 2009; Chin and Debnath, 2009), 
which is still widely used in navigation practice. The collision risk exists 
if the DCPA is less than the safe distance and the TCPA is positive (Li 
et al., 2021). However, DCPA and TCPA do not fully reflect the severity 
level of the vessel encounter (Zhang et al., 2015). Later, the Collision 
Risk Index (CRI) method emerged and has been rapidly developed and 
applied (Mou et al., 2010, 2020; Li et al., 2019; Gil et al., 2020). It 
considered more indicators such as distance, bearing, and relative speed 
compared with the CPA method. The principle of the CRI method is to 
detect the collision candidate by calculating the collision risk index 
between own ship and the target. The output obtained by the CRI 
method is a value between 0 (safety) and 1 (danger) which represents 
the collision risk of the ship’s current situation. The indicator-based 
methods have two shortcomings:1) It is more suitable for point obsta
cles and difficult to be applied to collision candidate detection of linear 
or other shapes obstacles; 2) Additional avoidance priority algorithm 
must be established in the subsequent collision avoidance decision 
research because there may be multiple targets with the same collision 
risk index. 

Another research of collision candidate detection is the SD based 
method. The SD is the area around the ship that avoids the entrance of 
other obstacles for navigational safety. It was first proposed by Fujii and 
Tanaka (1971) in the traffic survey of Japan’s coastal waters, and the 
domain is an ellipse, which is mainly used in narrow waters. Subse
quently, Goodwin et al. (1975) and Davis (1980) respectively proposed 
SD models composed of three unequal sectors and off-centered circular 
ship domain models. Based on their work, various types of SD have been 
developed. According to Du et al. (2021), the SD models may be clas
sified as probabilistic boundary SD (Zhao and Shi, 2018; Zhang and 
Meng, 2019), data-based SD (Hansen et al., 2013), and dynamic SD 
(Wang et al., 2013; Liu et al., 2016; Liu et al., 2021). There are also the 
following disadvantages: 1) Such methods need to detect collision can
didates one by one, ignoring the coupling effect of different targets on 
own ship; 2) Additional avoidance priority algorithm also should be 

L. Zhang et al.                                                                                                                                                                                                                                   



Ocean Engineering 266 (2022) 113137

3

established because own ship may enter safety domain of multiple tar
gets at the same time. 

2.3. General remarks 

The above literature on ship-bridge collision analysis reveals valu
able insights for bridge owners and maritime authorities to propose and 
implement effective risk mitigation measures. However, the previous 
studies focused on the ship-bridge collision mainly concentrated on 
passive anti-collision facilities and only a few from the perspective of 
active anti-collision. It can effectively reduce the damage caused by 
ship-bridge collision, but the probability of collision did not decrease. 
The role of these protective measures is very limited once the impact 
force exceeds the load of the facilities. Therefore, it is particularly 
necessary to propose an approach from the perspective of active anti- 
collision to reduce the collision probability of ship-bridge. 

Collision candidate detection has been well developed with the 
aforementioned works. However, there are still some issues that 
compromised the accuracy and reliability of the results. The VO method 
(Chen et al., 2020a, 2020b), an overwhelming choice for collision 
candidate detection in recent years, can make up for the defects of the 
indicator-based methods and SD based methods. It is widely used at sea 
and in unrestricted waters, but it is not applied to the bridge waterways. 
To overcome the limitations of these previous works, this study inte
grated the features of the bridge waterways into the VO method to 
perform collision candidate detection of ship trajectories. 

3. Model design 

3.1. Methodology overview 

For the navigation safety of ships in the bridge waterways, a data- 
driven approach for ship collision candidate detection of the waterway 
based on historical AIS data is proposed. This paper can be divided into 
three parts, one is the data preprocessing module, another is the feature 

recognition module, and the third one is the collision candidate detec
tion module. The flowchart of the research methodology is shown in 
Fig. 1. 

The accurate data has great significance for collision candidate 
detection, and the purpose of the data preprocessing module is to make 
the requirements of the research through decoding, outlier detection, 
and interpolation of the raw AIS data. The data can be decoded 
following the standard (ITU, 2010), and the abnormal data with obvious 
abnormality in longitude, latitude, Speed Over Ground (SOG), or Course 
Over Ground (COG) of the ships can be removed. Kinematic interpola
tion, a common interpolation method, will be applied between two 
points with large time interpolation. Through the above preprocessing, 
the AIS data can be used as the data basis for the following modules. 

The feature recognition module aims to provide references for the 
collision candidate detection module by identifying the features of the 
bridge waterways through historical AIS data. Three features are con
cerned in this module: 1) The channel boundaries are identified by the 
KDE method based on historical ship trajectories of the waterways; 2) 
The basic safety domain of ships sailing in the waterways of the bridge is 
established, and the parameters of the domain are also identified 
through the KDE method and historical AIS data; 3) The safety domains 
of piers are formulated in combination with the anti-collision facilities of 
the bridge or the local navigation rules. 

The third one is the collision candidate detection module based on 
the data preprocessing module and the feature recognition module. In 
this part, the basic definition of collision candidate is introduced, and 
the Linear Velocity Obstacle (LVO) method and Non-linear Velocity 
Obstacle (NLVO) method are used to perform collision candidate 
detection with static obstacles (channel boundary and pier) and target 
ships respectively. 

