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Abstract: The Pitman-Yor process is a random probability distribution,
that can be used as a prior distribution in a nonparametric Bayesian analy-
sis. The process is of species sampling type and generates discrete distribu-
tions, which yield of the order nσ different values (“species”) in a random
sample of size n, if the type σ is positive. Thus this type parameter can
be set to target true distributions of various levels of discreteness, making
the Pitman-Yor process an interesting prior in this case. It was previously
shown that the resulting posterior distribution is consistent if and only if
the true distribution of the data is discrete. In this paper we derive the dis-
tributional limit of the posterior distribution, in the form of a (corrected)
Bernstein-von Mises theorem, which previously was known only in the con-
tinuous, inconsistent case. It turns out that the Pitman-Yor posterior dis-
tribution has good behaviour if the true distribution of the data is discrete
with atoms that decrease not too slowly. Credible sets derived from the
posterior distribution provide valid frequentist confidence sets in this case.
For a general discrete distribution, the posterior distribution, although con-
sistent, may contain a bias which does not converge to zero at the

√
n rate

and invalidates posterior inference. We propose a bias correction that solves
this problem. We also consider the effect of estimating the type parameter
from the data, both by empirical Bayes and full Bayes methods. In a small
simulation study we illustrate that without bias correction the coverage of
credible sets can be arbitrarily low, also for some discrete distributions.

MSC2020 subject classifications: Primary 62G20; secondary 62G15.
Keywords and phrases: Pitman-Yor process, Bernstein-von Mises theo-
rem, weak convergence, credible set, empirical Bayes, species sampling.
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1. Introduction

The Pitman-Yor process [24, 20] is a random probability distribution, which
can be used as a prior distribution in a nonparametric Bayesian analysis. It is
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characterised by a type parameter σ, which in this paper we take to be positive.
The Pitman-Yor process of type σ = 0 is the Dirichlet process [12], which is
well understood, while negative types correspond to finitely discrete distribu-
tions and were considered in [7]. The Pitman-Yor process is also known as the
two-parameter Poisson-Dirichlet Process, is an example of a Poisson-Kingman
process [23], and a species sampling process of Gibbs type [8].

The easiest definition is through stick-breaking ([20, 15]), as follows. The
family of nonnegative Pitman-Yor processes is given by three parameters: a
number σ ∈ [0, 1), a number M > −σ and an atomless probability distribu-
tion G on some measurable space (X ,A). We say that a random probability
measure P on (X ,A) is a Pitman-Yor process (of nonnegative type), denoted
P ∼ PY (σ,M,G), if P can be represented as

P =
∞∑
i=1

Wiδθi ,

where Wi = Vi

∏i−1
j=1(1−Vj) for Vi

iid∼ B (1 − σ,M + iσ), independent of θi iid∼G,
and B the beta distribution.

It is clear from this definition that the realisations of P are discrete proba-
bility measures, with countably many atoms at random locations, with random
weights. If one first draws P ∼ PY (σ,M,G), and next given P a random sam-
ple X1, . . . , Xn from P , then ties among the latter observations are possible,
or even likely. It is known ([23]) that the number Kn of different values among
X1, . . . , Xn is almost surely of the order nσ if σ > 0, whereas it is logarithmic
in n if σ = 0. This suggests that the Pitman-Yor process is a reasonable prior
distribution for a dataset in which similar patterns are expected (or observed).
In particular, when a large number of clusters is expected, a Pitman-Yor pro-
cess of positive type could be preferred over the standard Dirichlet prior, which
corresponds to σ = 0. Applications in genetics or topic modelling can be found
in [30, 26, 14, 1]. The Pitman-Yor process has also been proposed as a prior for
estimating the probability that a next observation is a new species [11], with
applications in e.g. forensic statistics [5, 6]. The papers [3, 4] study hierarchical
versions of Pitman-Yor processes, which are useful to discover structure in data
beyond clustering.

In this paper we consider the properties of the Pitman-Yor posterior dis-
tribution to estimate the distribution of a random sample of observations.
By definition this posterior distribution is the conditional distribution of P
given X1, . . . , Xn in the Bayesian hierarchical model P ∼ PY (σ,M,G) and
X1, . . . , Xn|P iid∼ P . We assume that in reality the observations X1, . . . , Xn are
an i.i.d. (i.e. independent and identically distributed) sample from a distribution
P0 and investigate the use of the posterior distribution for inference on P0. It
was shown in [16, 8] that in this setting, as n → ∞,

P |X1, . . . , Xn � δ(1−λ)Pd
0 +λ(1−σ)P c

0 +σλG, (1)

where � denotes weak convergence of measures, δQ denotes the Dirac measure
at the probability distribution Q, and P0 = (1−λ)P d

0 +λP c
0 is the decomposition
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of P0 in its discrete component (1 − λ)P d
0 and the remaining (atomless) part

λP c
0 . In the case that P0 is discrete, we have λ = 0 and the measure (1−λ)P d

0 +
λ(1−σ)P c

0 +σλG in the right side reduces to P d
0 = P0, and hence (1) expresses

that the posterior distribution collapses asymptotically to the Dirac measure
at P0. The posterior distribution is said to be consistent in this case. However,
if P0 is not discrete, then the posterior distribution recovers P0 asymptotically
only if σ = 0 (the case of the Dirichlet prior) or if G = P c

0 . The last case will
typically fail and hence in the case that σ > 0 the posterior distribution will
typically be consistent if and only if P0 is discrete. This reveals the Pitman-Yor
prior of positive type as a reasonable prior only for discrete distributions.

Besides for recovery, a posterior distribution is used to express remaining
uncertainty, for instance in the form of a credible (or Bayesian confidence) set.
To justify such a procedure from a non-Bayesian point of view, the posterior
consistency must be refined to a distributional result of Bernstein-von Mises
type. Such a result was obtained by [16] in the case that the true distribution
P0 is atomless, the case that the posterior distribution is inconsistent and the
Pitman-Yor prior is better avoided. In the present paper we study the case of
general distributions P0, including the case of most interest that P0 is discrete.
It turns out that discreteness per se is not enough for valid inference, but it is
also needed that the weights of the atoms in P0 decrease fast enough. In the
other case, ordinary Bayesian credible sets are not valid confidence sets. For the
latter case our result suggests a bias correction.

Since the type parameter σ determines the number of distinct values in a
sample from the prior, it might be interpreted as influencing the discreteness of
the prior, smaller σ favouring fewer distinct values and hence a more discrete
prior. In the asymptotic result the type parameter plays only a secondary role.
At first thought counterintuitively, a larger σ, which gives a less discrete prior,
increases the bias in the posterior distribution that arises when the atoms in P0
decrease too slowly.

