

Delft University of Technology

To Overfit, or Not to Overfit
Improving the Performance of Deep Learning-Based SCA
Rezaeezade, Azade; Perin, Guilherme; Picek, Stjepan

DOI
10.1007/978-3-031-17433-9_17
Publication date
2022
Document Version
Final published version
Published in
Progress in Cryptology - AFRICACRYPT 2022 - 13th International Conference on Cryptology in Africa,
AFRICACRYPT 2022, Proceedings

Citation (APA)
Rezaeezade, A., Perin, G., & Picek, S. (2022). To Overfit, or Not to Overfit: Improving the Performance
of Deep Learning-Based SCA. In L. Batina, & J. Daemen (Eds.), Progress in Cryptology - AFRICACRYPT
2022 - 13th International Conference on Cryptology in Africa, AFRICACRYPT 2022, Proceedings (pp. 397-
421). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); Vol. 13503 LNCS). Springer. https://doi.org/10.1007/978-3-031-17433-
9_17
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-17433-9_17
https://doi.org/10.1007/978-3-031-17433-9_17
https://doi.org/10.1007/978-3-031-17433-9_17

To Overfit, or Not to Overfit: Improving
the Performance of Deep Learning-Based

SCA

Azade Rezaeezade1(B), Guilherme Perin1,2, and Stjepan Picek1,2

1 Delft University of Technology, Delft, The Netherlands
a.rezaeezade-l@tudelft.nl

2 Radboud University, Nijmegen, The Netherlands

Abstract. Profiling side-channel analysis allows evaluators to estimate
the worst-case security of a target. When security evaluations relax the
assumptions about the adversary’s knowledge, profiling models may eas-
ily be sub-optimal due to the inability to extract the most informative
points of interest from the side-channel measurements. When used for
profiling attacks, deep neural networks can learn strong models without
feature selection with the drawback of expensive hyperparameter tuning.
Unfortunately, due to very large search spaces, one usually finds very dif-
ferent model behaviors, and a widespread situation is to face overfitting
with typically poor generalization capacity.

Usually, overfitting or poor generalization would be mitigated by
adding more measurements to the profiling phase to reduce estimation
errors. This paper provides a detailed analysis of different deep learning
model behaviors and shows that adding more profiling traces as a single
solution does not necessarily help improve generalization. We recognize
the main problem to be the sub-optimal selection of hyperparameters,
which is then difficult to resolve by simply adding more measurements.
Instead, we propose to use small hyperparameter tweaks or regulariza-
tion as techniques to resolve the problem.

Keywords: Side-channel analysis · Deep learning · Overfitting ·
Generalization

1 Introduction

Side-channel analysis (SCA) encompasses non-invasive attacks exploring unin-
tentional information leakage from cryptographic devices. Consequently, it is
of interest of manufacturers to evaluate the robustness of their products against
threats posed by multiple side-channel attacks. Such attacks are classified as pro-
filing [9] and non-profiling attacks [15]. The latter appeared first in late 1990s s
and rapidly after publication, protection mechanisms (countermeasures) started
to be proposed [8,19] and implemented to mitigate differential power attacks
and their variations [5,12]. On the other hand, profiling attacks allow a more
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Batina and J. Daemen (Eds.): AFRICACRYPT 2022, LNCS 13503, pp. 397–421, 2022.
https://doi.org/10.1007/978-3-031-17433-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17433-9_17&domain=pdf
https://doi.org/10.1007/978-3-031-17433-9_17

398 A. Rezaeezade et al.

formal security evaluation of a device by implementing a profiling model from
side-channel measurements obtained from a device identical to the device under
evaluation. The model is later tested on a separate target as a secret recovery or
attack phase. Since an evaluator can learn a statistical model from the existing
leakages, several countermeasures against non-profiling attacks may become inef-
fective against profiling attacks, such as Boolean masking [17,18]. This depends
on how much knowledge an adversary has about the target implementation (e.g.,
secret random shares and source code). This addition of knowledge in profiling
attacks allows the estimation of worst-case security scenarios. If profiling attacks
cannot reduce the secret’s entropy under these circumstances and by considering
a sufficient number of measurements, the target can be considered as secure.

Theoretically, the Gaussian template attack [9] is assumed to be the strongest
profiling method in SCA. This is true if 1) an adversary can extract the most
informative (leaking) points of interest (features) from side-channel measure-
ments, 2) the true leakage distribution (which is unknown) follows a normal
distribution, and 3) the adversary has an unlimited number of measurements to
build the model. In recent years, deep learning appeared as a powerful alterna-
tive to implementing profiling models [17]. In practice, a deep neural network
may skip feature selection and still provide strong models that defeat Boolean
masking countermeasure. Additionally, the ability of Convolutional Neural Net-
works to bypass trace desynchronization effects [7] also became very attractive
to the SCA community. The main drawback in deep learning (across all domains
and not only SCA) is the expensive hyperparameter tuning process. Different
solutions have been investigated to do this process in profiling attacks including
grid search [30], random search [21], Bayesian optimization [28], genetic algo-
rithms [17], and reinforcement learning [26]. Such solutions converge to different
model behaviors, and usually, the best model is selected from a limited number
of search attempts.

As the search spaces are usually very large, even for a few hyperparameters,
the search mechanism can easily find multiple sub-optimal models for the prob-
lem. In other words, a large number of deep learning models will show overfitting
or underfitting effects, leading to poor generalization ability. Finding an opti-
mal model during the search is theoretically possible by assuming an unbounded
adversary in terms of training resources, which is never the case in practice [24].
For profiling attacks in general, it is common to assume that a model is sub-
optimal or wrong if the assumptions about the leakage model contain errors or
the number of side-channel measurements is not sufficient [11]. This is because
we aim to find the actual statistical distribution of the leakage in the profiling
phase. Since this distribution is unknown, we must approximate it using density
estimation techniques. The estimation process is aligned with assumption and
estimation errors. The former is the consequence of incorrect assumptions about
the leakage model, and the latter is the consequence of insufficient side-channel
measurements [6]. Reducing any of those errors will result in the improvement
of the model performance.

Overfitting in Deep Learning-Based SCA 399

Intuitively, a deep learning model showing sub-optimal generalization would
start to converge to a stronger model by increasing the number of profiling
traces and re-training. The expectation is that fewer estimation errors (i.e., more
profiling traces) would suppress eventual assumption errors made by the model
(due to hyperparameters combination and leakage model).

This paper examines this common profiling attack assumption that more pro-
filing traces always improve model generalization. Motivated by the deep double
descent phenomenon [20], we experimentally show that poor generalization (typ-
ically justified as overfitting and underfitting) is much more a matter of specific
hyperparameters choice and not the lack of profiling traces. We generate mod-
els ranging from few thousand to millions of trainable parameters, and we verify
that in several cases, independent of leakage model and deep learning model size,
adding more profiling traces does not change (or even reduce) the model’s gener-
alization ability. We investigate simple techniques based on limited hyperparam-
eter changes and regularization to override this unexpected effect. Additionally,
understanding what causes unexpected model behaviors in deep learning (such
as overfitting) allows evaluators to draw more consistent conclusions about the
target’s security, reducing the chances of overestimating the security of a device
due to assumptions errors of the model. Our main contributions are:

1. We experimentally verify that the assumption that “adding more profiling
traces increases the generalization of a model” is not always true for deep
learning-based SCA. We investigate in detail the overfitting effect in profiling
attacks. We validate that in many cases, the overfitting effect can be reduced
by adding more profiling traces during training if the chosen hyperparameters
combination does not result in large assumption errors.

2. We run experiments for software and hardware AES datasets and demonstrate
that this behavior is not dataset dependent.

3. Considering the first contribution, we show that when increasing the profiling
set size does not improve generalization, using regularization techniques and
applying small changes in hyperparameters can improve the performance by
reducing the assumption errors.

