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ABSTRACT
In In this study, we set out to explore how various spatial patterns
of travel demand drive the effectiveness of ride-pooling services. To
do so, we generate a broad range of synthetic, yet plausible demand
patterns. We experiment with the number of attraction centres, the
dispersion of destinations around these centres, and the trip length
distribution. We apply a strategic ride-pooling algorithm across the
generated demand patterns to identify shareability potential using
a series of metrics related to ridepooling. Our findings indicate that,
under a fixed demand level, vehicle-hour reduction due to ride-
pooling can range between 18 and 59%. These results depend on
the concentration of travel destinations around the centre and the
trip length distribution. Ride-pooling becomes more efficient when
trips are longer and destinations aremore concentrated. A shift from
a monocentric to a polycentric demand pattern is found to have a
limited impact on the prospects of ride-pooling.

.

ARTICLE HISTORY
Received 21 December 2021
Accepted 20 October 2022

KEYWORDS
Ride-hailing; Ride-pooling;
Shared mobility; Travel
demand; Shareability

1. Introduction

Ride-hailing services have become part of the urban mobility landscape across the world.
It has been observed that there is an increased demand for these services for certain
groups and in certain areas with low car ownership rates (Ghaffar, Mitra, and Hyland 2020),
which can be interpreted as either a potential to substitute car rides or as an overall
increment in car travel. There is a fervent debate on the impact of ride-hailing services,
especially in relation to their competitionwith public transport services (Boisjoly et al. 2018;
Etminani-Ghasrodashti andHamidi 2019), or possible competing and complementing roles
(Cats et al. 2022), and contribution to traffic congestion (Erhardt et al. 2019). In addition,
ride-hailing also frequently happens between highly accessible areas (Marquet 2020) and
depends on the density of different services (e.g. restaurants), which highlights the rele-
vance of the urban environment composition in ride-hailing demand (Ghaffar, Mitra, and
Hyland 2020).
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Ride-pooling services are likely to be more consistent with policy goals and posi-
tively contribute towards accessibility and affordability as well as reducing congestion and
related externalities. Passengers are incentivised to opt for a shared ride rather than a pri-
vate ride by using a discount offered to compensate for the potentially induced discomfort
and delay. From the perspective of service providers and drivers, ride-pooling may reduce
the mileage which in turn increases the occupancy and reduces the operating costs. An
analysis of the case of New York City estimated that the total demand served by 13,000
taxis could be served by 3,000 vehicles when allowing for en-route ride-sharing (Alonso-
Mora et al. 2017).Moreover, attractive ride-poolingmay increase the overallmarket share of
ride-hailing and thus generate additional income. Notably, even though ride-hailing opera-
tions facilitate the emergence of ride-pooling services, theirmarket shares remain low so far
(W. Li et al. 2019; Young, Farber, and Palm 2020). Moreover, it is estimated that only about
half of the trips that took place using the pooled service were actually shared in the case
of Toronto (Young, Farber, and Palm 2020), before this service was discontinued due to the
COVID-19 pandemic.

It is thus pertinent to identify under what circumstances ride-pooling is most likely to
attain a significant market share and result in efficiency gains. In this study, we set out
to explore how various spatial patterns of travel demand drive the effectiveness of ride-
pooling services. We conduct an extensive series of experiments thereby contributing to
the identification of the most promising spatial demand patterns for ride-pooling services.
Namely, the ones in which shareability is most effective for travellers (short delays) and the
service provider (short detours) and has the potential to attain a viable market size (when
ride-hailing travellers decide to use pooled services).

For companies offering ride-pooling services, it is crucial to ensure that their trips can be
pooled together into shared rides. This so-called trip shareability occurs among mutually
compatible trip requests in terms of their spatial and temporal constraints so that they do
not impose prohibitive detours or delays for any of the co-riders. Using taxi data from sev-
eral cities, Tachet et al. (2017) demonstrated that the likelihood that a trip can be matched
correlates positively with demand levels, i.e. the higher the demand the more likely it is
that trips can be matched. This relationship is also corroborated by Ke et al. (2021), who
found that matching probabilities increase with passenger demand following a negative-
exponential distribution, implying an increasing return rate for additional demand. This has
given rise to the notion of a critical mass that needs to be obtained for ride-pooling to
become successful. However, userswere assumed to be captive to the service and assigned
to trips. Hence, thenotionof shareabilitywas studiedwithout accounting for travellers’ abil-
ity to choose whether to share their trip, arguably key for assessing whether trips are in fact
likely to be shared.