In practice one may prefer to estimate the type parameter from the data.
The empirical Bayes method maximizes the marginal likelihood of X1, . . . , Xn

in the Bayesian setup over σ. We show that in the consistent case, substitution
of this estimator in the posterior distribution for given type parameter does
not change the asymptotics of the Pitman-Yor posterior. Alternatively, we may
equip σ itself with a prior, resulting in a mixture of Pitman-Yor processes as
a prior for P . We show that this too results in the same posterior behaviour.
Thus estimating the type parameter does not solve the inconsistency problem.

We can conclude that the Pitman-Yor process is an appropriate prior for esti-
mating a distribution only if the sizes of the atoms of this distribution decrease
sufficiently rapidly. Our results show that the speed of decay depends on the
aspect of interest, for instance different for the distribution function than for
the mean.

Our results depend heavily on the characterisation of the posterior distribu-
tion given in [22] (see Section 4).
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2. Main result

The nonparametric maximum likelihood estimator of the distribution P of a
sample of observations X1, . . . , Xn is the empirical measure Pn = n−1 ∑n

i=1 δXi ,
the discrete uniform measure on the observations. Therefore in analogy with the
case of classical parametric models (e.g. Theorem 10.1 and page 144 in [27]),
in this setting a Bernstein-von Mises theorem would give the approximation
of the posterior distribution of

√
n(P − Pn) given X1, . . . , Xn by the normal

distribution obtained as the limit of
√
n(Pn −P0). To give a precise meaning to

such a distributional statement, we may evaluate all the measures involved on
a collection of sets, and interpret

√
n(P − Pn) and

√
n(Pn − P0) as stochastic

processes indexed by sets. For instance, in the case that the sample space is
the real line, we could use the sets (−∞, t], for t ∈ R, corresponding to the
distribution functions of the measures P , Pn and P0.

More generally, we may evaluate these measures on measurable functions
f : X → R, as

Pf =
∫

f dP, Pnf =
∫

f dPn = 1
n

n∑
i=1

f(Xi), P0f =
∫

f dP0.

Given a collection F of such functions, the Bernstein-von Mises can then address
the distributions of the stochastic processes

{√
n(Pf − Pnf) : f ∈ F

}
and{√

n(Pnf − P0f) : f ∈ F
}
, the first one conditionally given the observations

X1, . . . , Xn. For instance, in the case that X = R, we might choose the collection
F to consist of all indicator functions x �→ 1x≤t, for t ranging over R, but we
can also add the identify function f(x) = x, yielding the means of the measures.

For a set F of finitely many functions, these processes are just vectors in
Euclidean space and their distributions can be evaluated as usual. Furthermore,
the limit law of

{√
n(Pnf−P0f) : f ∈ F

}
is a multivariate normal distribution,

in view of the multivariate central limit theorem (provided P0f
2 < ∞, for every

f ∈ F). It is convenient to write the latter as the distribution of a Gaussian
process {GP0f : f ∈ F}, determined by its mean and covariance function

EGP0f = 0 EGP0fGP0g = P0(f − P0f)(g − P0g).

The process GP0 is known as a P0-Brownian bridge (see e.g. [25, 28, 27]).
An appropriate generalisation (and strengthening) of the central limit the-

orem to sets F of infinitely many functions is Donsker’s theorem (e.g. [27],
Chapter 19). The Bernstein-von Mises theorem can be strengthened in a similar
fashion. For the case of indicator functions on the real line, Donsker’s theorem
was derived by [10], and the corresponding Bernstein-von Mises theorem for the
Dirichlet process by [18, 19]. A precise formulation (in the general case, which
is not more involved than the real case) is as follows.

A class of functions F is called P0-Donsker if the sequence
√
n (Pn − P0)

converges in distribution to a tight, Borel measurable element in the metric
space �∞(F) of bounded functions z : F → R, equipped with the uniform
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norm ‖z‖F = supf∈F |z(f)|. The limit is then a version of the Gaussian pro-
cess GP0 . The Bernstein-von Mises theorem involves conditional convergence in
distribution given the observations X1, . . . , Xn, which is best expressed using a
metric. The bounded Lipschitz metric (see for example [28], Chapter 1.12) is
convenient, and leads to defining conditional convergence in distribution of the
sequence

√
n(P − Pn) in �∞(F) given X1, . . . , Xn to GP0 as

sup
h∈BL1

∣∣∣E(h(√n(P − Pn)
)
|X1, . . . , Xn

)
− Eh(GP0)

∣∣∣ → 0,

where the convergence refers to the i.i.d. sample X1, X2, . . . from P0, and can
be in (outer) probability or almost surely. The supremum is taken over the set
BL1 of all functions h : �∞(F) → [0, 1] such that |h(z1) − h(z2)| ≤ ‖z1 − z2‖F ,
for all z1, z2 ∈ �∞(F). For simplicity of notation and easy interpretation, we
write the preceding display as

√
n(P − Pn)|X1, . . . , Xn � GP0 .

Conditional convergence in distribution of other processes is defined and de-
noted similarly. For finite sets F , the complicated definition using the bounded
Lipschitz metric reduces to ordinary weak convergence of random vectors. Also,
a finite set F is P0-Donsker if and only if P0f

2 < ∞, for every f ∈ F . There
are many examples of infinite Donsker classes (see e.g. [28]), with the set of
indicators of cells (−∞, t] as the classical example.

We are ready to formulate the main result of the paper. Let X̃1, X̃2, . . . be the
distinct values in X1, X2, . . . in the order of appearance, let Kn be the number
of distinct elements among X1, . . . , Xn, and set

P̃n = 1
Kn

Kn∑
i=1

δX̃i
. (2)

All limit results refer to a sample X1, X2, . . . , Xn drawn from a measure P0.
This can always be written as P0 = (1 − λ)P d

0 + λP c
0 , where P d

0 is a discrete
and P c

0 an atomless distribution and λ ∈ [0, 1] is the weight of the discrete part
in P0. The decomposition is unique unless λ = 0 or λ = 1, when P c

0 or P d
0 is

arbitrary.

Theorem 1. Let P0 = (1 − λ)P d
0 + λP c

0 where P d
0 is a discrete and P c

0 an
atomless probability distribution. The posterior distribution of P in the model
P ∼ PY (σ,M,G) and X1, . . . , Xn|P iid∼ P satisfies for every finite collection F
of functions with (P0 + G)f2 < ∞, for every f ∈ F , almost surely under P∞

0 ,

√
n
(
P − Pn − σKn

n
(G− P̃n)

)∣∣∣ X1, . . . , Xn

�
√

1 − λGPd
0

+
√

(1 − σ)λGP c
0

+
√
σ(1 − σ)λGG

+
√

(1 − σλ)σλ
( (1 − λ)P d

0 + (1 − σ)λP c
0

1 − σλ
−G

)
Z1
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+
√

(1 − σ)λ(1 − λ)√
1 − σλ

(P c
0 − P d

0 )Z2.