This work does not aim to find any specific model that will break a target with
fewer measurements than state-of-the-art. Rather, it provides insights into a
commonly observed problem in deep learning-based SCA: overfitting. Instead
of simply concluding that a model does not work due to overfitting, as done in
most related works, we try to find the underlying reasons for such behavior and
how to mitigate it.

2 Background

2.1 Profiling SCA

Profiling attacks are conducted in two main phases: profiling and attack. The
main goal of the profiling phase is to implement a classifier by learning or com-
puting a set of parameters. The first method for profiling attacks is the template

400 A. Rezaeezade et al.

attack, where an adversary assumes that the leakage follows a multi-variate Gaus-
sian distribution [9,10]. The profiling stage consists then of computing the Gaus-
sian components (mean and covariance) as approximate statistics by assuming
that the target device provides leakages that follow a Gaussian distribution.
This allows an adversary to obtain a probability density function representing
the distribution of side-channel leakages.

In machine learning (including deep learning) SCA, the statistics of the
unknown leakage distribution are automatically learned from the profiling set.
This time, the classifier parameters are learned from side-channel leakages rather
than computed, meaning that the adversary does not necessarily need to assume
the statistical distribution that describes the leakages well.

Although the Gaussian template attack theoretically represents the strongest
profiling model due to the nature of side-channel leakages that tend to follow
a Gaussian distribution, deep learning methods offer infinite opportunities to
learn a classifier and, therefore, in practice, can reach more efficient results. If
points of interest can be selected to build Gaussian templates, a security eval-
uator can evaluate the worst-case security scenarios by estimating the required
number of side-channel measurements to recover the secret. On the other hand,
deep learning methods require no feature selection as the points of interest are
implicitly selected during the deep learning training phase.

The quality of a profiling classifier is given by its generalization ability to
an attack set. For that, information-theoretic metrics like guessing entropy or
success rate are computed from the output probabilities obtained from the clas-
sifier. Differing from the template attack where the adversary or the evaluator
does not need to conduct hyperparameter tuning, deep learning methods suffer
from the difficulty of defining those hyperparameters. Therefore, one needs to
be careful when interpreting the outcome metrics from a profiling model and,
consequently, the conclusions about the security of the implementation. The
information-theoretic metrics help the evaluator to understand how to find the
best possible deep learning model, and for that, it is important to understand
when the metrics indicate overfitting, underfitting, and generalization.

2.2 Overfitting and Underfitting

In supervised learning, when we train a model, we fit it on a set of labeled data,
and then we expect it to be able to decide about a set of unseen data from
the same distribution. According to that, overfitting describes a model that fits
the training data well but performs poorly on test data. It can be caused for
various reasons, traditionally summarized as using a too complex model or using
an inappropriate training set. In the same way, we can define underfitting as the
model that does not learn the underlying function in training data, and its
performance in test data is poor accordingly.

One suggested way to limit the effect of overfitting or improve the general-
ization power of a model is to expand the training set by collecting more data
or running data augmentation [29]. However, there are limitations as traditional
machine learning (and small neural network) models’ performance saturates at

Overfitting in Deep Learning-Based SCA 401

some point, and we cannot see significant changes from that point ahead as
we increase the training set size. In the case of deep neural networks, perfor-
mance variation regarding increasing training set size depends on the proportion
between the network’s capacity1 and the number of traces in the training set.
Although the exact behavior of the neural models is still ongoing research, it has
been shown that when the size of the training set and model’s capacity is com-
parable, increasing the training set size can hurt the model’s performance [20].

Deep learning models commonly have many trainable parameters [2], and
such models can easily fit training data with empirical risk (average of the loss
on the training set) close to zero. This simplifies the optimization problem so that
we can use very complex models for simple problems and still reach extremely
good generalization [31].

2.3 Deep Double Descent Phenomenon

The deep double descent phenomenon was first discovered by Belkin et al. [3].
The challenge started with the common claim in modern machine learning that
“larger models are always better” [13,16,27], while standard statistical machine
learning theory predicts that larger models are candidates for overfitting. Belkin
et al. unified the classical bias-variance trade-off and the modern practice of
larger models’ advantage. They showed how increasing models’ capacity beyond
the size of the smallest model that can fit the training data with zero empirical
risk could lead to performance improvement.

Bias-variance trade-off is the concept traditionally used to describe under-
fitting as a result of high bias and overfitting as a result of high variance. The
conventional bias-variance trade-off is shown on the left of Fig. 1. Choosing the
function class F , like neural networks, and minimizing their training risk using
an objective function, the training and test risk varies based on the capacity of
F . In this trade-off, there is a “sweet spot” where a model with a specific capacity
has the best performance for the given problem. Before the “sweet spot”, per-
formance increases with increasing the capacity of the models. After the “sweet
spot”, the performance of the models in the training set keeps increasing, but
performance in the test set decreases.

More recently, deep double descent replaced the conventional bias-variance
trade-off with the neural model performance below the “interpolation point”,
where the interpolation point is the capacity of the smallest model from function
class F that can fit a training set with n traces and zero training loss. Belkin et al.
showed that although models with a capacity near the interpolation point have a
high test risk (average of the loss in the test set), if we keep increasing the model’s
capacity, the risk will decrease again, and we can even reach models with better
performance than the models in the “sweet spot”. One can see these double
descent behavior in the right of Fig. 1. All the models beyond the interpolation
point fit the training data perfectly and have zero training risk.

1 We consider the capacity to be the size of the network in trainable parameters.

402 A. Rezaeezade et al.

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). Left: The classical
U-shaped risk curve. Right: The Double Descent risk curve.

Considering this deep double descent phenomenon, a model f from function
class F works in one of the following regimes, depending on the proportion
between the capacity of the model and the number of measurements in the
training set (n):

– Under-parameterized regime: where the capacity of f is sufficiently smaller
than n. The models working in this regime show an increase in performance by
increasing the training set size, i.e., increasing the number of measurements
in the training set until the saturation point (where increasing the training
set size does not improve the model’s performance anymore).

– Over-parameterized regime: where the capacity of f is sufficiently larger than
n. The models working in this regime show an increase in performance by
increasing training set size unless the increase can change the regime that the
model is in.

– Critically-parameterized regime: where the capacity of f and the size of the
training set n are comparable. Models working in this regime may show an
increase or decrease in performance by increasing the training set size. In
the critical regime, the chosen model barely fits the training data, so it is
fragile2. In the right of Fig. 1, by increasing the model’s capacity, the test
risk initially increases in the critical regime, and just as the model reaches
the interpolation point and can fit with zero training risk, it undergoes the
second descent. In many research works, this effect cannot be observed as it
is avoided through early stopping or other regularization techniques3.

In the right of Fig. 1, the critical regime is denoted in orange color. As one
can see, the test risk reaches its peak at the interpolation point. Meanwhile, the
training risk reaches zero for the first time. After that point, the training risk
remains zero, and the test risk starts to decrease again. Increasing the training set
size pushes the double descent curve downward by decreasing test risk. However,
since a larger training set requires larger models to fit, increasing the training

2 Small changes in the model’s hyperparameter can invalidate it.
3 Regularization are techniques used to mitigate overfitting by reducing the complexity

of the models.

Overfitting in Deep Learning-Based SCA 403

set also shifts the interpolation point (and the peak of test risk) to the right [20].
When we increase the training set size, these two effects combine, and we may
observe that training a model with a fixed capacity with less training data shows
better performance than training it with a larger training set. Consequently,
increasing the training set size can hurt the performance of the model.