3.2. Data pre-processing module 

Referring to (ITU, 2010), the raw AIS data can be decoded and sorted 
by their MMSI. There are plenty of outliers and missing data in AIS data 

Fig. 1. Flowchart of the research methodology.  
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decoded, due to the AIS messages being easily affected by bad weather, 
blocked communication channel, equipment errors, etc. The accurate 
data has great significance for collision candidate detection. To acquire 
more precise AIS data, we will do the following processing refer to 
(Zhang et al., 2021(a)):  

(1) Violation data, such as MMSI does not conform to the records of 
9-bit, latitude, and longitude out of range, the draft is zero.  

(2) Abnormal data, such as a message changes greatly/without 
changes in a short/long time.  

(3) Overlapping data, such as the data of two adjacent trajectory 
points are the same except for time. 

According to (ITU, 2010), the transmitting frequency of AIS data 
varies from 3s to 3min. Therefore, the time interval between adjacent 
trajectory points is inconsistent on the same trajectory. At present, the 
commonly used interpolation methods are linear interpolation (Xue 
et al., 2017), cubic spline interpolation(Zhang et al., 2018), and kine
matic interpolation (Guo et al., 2021) in the field of navigation. The 
kinematic interpolation is used in this section, and the main idea of it is 
to establish an acceleration function of the moving object in a period 
(Guo et al., 2021). The kinematic equations are as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

x(t) = x(ti) + v(ti)(t − ti) +
1
2

B(t − ti)
2
+

1
6

M(t − ti)
3

v(t) = v(ti) + B(t − ti) +
1
2

M(t − ti)
2

(1)  

Where: x(t) and v(t) represent the position and velocity of the interpo
lated point respectively; x(ti) and v(ti) are known information of the 
previous point of the interpolated point. The two points before and after 
the interpolated point can be brought in to calculate M and B. The 
location and velocity of interpolated point are obtained when the time of 
interpolated point has been calculated, and the time is generally the 
average of the two points before and after. 

As we know, the point of trajectory consists of time, longitude, 
latitude, speed, course and draft, etc. The values of time, longitude, 
latitude, and speed are obtained by Eq. (1) above. Normally, The draft of 
the same trajectory is not changed in a short time, and the course of 
interpolated point can be calculated as follows: 

C(t)=
(
C
(
tj
)
+ C(ti)

)

2
(2)  

Where: C(ti) and C(tj) denote the course of two given adjacent points. 

3.3. Feature recognition module 

This section elaborates on the feature recognition module, which is 
to recognize the features of the bridge waterways by historical ship 
trajectories. The features contain channel boundary, pier domain, and 
ship domain, respectively. The detailed designs of the module are dis
cussed in the following sections. 

3.3.1. Recognition of channel boundary 
Generally, the buoys are arranged along the channel to mark the 

boundaries, and to guide ships to pass safely. However, due to the lim
itations of various conditions (e.g. wind, current and water depth. etc.), 
the buoys in many bridge waterways are not fully equipped and the 
position changes with the change of the flow. Therefore, some great 
challenges and uncertainty rely on buoys to identify the channel 
boundary. Recently, the rapid development of AIS improves the con
venience of trajectory data acquisition. The AIS data recorded the real 
trajectory of ships passing through the bridge waterways. These trajec
tories are decided by the navigator after considering various factors such 
as wind, current, boundary, and customary route. To sum up, it is a more 
accurate and reliable way to identify the channel boundary through 

historical AIS data. 
The information related to the channel boundary is difficult to obtain 

from the preprocessed AIS data, as shown in Fig. 2(a). In this module, the 
trajectory density map is acquired by meshing the region and the tra
jectories shown in Fig. 2(b). Assume that the range of this region is 
(xmin, ymin) to (xmax, ymax) and is divided into M × N small grids. Let Ti =
∑N

j=1Pj is denote a ship trajectory with Pj = {xj,yj,cj,vj}. The index of the 
grid about each trajectory point can be calculated as follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Wm =

⌊
M⋅

(
xj − xmin

)

xmax − xmin

⌋

Hn = N −

⌊
N⋅

(
yj − ymin

)

ymax − ymin

⌋ (3)  

Where: Wn and Hn denote the index of the grid where the trajectory 
point Pj is located. 

To accurately extract the channel boundary from the trajectory 
density map, a method to describe the distribution of trajectory points is 
necessary. The KDE method is a widely used and very suitable 
nonparametric estimation algorithm. Compared with traditional statis
tical methods, the advantage of KDE is that the fitted curve is contin
uous. The KDE can study the spatial distribution characteristics of AIS 
data directly according to the position information of the trajectory 
distribution (Lu et al., 2020). The equation of KDE can be expressed as: 

f̂ h(x)=
1
n
∑ n

i = 1 Kh(x − xi)=
1
nh

∑ n
i = 1 K

(x − xi

h

)
(4)  

Where: xi represent independently distributed trajectory points; h is a 
smoothing parameter called bandwidth; K(x) is the kernel function, 
including Uniform, Triangular, Gaussian, and Normal, etc. The Gaussian 
distribution is the most common probability distribution, and many 
continuous random variables encountered in real life conform to the 
Gaussian distribution, including the trajectory density distribution of 
the bridge waterways. Therefore, the Gaussian kernel is selected as the 
kernel function of the KDE method in this paper. The Gaussian kernel is 
as follows: 

K(x)=
1̅̅
̅̅̅

2π
√ e

(

− x2
2

)

(5) 

Each small grid in the trajectory density map corresponds to a gray 
value, which is the number of trajectory points falling on the grid. As 
shown in Fig. 3, take out the gray value of each column and fit it with the 
KDE method. As the bridge waterway has an upstream channel and a 
downstream channel, the fitting curve has two local maximums and one 
local minimum, which represent the center point of the channels and the 
separation point between channels respectively. Taking the local mini
mum as the probability value of the channel boundary, the boundary 
points can be obtained. 