Here GPd
0
, GP c

0
and GG are independent Brownian bridge processes, independent

of the independent standard normal variables Z1 and Z2. More generally this is
true, with convergence in �∞(F) in probability, for every P0-Donsker class of
functions F for which the PY (σ, σ,G) process satisfies the central limit theorem
in �∞ (F). If in addition P ∗

0 ‖f − P0f‖2
F < ∞, then the convergence is also

P∞
0 -almost surely.

The proof of the theorem is deferred to Section 4.1. The condition that the
PY (σ, σ,G) process satisfies the central limit theorem in �∞ (F), is satisfied,
for instance, for all classes F that are suitably measurable with finite uniform
entropy integral and for all classes F with finite G-bracketing integral. This
follows from Theorems 2.11.9 or 2.11.1 in [28].

The limit process in the theorem is Gaussian, but it is the P0-Brownian bridge
GP0 only if λ = 0, i.e. if P0 = P d

0 is discrete. In addition, the behaviour of the
Pitman-Yor posterior deviates from the “desired” behaviour by the presence on
the left side of the term

√
nBn(f) := σKn√

n
(G− P̃n). (3)

Given the observations X1, . . . , Xn this term is deterministic, and we can only
expect it to disappear if Kn/

√
n tends to zero. While Kn/n → 0 almost surely for

any discrete distribution P0, the more stringent convergence to zero of Kn/
√
n is

valid only if the sizes of the atoms of P0 decrease fast enough. This relationship
was made precise in [17] (also see the corollary below) in terms of the function

α0(u) = #{x : 1/P0{x} ≤ u}. (4)

If α0 is regularly varying at u = ∞ (in the sense of Karamata, see e.g. [2] or the
appendix to [9]) with exponent γ0 ∈ (0, 1), then Kn/α0(n) → Γ(1− γ0), almost
surely, and α0(n) is nγ0 up to a slowly varying factor. In this case, for Kn/

√
n to

tend to zero, it is necessary that the exponent be smaller than 1/2 and sufficient
that it is strictly smaller than 1/2. For instance, if the ordered atoms P0{xj} of
P0 decrease proportionally to 1/jα, then Kn/

√
n → 0 in probability if and only

if α > 2.
For bounded functions f , the convergence Kn/

√
n → 0 is also enough to drive

the additional term (3) to zero, as the terms (G − P̃n)f will remain bounded
in that case. For unbounded functions f , a still more stringent condition on
P0 is needed to make the term (Kn/

√
n)P̃nf go away. For instance, for the

posterior mean of a distribution on N with atoms P0{j} of the order 1/jα, the
next corollary implies that α > 4 is needed.

We conclude that for a large class of discrete distributions P0, but not all,
the Bernstein-von Mises theorem takes its standard form, and this also depends
on which aspect of the posterior distribution we are interested in.
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Corollary 2. Under the conditions of Theorem 1, if P0 is a discrete probability
distribution, then

√
n
(
P−Pn−(σKn/n)(G−P̃n)

)
|X1, . . . , Xn � GP0 in �∞(F),

in probability or almost surely.

(i) If the class of functions F is uniformly bounded and the atoms {xj} of
P0 satisfy P0{xj} ≤ Cj−α, for some constants C and α > 2, then also√
n(P −Pn)|X1, . . . , Xn � GP0 , in probability. If the class of functions F

is uniformly bounded and the function u �→ α0(u) = #{x : 1/P0{x} ≤ u}
is regularly varying at u = ∞ of exponent strictly smaller than 1/2, then
this is also true almost surely.

(ii) If the atoms {xj} of P0 and the function f satisfy P0{xj} ≤ Cj−α and
f(xj) � jp, for some p > 0, then

√
n(P − Pn)f |X1, . . . , Xn � GP0f , in

probability if α > 2p + 2.

Proof. The first assertion merely specializes the limit in Theorem 1 to the case
of a discrete distribution, by setting λ = 0. Assertions (i) and (ii) follow from
this if the term (3) tends to zero, in probability or almost surely.

For bounded functions f , as assumed in (i), the term (3) tends to zero pro-
vided Kn/

√
n tends to zero. The almost sure convergence is immediate from [17],

Theorems 9 and 1‘, which show that Kn/α0(n) → Γ(1 − γ0), almost surely, for
γ0 the exponent of regular variation. For the convergence in probability, we note
that Kn =

∑∞
j=1 1j∈{X1,...,Xn}, whence EKn =

∑∞
j=1

(
1−(1−P0{xj})n

)
. By the

inequality (1− p)n ≥ 1− np, for p ≥ 0, we find that EKn ≤
∑∞

j=1(nCj−α ∧ 1),
which can be seen to be o(

√
n) if α > 2.

The assertion in (ii) follows provided Kn/
√
n → 0 and (Kn/

√
n)P̃nf → 0, in

probability. Reasoning as before, we find

E

(Kn√
n
P̃nf

)
= 1√

n

∞∑
j=1

f(xj)
(
1 − (1 − P0{xj})n

)
.

Under the given assumptions on f and the atoms, this is bounded above by

1√
n

∫ ∞

C1/a
up

(
1−

(
1− C

uα

)n)
du = n(p+1)/α

√
n

∫ ∞

C/n

v(p+1)/α−1
(
1−

(
1− C

nv

)n)
dv.

The integrand is bounded above by Cv(p+1)/α−1 and hence the integral con-
verges near 0. By again the inequality (1 − p)n ≥ 1 − np, for p ≥ 0, the in-
tegrand is also bounded above by v(p+1)/α−2 and hence the integral converges
near infinity if (p + 1)/α < 1. The middle part of the integral always gives a
non-vanishing contribution and hence the full expression can tend to zero only if
the leading factor tends to zero. This is true under the more stringent condition
that (p + 1)/α < 1/2.

For λ = 1 and P0 = P c
0 , Theorem 1 was obtained by [16]. In this case all

observations are distinct and the left side of the theorem reduces to
√
n
(
P −

(1 − σ)Pn − σG
)
, since Kn = n. As noted in the introduction, the posterior

distribution is not even consistent, i.e. the asymptotic limit is “wrong” even
without the

√
n multiplier.
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The Bernstein-von Mises theorem is important for the validity of credible
sets. A credible interval for Pf , for a given function f , could be formed as the
interval between two quantiles of the marginal posterior distribution of Pf given
X1, . . . , Xn. For instance, for f equal to the indicator of a given set A ∈ A, this
gives a credible interval for a probability P (A), and for f(x) = x, we obtain a
credible interval for the mean. Simultaneous credible sets, for instance a credible
band for a distribution function can be obtained similarly.