However, little is known about how the spatial structure of travel demand impacts
ride-pooling. In fact, despite spatial variations being an inherent and key feature of travel
demand, none of the abovementioned studies investigated the impacts of such. Daganzo,
Ouyang, and Yang (2020) underlined the importance of analysing the implications of alter-
native spatial demand patterns and analysing if and how ride-pooling results changewhen
demand is not evenly distributed. Since the actual travel demand for ride-pooling typically
accounts for a small share of urban mobility, it is likely to exhibit unique characteristics
that are not representative of the overall demand pattern. Thus it is relevant to identify the
relation between the spatial patterns of travel demand and their potential to be efficiently
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pooled. For instance, both Soria and Stathopoulos (2021) and Zwick and Axhausen (2022)
identified that not only the population and workplace density are relevant in terms of ride-
pooling demand but that the density of other services such as restaurants and cultural
locations also play a role. In addition, several past studies have pointed to the importance of
travel length (Dean andKockelman 2021) in ride-pooling demand and travel demanddirec-
tionality in explaining fleet utilisation (Narayan et al. 2021). Notwithstanding, even though
demand distribution patterns are expected to greatly affect the potential for ride-pooling,
their impact remains unknown.

In parallel, a stream of empirical studies investigated the relations between urban and
road network structure, land-use distribution, travel demand and transport performance.
Ewing and Cervero (2010) performed ameta-analysis of studies analysing behaviour at the
individual level from across the United States. Several studies conducted a regression anal-
ysis at the urban agglomeration level based on car travel (Ewing, Tian, and Lyons 2018)
or mobile phone location data from the US (Bassolas et al. 2019) and location-based nav-
igation service data for Chinese cities (Y. Li, Xiong, and Wang 2019), and public transport
ridership data from across Europe (Ingvardson and Nielsen 2018). Hierarchical agglom-
erative clustering was applied to identify the relation between urban characteristics and
mobility patterns for different clusters of global cities (Oke et al. 2019). The results of these
studies confirm for instance that compact (as opposed to dispersed) city centres strongly
affect the related travel demand patterns and, in turn, impact travel mileage and traffic
congestion. Whether such a relation also holds true for ride-pooling remains unknown.

Analytical and simulation studies examined the relation between the underlying
demand pattern and the performance of various transport modes. Analytical models esti-
mated themacroscopic flow diagramproperties for various concentric city scenarios (Tsek-
eris and Geroliminis 2013) or identified the public transport network structure for various
urban structure characteristics such as trip dispersion, urban centre’s and sub-centre’s
importance (Fielbaum, Jara-Diaz, and Gschwender 2016) as well as for the levels of com-
pactness for a ring-radial city (Badia 2020). Network evolution models have demonstrated
that structurally distinguisheddemandpatterns facilitate the emergenceof distinctivepub-
lic transport networks for a ring-radial agglomeration (Cats et al. 2020). These studies offer
a variety of modelling approaches and insights into the relation between travel demand
patterns and service performance.

Notwithstanding, there is a lack of knowledge as to the ramifications of those for the
prospects of ride-pooling. In a related study, Wang and Zhang (2021) applied an agent-
based shared model for various US cities and regressed how the pooling result correlates
with urban characteristics. They found that job density and land-use diversity contribute to
the percentage of pooled trips.

The research question addressed in this study is: how ‘shareable’ are various spatial
demand patterns? To this end, we devise a set of experiments tailored to identify the most
promising demand patterns for introducing ride-pooling services by applying the ExMAS
algorithm – an offline, utility-based ride-pooling algorithm (Kucharski and Cats 2020) that
bundles trip requests into attractive rides shared by up to eight travellers. To disentangle
the critical mass effect needed to induce pooling from the spatial pattern significance, we
keep the demand levels fixed through the experiments. To make simulations realistic, we
keep the actual spatial pattern of origins in Amsterdam. We generate a broad range of syn-
thetic demand patterns by varying the number of centres, the dispersion of destinations
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Figure 1. An overview of the applied methodology.

around each of these centres and the trip length distribution. We then apply ExMAS, which
output includes detailed results of detours, delays and utility of sharing for travellers and
drivers. Using a broad set of ride-pooling KPIs, we examine the consequences of alterna-
tive demand patterns on travellers’ choice for ride-pooling, its level of service and system
performance.

The rest of this paper is organised as follows. In the next section, we detail the process of
generating alternative demand patterns, the algorithms used for matching travel requests
into rides and the indicators proposed for quantifying the shareability potential of a given
demand pattern. Next, we describe the experimental set-up based on the Amsterdam case
study and compare the results obtained for different scenarios as well as their spatial varia-
tions and distributional effects. We conclude with a discussion of the key findings and their
implications as well as suggestions for further research.

2. Methods

In this section, we describe the sequence of steps that we undertake for generating spa-
tial demand patterns and assess their shareability. First, we describe how we generate
demand patterns. Second, we outline how we calculate the shareability potential of each
of those scenarios, followed by the set of key performance indicators used for assessing the
shareability potential ingrained in each of the demand patterns. An overview of applied
methodology is illustrated in Figure 1.

2.1. Synthetic demand generation

We generate a series of synthetic scenarios that are designed to reflect a variety of demand
patterns that might prevail in urban areas. We start with a fixed demand level (number of
trip requests per hour) and the actual distribution of trip origins, for which we alter the
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spatial pattern of destinations. We propose characterising the urban demand distribution
and generating variations thereof by determining the following design variables:

(i) number of attraction centres,
(ii) density of destinations around each centre,
(iii) trip length distribution.