After iteratively calculating the gray value of the trajectory density 
map by the KDE method, two boundary lines and one segmentation line 
composed of boundary points and segmentation points are identified, as 
shown in Fig. 4(a). However, the curves are not smooth and do not 
conform to the navigation practice. The polynomial fitting can be used 
to deal with the curves, and the pseudocode of polynomial fitting is 
shown in Table 1. T is the candidate curve that will be processed, p0 is 
the initial value of the fitting function, and function leastsq(error, p0, 
args=(x, y)) is a fitting module in Python. The final boundary lines and 
the separation line can be obtained after processing, as shown in Fig. 4 
(b). 

3.3.2. Recognition of ship domain 
The research in the ship domain has a long history, and various 

domains for different scenarios have been put forward one after another. 
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Among them, the ship domain with the eccentric ellipse is very popular 
due to the consistency with navigation practice. However, the parame
ters of the domain are difficult to determine. The common practice for 
determining the parameters is to take a multiple of the ship’s length, 
which is not interpretable and varies with the navigation environment in 
the water area. In this paper, the parameters which more suitable for the 
selected region are determined by the KDE method which is based on 
historical AIS data. 

To simplify the model, the ship is regarded as a particle and the 
center of the ship (xi, yi) is used instead of the position. As shown in 
Fig. 5(a), the parameters that determine the ship domain are the long 
and short semi-axes (a, b) and the coordinate of the virtual ship Pi

′

(x′

i,y
′

i). 
In previous studies, the parameters are mostly set by experience and do 
not provide an interpretable method to solute them. In this paper, the 
ships of the same characteristics are classified into one class. Suppose Pi 
is the trajectory point of the detected ship and Pj is the point of another 
ship around it. The distance and relative bearing of the two ships are 

expressed as d(Pi,Pj) and rb(Pi,Pj). The trajectory points of other ships 
can divide into different regions according to relative bearing as shown 
in Fig. 6(a). 

As shown in Fig. 6(b), the fitting curve of the distance of each region 
can be obtained by the KDE method (Mentioned in Section 3.3.1). By 
setting the threshold of probability in the range of 0–1, the distance 
parameter of each region can be obtained as follows: 

α=

∫D

Dmin

f(x)dx (6)  

Where: α is the threshold of probability; Dmin is the minimum distance 
between the detected ship and other ships; f(x) is the fitting curve by the 
KDE method; D is the distance parameter of the region. 

As shown in Fig. 5(b), assuming that a1, a2, b1, b2 represent the dis
tance parameters of four regions respectively. The parameters of the ship 
domain can be determined by the follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi
′

= xi +
(b2 − b1)

2

yi
′

= yi +
(a1 − a2)

2

a =
a1 + a2

2

b =
b1 + b2

2

(7)  

Where: (xi, yi) and (x′

i, y
′

i) are the position of the real ship and virtual 
ship; a andb are long and short semi-axes of ship domain with the 
eccentric ellipse. 

Assume α is the true course of the detected ship, the expression of the 
ship domain with the eccentric ellipse is as follows: 
( (

x − x′

i

)
cos α +

(
y − y′

i

)
sin α

)2

a2 +

( (
x − x′

i

)
sin α −

(
y − y′

i

)
cos α

)2

b2 = 1 (8)  

3.3.3. Recognition of pier domain 
The collision between ships and piers may pose the biggest threat to 

the bridge. Plenty of research focuses on making the pier stronger, and a 
few concentrate on preventing ships from colliding with piers. In this 
paper, a collision between them is avoided by delimiting the safety 
domain for piers. The pier domain can be determined in many ways. 
This section mainly introduces how to determine the domain through 
the existing anti-collision facilities or historical AIS data. 

Fig. 2. AIS data and trajectory density map.  

Fig. 3. Fitting of the trajectory density map by KDE.  
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Generally, the anti-collision facilities should be set for bridge safety. 
The distance between facilities and piers has been strictly demonstrated 
to meet the standards and local channel conditions before setting. 
Therefore, the distance can be used as a reference for setting up the pier 
domain. As shown in Fig. 7, the rectangles are regarded as safety do
mains of the piers, because there are anti-collision facilities on both sides 
of the piers. The length and width of the area are determined by the 
distance between the pier and the anti-collision facilities and the dis
tance between the pier and the channel boundary. 

3.4. Collision candidate detection module 

To provide a reliable and understandable approach to detecting the 
collision risk of historical ship trajectories in bridge waterways. A 
collision candidate detection approach, considering multiple risk factors 
in the process of a ship crossing the bridge, is designed in this section. 
Generally, a collision candidate is defined as the ship and target in an 
encounter process where their spatio-temporal relationships satisfy 
certain criteria that has the potential for collision (Chen et al., 2018). 
Therefore, a collision candidate exists when the following basic equation 
is satisfied. 

Pi
(
tf
)
∈Pt

(
tf
)
⊕ SD

[
Pt
(
tf
)]

(9)  

Where: Pi(tf ) and Pt(tf ) represent trajectory points to be detected and 
target at the time tf , respectively; SD is the safety domain of target. 

When a ship is sailing in the bridge waterway, the safer practice is to 
follow the channel at a safe speed. In this process, the channel boundary 

Fig. 4. Channel boundaries identified from AIS data.  