2.4 Overfitting and Generalization in Side-channel Analysis

To decide about the generalization power of neural network models in the side-
channel domain, we cannot rely on accuracy and loss for the training and vali-
dation set. As discussed in [23], such machine learning metrics are not suitable
in SCA as they limit the final prediction to individual decisions for each trace.
Therefore, we need a metric that can accumulate the small biases of the model
prediction toward the correct key. To overcome this shortcoming, besides the
accuracy and loss of the model, we inspect the evolution of guessing entropy for
an attack set. Following a standard differential power analysis setting, we accu-
mulate information about each key candidate as Sk =

∑Q
i=1 log p(xi, y), where

Q is the number of attack traces and p(x, y) indicates the probability of a trace
xi to be represented by an intermediate (in our case, a label) y. For example,
the intermediate y can be the output of an S-box operation in the AES cipher.
Namely, y = Sbox(d⊕ k), where d is a plaintext byte and k is the key byte can-
didate. The best key candidate is the key that maximizes Sk. If we sort the key
candidates according to their Sk values, guessing entropy (GE) is the average
rank of the actual key among all the candidate keys after multiple attacks to an
attack set. The attack is successful if it places the actual key first, i.e., GE = 1.

Detecting Overfitting and Underfitting in SCA. The inability of a deep
neural network to generalize in profiling SCA is usually attributed to model
overfitting or underfitting. In practice, overfitting is characterized by a model
that memorizes all training data but cannot generalize to different (unseen)
attack traces. The main outcome is a model that mostly fits noise instead of
existing leakages. This scenario becomes even more critical in realistic profiling
attacks where the attack traces are collected from a separate device. Underfit-
ting happens when the model is trained for an insufficient number of iterations
(i.e., epochs), and training metrics indicate a model that cannot even memorize
training data.

A profiling model is considered sub-optimal if there are assumption or esti-
mation errors [11]. In the case of deep learning, assumption errors also include
hyperparameter combinations that lead to insufficient generalization. However,
there are cases when the trained model still eventually recovers the correct key
at the price of the increased number of attack traces. Thus, it is common to
observe the following scenarios:

– Model overfits but still recovers the correct key information: in this case, train-
ing accuracy reaches 100% (resp. training loss approaches zero) at the end of
the training process. The overfitting is identified by checking the validation
accuracy, which is typically close to random guessing, and the validation loss,

404 A. Rezaeezade et al.

which tends to grow as training continues. However, when processing a suf-
ficient number of attack traces during the GE calculation, it is still possible
to rank the correct key as first (or among the first ones). Of course, as the
model overfits and the GE is usually verified for side-channel measurements
obtained from the same device (ignoring portability [4]), one cannot assume
the model provides sufficient generalization.

– Model tends to overfit but still recovers the correct key byte: the only dif-
ference from the previous situation is that the model shows a continuous
improvement in training accuracy (resp., decreasing in loss), but the train-
ing stops before it reaches 100%. As this stopping decision happens before
the complete overfitting, the tendency is a slightly better (but still far from
optimal) generalization.

– Model overfits or tends to overfit and does not recover the correct key byte:
this is a case when the evaluator selects a combination of hyperparameters
that creates a model that cannot fit existing leakages and predominantly fits
noise from side-channel measurements.

The final profiling models achieved through any of these scenarios are defined
as sub-optimal models. Even the scenarios that recover the secret information
are far from ideal for security evaluations. The problem is to assume that a
sub-optimal model represents the existing leakage distribution of the target.
The direct consequence is a false sense of security, usually overestimating the
security of the implementation. Additionally, it remains unclear if the increase
in the number of profiling traces, which reduces estimation errors, always ensures
the reduction of negative effects due to the model’s sub-optimality.

Finding the Best Possible Models. A typical procedure in deep learning-
based profiling attacks is to run hyperparameter search methods to find the best
possible models using available resources (processing power, time, and memory).
To speed up the hyperparameter search process, an alternative is to reduce the
number of profiling traces during the search and select the best possible model.
Once the best model is found, one can increase the number of profiling traces
again and re-train the model to improve its generalization. In essence, for some
models, adding more profiling traces requires small changes in hyperparameters
to accommodate the larger profiling set and the expected improvement in gen-
eralization. As it is more likely that we are dealing with sub-optimal models (we
do not follow the worst-case security settings), generalization will be limited and
will also happen in models showing overfitting.

3 Experimental Setup

3.1 Datasets

We use two publicly available datasets that are large enough to run our exper-
iments. This will allow us to inspect the influence of the increasing number of
traces on the neural network model behavior.

Overfitting in Deep Learning-Based SCA 405

ASCAD Random Keys4. This dataset was released in 2019 [1] and contains
side-channel measurements from an AES-128 software implementation running
on an 8-bit AVR microcontroller. Details about the cryptographic design are
provided in [25]. The AES implementation is protected with a first-order Boolean
masking countermeasure. This dataset contains 200,000 traces with random keys
and random plaintexts, which is then considered as a profiling set. Additional
100,000 traces with a fixed key are considered for attack and validation sets.
Each side-channel measurement contains 250,000 features, and we consider the
trimmed version of the dataset containing 1,400 features. This target interval
represents the processing of the third byte (the first masked one) of the S-box in
the first encryption round. Therefore, in our experiments, this dataset is labeled
according to this intermediate byte, i.e., Y (i) = Sbox[P (i)

3 ⊕ k
(i)
3] (Identity (ID)

leakage model) and the Hamming weight of this intermediate byte (Hamming
weight (HW) leakage model).

AES HD5. This dataset was introduced in [23] and contains power side-channel
measurements from an unprotected AES 128 implementation running on an
FPGA platform. This dataset contains 500,000 side-channel traces (in [23], the
authors considered a smaller version of the dataset) with a fixed key. In our
case, we split this dataset in a profiling set containing 400,000 traces and the
remaining 100,000 are used for attack and validation phases. Each measurement
in this dataset contains 1,250 features. We label this dataset according to the
Hamming distance (HD) between output ciphertext byte and the corresponding
byte before S-box in the last encryption round, Y (i) = Sbox−1[C(i)

j ⊕k
(i)
j]⊕C

(i)
j′ ,

where C
(i)
j and C

(i)
j′ are related according to the ShiftRows operation. In our

experiments, j = 10 and j′ = 6.

3.2 Analysis Methodology

In profiling SCA, an analysis that makes correct assumptions about the leakage
model and leakage distributions can increase models’ performance by increasing
the number of profiling traces. In Sect. 2.3, we discussed that recent deep learning
results show the existence of a critical regime, where increasing the number
of training data leads to an unexpected decrease in model generalization. Not
surprisingly, this also happens in the side-channel domain.

This paper explores the effects mentioned above in the case of deep learning-
based SCA. Our analysis methodology aims to verify the possibilities of reducing
the overfitting effects in profiling models and understanding if a deep learning
model trained with more data should always deliver better generalization. Our
approach consists of the following steps:

4 https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA AES v1/ATM
AES v1 variable key.

5 https://github.com/AISyLab/AES HD Ext.

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://github.com/AISyLab/AES_HD_Ext

406 A. Rezaeezade et al.

1. A search space S is created for hyperparameter options for MultiLayer Per-
ceptron (MLP) and Convolutional Neural Networks (CNN)6.

2. 500 different hyperparameters combinations are generated for MLP and CNN
neural network topology and leakage model (Hamming weight, Identity, and
Hamming distance) combinations and two datasets (ASCAD Random Keys
and AES HD). Thus, the total number of generated models equals 3,000.

Table 1. MLP and CNN models hyperparameters.