By the inconsistency of the posterior distribution in the case that the true
distribution possesses a continuous component (λ > 0), there is no hope that in
this case such an interval for Pf will cover a true value P0f with the desired
probability. However, also in the case of a discrete distribution P0, the coverage
may not tend to the nominal value, due to the presence of the bias term (3).
We need at least that Kn/

√
n tends to zero, and more for unbounded functions

f .
Because the bias Bn(f) = (σKn/n)(Gf − P̃nf) is observed (and σ and the

center measure G are fixed by our prior choices), it is possible to correct a
credible interval by shifting it by minus this amount. Thus for Qn,α(f) the
α-quantile of the posterior distribution of Pf given X1, . . . , Xn, we consider
both the credible intervals

[
Qn,α(f), Qn,β(f)

]
and corrected intervals

[
Qn,α(f)−

Bn(f), Qn,β(f) −Bn(f)
]
, for given α < β.

Corollary 3. Under the conditions of Theorem 1, if P0 is a discrete probability
distribution, then PrP0

(
Qn,α(f) − Bn(f) ≤ P0f ≤ Qn,β(f) − Bn(f)

)
→ β − α,

for every f with (P0 + G)f2 < ∞. If
√
nBn(f) → 0, in probability, then also

PrP0

(
Qn,α(f) ≤ P0f ≤ Qn,β(f)

)
→ β − α, for every such f . For bounded

functions f , the latter is true if the atoms of P0 satisfy P0{xj} ≤ Cj−α, for
some constants C and α > 2. For f(x) = x, this is true for α > 4.

Proof. The α-quantile Qn,α(f) of the posterior distribution of Pf is equal to
n−1/2Q̄n,α(f)+Pnf +Bn(f), for Q̄n,α(f) the α-quantile of the posterior distri-
bution of

√
n
(
Pf−Pnf−Bn(f)

)
. By Theorem 1, the latter posterior distribution

tends to a normal distribution with mean zero and variance τ2(f) = VarGP0f .
It follows that

Qn,α(f) = Pnf + Bn(f) + τ(f)√
n
ξα + oP

( 1√
n

)
,

where ξα is the α-quantile of the standard normal distribution. Thus the event
P0f ≥ Qn,α(f)−Bn(f) can be rewritten as P0f ≥ Pnf+τ(f)/

√
n ξα+oP (n−1/2.

The probability of the latter event tends to tends to 1− α, by the central limit
theorem applied to

√
n(Pnf − P0f).

If
√
nBn(f) tends to zero in probability, then in the preceding display Bn(f)

can be incorporated into the oP (n−1/2) remainder term, and the remaining
argument works for the uncorrected interval as well.

The final assertions follow from Corollary 2.

Example. The following explicit counterexample illustrates that the coverage
can fail. Let G be the normal distribution with both mean and variance 1, let
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P0 =
∑∞

j=1 pjδj, for pj = 6/(πj)2, and consider the function f = 1(1,∞) −
1(−∞,1]. Since Gf = 0, we get (σKn/

√
n)(G − P̃n)f = (σ/

√
n)

∑Kn

i=1 f(X̃i).
Eventually the atom {1} will be among the observations. Since f(1) = −1 and
f(j) = 1 for all atoms j ≥ 2, (σKn/

√
n)(G− P̃n)f = (σ/

√
n)(−1+(Kn−1)) →

σ
√

6/π, almost surely, by [17], Theorem 8, Theorem 1’ and Example 4. The
coverage of the uncorrected interval

[
Qn,α(f), Qn,β(f)

]
will tend to Φ(−ξα −

σ
√

6/π) − Φ(−ξβ − σ
√

6/π).

The joint convergence in collections of functions f allows to study simultane-
ous credible sets and credible bands, besides univariate intervals. For instance,
in the case that the sample space is the real line, we can take F equal to the set
of all indicators of cells (−∞, t], and obtain a credible band for the distribution
function F0(t) = P0(−∞, t], as follows. Let F (t) = P (−∞, t] be the distribution
function of the posterior process, and for mn(t) and sn(t) two functions depen-
dent on X1, . . . , Xn, let ξn,α be the α-quantile of the posterior distribution of
supt∈R

∣∣(F (t) −mn(t))/sn(t)
∣∣. Consider the credible band of functions

Cn(α) :=
{
F : mn(t) − ξn,1−αsn(t) ≤ F (t) ≤ mn(t) + ξn,1−αsn(t),∀t

}
.

Possible choices for the functions mn and sn are the pointwise posterior mean
mn(t) = E

(
F (t)|X1, . . . , Xn

)
and the pointwise posterior standard deviation

sn(t) = sd
(
F (t)|X1, . . . , Xn

)
. The quantiles ξn,α will typically be computed

approximately from an MCMC sample from the posterior distribution, or ap-
proximated using tables for the limiting Brownian bridge process.

Corollary 4. If P0 is a discrete probability distribution with atoms such that
P0{xj} ≤ Cj−2−ε, for some constants C and ε > 0, then PrP0

(
F0 ∈ Cn(α)

)
→

1 − 2α.

Proof. Because the class of indicator functions is Donsker, both the classical
empirical process {√n(Fn − F0)(t) : t ∈ R} and the posterior empirical process
{√n(F − Fn)(t) : t ∈ R}|X1, . . . , Xn tend to the process GU ◦ F0, for GU a
standard (classical) Brownian bridge process, by Theorem 1. The result follows
from this along the same lines as the proof of Corollary 3.

The bias term (3) vanishes as σ ↓ 0, which is in agreement with the fact that
in this case the Pitman-Yor prior approaches the Dirichlet prior, which is well
known to give asymptotically correct inference for any distribution P0. The bias
term increases with σ, which is counterintuitive, as the bias appears only for
heavy-tailed P0 (having many large atoms), while large σ gives more different
atoms in the prior.

One might hope that a data-dependent choice of σ could solve this bias prob-
lem. The empirical Bayes method is to estimate σ by the maximum likelihood
estimator based on observing X1, . . . , Xn in the Bayesian model, i.e. the max-
imiser of the marginal likelihood, and plug this into the posterior distribution
of P for known σ. The hierarchical Bayes method is to put a prior on σ, and
given σ, put the Pitman-Yor prior on P . Disappointingly, these methods do not
change the limit behaviour of the posterior distribution of P . This is explained
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by the fact that these methods yield a reasonable estimator of a value of σ con-
nected to the discreteness of the true distribution P0, and we already noted the
counterintuitive fact that a better match of discreteness does not solve the bias
problem, but even makes it worse.