Table 1 
The pseudocode of polynomial fitting.  

Algorithm of polynomial fitting: Fitting(T) 

1 x = T[“x”]; y = T[“y”] 
2 p0 = [a1, a2, a3] 
3 error = a1*x^2 + a2*x + a3-y 
4 para = leastsq(error, p0, args=(x, y)) 
5 a1, a2, a3 = para 
6 y_fitted = a1*x^2 + a2*x + a3 
7 return x, y_fitted  

Fig. 5. The ship domain with the eccentric ellipse.  

Fig. 6. Trajectory points around the ship to be detected.  
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and pier can be regarded as static obstacles, which linear motion with a 
velocity of 0. The target ship is a dynamic obstacle with nonlinear mo
tion. The following sections will introduce the collision candidate 
detection between ship trajectory and static or dynamic obstacles in 
sections 3.4.1 and 3.4.2. To describe this process more vividly, examples 
are shown respectively. 

3.4.1. Collision candidate detection with static obstacle 
In section 3.3.1, the channel boundaries, composed of multiple 

points, were recognized from historical AIS data. Assume that L =
∑N

t=1Pt denote a channel boundary with Pt = {xt , yt}. Because the 
boundary can be regarded as a static obstacle with an infinitesimal 
safety domain. Eq. (9) can be substituted with Eq. (10): 

Pi
(
tf
)
∈
∑N

t=1
Pt
(
tf
)

(10) 

Considering the assumption that the detected ship will remain in 
current motion and the motion of the boundary is linear, Eq. (10) can be 
substituted with Eq. (13): 

Pi
(
tf
)
=Pi(t0) + V→i

(
tf − t0

)
(11)  

∑N

t=1
Pt
(
tf
)
=

∑N

t=1
Pt(t0) (12)  

V→i ∈

∑N

t=1
Pt(t0) − Pi(t0)

tf − t0
(13) 

Eq (13) is the collision candidate detection equation between tra
jectory point and channel boundary. Let Pt = {xt , yt} is the center of a 
pier. Eq. (9) can be substituted with Eq. (15) due to the motion of the 
pier being linear. 

Pt
(
tf
)
=Pt(t0) (14)  

Pi
(
tf
)
∈Pt(t0) ⊕ SD[Pt(t0)] (15) 

A collision candidate between the trajectory point and pier occurs as 
the following condition is satisfied: 

V→i ∈

(
Pt(t0) − Pi(t0)

tf − t0

)

⊕
SD[Pt(t0)]

tf − t0
(16) 

To describe the process of collision candidate detection more vividly, 
examples are shown respectively. As shown in Fig. 8(a), it exhibits a ship 
trajectory composed of four points and two border boundaries. The 
boundaries can be projected into the velocity space of each trajectory 
point using Eq. (13). Through the velocity space, it is easy to judge the 
collision candidate between trajectory points and boundaries. A trajec
tory and two piers with rectangular safety domains are shown in Fig. 8 
(b). As same with above, Eq. (16) is used to project the piers into the 
velocity space of trajectory points. 

The velocity spaces corresponding to the 1st and 2nd trajectory 
points of Fig. 8(a) were shown in Fig. 9. The green and red areas are the 
two boundaries projected to the velocity space respectively, and the 
black arrows represent the velocity of the trajectory points to be 
detected; The circle marked as a dotted line represents the maximum 
velocity of the ship. A collision candidate occurs when the arrow points 
beyond the areas, such as in Fig. 9(b). Different from them, it means the 
trajectory point is safe when the arrow is located between the areas as 
shown in Fig. 9(a). 

Fig. 10 are the velocity spaces of the 1st and 3rd points in Fig. 8(b) 
respectively. The green and red areas in the figures correspond to the 
two pier domains at time t0 to tf . It can be seen that in Fig. 10(b), the 
velocity falls within the projection of the green area, which means that 
this point is a collision candidate point. Another point has no collision 
candidate risk with the piers because the velocity does not fall in the 
areas projected by the piers. 

3.4.2. Collision candidate detection with dynamic target 
In general, the ship trajectory is non-linear and deterministic. The 

trajectory of non-linear motion can also be projected to the velocity 
space of the point to be detected, but the premise is that the motion of 
the point is linear. Assume that Ti =

∑N
i=1Pi and Tj =

∑N
i=jPj are the 

Fig. 7. Safety domain of pier.  
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trajectories to be detected and a nearby ship trajectory respectively. The 
NLVO method is used to detect the collision candidate between the two 
trajectories. Assume Pi is the point of detected trajectory at the time t0, 
and the detection duration is ts seconds. The trajectory of another ship 
only needs to retain the clip of trajectory with Tj =

∑t0+ts
j=t0 Pj. The 

equation of collision candidate detection between Pi and Tj =
∑t0+ts

j=t0 Pj is 
as follows: 

V→i ∈
∑t0+ts

tf =t0

(
Pj
(
tf
)
− Pi

tf − t0
⊕

SD
[
Pj
(
tf
)]

tf − t0

)

(17) 

An example is used to display the process of collision candidate 
detection as shown in Fig. 11. Among them, the blue line is the trajectory 
to be detected, and the other lines are trajectories of target ships. After 
projecting the trajectories into the velocity space of the detected tra
jectory using Eq. (17), potential collision risk occurs as the velocity of 
the detected falls in the projected areas of other trajectories. As shown in 
Fig. 12(a), the first point of the detected trajectory is not a collision 
candidate point because the velocity does not fall in the projected areas. 
The velocity of the 3rd point falls in the red area as shown in Fig. 12(b), 
which means that the point has a potential collision risk with one of the 

target ships. 