Hyperparameters Range

Dense layers

Number of neurons [100, 900], step = 100

Number of layers [1, 8], step = 1

Convolution layers

Number of layers [1, 4], step = 1

Number of kernels [4, 20], step = 1

First layer’s filter size [2, 4, 8, 12, 16]

i(th) layer filter size ((i− 1)filter size)2

Pooling “Average”, “Max”

Pooling size [2, 10], step = 2

Pooling stride [2, 10], step = 2

Learning hyperparameters

Optimizer “Adam”, “RMSprop”

Weight initialization “random uniform”, “glorot uniform”, and “he uniform”

Activation function “relu”, “selu”, and “elu”

Batch size [100, 900], step = 100

Learning rate [0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001]

To generate the models, we considered the hyperparameters and ranges
depicted in Table 1. For both MLP and CNN dense layers, we used the ranges
shown in Dense layers part of Table 1. The number of epochs for all settings
is fixed and equals 200. The hyperparameters’ ranges are being selected based
on the ranges reported in the previous researches [1,22,30].

3. In the first phase, each randomly generated neural network is trained with
a portion of the available profiling set. We start with 50,000 profiling traces,
and the performance of each profiling model is estimated with the average
over ten different validation sets, where each has 10,000 traces. For guessing

6 Due to the limitation on the number of pages of the paper, we avoid describing MLP
and CNN architectures here. We refer interested readers to many available papers
in the literature describing these neural network models like [25,30].

Overfitting in Deep Learning-Based SCA 407

entropy and the required number of attack traces, we repeat the attack 100
times in each validation set for 5,000 randomly selected traces and report the
average over those ten sets.

4. If GE = 1, the neural network model is selected as a good model. Otherwise,
the model is discarded. To avoid subjective interpretation of the term good
model, we clarify that this is not an optimal profiling model but a trained
neural network that can recover the target key with the considered number
of traces (i.e., 5,000).

5. For all good models, we analyze the training metrics to verify what regime the
model is working in and if the profiling model overfits (or tends to overfit).
The schematics of the overfitting or tending to overfit behaviors of the deep
models are illustrated in Fig. 2.

6. All good models are re-trained with an increased number of profiling traces.
We re-train the good models with 100,000, 150,000, and 200,000 traces for
the ASCAD Random Keys dataset. For the AES HD dataset, we repeat the
training process with 100,000 up to 400,000 traces with steps of 50,000 traces.
Note that the models are always re-initialized with the same trainable param-
eters from step 2. This will keep all the other hyperparameters and settings
the same and provide us with the possibility to observe the effect of profiling
size increments.

7. After re-training the good models with more profiling traces, we verify if the
required number of attack traces to reach GE = 1 is reduced when compared
to the baseline case (model trained with 50,000). We assume that this reduc-
tion in the required number of traces reflects a generalization improvement.
This can be justified from two viewpoints. First, from a deep learning per-
spective, the improvement in the validation accuracy results in assigning the
largest probability to the correct key more frequently than in cases when the
model shows less accuracy in the validation set. From a side-channel perspec-
tive, we are interested in models that can rank the correct key first with fewer
attack traces, and this can be a measure to compare the generalization power
of different models.

8. For models where adding more profiling traces improves their generalization
(this situation is illustrated in the top part of Fig. 3), one of the following
situations might happen:
(a) The baseline model was working in an under-parameterized regime, and

the hyperparameter combination error (assumption error) was small com-
pared to the neural network model’s estimation error. As a result, increas-
ing the number of profiling traces leads to decreasing estimation error and
better generalization.

(b) The baseline model was working in an over-parameterized regime, and the
assumption error was small compared to the estimation error. As a result,
an increasing number of profiling traces leads to decreasing estimation
error and better generalization.

(c) The baseline model was working in a critical regime. Increasing traces
in the training set did not invalidate the neural network model, and the
hyperparameter combination error did not increase with an increasing

408 A. Rezaeezade et al.

number of profiling traces. Instead, estimation error decreased by adding
more traces to the training set, leading to decreasing estimation error and
better generalization.

9. For models where adding more profiling traces does not improve the gener-
alization (this situation is illustrated in bottom part of Fig. 3), one of the
following situations might happen:
(a) Regardless of the regime the baseline model is working in, the specific

hyperparameters combination leads to assumption errors after increas-
ing the profiling set size. The model needs to be adjusted to reduce the
assumption error effects.

(b) The baseline model is working in the critical regime, and adding more
traces to the profiling set skewed the model and decreased its performance.

Fig. 2. Common model behaviors.

Figure 2 illustrates a typical scenario identified in [23] for sub-optimal deep
learning models when machine learning metrics do not reflect the performance
of a model concerning guessing entropy. The fact that we illustrate accuracy as
a reference machine learning metric does not imply that we are ignoring training
and validation loss to decide if a model shows the potential behaviors from Fig. 2.
As proposed in [18], minimizing the cross-entropy loss should be the equivalent of
solving side-channel analysis optimization. However, this principle usually does
not apply to sub-optimal models with too many assumption errors, as is the
case of models showing overfitting. It is important to note that for most of the
models considered good models, the situation in the top part of Fig. 3 happens
more often. This means that for those models, overfitting is also caused by the
lack of profiling traces, leading to insufficient profiling. On the other hand, if a
model shows the behavior from the bottom part of Fig. 3, we can modify some
hyperparameters that are unrelated to the model size (e.g., learning rate, batch
size, training epochs, dropout, and activation functions), which can cause the
model to reduce its assumption errors.

Overfitting in Deep Learning-Based SCA 409

Fig. 3. Interpreting the model behaviors.

4 Experimental Results

Considering the neural network capacity and the size of the profiling set,
we should specify the regime that the neural network model is working on.
Unfortunately, we cannot clearly specify the borders between these regimes.
This is because the interpolation point definition and “sufficiently larger” and
“sufficiently smaller” terms in the definition of over-parameterized and under-
parameterized regimes cannot give a clear separation. Additionally, there is no
widely accepted definition for the capacity of the models in deep learning, which
can justify the different performance of neural network models with a similar
number of trainable parameters but different topology and output layer size. To
tackle these ambiguities, we selected “good” neural network models with dif-
ferent numbers of trainable parameters ranging from a few thousand to a few
million. Then, we consider the training and validation accuracy and loss evo-
lution to roughly specify the interpolation point for different neural network
and leakage model combinations. Finally, we can roughly specify the working
regime for every selected neural network model. Still, considering that the speci-
fied interpolation points are valid for the specific profiling size, by increasing the
profiling size, the working regime of the model may change [20]. In the tables,
every row represents a randomly selected neural network model, denoted with
numbers. Observe that there are some models that have the same number of
trainable parameters (denoted as “Params”). This simply means that differ-
ent architectures have the same capacity. For various settings (datasets, leakage
models), we give various numbers of models based on the number of models that
converge and have different capacities (to provide good coverage from small to
large model sizes).

410 A. Rezaeezade et al.

4.1 ASCAD Random Keys Dataset

Four different combinations of MLP and CNN topologies with the random struc-
ture declared in Sect. 3, and the Hamming weight (HW) and Identity (ID) leakage
models are investigated for the ASCAD dataset. The results of experimenting
with the first combination (MLP topology and the HW leakage model) are shown
in Table 2a. To compare the performance of a neural network model trained with
four different profiling sets (50,000, 100,000, 150,000, and 200,000), we consider
the required number of attack traces for each profiling set to place the actual key
in the first place. Then refer to them as NT1

7 for profiling set with 50,000 traces
to NT4 for profiling set with 200,000 traces for each neural network model. As
mentioned in Sect. 2.4, the performance of the models that need fewer traces to
reach GE = 1 is considered to be better.

Table 2. Results for multilayer perceptron.