A sample X1, . . . , Xn from a realisation of the Pitman-Yor process induces
a (random) partition of the set {1, 2, . . . , n} through the equivalence relation
i ≡ j if and only if Xi = Xj . An alternative way to generate the sample is to
generate first the partition and next attach to each set in the partition a value
generated independently from the center measure G (see e.g. [13], Lemma 14.11
for a precise statement), duplicating this as many times as there are indices in
the set, in order to form the observations X1, . . . , Xn. Because the parameter
σ enters only in creating the partition, the partition is a sufficient statistic for
σ. Because of exchangeability, the vector (Nn,1, . . . , Nn,Kn) of cardinalities of
the partitioning sets is already sufficient for σ and hence the empirical Bayes
estimator and posterior distribution of σ based on observations (X1, . . . , Xn) or
on observations (Kn, Nn,1, . . . , Nn,Kn) are the same.

The likelihood function for σ is therefore equal to the probability of a partic-
ular partition, called the exchangeable partition probability function (EPPF).
For the Pitman-Yor process this is given by (see [22], or [13, page 465])

pσ(Nn,1, . . . , Nn,Kn) =
∏Kn−1

i=1 (M + iσ)
(M + 1)[n−1]

Kn∏
j=1

(1 − σ)[Nn,j−1]. (5)

Here a[n] = a(a + 1) · · · (a + n − 1) is the ascending factorial, with a[0] = 1
by convention. For the case that M = 0, it is shown in [11], that provided
the partition is nontrivial (1 < Kn < n), the maximiser σ̂n of this likelihood
exists. Moreover, if the true distribution P0 is discrete, with atoms satisfying,
for α0(u) = #{x : 1/P0{x} ≤ u} and some σ0 ∈ (0, 1),

sup
u>1

|α0(u) − Luσ0 |√
uσ0 log(eu)

< ∞,

then [11] shows that the maximum likelihood estimator satisfies σ̂n = σ0 +
OP (n−σ0/2

√
logn). Thus the coefficient of regular variation σ0 may be viewed

as a true value of σ, identified by the maximum likelihood estimator.
For the following theorem we need only the consistency of σ̂n, which we prove

in Section 4.3 for general M , under the condition that α0 is regularly varying. We
also consider the full Bayes approach, and show that the posterior distribution
of σ concentrates asymptotically around the empirical likelihood estimator, and
hence contracts to σ0, under the same condition.

Theorem 5. Let P0 = (1−λ)P d
0 +λP c

0 where P d
0 is a discrete and P c

0 an atom-
less probability distribution. If σ̂n are estimators based on X1, . . . , Xn such that
σ̂n → σ0 in probability, and P is the posterior Pitman-Yor process of Theorem 1,
then the process

√
n
(
P − Pn − σ̂nKn

n
(G− P̃n)

)∣∣∣ X1, . . . , Xn
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tends to the same limit process as in Theorem 1 with σ replaced by σ0, in proba-
bility. If P0 is discrete with atoms such that α0 given in (4) is regularly varying
of exponent σ0 ∈ (0, 1), then this is true for the maximum likelihood estimator
σ̂n. Furthermore, in this case for Πσ a prior distribution on σ with continuous
positive density on [0, 1], the posterior distribution of P in the model σ ∼ Πσ,
P |σ ∼ PY (σ,M,G) and X1, . . . , Xn|P, σ ∼ P satisfies the assertion of Theo-
rem 1, with σ in the left side also interpreted as a random posterior variable and
σ in the right side replaced by σ0. Finally if P0 possesses a nontrivial atomless
component (i.e. λ > 0), then σ̂n → σ0 := 1.

The proof of the theorem is deferred to Section 4.2. The final assertion of
the theorem underlines again the deficiency of the Pitman-Yor process for dis-
tributions with a continuous component, which is not solved by estimating the
type parameter. The type estimate tends to type 1 instead of the desired type
0 corresponding to the Dirichlet prior.

Besides the type parameter, the prior precision parameter M could be re-
placed by a data-dependent version. However, unlike the type parameter, this
prior precision does not appear in the asymptotics of the posterior distribution
of

√
n(P−Pn). Moreover, inspection of the proof of Theorems 1 and 5 shows that

the convergence in these theorems is uniform in M � √
n. Thus data-dependent

M will not lead to new insights.
In the case of a discrete distribution P0 for which the atoms decrease too

slowly to ensure that Kn/
√
n tends to zero, the bias term (3) could still tend

to zero if P̃n → G. However, we show below that P̃n(A) → 0, for any set A
that contains only finitely many atoms of P0, and hence such convergence is
false in any reasonable sense. Furthermore, the (in)consistency result (1) shows
that in the case that P0 possesses a continuous component, the center measure
G = P c

0 is the only choice for which the posterior distribution is even consistent.
A data-dependent center measure might achieve this, but in the present context
would come down to the original problem of estimating P0. Hierarchical choices
(and hence random) of the center measure are considered in [3, 4], but with the
different aim of finding hierarchical structures in the data.

Lemma 6. If P0 is discrete with infinitely many support points, then P̃nf →
0 in probability for any bounded function f with finite support. Furthermore,
P̃nf → f∞ in probability, for any bounded function f for which there exists a
number f∞ such that supx:P0{x}<δ |f(x) − f∞| → 0, as δ ↓ 0.

Proof. Let xj be the atoms of P0, ordered by decreasing size pj := P0{xj} and
set fj = f(xj). Arguing as in the proof of Corollary 2, we can obtain (for the
variance also see [17], formulas (39)–(40))

E(KnP̃nf) =
∞∑
j=1

fj
(
1 − (1 − pj)n

)
,

Var(KnP̃nf) =
∞∑
j=1

f2
j

[
(1 − pj)n − (1 − pj)2n

]
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+
∑∑

i �=j

fifj
[
(1 − pi − pj)n − (1 − pi)n(1 − pj)n

]
.