4. Case study 

4.1. Case design 

To demonstrate the effectiveness of the proposed method, the case 
study on collision candidate detection is illustrated in this section. 
Sutong Bridge, one of the busiest bridges on the Yangtze River, is located 
between Nantong and Suzhou (Changshu) in the east of Jiangsu Prov
ince. The channels of the Sutong bridge are divided into deep water (for 
ships more than 80 m) and recommended water (for ships less than 80 
m) according to The regulations on the ship routing system in the Jiangsu 
section of the Yangtze River (2013). As shown in Fig. 13, the blue and 
yellow channels are the deep water and the recommended water 
respectively. Generally, the bridge has several piers, this case only fo
cuses on two piers on both sides of the main navigation hole, because 
most ships navigate through the hole. The coordinates of the two piers 
are (120.9958◦E, 31.7824◦N) and (120.9939◦E, 31.7728◦N) 
respectively. 

A total of 3098 historical ship trajectories records from the area in 

Fig. 8. Collision candidate detection between trajectory and static obstacles.  

Fig. 9. Velocity space of trajectory points with channel boundaries.  
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the week of March. 1, 2019 to March. 7, 2019, which are used for feature 
recognition. Among collected data, 6 ship trajectories were selected for 
collision candidate detection. The details of selected trajectories are 
shown in Table 2. 

For the convenience of calculation, the longitude and latitude are 
converted into WGS84 coordinates using the following equation. The 
value of C is 20037508.34, which is the circumference of the earth. 
⎧
⎪⎪⎨

⎪⎪⎩

x = lon⋅
C

360

y = log
(

tan
(
(90 + lat)⋅π

360

))

⋅
C
2π

(18)  

4.2. Result of feature recognition 

In this section, the features of the Sutong bridge will be identified by 
the methods described in Section 3.3 based on the collected historical 
trajectories. The experimental parameters and results will be described 
and displayed in detail. 

4.2.1. Result of channel boundary 
The collected ship trajectories are shown in Fig. 14(a) after data 

decoding, cleaning, and interpolation. The waterway selected is divided 
into 500 × 500 small grids in this study. The index of the small grid 
corresponding to each trajectory point can be calculated by Eq. (3). The 
gray value of each small grid is obtained after all indexes are counted, 
and the trajectory density map of the waterway is shown in Fig. 14(b). 
Two trajectories zones with higher density in Fig. 14(b) are deep water 
channels, and the ones with relatively low density on both sides are 
recommended channels. The KDE method will be used to identify the 
channel boundary in the next step based on the density map. 

The KDE method can be used for preliminary boundary identification 
after obtaining the trajectory density map. Randomly extract four col
umns of data in the density map, such as 21, 214, 346, and 478. Sub
stitute them into the KDE method with the bandwidth of 2 and Gaussian 
kernel respectively. The fitting curves corresponding to every column of 
data are shown in Fig. 15. The horizontal axis and vertical axis represent 
the line number and the corresponding probability distribution 
respectively. 

The fitting curve of each column of data has four obvious convex 
parts in Fig. 15, of which the two in the middle represent deep water 
channels and the two sides represent recommended channels. There are 
three minimum points (P2, P3, and P4) between channels in each fitting 
curve, among which P3 corresponds to the boundary point between two 
deep-water channels, and P1 and P2 are the boundary points between the 
deep water channel and the recommended channel. The boundary 
points P1 and P5 on the outside of the recommended channel can be 
solved by the probability corresponding to P1 and P2. Through the above 
steps, the five separation points of each column of data are solved. As 
shown in Fig. 16(a), five boundary lines of the Sutong bridge can be 
preliminarily identified after iterating each column of data according to 
the above steps. Finally, the smooth boundaries can be obtained by 
polynomial fitting as shown in Fig. 16(b). 

4.2.2. Result of ship domain and pier domain 
To study the domains of different types of ships in the Sutong bridge, 

the ships are divided into four categories according to the length (80 m) 
and the average heading (180◦). The results of the classification are 
shown in Table 3. Take the ship to be detected as the center and divide 
the surrounding area into four regions according to 45◦ and 135◦ of port 
and starboard. The distance and relative bearing between similar ships 
and other ships can be obtained by the method described in 3.3.2. Ac
cording to the relative bearing, other ship trajectory points can be 

Fig. 10. Velocity space of trajectory points with piers.  

Fig. 11. The diagram of the trajectory to be detected and target ships.  
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divided into different regions. 
Fig. 17 shows the fitting curve of four types of ships respectively. The 

horizontal axis is the distance and the vertical axis is the probability 
distribution. The yellow solid lines and dotted lines are the fitting curves 
of the front and behind regions, while the blue represents the two sides 
regions. In this study, 1/3 of the maximum probability of the fitting 
curve is taken as the probability threshold. The distances corresponding 
to points a1, a2, a3 and a4 in the figures are the indexes for calculating 
the parameters of the eccentric elliptical domain of each type of ship. 
The domain parameters can be identified by Eq (7), and the results are 
shown in Table 4. The a and b in the table represent the long and short 
semi-axes of the ship domain respectively. And the Δx and Δy represent 
the distance between the virtual ship and the real ship. 