Params NT1 NT2 NT3 NT4 # Params NT1 NT2 NT3 NT4

1 14,109 4,856 4,721 1,932 2,352 1 68,176 4,840 810 225 123

2 14,549 2,419 5,000 520 631 2 186,156 4,999 1,185 337 168

3 28,209 3,141 1,577 1,225 1,035 3 196,256 4,865 1,373 514 241

4 31,149 3,615 5,000 622 5,000 4 226,556 4,769 1,814 469 248

5 42,309 4,045 2,215 1,029 972 5 331,656 4,896 4,450 1,742 808

6 44,169 4,336 893 654 561 6 371,856 4,991 4,775 3,609 1,615

7 58049 4,034 2,259 1,662 1,324 7 371,856 4786 3208 1370 757

8 70,509 4,435 1,712 899 745 8 412,056 4,937 1,837 543 325

9 78,159 3,385 1,601 1,306 1,044 9 412,056 4,650 1,877 464 282

10 85,809 4,742 2,575 1,906 1,286 10 497,356 4,912 3,114 1,300 1,263

11 141,009 3,859 1,671 1,020 801 11 497,356 4,864 3,161 1,104 433

12 161,209 4,070 1,792 1,063 939 12 587,656 4,717 3,093 1,625 770

13 181,409 3,357 1,895 1,917 1,830 13 663,056 4,821 3,406 1,343 713

14 282,009 3,088 1,420 1,078 912 14 663,056 4,937 3,048 954 498

15 322,209 4,391 2,032 1,148 907 15 823,456 4,989 2,549 1,121 576

16 402,609 2,559 1,601 891 1,139 16 828,756 4,858 2,675 1,129 615

17 523,209 4,419 2,515 1,322 1,241 17 828,756 4,900 3,543 1,620 732

18 693,909 3,698 1,426 1,140 1,046 18 1039,156 4,719 1,047 458 281

19 724,409 4,276 2,238 1,511 1,368 19 1079,256 4,798 4,005 2,132 1,105

20 884,809 3,217 2,508 1,848 1,606 20 1,129,456 3,544 1,244 561 426

21 964,809 1,279 870 1,016 1,355 21 1,129,456 2,571 1,026 1,108 402

22 1,206,009 3,117 1,551 1,158 970 22 1,129,456 4,829 3,413 2,601 1,333

23 1,526,409 3,535 1,780 1,298 1,305 23 1,329,756 4,986 4,672 3,673 2,720

24 1,707,009 3,205 2,619 5,000 1,111 24 1,329,756 4,836 3,759 2,440 1,357

25 1,957,509 4,751 4,504 2,143 1,911 25 1,580,256 5,000 3,351 2,581 1,355

26 2,208,009 4,842 2,620 3,038 2,278 26 158,0256 4,651 2,928 905 4,818

27 2,458,509 3,450 1,744 1,072 893 27 1,785,856 2,271 5,000 5,000 5,000

(a) MLP trained for the HW leakage model. (b) MLP trained for the ID leakage model.

7 NT: Average of the minimum number of attack traces that the model needs to place
the actual key first.

Overfitting in Deep Learning-Based SCA 411

Observe how all the neural network models ranked the correct key in the
first place when trained with 50,000 traces. In many cases, by increasing the
profiling size for each MLP model, the required number of traces to reach GE = 1
follows the classical machine learning belief that more data is better (for example,
#6). Still, in some cases, the performance of the neural network model (the
required number of attack traces) decreased when increasing the profiling set
size. A part of this behavior has been predicted by deep double descent, and
the proportion between the model’s size and profiling set size, especially when
increasing profiling size, changes the regime the neural network works in (e.g.,
#13 in Table 2a). This model works near over-parameterized regime boundaries
with 50,000 profiling traces since its performance in the profiling set is ≈ 97%.
Then, by increasing the profiling set size to 200,000, its performance decreases to
≈ 60%. Considering the proportion between the model’s size and the profiling set
size, this model is working in the critical regime for 100,000, 150,000, and 200,000
profiling traces. Still, the irregular increases and decreases in the required number
of attack traces considering the model’s complexity are not fully justified by the
double descent phenomenon. For example one can consider #4 in Table 2a. The
accuracy of the baseline model is ≈ 45%, and for the rest of the profiling set
sizes, its profiling accuracy is less than 30%. Considering the proportion between
this model size and the profiling set sizes, and the profiling accuracy, the model
works in an under-parameterized regime, and an increasing number of profiling
traces does not change the working regime. However, when we train the model
with 100,000 and 200,000 profiling traces, it cannot reduce the key entropy at
all as the model does not fit the leakage anymore.

Fig. 4. Increasing the profiling set size and accuracy in the training (T) and validation
(V) set and the required number of attack traces to reach GE = 1, #8 in Table 2a.

412 A. Rezaeezade et al.

Fig. 5. Increasing the profiling set size and accuracy in the training (T) and validation
(V) set and the required number of attack traces to reach GE = 1, #2 in Table 2a.

One can observe the changes in the performance for two MLP architectures
in Figs. 4 and 5. The lighter colors in the left plot show accuracy for profiling
(blue color) and validation (orange color) sets for MLPs trained with smaller
profiling sets, and sequentially darker colors show these metrics after increasing
the profiling set sizes to 100,000, 150,000, and 200,000 traces. Considering the
profiling and validation accuracy and the proportion between the model’s size
and the profiling set size for #8 in Fig. 4, we can see that the baseline model
works in the critical regime, and increasing the profiling set size pushes this model
toward the under-parameterized regime. To eliminate the influence of a biased
attack set on the required number of attack traces, we evaluated 10 different
validation sets and provided mean and standard deviation values. In the right
and top of Fig. 4, one can see the mean and variance of the required number
of attack traces for MLP #8 to decrease GE to 1. In the right and bottom of
Fig. 4, one can see the average of GE that the model managed to reach with
5,000 traces8. In Fig. 4, increasing profiling size results in better performance
concerning the accuracy, the required number of attack traces, and the final GE
that the model managed to reach with 5,000 attack traces. We can even detect
small changes in the required number of attack traces from 150,000 to 200,000
profiling traces, which can be a sign of saturation of the model.

MLP #2 is another example that works in the under-parameterized regime.
In Fig. 5, the accuracy of the MLP model shows normal (more profiling traces
increase accuracy) behavior when increasing profiling set size. The training accu-
racy of the baseline model is ≈ 38% and decreases to 28% for the profiling set
with 200,000 traces. This model’s test accuracy varies from 24% for the baseline
model to ≈ 28% when we train it with 200,000 traces. These accuracy percent-
ages and the proportion between the model’s size and the profiling set sizes
indicate that this model works in the under-parameterized regime for all profil-
ing set sizes. Still, this model cannot reduce the key entropy when trained with
200,000 traces.

Considering MLP #2 in Table 2a, while this MLP model converges to GE = 1
with on average 2,419 attack traces for a profiling set of 50,000 traces, it can-
8 We took incremental steps of 10,000 in case of MLP #8 and MLP #2 to make the

behavior tracking easier in Figs. 4 and 5.

Overfitting in Deep Learning-Based SCA 413

not converge at all, i.e., cannot rank the correct key better than random guess-
ing after increasing profiling size from 50,000 to 100,000 traces. The behavior is
even more surprising when the model again converged to GE = 1 with on aver-
age 520 attack traces when it is trained with 150,000 profiling traces. This is an
example of a scenario when the hyperparameter combination contains an assump-
tion error and increasing the profiling size invalidates the model, i.e., changes the
weights of the neural network model in a way that it cannot capture the underly-
ing leakage model distribution and find the correct key. However, there are cases
like #1 (works in the under-parameterized regime) and #26 (works in the over-
parameterized regime), where increasing the profiling set size does not change
the performance according to the required number of attack traces or sometimes
makes it a bit worse compared to a smaller profiling set. In these cases, the assump-
tion has an error, but it has been suppressed by increasing the profiling set size.
MLP #23, #25, and #27 in Table 2a work in over-parameterized regime. Their
profiling accuracy is more than 95% for all the profiling set sizes. Besides, the sizes
of these models are at least six times larger than the largest profiling set size for
ASCAD. In the case of MLP #24 and MLP#26, while the models have large sizes,
the baseline model cannot reach more than 90% accuracy and, after increasing
profiling size to 200,000 traces, the accuracy decreases under 70%. Thus, these
models work in the critical regime for all the profiling sizes because the hyperpa-
rameter combination does not allow the models to fit the leakage perfectly.