As illustrated in Figure 1, first we draw a given number of trip origins from the actual
travel demand set. In the second step, we control for the number of centres, while the
third and fourth steps are controlled by a set of parameters that jointly describe the spatial
distribution. The procedure can be synthesised as follows:

(a) We determine the number of centres around which we generate destinations with a
given density (detailed in section 2.1.1 below).

(b) We then place destinations around the centres with a given spatial distribution
(detailed in section 2.1.2).

(c) We assign destinations to the origins according to a predefined trip distribution length
(detailed in section 2.1.3).

As a result, generated patterns cover urban areas consisting of one ormore centres rang-
ing from highly concentrated to uniformly dispersed destinations and ranging from low
impedance (travellers likely to travel long distances) to high impedance (where travellers
find destinations nearby). Note that in our synthetic demand generation process, travel
origins are sampled from the actual demand pattern.

2.1.1. Centres of attraction
We place centres of attraction in a predefined set of locations. The centres remain in their
fixed locations across the experiments and have a predefined hierarchy (i.e. we always start
with the most important centre and gradually add secondary, tertiary and quaternary cen-
tres). By having the set of potential centres of attraction fixed, we obtain unbiased statistics,
such as the average distance, and reduce the number of dimensions for analysis thereby
allowing for amoredirect interpretationof the experiment results. Here,wewill experiment
with up to four centres, virtually placed in potential hot-spots of Amsterdam.

2.1.2. Spatial distribution of destinations
Subsequently, potential destinations are generated around each centre. Their distance to
the centre d follows a Gamma distribution with shape parameter kc and scale parameter sc,
hence its probability density function is as follows:

f (d; kc, sc) = dkc−1 · e− d
kc

sckc · �(kc)
(1)

Where �(kc) corresponds to the Gamma function evaluated at the shape parameter kc:

�(kc) =
∫ ∞

0
xkc−1 · e−xdx (2)
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Figure 2. Synthetic distributions used to describe destination’s distribution (a) and travel distance
(b). We investigate four different distributions (by varying kc and kt, respectively) for both. The scale
parameters sc and st are fixed at 1.300 and 3.200, respectively.

The scale parameter is fixed to represent the city under consideration and the shapeparam-
eter reflects the density. Gamma probability density function is selected as it properly
describes the distance from a bivariate normal distributed coordinate to its centre. In addi-
tion, Gamma functions serve as good friction parameters in trip distribution models (e.g.
Schiffer 2012) and have also been widely used in terms of travel time modelling (Guen-
thner and Hamat 1988; Kim and Mahmassani 2015). When the shape parameter is equal
to one, it corresponds to an exponential distribution where the mean equals the scale
of the distribution, and when it is larger than one, the distribution is skewed and varies
with shape. Consequently, smaller shape parameter values represent the more concen-
trated destinations around each of the centres. Four specific distributions are illustrated
in Figure 2a.

2.1.3. Matching origins to destinations
Finally, wematch destinations with origins. In this study, we use the existing and fixed spa-
tial coordinates of trip origins. To create trip requests, origins arematchedwith synthetically
generated destinations following the specified trip length distribution. Similarly to the sec-
ond stage, this trip length distribution parameter corresponds to the shape parameter of
the Gamma distribution, for which its scale parameter has been fixed. As before, we define
the distance of these generated trips, d, to follow a Gamma distribution with shape param-
eter kt and scale parameter st . Lower values of parameter kt imply trip destinations closer
to origins (shorter trips), while greater values represent longer trips. The probability density
function is thus defined as follows:

f (d; kt , st) = dkt−1 · e− d
st

stkt · �(kt)
(3)

Four different distributions used in experiments are illustrated in Figure 2b.
Matching trip origins with destinations is performed as follows. For each origin, we cal-

culate the distance d to each of the potential destinations from the previous step. We then
calculate theprobability to select that destinationbasedon theprobability density function
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described in (3). We then sample the destination for that particular origin by employ-
ing those probabilities as weights and thereby obtain an unconstrained model where trip
lengths follow a predefined distribution (unlike a doubly constrained gravity model where
an iterative balancing procedure needs to be applied (O’Kelly and Niedzielski 2008))

Consequently, after following the aforementioned procedure, we obtain a synthetic set
of requests where each origin ismatchedwith a destination in such away that the resulting
demand patterns follow the desired spatial distributions.

2.2. Quantifying shareability potential

We are interested in quantifying the shareability potential of each of the generated syn-
thetic travel demand patterns. To this end, we apply the ExMAS algorithm (Kucharski and
Cats 2020) which pools single trips into attractive shared rides. This algorithm is suited for
strategic planning purposes and focuses on the demand side, rather than operational ser-
vice considerations. It uses as input the demand pattern, i.e. set of trip requests with their
origin, destination anddeparture time – such as the one introduced in the previous section.
ExMAS pools rides for given sets of behavioural parameters (value-of-time and willingness
to share) and design variables (e.g. trip fare and discount offered for pooled rides). Based on
those, ExMAS identifies attractive pooled rides for which the detour and delay are at least
compensated by the reduced fare for each pooled traveller.