The rectangles are regarded as safety domains of the two piers. In this 
paper, the length and width of the rectangular are determined to be 900 
m and 500 m respectively by measuring the distance between the pier 
and the identified channel boundary, and the distance between the pier 
and the anti-collision facilities. 

Fig. 12. Velocity space of trajectory points with ships.  

Fig. 13. The channels of the Sutong bridge.  

Table 2 
The information of the selected trajectories.  

MMSI Type Length 
(m) 

Draft 
(m) 

Time begins Time end 

413 XXX 
440 

Tanker 104 6.5 March 01, 
04:09:49 

March 01, 
04:20:00 

413 XXX 
656 

Cargo 50 3.0 March 02, 
03:13:01 

March 02, 
03:30:34 

413 XXX 
231 

Cargo 64 3.0 March 02, 
10:19:32 

March 02, 
10:42:32 

413 XXX 
110 

High-speed 
craft 

33 3.5 March 02, 
12:36:45 

March 02, 
12:58:34 

353 XXX 
000 

Cargo 89 5.3 March 02, 
01:13:12 

March 02, 
01:26:53 

412 XXX 
050 

Cargo 85 5.0 March 02, 
01:11:30 

March 02, 
01:25:39  
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4.3. Result of collision candidate detection 

A collision candidate detection approach between ships to be 
detected and static or dynamic obstacles in bridge waterway was 
introduced in section 3.4. In this section, 6 trajectories are selected to 
perform and demonstrate the performance of the proposed approach. As 
shown in Fig. 18, the yellow and green short dashed lines represent the 
recommended and deep water boundaries of the Sutong bridge respec
tively. The area between the two deepwater boundaries is a separation 
zone, separating the upstream and downstream channels. The blue dots 
with arrows represent the trajectories to be detected. 

The process of collision candidate detection between the 1st, 9th, 

11th, and 13th trajectory points of the ship 353XXX000 and channel 
boundaries, piers, and other ships are shown in Figs. 19–21 respectively. 
The detection time is set to 100 s. Fig. 19 shows the detection results of 
the points and the channel boundaries, in which the red and blue lines 
are the projections of the channel boundaries on both sides of the ship to 
be detected. The velocities of the 1st and 9th trajectory points in Fig. 19 
(a) and (b) are between the projections of the boundaries, which show 
that the points are safe within the detection time. In Fig. 19(c), the ve
locity is located in the projection area of the upper boundary, which 
means that the ship will leave the channel within the detection time, so 
the 11th point is considered to be a candidate point for collision with the 
channel boundary. Fig. 19(d) shows that the ship has sailed out of the 

Fig. 14. The trajectories of the Sutong bridge waterway.  

Fig. 15. Fitting curves of randomly selected columns by the KDE method.  
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Fig. 16. Boundaries are identified by the KDE method and polynomial fitting.  

Table 3 
The results of the classification.  

Course Length Number Proportion Type 

≥180◦ ≥80 m 1052 34% Type 1 
＜80 m 452 14.6% Type 2 

＜180◦ ≥80 m 1054 34% Type 3 
＜80 m 540 17.4% Type 4  

Fig. 17. The curves of distance distribution by the KDE method.  

Table 4 
Domain parameters for each type of ship.  

Type a (m) b (m) Δx (m) Δy (m) 

Type 1 206 168 − 6 +8 
Type 2 122 90 +8 +9.5 
Type 3 213 167 +5 +8 
Type 4 138 96 +10 +8  

L. Zhang et al.                                                                                                                                                                                                                                   



Ocean Engineering 266 (2022) 113137

13

channel, such a trajectory point is also considered a collision candidate 
point because it does not sail in accordance with the regulations. 

Fig. 20 shows the collision candidate detection results of the 1st, 9th, 
11th, and 13th trajectory points of ship 353XXX000 and the piers on 
both sides. The red and blue areas in the velocity spaces are the pro
jections of the two piers. There is no risk of collision with the piers at 
these points because the velocities do not fall on the projection areas. 
Fig. 21 shows the results of collision candidate detection between these 
points and nearby ships. Ship 353XXX000 and 412XXX050 are over
taking situations, of which ship 353XXX000 is an overtaking ship. It can 

be seen from the results that the 1st, 9th and 11th points are collision 
candidate points, while the 13th point does not have a potential collision 
risk with ship 412XXX050. 

Figs. 19 and 21 show the process of collision candidate detection of 
ship 353XXX000. Next, two groups of experiments are set at tf equal to 
30 s and 60 s to display the results of collision candidate detection for 
each trajectory. The results are shown in Figs. 22 and 23 the blue and red 
dots with arrows represent the normal and collision candidate points 
respectively. According to the results of the two groups of experiments, 
four ships are detected to have potential collision risk, namely 

Fig. 18. Trajectories to be detected.  

Fig. 19. Velocity spaces of the ship 353XXX000 with channel boundaries.  

L. Zhang et al.                                                                                                                                                                                                                                   



Ocean Engineering 266 (2022) 113137

14

Fig. 20. Velocity spaces of the ship 353XXX000 with piers.  

Fig. 21. Velocity spaces of the ship 353XXX000 with other ships.  
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413XXX231, 353 XXX 000, 412 XXX 050, and 413 XXX 440, while ships 
412 XXX 050 and 413 XXX 656 were safe. The detailed data about 
collision candidate detection of each ship trajectory are shown in 
Fig. 24. 