For f = 1 these expressions reduce to EKn and VarKn. As all terms of the series
in EKn tend to 1, it can be seen that EKn → ∞. Furthermore, it can be seen
that VarKn ≤ EKn, as the terms in the second series in VarKn are negative and
the terms of the first series are bounded above by the terms in EKn. Because
the terms of the series tend to zero as n → ∞, for fixed i, j, and fj → f∞, as
j → ∞, for general f as in the second assertion of the lemma, the expressions are
asymptotically equivalent to f∞EKn + o(1) and f2

∞ VarKn + o(1), as n → ∞.
It follows that

Var
( KnP̃nf

E(KnP̃nf)
− 1

)
= Var(KnP̃nf)(

E(KnP̃Pnf)
)2 = f2

∞ VarKn + o(1)(
f∞EKn + o(1)

)2 .
Since VarKn ≤ EKn → ∞, the right side tends to zero if f∞ �= 0. Then
KnP̃nf/E(KnP̃nf) → 1, in probability. Taking f = 1, we see that Kn/EKn → 1,
in probability. Combining the preceding, we conclude that P̃nf/f∞ → 1, in
probability.

If f∞ = 0, then it follows that E(KnP̃nf) → 0. Combination with the fact
that Kn → ∞, almost surely, gives that P̃nf → 0, in probability.

If f has finite support, then the condition on f in the second part holds with
f∞ = 0 and hence P̃nf → 0, in probability.

3. Numerical illustration

To illustrate that credible sets can be off, we carried out three simulation ex-
periments, involving three discrete true probability distributions P1, P2, P3 on
N. We focused on a credible interval for the probability of the set [2,∞). The
measure P1 is finitely discrete and given in Table 1, while P2 and P3 are given
by the formulas

P2{k} ∝ 1
k2 , P3{k} ∝ 1

k1.5 .

By the results of [17], as n → ∞ the number Kn of distinct observations in
a sample of size n from these distributions are asymptotically equal to 6, and
proportional to

√
n and to n2/3, respectively, for P1, P2 and P3. Thus Kn/

√
n

tends to 0, a positive constant and ∞, respectively, and a bias is expected for
P2 and P3, but not for P1, where P2 is a boundary case.

Table 1

Probability distribution P1

k 1 2 3 4 5 6
P1(X = k) 0.1 0.1 0.2 0.2 0.3 0.1

As prior parameters we used σ = 1/2 and M = 1 and G the normal distribu-
tion with mean and variance 1. The choice M = 1 means that the prior is not
biased exceedingly against the true distribution.
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The Pitman-Yor posterior distribution can be simulated using the explicit
representation given by [21] (see Section 4). Following Algorithm 1 from [1], we
truncated the infinite series in the representation at a finite value, ensuring that
the total weight of the tail is smaller than n−1/2 so that the approximation is ac-
curate within our context. We simulated 10000 samples from each of P1, P2 and
P3 and for five different sample sizes: n = 10, 102, 103, 104, 105. For each sample
we computed a 95% credible interval for P [2,∞) from its marginal posterior
distribution, constructed using the 0.025 and the 0.975 posterior quantiles. We
next computed coverage as the proportion of the 10000 replications that the true
value, P1[2,∞), P2[2,∞) or P3[2,∞), belonged to the interval. We did the same
with the credible interval shifted by (σKn/

√
n)
(
G[2,∞) − P̃n[2,∞)

)
, derived

from (3).
Tables 2 and 3 summarise the results. For P1 both the corrected uncorrected

intervals perform satisfactorily, whereas for P2 and P3 the uncorrected intervals
undercover, severely so for P3, while the corrected intervals perform reasonably
well, although not perfectly. The simulation results thus confirm the theoretical
findings.

Table 2

Coverage of uncorrected posterior 95% credible intervals
n 10 100 1000 10000 100000
P1 0.660 0.940 0.957 0.940 0.947
P2 0.707 0.772 0.790 0.845 0.838
P3 0.559 0.231 0.035 0.0 0.0

Table 3

Coverage of corrected posterior 95% credible intervals
n 10 100 1000 10000 100000
P1 0.990 0.967 0.958 0.942 0.945
P2 0.814 0.941 0.958 0.971 0.971
P3 0.884 0.956 0.959 0.985 0.949

To illustrate the asymptotic normality of the posterior distribution, Figure 1
shows density plots of the marginal posterior distribution of P [2,∞), given sam-
ples of various sizes from P1. The plots were computed from the 100000 repli-
cates, using the R “density” function. The normal approximation is satisfactory
for n = 1000, but the posterior is visibly skewed for n = 100.

4. Proofs

Let X̃1, . . . , X̃Kn be the distinct values in X1, . . . , Xn, and let N1,n, . . . , NKn,n

be their multiplicities. By Corollary 20 in [22] (or see [13, Theorem 14.37]), the
posterior distribution of the Pitman-Yor process can be characterised as the
distribution of

PYn = RnSn + (1 −Rn)Qn, (6)
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Fig 1. Density of the marginal posterior distribution of P [2,∞) based on n observations from
P1, for n = 10, 100, 1000 (top row) and n = 104, 105. The true value of the parameter is
P1[2,∞) = 0.9.

for

Sn =
Kn∑
i=1

Wn,iδX̃i
, (7)

and independent variables Rn,Wn, Qn with, conditionally on X1, . . . , Xn, dis-
tributed according to:

• Rn ∼ B(n− σKn,M + σKn),
• Qn ∼ PY(σ,M + σKn, G),
• Wn = (Wn,1, . . . ,Wn,Kn) ∼ Dir(Kn;Nn,1 − σ, . . . , Nn,Kn − σ).

Here B and Dir refer to the beta and Dirichlet distributions, respectively. The
number Kn will tend almost surely to the total number of atoms of P0 in the case
that P0 is finitely discrete, and it will tend to infinity otherwise. In the latter case
the rate of growth can have any order nγ , for 0 < γ ≤ 1. (See Theorem 8 of [17],
where it is shown that Kn/EKn → 1, almost surely, where any rate can occur
for EKn.) The proofs below use that Kn/n tends to the mass λ of the continuous
part of P0, and the limit of the related sequence n−1KnP̃nf = n−1 ∑Kn

i=1 f(X̃i).

Lemma 7. The number Kn of distinct values among X1, . . . , Xn
iid∼ λP c

0 + (1−
λ)P d

0 satisfies Kn/n → λ, almost surely. The number Kd
n of those values that

belong to the set S of atoms of P d
0 satisfies Kd

n/n → 0, almost surely.

Proof. The number of distinct values not in S is Kc
n := nPn(Sc) and hence

Kc
n/n → P0(Sc) = λ, almost surely. If S = {x1, x2, . . .}, then the number of

distinct values in S is bounded above by m+nPn{xm+1, xm+2, . . .}, for any m,
and hence Kd

n/n ≤ m/n + Pn{xm+1, xm+2, . . .} → P0{xm+1, xm+2, . . .}, almost
surely, for every m.
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A class F of measurable functions f : X → R is P0-Glivenko-Cantelli if the
uniform law of large numbers holds: supf∈F |Pnf−P0f | → 0, outer almost surely
(see e.g. [28], Chapter 2.4; we write “outer” because the supremum may not be
measurable; for standard examples this is superfluous). An envelope function of
F is a measurable function F : X → R such that |f | ≤ F , for every f ∈ F .