ExMAS evaluates the attractiveness of each candidate pooled ride using a utility formula.
The pooled ride is considered attractive if the utility of pooling is greater than the utility of a
private ride for all travellers involved. The utility associated with a private trip is composed
of travel time and trip fare, while pooling utility is extended with the detour, delay and
the so-called willingness-to-share – which are negative costs of pooling that shall at least
be compensated by the discount offered for pooling. ExMAS considers all the feasible and
attractive pooled rides composed of up to eight travellers and performs the optimalmatch-
ing in the bi-partitioned graph consisting of individual trips on the one hand and (private
or shared) rides on the other hand. By narrowing the solution space to attractive rides only,
ExMAS can exhaustively assess all attractive shared rides. In the matching phase, ExMAS
optimally assigns each traveller/trip to an attractive ride to minimise the global objective
function value. In this study, the assignment made as part of the matching process aims at
minimising the total vehicle hours (note that each pooled ride in the search space is already
guaranteed to be attractive for all travellers therein). Importantly, the ExMAS solution is not
necessarily composed solely of pooled rides since the traveller may still be assigned to a
private (non-pooled) ride. This may happen when a) her/his trip request is not compati-
ble with any other request (i.e. the private alternative ride is more attractive than any of
the shared ride options) or b) when it is beneficial for the global matching solution. For
more details and utility formulas, we refer the reader to the ExMAS paper (Kucharski and
Cats 2020) and theopen-sourcepythonpackagewith reproducible examples1, including its
incorporation in a simulationmodel of two-sidedmobility-on-demandplatforms (Kucharski
and Cats 2022).

The offline and deterministic algorithm of ExMAS allows computing shareability met-
rics for relatively large-scale demand patterns using compensatory behavioural decision-
making rules. Contrary tomost of the algorithms reported in the literature, ExMAS does not
focus on real-time operations and fleet management. Instead, it is utility-based and takes a
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user-centric approach. Thus, it allows the identification of the actual ride-pooling potential
inherent to the demand pattern itself.

The output of ExMAS (trip requests optimally matched into attractive pooled rides)
allows for a comprehensive assessment of ride-pooling efficiency. In particular, wemeasure
the shareability potential using the following metrics:

(1) Total vehicle hours, T – total time spent with travellers on-board to satisfy the demand
(deadheading and other empty vehicle trips are not considered). This allows for the
assessment of the efficiency of ride-pooling from the supplier’s (platform operator or
service provider) perspective. In principle, the total vehicle hours shall be reduced due
to pooling.

(2) Total passenger cost, C – cost of all travellers, which combines the disutility of time (in-
vehicle andwaiting)with themonetary terms (fare, possibly reduceddue topooling). In
principle, thepooling shall reduce thepassenger costs due to the explicit consideration
of utility constraints in ExMAS.

(3) Occupancy, O – ratio of vehicle hours (T) to passenger hours (Tpass), supports inves-
tigating how compactly the travel demand is pooled. We use it as a key indicator for
studying the efficiency attained by pooling as it integrates information from both the
supply- and demand-side effects.

For vehicle hours and passenger costs, we compare the values obtained when allow-
ing for pooling versus the case where a ride-pooling service is not available. We report the
relative differences that result from pooling �C, �T as follows:

�C = Cpool − Cprivate
Cprivate

; �T = Tpool − Tprivate
Tprivate

(4)

The above set of metrics allows for the sound assessment of the shareability potential
associated with each of the demand patterns.

3. Application

In this section, we first describe the experimental set-up devised to address our research
question. We then present the results, first in terms of the resulting synthetic demand
patterns and then followed by the aggregate and distributional shareability indicators.

3.1. Experimental set-up

The experiments are configured around the case of Amsterdam, the Netherlands, where
1,000 trip requests are generated during a one-hour period. This aims to replicate ride-
hailing operations in the city, as it starts with origins sampled from the actual Amsterdam
demand pattern extracted from an updated version of the nationwide synthetic demand
model (Arentze and Timmermans 2004) and keeps them fixed across the experiments. As
explained in the previous section, the first step consists of defining the number of centres
around which the synthetic demand is pivoted. We consider up to four possible centres,
namely Dam Square, Station Zuid, Concertgebouw (Museumplein) and Sloterdijk (their
locations canbe seen in Figure 3). These four centres constitutemajor travel attraction areas
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Figure 3. Considered attraction centre locations and their respective ranking order.

during the morning peak hour and we therefore choose to use them in our experiments
as the anchors for demand attraction. In addition, these four centres are employed in the
abovementionedorder,meaning thatwhenwesimulate amonocentric city,wealways con-
sider Dam Square as the sole centre of attraction, whereas when considering two centres,
we consider Dam Square and Station Zuid, and so forth.