Similar behavior is observed for multilayer perceptrons trained for the ID
leakage model. In Table 2b, one can see the required number of attack traces for
MLP models trained with 50,000, 100,000, 150,000, and 200,000 traces. There
are many cases that follow the more data better generalization principle, but
we can see cases that do not show a decrease in the required number of attack
traces when we increase the profiling set size. Considering the size of the input
layer, which is 1,400 (number of features for the ASCAD dataset), and the size
of the output layer, which is 256 (number of classes for the ID leakage model),
the smallest model that we managed to find that converges to GE = 1 has
68,176 trainable parameters and the baseline model has ≈ 10% accuracy. Then
the profiling accuracy decreases to ≈ 3%, which is still larger than the validation
accuracy (≈ 1% but still larger than random guessing in the case of the Identity
leakage model). MLP #23, #24, and #26 work in an over-parameterized regime
for the same reasons as models in Table 2a.

We investigated CNNs and the Hamming weight and Identity leakage models
to check if this behavior is still observable. The trained models and the required
number of attack traces in this experiment can be analyzed in three regimes. For
example, CNNs #1 to #7 in Table 3a work in under-parameterized regime. This
can be concluded by considering the profiling accuracy of these models, which is
less than 35%, and the proportion between the model sizes and the profiling set
sizes. These models’ accuracy and loss evolution for the profiling and validation
sets do not show significant overfitting, meaning that these models do not have
the capacity to memorize the noise in the profiling set. This can be considered
as an indication that the number of trainable parameters does not represent the
capacity of the models in a way that we can compare models from two different

414 A. Rezaeezade et al.

families (cf. results for the MLP and the ID leakage model). To confirm this,
we draw attention to the fact that the smallest successful models, in the case of
CNNs, have less than 10,000 trainable parameters.

Neural network models like #3 in Table 2a, and #1 and #7 in Table 3a
are working in under-parameterized regime and follow the “more data better
generalization” principle, but MLP models like #1, #2, and #4 in Table 2a and
CNN models like #2 and #5 in Table 3a show a decrease in their generalization
power after increasing the profiling set size. Their hyperparameter combination
imposes an assumption error on the final model, and the neural network model
cannot capture the actual leakage model’s distribution. To resolve this, we need
to change the hyperparameters so that the final model’s parameters can capture
the actual leakage model’s distribution. The results in Sect. 4.4 show that in a
considerable number of cases, a small change in hyperparameters, like changing
the activation function or the number of epochs, can result in a neural network
model that can capture the underlying leakage model distribution better.

The observations for the over-parameterized regime for MLP also hold for
CNN (#23 and #24 in Table 3a). In the case of CNN models in Table 3b, many
baseline models reach 100% accuracy, but then this accuracy decreases signifi-
cantly by increasing the profiling set sizes. Consequently, none of these models
work in the over-parameterized regime for all profiling sets. The models are being
pushed into the critical regime by increasing the profiling set size.

Table 3. Results for convolutional neural networks.

Params NT1 NT2 NT3 NT4 # Params NT1 NT2 NT3 NT4

1 2,959 629 320 286 248 1 6124 1,676 843 938 329

2 5,689 2,670 2,718 801 5,000 2 6,350 1,007 5,000 5,000 157

3 6,579 2,885 1,616 883 934 3 8,390 4,310 5,000 5,000 106

4 9,781 1,319 654 481 521 4 10,646 2,473 598 5,000 5,000

5 15,327 4,821 5,000 5,000 5,000 5 13,274 379 156 60 52

6 15,439 1,862 671 460 502 6 27,140 1,211 111 47 29

7 19,209 3,958 1,303 897 766 7 32,978 5,000 3,320 319 57

8 24,433 813 474 4,141 477 8 54,254 5,000 735 126 55

9 31,113 3,196 1,300 5,000 5,000 9 66,584 5,000 1,469 558 293

10 44,905 3,149 1,855 1,283 982 10 71,272 4,003 199 5,000 5,000

11 57,943 3,660 1,450 1,411 803 11 86,304 5,000 2,139 351 157

12 63,865 2,712 1,270 1,253 756 12 91,080 5,000 4,964 5,000 933

13 75,813 1,587 1,663 1,497 745 13 114,564 4,998 2,636 706 292

14 94,661 2,625 2,586 2,068 2,604 14 134,146 3,058 622 1,546 439

15 100,113 3,673 2,930 2,337 1,501 15 154,696 4,045 1,194 115 58

16 124,585 4,905 3,393 1,458 1,596 16 192,120 5,000 581 270 5,000

17 189,233 4,730 5,000 2,783 2,588 17 202,792 3,239 1,095 422 308

18 243,129 3,983 4,814 2,929 2,487 18 290,536 2,943 5,000 5,000 3,073

19 391,521 2,233 1,721 1,470 1,295 19 356,572 4,767 943 577 195

20 434,121 3,605 2,296 2,677 1,964 20 466,312 5,000 168 5,000 5,000

21 541,243 4,833 3,467 1,162 441 21 598,838 1,946 693 466 249

22 570,753 2,441 1,830 1,165 894 22 662,432 5,000 1,017 516 287

23 984,649 3,525 2,068 1,672 1,661 23 707,656 5,000 3,988 1,914 4,482

24 1,211,881 4,175 3,419 1,554 1,600 24 718,128 5,000 837 196 82

25 1,409,249 3,540 1,867 1,165 905 25 828,774 5,000 3,379 2,764 967

(a) CNNs trained for the HW leakage model. (b) CNNs trained for the ID leakage model.

Overfitting in Deep Learning-Based SCA 415

4.2 AES HD Dataset

In the case of the AES HD dataset, we trained 500 random MLP and 500 random
CNN models with the Hamming distance (HD) leakage model and again selected
some of the models that converged to GE equal to 1. The AES HD dataset has
twice the number of traces in the profiling set compared to the ASCAD dataset,
and this allows us to investigate the model’s generalization power after increasing
the number of profiling samples for a longer interval. As observed in Table 4,
we trained MLP models with profiling sets including 50,000, 100,000, 150,000,
200,000, 250,000, 300,000, 350,000, and 400,000 traces. The required number of
attack traces to reach GE equal to 1 for each neural network model shows that
the model’s generalization did not increase for many cases when we increased
the number of profiling traces. The experiment has been repeated for the CNN
models, and the same behavior was observed, so we omit those results.

In most cases in Table 4, the models converge to GE equal to 1 for a similar
number of attack traces. This means that the increase in the number of profiling
traces can change the parameters of the models, and since the output probabil-
ities of the models will change as a result of this, we can see the changes in the
required number of attack traces for different profiling set sizes. However, these
changes are not improvements in the attack performance as they do not indicate
a successful attack performance. On the other hand, the choice of attack traces
can have the same effect (i.e., changes in the required number of attack traces).
However, there are models like #5 that, for some increases (from 150,000 to
200,000 and from 250,000 to 400,000), cannot even converge. While the training
curve of these models shows normal behavior, they cannot rank the correct key
better than the random guessing (thus, accuracy cannot serve as an indication
of the SCA performance).