Fig. 22 shows the results of collision candidate detection for each 
trajectory, the horizontal axis coordinate is the number of trajectory 
points, and the vertical axis coordinate is the time of collision candidate 
happened. Among them, the green, blue and red lines are the timelines 
between the trajectories to be detected and the channel boundaries, 
piers, and other ships, respectively. There is no collision candidate when 
the detection time is equal to 100s, due to the upper limit of the time 
being set to 100s. Figs. 23 and 24 show the detection results after setting 
the time threshold tf equal to 30s and 60s, respectively. A collision 
candidate happened when the detection time was less than tf . For ship 
413XXX231, the results show that the trajectory points 8 to 14 are 
collision candidate points when tf equal to 30s, and point 7 also is a 
collision candidate point if tf is 60s. Points 1 to 11 and 10 to 17 of ship 
353XXX000 have potential collision risks with other ships and bound
aries respectively when tf equal to 60s. As for ships 412XXX050 and 
413XXX656, the results show that they abide by the navigation rules of 
the Sutong bridge. 

5. Discussion 

In the previous content, the feature recognition module and collision 
candidate detection module were introduced and demonstrated the 
effectiveness by a case study. Two groups of comparative experiments 
are used to prove the feasibility of boundary recognition and the supe
riority of collision candidate detection in this section. 

5.1. Comparison experiment of KDE method with K-means and DBSCAN 
clustering algorithms 

Boundary recognition is a very significant part of the feature recog
nition module. To verify the results identified by the KDE method, a 
comparison experiment of the KDE method with K-means and DBSCAN 
algorithms is set up in this section. The experimental area and AIS data 
of the comparative experiment are the same as the case study. In Section 
4.2.1, we obtained several boundary lines through the KDE method. As 
shown in Fig. 25(a), the solid lines are the real boundaries of the Sutong 
bridge, and the dotted lines are the boundaries identified by the KDE 
method. Fig. 25(b) shows the errors between the two groups of bound
aries. The results show that they are coincident, even if there are some 

Fig. 22. Result of collision candidate detection with tf = 30s  

Fig. 23. Result of collision candidate detection with tf = 60s  
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errors. The maximum error and median error of boundary one are 35.3 
m and 11.5 m respectively. The error is generally distributed between 
4.8 m and 20.3 m, which can fully meet the navigation practice. The 
error of boundary 2 is larger than boundary 1, but it is also within the 
controllable range, and such error can be reduced by more accurate AIS 
data. 

The K-means and DBSCAN clustering algorithms are used to try to 
identify the boundary lines based on the same data. The similarity 
functions used by K-means and DBSCAN clustering algorithms are 
Euclidean distance and Hausdorff distance, as shown in Eq. (19) and Eq. 
(20), respectively. 

dist(trajA, trajB)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑D

d=1

(
trajA ,d − trajB ,d

)2

√
√
√
√ (19)  

⎧
⎪⎪⎨

⎪⎪⎩

H(trajA, trajB) = max(h(trajA, trajB), h(trajB, trajA))

h(trajA, trajB) = max
a∈trajA

[

min
b∈trajB

d(a, b)
]

h(trajB, trajA) = max
b∈trajB

[

min
a∈trajA

d(b, a)
] (20)  

Where: The dist(trajA, trajB) and H(trajA, trajB) are Euclidean distance 
and Hausdorff distance between two trajectories, respectively. The a, b 
represents the points in the trajectory A and trajectory B, and d(a, b)
represents the distance between the two points. 

Since the factor of the ship course is not considered in the similarity 
functions, the ship trajectories are divided into two types of trajectories 
with a course greater than 180◦ and less than 180◦. The kinematic 
interpolation is used to unify the number of trajectory points of each 
trajectory before clustering using the k-means algorithm. Because each 
type of trajectory includes a deep-water channel and a recommended- 
water channel, the parameter K of the k-means algorithm is set to 2. 
The parameters of the DBSCAN clustering algorithm are ε and minPts, 
which represent the neighborhood radius and the minimum number of 

Fig. 24. Result of collision candidate detection.  

Fig. 25. Comparison results between the recognized and real boundaries.  
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clusters, respectively. The clustering results of the two clustering algo
rithms are shown in Fig. 26. 

It can be seen from the results that neither the K-means clustering 
algorithm nor the DBSCAN clustering algorithm can distinguish ship 
trajectories in different channels. Through the comparative experiment, 
it can be proved that the KDE method is more effective than the K-means 
and DBSCAN clustering algorithms in finding the channel boundary of 
the bridge waterways, especially with multiple navigable channels. In 
many bridge waterways, there are insufficient buoys due to various re
strictions. Through this method, the boundaries of the bridge waterways 
without buoys can be identified, which is very helpful for passing ships 
and helps to reduce the probability of collision accidents. 

5.2. Comparison experiment of the VO method with CPA model and fuzzy 
theory based model 

To further analyze the advantages of the collision candidate detec
tion model, it is compared with the original CPA model and typical fuzzy 
theory based model. The CPA model consists of DCPA and TCPA, which 
are widely used in navigation practice. A collision candidate is consid
ered to happen when two conditions are met: 1) DPCA is less than the set 
threshold; 2) TCPA is less than the set threshold and greater than 0. The 
collision risk model based on fuzzy theory is one of the most typical 
indicator-based collision risk models. In this section, the collision risk 
model based on fuzzy logic proposed by Zhang et al., 2021)(b)) is used to 
evaluate the collision risk of a ship crossing the bridge waterways. The 
collision risk factors involved in the model include DCPA, TCPA, relative 
distance (D), relative bearing angle (β), and the ratio of speed (K). The 
equation can be expressed as: 

CRI =0.40u(DCPA)+0.367u(TCPA)+0.167u(D)+0.033u(β)+0.033u(K)

(21)  

Where: u( ) represents the function of risk value corresponding to 
different risk factors, and the details can be referred to Zhang et al. 
(2021(b)). 