In terms of the other two attributes, namely kt and kc, we define them around the exist-
ing origin-destination pattern in Amsterdam. To obtain sensible baseline values for these
parameters, we considered Amsterdam as a monocentric city, meaning destinations are
concentrated around Dam Square as the sole centre of gravity. By fitting two Gamma
distributions to the trip length distribution and the destination density around the cen-
tre, we obtain a kt parameter value of approximately 1.5 and a kc parameter value of
around 2.5, respectively. Since, in reality, destinations in Amsterdam and elsewhere radiate
around amultiplicity of centres, we experiment with increasing the travel time distribution
parameter kt and decreasing the density parameter around centres kc. For the sake of thor-
oughness, we also consider additional scenarios with a lower kt and a higher kc than those
observed for Amsterdam in reality (yielding spatial distributions as illustrated in Figure 2).

Consequently, the experiments are run over the following grid of parameter values, i.e.
all possible combinations of values from the following sets:

• n = 1, 2, 3, 4,
• kt = 1, 1.5, 2, 3,
• kc = 1, 1.5, 2, 2.5, 3,

Our experimental design results in a total of 80 (4× 4×5) scenarios tobe simulated. Since
each scenario is associated with a random demand generation (whereas the ExMAS ride-
pooling algorithm is deterministic), we replicate scenarios to obtain statistically significant
results. Based on the distribution of the output metrics, 10 replications per scenario were
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found sufficient to obtain statistically sound results. Each replication took about 7min to
run on a PC: 2min to generate the demand patterns and 5min to perform the matching
and to quantify the shareability potential. By parallelising these calculations, it was possible
to run the entire set of scenarios within a reasonable amount of time.

3.2. Results

In this section,we first report thedemandpatternsgenerated for the studyand thenexplore
their shareability prospects. Figure 4 presents an illustrative example in terms of how the
different parameter variables affect each scenario. While the lengths of the black dashed
lines are controlled by kc, the probability of matching an origin to a destination (red lines in
the figure) is controlled by the trip length distribution parameter, kt .

Figure 4. Illustrative summary of the synthetic demand methodology applied to the study case.

3.2.1. Demand patterns description
Each simulation is specified based on the number of centres and a combination of the two
shape parameters: of the distance between the potential destinations and each centre,
kc, and of the trip length distribution, kt . In the following, we first report the character-
istics of the demand patterns generated to better understand the underlying causes of
the shareability findings and the spatial variations thereof that are reported in subsequent
sections.

We first analyse the distance of each potential destination generated in a monocentric
city to its centre (Figure 5, left), followed by the trip length distribution (Figure 5, right).
As expected, the boxplots – the lines spanning from the 10th to the 90th percentile and
from the 25th to the 75th percentile define the box limits, the median is represented by
the middle line and the dot represents the average value – illustrate that destinations are
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Figure 5. Distance between generated destinations and a single centre (Dam Square) (left), and trip
length distribution (right).

Figure 6. Synthetic demand patterns. Spatial distribution of destinations of various concentrations
around centres (kc). One centre (Dam Square) and kt = 1.5.

moredispersedwhen increasing kt ; themeandistance from the centre and its variability are
increasing (Figure 5, left). In terms of the distribution of potential destinations, we see that
the average distance to the centroid increases with kc, especially when kt = 3. As for the
average trip distance, we see that it significantly increases when increasing kt, as expected,
and at a lower rate when increasing kc (Figure 5, right).

In addition, we display heatmaps of the geographical distribution of the generated
demands. In Figure 6, the four different kc values are presented for a fixed kt . One can
observe how increasing this parameter increases the spread of the generated destinations
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Figure 7. Synthetic demand patterns. Spatial distribution of destinations of various trip length distribu-
tion (kt). One centre (Dam Square) and kc = 1.5.

Figure 8. Synthetic demandpatterns. Spatial distributionof destinations for different number of centres
(kt = 1.5 and kc = 1.5).
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across the city. We carry out the same analysis for the four different kt values and a fixed kc,
as presented in Figure 7. We observe a similar trend to the previous heatmaps, albeit less
pronounced. We also see a larger number of trips heading to the peripheral areas of the
city due to the increase in trip length distribution parameter. Finally, we conduct a similar
analysis for a specific combination of kt and kc (both equal to 1.5) but for different numbers
of centres of attraction, presented in Figure 8. As expected, we observe how increasing the
number of centres increases the spread of the demand destinations generated, yet it is still
visibly concentrated around the respective centres (marked with purple triangles).

3.2.2. Aggregate shareability results
The demand pattern generation scenarios not only yield substantially different trip char-
acteristics (as reported in the previous subsection), but they also lead to significantly
different shareability prospects as we report in Table 1. Recall that all of the results pre-
sented are averaged over 10 scenario replications, each of which involves sampling from
the respective demand distribution settings. The occupancy ranges between 1.25 in the
least shareable scenario and 1.75 in the most shareable one. Vehicle hours can be reduced
by 18% in the least shareable scenario and up to almost 60% in the most shareable scenar-
ios. The impact of introducing ride-pooling on passenger costs ranges between a reduction
of 2.1% and 2.9%.