Lemma 8. Suppose F has an envelope function with P0F < ∞. If S is the set
of atoms of P d

0 , then supf∈F
∣∣n−1 ∑Kn

i=1 f(X̃i)1X̃i∈S

∣∣ → 0, outer almost surely.
Furthermore, if σn → σ ∈ [0, 1], and F is a P0-Glivenko-Cantelli class, then
uniformly in f ∈ F , outer almost surely,

Pnf + σnKn

n
P̃nf → Tf := (1 − λ)P d

0 f + (1 − σ)λP c
0 f.

Proof. For any M , the supremum is bounded above by n−1Kd
nM+PnF1F>M →

P0F1F>M , almost surely. The first term tends to zero by Lemma 7, for any M .
The second term can be made arbitrarily small by choosing M large.

For the convergence in the display we write KnP̃nf =
∑

i=1 f(Xi)1Xi /∈S +∑Kn

i=1 f(X̃i)1X̃i∈S . By the first assertion, the second sum divided by n tends
to zero, uniformly in f . The first sum divided by n tends to λP c

0 f , where the
convergence is uniform in f ∈ F if F is a Glivenko-Cantelli class (which implies
that the set of functions x �→ f(x)1Sc(x) is a Glivenko-Cantelli class, in view of
[29]). Thus the left side of the display tends to P0f + σλP c

0 f , which is equal to
Tf .

4.1. Proof of Theorem 1

The left side
√
n
(
PYn −Pn + (σKn/n)(P̃n −G)

)
of the theorem can be decom-

posed as

√
n
(
Rn − 1 + σKn

n

)
(Sn −Qn) +

√
n

(
Sn

(
1 − σKn

n

)
− Pn + σKn

n
P̃n

)

+ σ
√

Kn(Qn −G)
√

Kn

n
. (8)

We derive the limit distributions of these three terms in Lemmas 9–11 below.
For later use it will be helpful to allow σ ∈ (0, 1) to depend on n. For this
reason we give precise proofs of the first two lemmas, although they are very
similar to results obtained in [16, 13]. The main novelty is in the third lemma.
For simplicity we assume that σn ∈ (0, 1) converges to a limit, which we allow
to be 0 or 1.

Lemma 9. If σn → σ ∈ [0, 1], then

√
n

(
Rn − 1 + σnKn

n

)
|X1, . . . , Xn � N

(
0, (1 − σλ)σλ

)
, a.s. (9)
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Proof. We can represent the beta variable Rn as the quotient Rn = Un/(Un +
Vn), for independent gamma variables Un ∼ Γ(un, 1) and Vn ∼ Γ(vn, 1), for
un = n−σnKn and vn = M +σnKn the means, and also variances, of the latter
variables. We can decompose

(Un + Vn)
(
Rn − un

un + vn

)
= vn

un + vn
(Un − un) − un

un + vn
(Vn − vn).

Since σnKn/n → σλ ∈ [0, 1], we have vn/(un + vn) → σλ and un/(un + vn) →
1 − σλ. Furthermore, (Un + Vn)/n → 1, almost surely, by the law of large
numbers.

If σλ < 1, then n− σnKn → ∞ and hence (Un − un)/√un � Z1 ∼ N(0, 1),
by the central limit theorem. It follows that (Un − un)/

√
n � Z1

√
1 − σλ. If

σλ = 1, then Var(Un/
√
n) = un/n → 0 and hence (Un−un)/

√
n � 0, where the

limit 0 is identical to Z1
√

1 − σλ in this case. Thus in all cases (Un−un)/
√
n �

Z1
√

1 − σλ.
If σλ > 0, then σnKn → ∞ and hence (Vn − vn)/√vn � Z2 ∼ N(0, 1), by

the central limit theorem. It follows that (Vn − vn)/
√
n � Z2

√
σλ. If σλ = 1,

then Var(Vn/
√
n) = vn/n → 0 and hence (Vn − vn)/

√
n � 0, where the limit 0

is identical to Z2
√
σλ in this case. Thus in all cases (Vn − vn)/

√
n � Z2

√
σλ.

Combining the preceding, we see that the sequence
√
n
(
Rn − un/(un + vn)

)
converges weakly to σλZ1

√
1 − σλ + (1 − σλ)Z2

√
σλ. As the limit variable has

variance (1−σλ)σλ and un/(un+vn) = (1−σnKn/n)(1+O(1/n)), this concludes
the proof.

Lemma 10. If σn → σ ∈ [0, 1] and Kn → ∞ and F is a class of finitely many
G-square-integrable functions, then in R

F ,

σn

√
Kn(Qn −G)|X1, . . . , Xn �

√
σ(1 − σ)GG. a.s. (10)

The convergence is also true in �∞(F) if F possesses a G-square integrable
envelope function and the Pitman-Yor process PY(σ, σ,G) satisfies the central
limit theorem in this space.

Proof. The process Qn ∼ PY(σn,M + σnKn, G) centered at mean zero can be
represented as

Qn −G ∼
Kn∑
i=0

Wn,i(Pi −G),

where (Wn,0, . . . ,Wn,Kn) ∼ Dir(Kn + 1;M,σn, . . . , σn) is independent of the
independent processes P0 ∼ PY(σn,M,G) and Pi

iid∼ PY(σn, σn, G), for i =
1, . . .Kn (see e.g. Proposition 14.35 in [13]). The variable Wn,0 is B(M,Knσn)-
distributed, whence

σn

√
KnE

∣∣Wn,0(P0 −G)f
∣∣ = σn

√
KnM

M + Knσn
E|(P0 −G)f | ≤ M√

Kn

√
Gf2,
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where the moment of (P0 −G)f can be obtained from Proposition 14.34 in [13].
Next by the gamma representation of the Dirichlet distribution (e.g. Proposi-
tions G.2 and G.3 in [13]), we can represent

σn

√
Kn

Kn∑
i=1

Wn,i(Pi −G) ∼ (1 −Wn,0)
K

−1/2
n

∑Kn

i=1 Vn,i(Pi −G)
K−1

n
∑Kn

i=1 Vn,i/σn

,

where the variables Vi,n
iid∼ Γ(σn, 1) are independent of Wn,0 and the Pi. The

triangular array of variables Vn,i(Pi −G) are i.i.d. for every n with

EV 2
n,1

(
(P1 −G)f

)2 = σn(1 + σn)G(f −Gf)2 1 − σn

1 + σn
,

EV 2
n,1

(
(P1 −G)f

)21|Vn,1(P1−G)f |≥Mn
→ 0,

for any Mn → ∞. The second claim is implied by the uniform integrability
of the set of variables Wσ := V 2