We will illustrate the advantages of the VO method over the original 
CPA model and typical fuzzy theory based model through a group of 
comparative experiments. As shown in Fig. 27, ship “353XXX000” is an 
overtaking ship that does not fully comply with the rules of the bridge 
waterways. It sails out of the established channel after passing the 
bridge. Ship “412XXX050” is a stand-on ship sailing along the channel in 
compliance with the rules. The above three models will be used to detect 
the collision candidate risk of each trajectory point of the ship 
353xxx000, respectively. 

Fig. 28 shows the results of detecting ship 353XXX000 using three 
collision candidate detection models. The thresholds of TCPA, DCPA, 
CRI and tf are set to 60s, 500 m, 0.6, and 60s respectively. The red and 
green lines in figure (a) and figure (b) are the CPA values between ship 

353XXX000 and ship 412XXX050, and between ship 353XXX000 and 
the pier, respectively. A collision candidate happened when the point 
falls in the shaded parts of the figure (a) and figure (b) at the same time. 
There is no potential collision risk because the conditions cannot be met 
at any point of the ship 353XXX000. The 9th, 10th and 11th points fall in 
the shadow area of figure (c), which are identified as collision candidate 
points with ship 412XXX050 by the fuzzy theory-based model. More
over, the detection result in figure (d) is consistent with figure (c) if the 
detection result of the ship and channel boundary (blue line) is removed. 
Otherwise, the points except for the 1st to 8th are considered collision 
candidate points in figure (d). 

The collision candidate points are determined in different ways 
among the three models, it is hard to explain which model is more 
suitable for the bridge waterways only from the results. However, it can 
be clearly seen that the original CPA method is more complicated in 
collision candidate identification, because TCPA and DCPA need to meet 
the trigger conditions at the same time. The results detected by the 
models based on fuzzy theory and the VO method are relatively easy to 
understand. Moreover, The CPA and the fuzzy theory-based models are 
often used to assess the collision candidate between trajectory points 
and punctate features, such as pier and target ship. But the VO method 
can be used to detect both collision candidates with punctate targets and 
collision candidates with linear targets. By comparing and analyzing the 
results, the VO method adopted in this paper is more suitable for the 
collision candidate detection of bridge waterways. 

5.3. Limitations and further improvements 

Despite the advantages mentioned above, the proposed method has 
still revealed some limitations. Further studies are required to improve 
the research from the following aspects:  

(1) The ship trajectory prediction model needs to be further 
extended. The current research can only focus on the historical 
trajectory because it is temporarily impossible to predict the ship 
trajectory in real-time. If the trajectory prediction of each passing 
ship can be realized, the research can carry out real time bridge 
waterways collision candidate detection.  

(2) Ship maneuverability and collision avoidance rules are not 
considered, since the objective of this work is to propose a 
method to identify the collision candidate of ship encounters in 
the bridge areas. As the next step of the research, which will focus 
on the collision avoidance decision-making support tool for ship 
navigating in the bridge area, such factors should be sophistically 
considered. 

Fig. 26. The clustering results of the two clustering algorithms.  
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6. Conclusion 

Ship-bridge collision accidents have the potential to cause significant 
financial loss and injury. Collision candidate detection is one of the 
effective methods to reduce the probability of ship-bridge collision. In 
this paper, a collision candidate detection approach for bridge 

waterways was proposed. The contribution of this paper is two-fold: 1) 
This paper proposed an approach for collision candidate detection in 
bridge waterways from the perspective of active anti-collision; 2) The 
collision candidate detection method proposed in this paper considers 
the coupling effect of all targets in the bridge waterways. The model 
design of this paper mainly includes data preprocessing, feature 

Fig. 27. Trajectories of ship 353XXX000 and ship 412XXX050.  

Fig. 28. The results of the comparison experiment.  
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recognition, and collision candidate detection modules. After decoding, 
cleaning, and kinematic interpolation of the original AIS data in the data 
preprocessing module, more accurate data were provided for the latter 
two modules. The feature recognition module identified the features of 
the bridge waterways by the KDE method based on preprocessed AIS 
data. As for the collision candidate detection module, the basic principle 
of collision candidate and the variation of the equation for different 
targets are introduced. The above three modules can effectively detect 
the collision candidates of historical AIS data and contribute to reducing 
the probability of collision risk in the bridge waterways. 

The feasibility and effectiveness of the approach proposed in the 
paper are proved by analyzing the Sutong bridge waterways. In the case 
study, one-week data were collected for feature recognition, and six 
trajectories were randomly selected to perform collision candidate 
detection. The experimental results show that the approach can suc
cessfully identify the features and detect the collision candidate points. 
The comparative analysis shows that the accuracy of identified features 
meets the requirements of navigation practice. Compared with con
ventional collision candidates detection methods, such as the CPA model 
and the fuzzy theory-based model, the VO method is more suitable for 
bridge waterways. 

Further research on the collision candidate of the bridge waterway is 
recommended as follows. First, expand the trajectory prediction model 
and study the real-time collision candidate detection approach of bridge 
waterways. Secondly, combined with the ship motion model and colli
sion avoidance rules to provide decision support for ships with potential 
risks. Finally, a complete system is developed, which can realize the real- 
time transmission of decision support. 
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