Notably, not all the parameters of the demand pattern distribution have the same
impact. While destinations’ density kcand the number of centres have a relatively limited
impact, we find that all the indicators are most sensitive to kt . For a monocentric demand
with kc = 1, the shareability increases with kt as reflected across all performance metrics.
The reduction in vehicle hours more than doubles when kt increases from 1 to 3 and trip
lengths thereby increase. Keep in mind that vehicle hours in private (non-pooled) scenar-
ios also double when kt increases from 1 to 3. We find that kcand the number of centres are
negatively associated with travel time and thus with shareability. Changing kcfrom 1 to 3
changes the total travel time from 118.3 h to 111.1 h, which is accompanied by the travel
time reduction due to pooling dropping from 23% to 19%. Similarly, passenger cost reduc-
tion diminishes from 2.27% to 2.09%. Shareability metrics are overall stable in relation to
changes in the number of centres where the total travel time reductions do not fall below

Table 1. Shareability indicators for various demand patterns.

Vehicle hours T Passenger costs C

N° centres kc kt O private pooled rel diff.� private pooled rel diff.�

Modifying trip distance kt 1 1 1 1.30 426.573 346.641 −23% 6.617 6.470 −2.27%
1 1 1.5 1.42 559.537 420.776 −33% 8.678 8.460 −2.58%
1 1 2 1.54 676.868 476.158 −42% 10.497 10.217 −2.74%
1 1 3 1.74 878.131 551.206 −59% 13.616 13.237 −2.86%

Modifying density kc 1 1 1 1.30 426.573 346.641 −23% 6.617 6.470 −2.27%
1 1.5 1 1.29 414.040 340.386 −22% 6.423 6.282 −2.24%
1 2 1 1.26 405.519 339.467 −19% 6.291 6.158 −2.16%
1 3 1 1.25 400.748 339.510 −18% 6.217 6.090 −2.09%

Modifying the number of centres 1 1 1 1.30 426.573 346.641 −23% 6.617 6.470 −2.27%
2 1 1 1.29 422.477 345.215 −22% 6.554 6.406 −2.31%
3 1 1 1.28 406.773 335.664 −21% 6.310 6.169 −2.29%
4 1 1 1.28 400.163 329.123 −22% 6.208 6.076 −2.17%
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Figure 9. Occupancy (left), reduction in vehicle hours (middle) and reduction in passenger costs (right)
in a monocentric city with varying distance from centres and trip length distribution.

20% and passenger cost reductions remain greater than 2.15% even for scenarios with four
centres.

We further investigate the underlying relations between demand generation parame-
ters and the shareability indicators by plotting related trends. In Figure 9, we show how the
three shareabilitymetrics – O, T and C – change under various demand configurations for a
monocentric city. While for lower values of impedance (kt < 3) increasing dispersion from
the centres has a negative impact on all metrics, for kt = 3 the trend is inverted for occu-
pancy and vehicle hours reduction. For instance, changing kc from 1 to 3 barely changes
the occupancy and vehicle hours reduction, whereas changing ktfrom 1 to 3 changes it
substantially; occupancy rises from 1.25–1.8 and the reduction in vehicle hours increases
from 15% to almost 40%. The trends are consistent with the exception of passenger costs
(right panel in Figure 9), where for high values of kt (2 and 3), the positive impact of pool-
ing on passenger costs first increases and then decreases. The spacings between the lines
(values of kt) are similar for occupancy and vehicle hours reduction, with kt = 3 being a
clear outlier. This different trend occurs because of the combination of the high prefer-
ence for longer trips, increasing the dispersion of destinations around the centre and the
resulting higher discount (in absolute, monetary terms) which makes shared rides more
attractive. Furthermore, for passenger costs, kt = 1 is the outlier with the least positive
impact (differences between kt = 2 and kt = 3 are smaller than those between kt = 1
and kt = 1.5).

Results for more polycentric cities may significantly vary from those reported above for
monocentric ones.We report here the changes in the shareabilitymetrics for different num-
bers of centres, first for shorter (kt = 1) and longer trips (kt = 3) in Figure 10. When the
trips are short, results are less sensitive to kc the more centres that are present. While for a
monocentric city vehicle hour reduction varieswith kc from15% to 19.5%, for three ormore
centres the difference narrows by almost twice, from 15.5% to 17.5%. Nonetheless, in the
case of short trips, a monocentric city typically provides the best results if kc < 2 and intro-
ducing new centres limits the benefits of pooling. In contrast, trends are not that clear for
kc ≥ 2. For instance, with kc = 2.5, introducing a second centre increases passenger ben-
efits, while the introduction of a third or a fourth centre reduces the passenger benefits
attained. Conversely, the reduction in vehicle hours declines after introducing the second
centre when kc = 2.5 and then improves when a third or a fourth centre is introduced.
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Figure 10. Occupancy (left), reduction in vehicle hours (middle) and reduction inpassenger costs (right)
for urban areas with a different number of centres and destination density under kt = 1 (above) and
kt = 3 (below).