In Table 4, MLP #1, #2, #3, and #4, are in the under-parameterized regime.
Looking at the required number of attack traces for different profiling set sizes,
we cannot see an absolute decrease in this metric. Since the number of trainable
parameters in these models in comparison to even 50,000 profiling traces is small,
they have learned the leakage model’s distribution with a smaller number of
profiling traces and gone to the saturation part of the learning curve where
adding more traces to the profiling set does not improve the performance. Models
like #19, #20, and #21 in Table 4 are working in an over-parametrized regime
because they reach ≈ 100% accuracy for all profiling set sizes. In many cases,
these neural network models need more than 5,000 attack traces to place the
correct key to the first rank. However, by observing the GE evolution, we see
that these models could reduce the key entropy, and by adding more attack
traces, they can rank the correct key in the first place. This observation shows
that models working in an over-parameterized regime cannot perform as well
as models working in the under-parameterized regime for the AES HD dataset.
Consequently, there is overfitting that damages the model’s generalization from
a side-channel perspective. For the models working in a critical regime, the
deep double descent effect and assumption error combine. Thus, we can observe

416 A. Rezaeezade et al.

(middle of Table 4) that for many cases, the models cannot rank the correct key
in the first place with less than 5,000 attack traces.

4.3 Influence of Regularization Techniques

To check the influence of the increasing number of profiling traces in the presence
of regularization on the required number of attack traces, we added dropout
regularization to neural network models. More precisely, we added a dropout
layer with a rate of 0.5 after every dense layer in MLP and CNN models that
were selected in Sects. 4.1 and 4.2. The required number of attack traces in this
experiment shows that using this technique can improve the performance of the
neural models on average, especially for models with medium to large capacity,
but still cannot negate the assumption error. In Table 5, one can see the influence
of the increasing number of profiling traces on the MLP performance and the
HD leakage model for the AES HD dataset. The same behavior was captured
for both CNN and MLP models for the ASCAD and AES HD datasets.

Table 4. MLP trained for the HD leakage model.

Params NT1 NT2 NT3 NT4 NT5 NT6 NT7 NT8 NT9

1 12829 3294 2610 2549 2239 2041 2317 2220 2358 2011

2 26049 2795 2144 2128 2424 1904 2200 2526 2024 1938

3 26049 3268 2753 2060 2204 2470 2679 2816 2732 2608

4 27309 4700 3353 5000 3454 4384 3543 4014 3885 3965

5 60249 3681 3551 2366 5000 3224 5000 5000 2253 5000

6 136109 3445 3798 3321 3778 3391 3757 4478 3122 3118

7 196709 4918 3980 5000 4030 4293 4223 3495 2800 4222

9 292209 4527 5000 5000 5000 5000 5000 5000 5000 5000

10 378009 4867 5000 5000 4285 5000 4213 5000 4367 4288

11 378009 3706 5000 5000 5000 5000 5000 5000 5000 5000

12 412809 3735 3127 3459 2910 2854 2606 3066 2829 3297

13 468309 3880 4542 5000 5000 5000 3418 4001 3664 4732

14 824809 3456 4864 5000 5000 5000 5000 5000 5000 5000

15 824809 3533 3617 3978 5000 4235 4394 3674 4933 5000

16 880509 4339 5000 5000 5000 5000 5000 5000 5000 5000

17 985209 3771 4076 4502 4156 4601 3204 2614 3053 3219

18 1131009 2838 4824 5000 5000 5000 5000 5000 5000 5000

19 1381509 3401 5000 5000 5000 5000 5000 5000 4380 5000

20 1466409 2746 5000 5000 5000 5000 5000 4604 5000 5000

21 2383509 4134 3779 4496 5000 5000 5000 4137 5000 5000

Overfitting in Deep Learning-Based SCA 417

Using dropout regularization influences the working regime of the models
significantly. For both MLP and CNN models, almost all the re-trained models
worked in the under-parameterized regime, even for the large models, like #9 in
Table 5. This model is the counterpart of model #17 in Table 4, and its perfor-
mance increased considerably. However, dropout regularization does not always
improve the model’s performance. For example, model #10 in Table 5 cannot
converge at all with dropout. Its counterpart is #20 in Table 4 that was able to
rank the actual key under 10 for many profiling sizes.

Table 5. MLP trained for the HD leakage model and the dropout regularization.

Params NT1 NT2 NT3 NT4 NT5 NT6 NT7 NT8 NT9

1 12829 5000 5000 4604 3496 3880 3578 3653 4133 3659

2 40599 4633 3283 3491 2758 3046 2854 2573 3430 2978

3 73209 3161 2574 2873 2600 2426 2548 2812 2411 2615

4 126009 3108 2677 2494 2254 2307 2765 2550 2608 2207

5 252009 5000 5000 5000 5000 5000 5000 5000 5000 5000

6 468309 2212 1740 1970 1942 1978 1784 2269 2291 2065

7 504009 3414 3258 2278 2733 2686 2496 2627 2753 2711

8 648909 1533 1462 1393 1402 1285 1455 1487 1405 1369

9 985209 957 920 902 1249 955 1084 1170 1232 1462

10 1466409 5000 5000 5000 5000 5000 5000 5000 5000 5000

4.4 Reducing Assumption Error by Changing Hyperparameters

Looking into Table 6, one can see the effect of changing a simple hyperparameter
on the performance of a neural network model for a specific profiling size. For
the sake of brevity, we provide only a few examples (one example from each
combination of neural network topology and leakage models for the ASCAD
dataset). Model #1 in Table 6, is the counterpart of model #4 in Table 2a. We
trained this model for different numbers of epochs (shown in the “EPC” column).
While the model that has been trained with 100,000 traces for 200 epochs cannot
converge at all, if we train it for 100 epochs, it will be able to find the correct
key with 647 attack traces. If we train it for 400 epochs, it will recover the key
with 1,196 traces. Model #2 is the counterpart of model #13 in Table 2b. We
changed this model’s learning rate (shown in the “LR” column). As one can see
in Table 6, this change improved its performance. Finally, models #3 and #4 are
the counterpart of models #9 in Table 3a and model#2 in Table 3b. Changing the
activation function (shown in the “Act. Func.” column) in the case of these two
models increased the performance considerably. In many other cases, changing
hyperparameters led to the improvement of the models that could not converge
to GE = 1 for a specific profiling set size.

418 A. Rezaeezade et al.

Table 6. Results with small changes in hyperparameters.

Params NT1 NT2 NT3 NT4 EPC LR Act. func

1 31149 3615 5000 622 5000 200 0.005 Adam

1 31149 3688 1196 5000 2434 400 0.005 Adam

1 31149 3856 647 5000 5000 100 0.005 Adam

2 663056 4821 3406 1343 713 200 0.0005 Adam

2 663056 4427 2053 886 496 200 0.0001 Adam

3 31113 3196 1300 5000 5000 200 0.005 Adam

3 31113 2415 5000 5000 621 200 0.0001 Adam

3 31113 3237 887 603 838 200 0.005 RMSprop

4 6350 1007 5000 5000 157 200 0.001 RMSprop

4 6350 675 133 2096 116 400 0.001 RMSprop

4 6350 1114 111 47 31 200 0.001 Adam

4.5 General Observations

– Increasing the profiling set size is not a guaranteed solution to increase the
generalization power of a neural network model in deep learning-based SCA.
The effects of the working regime on the performance of a model in the side-
channel domain and the assumption error imposed by the hyperparameters
combination cause the overall irregular behavior of the models regarding the
increasing profiling set size.

– The under-parameterized models perform better than the critical and over-
parameterized models in the SCA domain. While the theory indicates that
over-parameterized models can reach better performance compared to under-
parameterized models in a number of settings [2], this was not the case for
SCA so far, especially for a noisy dataset like AES HD.

– Compared to the neural network models working in the under-parameterized
regime, the models working in the over-parameterized regime have a large
capacity, and their number of trainable parameters is much larger than the
number of traces in the profiling set. On average, such models need more
traces to rank the correct key in the first place compared to the neural network
models working in the under-parameterized regime. Still, it is possible to
converge to GE = 1 with a small number of attack traces using large models
and regularization.