When travellers perform longer trips, the benefits stemming frompooling are in general
greater (see also Table 1). However, the changes with respect to the number of centres
differ in various ways. Cities with four centres yield the greatest reductions in vehicle hours
and the highest occupancy, while duo-centric cities yield the lowest benefits. Introducing
a second centre worsens both occupancy and vehicle hour reductions for all cases except
for when kc = 1. For cities with four centres and kc ≥ 2, passenger benefits are lowest and
drop significantly when the number of centres changes from 2 to 4, while introducing a
second centre increases passenger benefits. Unlike for kt = 1,where trends across the three
metrics are consistent, contradicting trends can be observed under kt = 3. For instance,
when kc = 2, both occupancy and vehicle hour reductions are greatest for cities with two
centres, while it is the opposite for passenger costs, and the worst results are yielded when
there are two prime centres.

3.2.3. Distributional effects of shareability
In the previous subsection, we analysed the overall relations between demand pattern
parameters andour shareabilitymetrics. Next,we investigate how the shareability potential
ingrained in each of the demand scenarios varies among users and manifests itself spa-
tially as well as the extent to which spatial disparities are exhibited. The analysis thereby
sheds light on the distributional effects associated with the introduction of ride-pooling.
In the following, we present and discuss the histogram of each of the performance indi-
cators as well as display average values calculated over trip origins for each grid cell by
overlaying a grid of 1.33 square km over the case study area. We start by examining the
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impact that kt has in a monocentric city, i.e. how much it affects longer travel distances,
and then follow with an analysis of the impact of having a certain number of centres of
attraction.

The distributions of the shareability metrics are presented in Figure 11. Instead of study-
ing the occupancy as in the previous sections, we analyse the share of trips that have been
successfully matched with at least one co-traveller. This is done as it is not possible to
account for the passenger and vehicle times for each trip request (i.e. the nominator and
denominator of occupancy, O, respectively) in a consistent way. The histograms present
the distributions of each metric across the grid cells, varying from 0 if none of the trips
originating from the cell were shared, up to 100% where each traveller finds a match.
As discussed in the previous subsection, we see a clear increase in the extent to which
people share their rides when increasing the travelled distance. The longer the distance,
the higher the likelihood that (parts of) the trips can be shared. In addition, we see that
there is also a higher variability, both at a ride level and at the geographical grid cell level,

Figure 11. Distributional analysis of the percentage of trips shared in a monocentric city under two
travel distance distribution scenarios: with short trips (top) and long trips (bottom).
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Figure 12. Distributional analysis of the increase in vehicle hours following the introduction of ride-
pooling in a monocentric city under two travel distance distribution scenarios.

when kt is lower. In this scenario, we observe that a higher travel distance distribution
also leads to more homogeneous (and higher) shareability levels across the city and across
users.

When considering the differences in total vehicle hours (Figure 12), we observe a sim-
ilar trend in the distribution. This is expected, as there is a direct relation between travel
distance and resulting vehicle hours. However, in this case, we see a higher variability for
the case of higher kt . As more people are willing to travel to the centre of attraction and
travel distances are longer, the extent of the detour becomes more variable. Keep in mind
that passengers experience no detour when either starting close enough to their desti-
nation in a shared ride or when they did not find a match and travelled using private
ride-hailing.

To consider the two aforementioned effects jointly, we analyse the distributional effect
of the total passenger costs in Figure 13. Overall, we observe a similar trend as above,mean-
ing an increase in the shareability indicator value when kt = 3. However, the differences in
this scenario are considerably smaller because of the discount benefits being compensated
by the prolonged travel times when more people are inclined to travel longer distances.
In this case, variability is less pronounced and the differences between the two cases are
modest.
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Figure 13. Distributional analysis of the reduction in passenger costs following the introduction of ride-
pooling in a monocentric city under two travel distance distribution scenarios.

Finally, we consider the scenario of a simulated polycentric city with four centres of
attraction and its effects on shareability (Figure 14). When compared to the heatmap and
histogram shown in Figure 11, we see that the share of shared trips is lower in this sce-
nario than in the corresponding monocentric scenario. This is expected as destinations
are concentrated in four different areas instead of just one, which reduces the chances
of passengers having mutually compatible rides. In addition, we see that there is a higher
heterogeneity across the city, which is related to the proximity of each origin to the poten-
tial destinations. People in the peripheral areas now have a reduced chance to share their
rides because (i) the chance of finding a feasible pooling option is lower and (ii) the detour
penalty is higher for those, resulting in less attractive matches and hence the ride-pooling
alternative is less likely to be selected over private rides.

In summary, the main insights from our experiment are as follows:

• As trip distance increases, shared rides are characterised by higher occupancies and
larger reductions in vehicle hours and passenger costs.

• The higher the concentration of destinations around centres, the higher the vehicle
occupancy, vehicle hours and passenger cost reductions, except for when trip distances
are particularly long.
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Figure 14. Distributional analysis of the percentage of trips shared in a polycentric urban area with four
centres under two travel distance distribution scenarios.

• Increasing the number of centres of attraction has a limited impact on vehicle occu-
pancy, vehicle hours and passenger costs.

• Shorter travel distances lead to greater spatial variability in the degree of shared rides
across the city.

• Longer travel distances are associated with longer detours and a higher variability of
detour length across the city.

• Increasing the number of centres reduces the number of attractive shared rides, espe-
cially for those living in the peripheral areas of the city.

4. Discussion and conclusions

Shared rides are often considered to be a promising travel alternative that could effi-
ciently pool people together while offering a door-to-door service. Despite this premise,
when examining large-scale ride-pooling services in large urban areas, they are either not
yet available or have not yet claimed a significant market share. For ride-hailing service
providers to offer a ride-pooling alternative, it is of utmost importance to ensure that
demand levels are sufficiently high so that there is a non-negligible probability that trips
could be matched. Otherwise, the service provider bears the risk of offering considerable
discounts to passengers who end up travelling on their own (even though they signed up
for a shared ride service) without saving on driver commissions. The likelihood that trip
requests canbematcheddepends on theirmutual compatibility in termsof the trip’s origin,
destination and departure time. While this mutual compatibility is an essential prerequi-
site, it is by nomeans sufficient. Hence, whenmatching trips with rides in our study, we not
only ensure their mutual compatibility in time and space, we also guarantee that shared
rides are only composed of travellers who find the ride-pooling offer to be more attractive
than the private ride-hailing alternative given the trade-offs between travel time, fare and
discomfort (i.e. unwillingness to share).

Our analysis sheds light on the consequences of the spatial demand pattern on the
resulting prospects for a ride-pooling service. On one hand, a demand pattern that is more
concentrated in space is likely to offermore opportunities formatching similar tripswithout
inducing substantial detours. On the other hand, the incentive to share a ride is greater for
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longer rides due to the per-kilometre discount offered. There is, therefore, a non-trivial rela-
tion between demand pattern characteristics and its potential shareability, which calls for a
detailed empirical assessment. Our findings indicate that introducing a ride-pooling service
can yield a reduction in vehicle hours ranging between 18 and 59%, depending on the con-
centration of travel destinations around the centre and the trip length distribution. System
efficiency correlates positivelywith both dimensions; highly concentrated destinations and
longer trips produce the highest reduction in vehicle hours. The respective on-board occu-
pancy level ranges between 1.25 and 1.74. Passenger cost savings hover between 2-3% for
all scenarios. These gains are attained by passengers who shift from private to shared rides
because they find that the discount more than compensates for the detour and discom-
fort experienced (otherwise they would not have opted for the ride-pooling alternative).
Interestingly, the number of major centres of attraction across the city does not have a
considerable impact, everything else being equal.

The results suggest that cities characterised by (i) compact centre(s) of attraction and
(ii) where travellers are inclined to use ride-hailing for those trips where destinations are
located further away from their origins, i.e. in our case study of Amsterdam this corresponds
to an average trip distance of 5-8 km, offer the most fertile ground for attracting users to
share their rides and result in an increased efficiency in on-demand transport services. Our
analysis of the distributional effects in shareability levels under different demand patterns
also reveals that those patterns that induce themost ride-pooling are also those that result
in the most even distribution of service performance – both across the population as well
as across different geographical parts of the urban area. This demonstrates that the impacts
of ride-pooling are not limited to select localised effects but are rather well distributed
because the efficiency gains are made possible by matching individuals with a diverse set
of origins and destinations (in contrast to a shuttle service).

Further research may extend our analysis by sampling travel origins and examining the
impacts of alternative trip generation and attraction patterns. This will allow for analysing
more complex spatial relations that extend beyond the (mono or poly)centric patterns
assumed in this study. In particular, how different centres of attraction are distributed in
polycentric cities might also be relevant for further research. Similarly, the daily tempo-
ral variations in the demand patterns analysed in this study have been specified based
on the travel demand profile data for Amsterdam. Future research may also examine how
different temporal and spatial profiles, based on travel patterns observed for other cities,
may impact the potential of ride-pooling services. In addition, it would be interesting to
compare empirical shareability measurements and their spatial distribution to validate the
results presented in this study. Future research should address the lack of benchmarking in
the domain of matching algorithms for ride-pooling services. This calls for a comparison of
alternative (exact and heuristic) algorithms for various (pre-booked, en-route) on-demand
services in terms of system performance, computational efficiency and their impact on
shareability potential under different demand patterns.

The approach adopted in this study can be coupled with models of innovation diffu-
sion and supply evolution (de Ruijter et al. 2022) to identify the relevant conditions for
obtaining a critical mass of users and drivers in a two-sided on-demand transport platform.
Moreover, embedding ourmethod in a travel demandmodel that includes a feedback loop
to modal choices will allow treating the total demand for on-demand transport services
as an endogenous variable and hence conclude on the ability of ride-pooling services to
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attract users who, in its absence, will use alternative means of travel other than private
ride-hailing.

Note

1. https://github.com/RafalKucharskiPK/ExMAS
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