– In many deep learning classification applications, we are interested in the final
decision of the model, i.e., the class that the model assigns to measurement
and not the probability that the model calculates to assign that measurement
to a specific class. Contrary, in SCA, we are interested in the probabilities that
a model assigns to each class for each measurement. Thus, small deviations
in the estimated distribution function based on the profiling set will lead
to significant changes in the model’s performance from an SCA perspective.
Since over-parameterized models have a large capacity and many parameters

Overfitting in Deep Learning-Based SCA 419

shape the underlying leakage model distribution, they have more potential to
contain assumption errors.

– A model working in a critical regime is very fragile, and in some cases, even
a small change can decrease its performance noticeably. Thus, a cautionary
solution could be to avoid using such models.

– Overfitting is a complex phenomenon, and we cannot trace its causes to only
one source. Still, our results indicate that hyperparameter combinations play
a more significant role than the profiling set size.

5 Conclusions and Future Work

This work investigates overfitting in deep learning-based SCA. We challenge
the common assumption that more profiling traces is better, and we show that,
while this may be the case, it cannot be taken for granted. Indeed, our exper-
iments showed a number of settings where adding more profiling traces makes
the attack less powerful or even unsuccessful. A simple yet powerful option to
fight against overfitting is to use regularization or tweak the neural network
architecture. Unfortunately, using such techniques does not also provide a guar-
antee to avoid overfitting. Thus, it is necessary to carefully design the model
and assess its performance with different settings to understand in what regime
the model works and then use the most appropriate one (which seems to be the
under-parameterized regime). Finally, our research provides the setup to be more
precise when discussing the failure of deep learning models in SCA. Instead of
“simply” saying there is overfitting, one should strive to give insights what are
the causes of that behavior. In future work, it would be interesting to provide a
systematic approach on how to tweak hyperparameter changes to improve the
attack performance. Besides, we again saw the beneficial effects of regulariza-
tion (see, e.g., [14]), so it is somewhat surprising that there are no systematic
evaluations on the relevance of regularization techniques in SCA.

Acknowledgment. This work received funding in the framework of the NWA Cyber-
security Call with project name PROACT with project number NWA.1215.18.014,
which is (partly) financed by the Netherlands Organisation for Scientific Research
(NWO). Additionally, this work was supported in part by the Netherlands Organiza-
tion for Scientific Research NWO project DISTANT (CS.019).

References

1. Agence nationale de la sécurité des systèmes d’information (ANSSI): ASCAD.
Github repository (2018). https://github.com/ANSSI-FR/ASCAD

2. Bartlett, P.L., Montanari, A., Rakhlin, A.: Deep learning: a statistical viewpoint.
CoRR abs/2103.09177 (2021). https://arxiv.org/abs/2103.09177

3. Belkin, M., Hsu, D., Ma, S., Mandal, S.: Reconciling modern machine-learning
practice and the classical bias-variance trade-off. Proc. Natl. Acad. Sci. 116(32),
15849–15854 (2019)

https://github.com/ANSSI-FR/ASCAD
https://arxiv.org/abs/2103.09177

420 A. Rezaeezade et al.

4. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: a warriors guide through realistic profiled side-channel anal-
ysis. In: 27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, 23–26 February 2020. The Internet Society
(2020)

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

6. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.-X.:
Leakage certification revisited: bounding model errors in side-channel security
evaluations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 713–737. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 25

7. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

9. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

10. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

11. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 459–476. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 26

12. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

13. Huang, Y., et al.: Gpipe: efficient training of giant neural networks using pipeline
parallelism. CoRR abs/1811.06965 (2018). https://arxiv.org/abs/1811.06965

14. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Trans. Cryptographic Hardware Embed. Syst. 148–179 (2019)

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held 3–6 December 2012, Lake Tahoe, Nevada,
United States, pp. 1106–1114 (2012)

17. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-642-55220-5_26
https://doi.org/10.1007/978-3-642-55220-5_26
https://doi.org/10.1007/978-3-540-85053-3_27
https://arxiv.org/abs/1811.06965
https://doi.org/10.1007/3-540-48405-1_25

Overfitting in Deep Learning-Based SCA 421

SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

18. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for side-
channel analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2020(1),
348–375 (2020). https://doi.org/10.13154/tches.v2020.i1.348-375

19. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48059-5 14

20. Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.: Deep dou-
ble descent: where bigger models and more data hurt. In: 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April
2020. OpenReview.net (2020). https://openreview.net/forum?id=B1g5sA4twr

21. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: improving generaliza-
tion with ensembles in machine learning-based profiled side-channel analysis. IACR
Trans. Cryptographic Hardware Embed. Syst. 2020(4), 337–364 (2020). https://
doi.org/10.13154/tches.v2020.i4.337-364

22. Perin, G., Picek, S.: On the influence of optimizers in deep learning-based side-
channel analysis. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC
2020. LNCS, vol. 12804, pp. 615–636. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81652-0 24

23. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptographic Hardware Embed. Syst. 2019(1), 209–237 (2019).
https://doi.org/10.13154/tches.v2019.i1.209-237

24. Picek, S., Heuser, A., Perin, G., Guilley, S.: Profiling side-channel analysis in the
efficient attacker framework. Cryptology ePrint Archive, Report 2019/168 (2019).
https://ia.cr/2019/168

25. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptol. ePrint Arch. p. 53 (2018). https://eprint.iacr.org/2018/053

26. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperpa-
rameter tuning in deep learning-based side-channel analysis. IACR Trans. Cryp-
tographic Hardware Embed. Syst. 2021(3), 677–707 (2021). https://doi.org/10.
46586/tches.v2021.i3.677-707

27. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June
2015, pp. 1–9. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.
2015.7298594

28. Wu, L., Perin, G., Picek, S.: I choose you: automated hyperparameter tuning for
deep learning-based side-channel analysis. IACR Cryptol. ePrint Arch. p. 1293
(2020). https://eprint.iacr.org/2020/1293

29. Ying, X.: An overview of overfitting and its solutions. In: Journal of Physics: Con-
ference Series, vol. 1168, p. 022022 (2019). https://doi.org/10.1088/1742-6596/
1168/2/022022

30. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptographic Hardware Embed.
Syst. 2020(1), 1–36 (2020). https://doi.org/10.13154/tches.v2020.i1.1-36

31. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning (still) requires rethinking generalization. Commun. ACM 64(3), 107–115
(2021). https://doi.org/10.1145/3446776

https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.1007/3-540-48059-5_14
https://doi.org/10.1007/3-540-48059-5_14
https://openreview.net/forum?id=B1g5sA4twr
https://doi.org/10.13154/tches.v2020.i4.337-364
https://doi.org/10.13154/tches.v2020.i4.337-364
https://doi.org/10.1007/978-3-030-81652-0_24
https://doi.org/10.1007/978-3-030-81652-0_24
https://doi.org/10.13154/tches.v2019.i1.209-237
https://ia.cr/2019/168
https://eprint.iacr.org/2018/053
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://eprint.iacr.org/2020/1293
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.1145/3446776

	To Overfit, or Not to Overfit: Improving the Performance of Deep Learning-Based SCA
	1 Introduction
	2 Background
	2.1 Profiling SCA
	2.2 Overfitting and Underfitting
	2.3 Deep Double Descent Phenomenon
	2.4 Overfitting and Generalization in Side-channel Analysis

	3 Experimental Setup
	3.1 Datasets
	3.2 Analysis Methodology

	4 Experimental Results
	4.1 ASCAD Random Keys Dataset
	4.2 AES_HD Dataset
	4.3 Influence of Regularization Techniques
	4.4 Reducing Assumption Error by Changing Hyperparameters
	4.5 General Observations

	5 Conclusions and Future Work
	References