σ ((Pσ −G)f)2, for σ ∈ [0, 1], where Vσ ∼
Γ(σ, 1) is independent of Pσ ∼ PY(σ, σ,G), and W0 and W1 are defined to
be degenerate at 0, in agreement with the first line of the preceding display.
This itself is a consequence of the continuity of the map σ �→ Wσ from [0, 1] to
L2(Ω) and the Dunford-Pettis theorem. The continuity follows from the norm
continuity, EW 2

σn
→ EW 2

σ , if σn → σ, by the first assertion in the display,
combined with the continuity in distribution of σ �→ Wσ. Therefore, the sequence
K

−1/2
n

∑Kn

i=1 Vn,i(Pi − G) tends to a normal distribution with mean zero and
variance σ(1 − σ)G(f − Gf)2, by the Lindeberg central limit theorem. The
linearity of the process in f shows that as a process it tends marginally in
distribution to the process

√
σ(1 − σ)GG. Because Var

(
K−1

n

∑Kn

i=1 Vn,i/σn

)
=

1/(Knσn), we have K−1
n

∑Kn

i=1 Vn,i/σn → 1, in probability, if Knσn → ∞. Since
also 1 −Wn,0 → 1, the proof is complete in the case that Knσn → ∞.

If Knσn remains bounded, then necessarily σn → 0, as Kn → ∞, by assump-
tion. Then

σ2
nKnE

(Kn∑
i=0

Wn,i(Pi −G)f
)2

= σ2
nKn

Kn∑
i=0

Kn∑
j=0

EWn,iWn,j(Pi −G)f(Pj −G)f

≤ σ2
nKnE

(Kn∑
i=0

Wn,i

)2
Gf2 ≤ σ2

nKnGf2.

Since this tends to zero, the lemma holds also in this case, with a limit process
equal to 0, which is equal to

√
σ(1 − σ)GG.

For the final assertion we note that the preceding argument gives the con-
vergence of supf∈F σn

√
KnWn,0(P0 −G)f to zero for any class F with square-

integrable envelope function. The convergence of K
−1/2
n

∑Kn

i=1 Vn,i(Pi − G) in
∞(F) follows from the convergence of K−1/2

n
∑Kn

i=1(Pi − G) by the multiplier
central limit theorem (e.g. Lemma 2.9.1 and Theorem 2.9.2 in [28]).
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Lemma 11. If σn → σ ∈ [0, 1], where σλ < 1, then for any P0-Donsker class
with square-integrable envelope function

√
n

(
Sn

(
1 − σnKn

n

)
− Pn + σKn

n
P̃n

)
� W− 1

1 − σλ
W1T, a.s., (11)

in �∞(F), where W =
√
λ(1 − σ)GP c

0
+
√

1 − λGPd
0
, for independent Brownian

bridge processes GP c
0

and GPd
0
, and T is the (deterministic) process defined in

Lemma 8. The convergence is true in probability for any P0-Donsker class. If
σn → σ ∈ [0, 1], where σλ = 1, then the sequence of processes tends to the zero
proces.

Proof. A gamma representation for the multinomial vector Wn in the definition
of Sn is

Wn,i =
Ui,0 +

∑Nn,i−1
j=1 Ui,j∑Kn

i=1

(
Ui,0 +

∑Nn,i−1
j=1 Ui,j

) ,

for all Ui,j independent, Ui,0 ∼ Γ(1− σ, 1) and Ui,j ∼ Γ(1, 1), for j ≥ 1. Relabel
the n variables Ui,j as ξn,1, . . . , ξn,n, as follows. Let S be the set of all atoms of
P0. An observation Xi that is not contained in S appears exactly once in the
set {X1, . . . , Xn} of observations; set the variable ξn,i with the corresponding i
equal to Ui,0. Every Xi that is contained in S appears Nn,i ≥ 1 times among
X1, . . . , Xn; set the ξn,j with indices corresponding to these appearances equal
to Ui,0, Ui,1, . . . , Ui,Nn,i−1. Then

Sn =
Kn∑
i=1

Wn,if(X̃i) =
n−1 ∑n

i=1 ξn,if(Xi)
n−1 ∑n

i=1 ξn,i
=: Snf

Sn1
, (12)

and the left side of the lemma can be decomposed as

Snf
√
n
(
1 − σnKn

n
− Sn1

)
+

√
n
(
Snf − Pnf + σnKn

n
P̃nf

)

= −Snf
√
n(Sn1 − Tn1) +

√
n(Snf − Tnf),

where Tnf = Pnf − (σnKn/n)P̃nf tends to Tf , by Lemma 8. We shall show
that

√
n(Sn − Tn)|X1, . . . , Xn � W. Then Snf → Tf/T1 = Tf/(1 − σλ), and

the result follows in the case that σλ < 1.
The variables ξn,1, . . . , ξn,n are independent. The Kn variables correspond-

ing to the distinct values are Γ(1 − σ, 1)-distributed; the others are Γ(1, 1)-
distributed. Thus the conditional mean and variance of Snf are given by

n∑
i=1

(Eξn,i)f(Xi) =
n∑

i=1
f(Xi) − σ

Kn∑
i=1

f(X̃i) = Tnf,

1
n

n∑
i=1

(Var ξn,i)f2(Xi) = 1
n

n∑
i=1

f2(Xi) −
σ

n

Kn∑
i=1

f2(X̃i) → Tf2, a.s.,
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by Lemma 8. The limit variance is equal to VarWf . To complete the proof
of the convergence

√
n(Sn − Tn)f |X1, . . . , Xn � W, it suffices to verify the

Lindeberg-Feller condition. We have, for ξn ∼ Γ(1 − σn, 1) and ξ̄n ∼ Γ(1, 1),

1
n

n∑
i=1

E

(
ξ2
n,if

2(Xi)1|ξn,if(Xi)|>ε
√
n|X1, . . . , Xn

)

≤ max
(
Eξ2

n1|ξn| max1≤i≤n |f(Xi)|>ε
√
n,Eξ̄

2
n1|ξ̄n| max1≤i≤n |f(Xi)|>ε

√
n

)
Pnf

2.

This tends to zero for every sequence X1, X2, . . . such that both Pnf
2 = O(1)

and max1≤i≤n |f(Xi)|/
√
n → 0, which is almost every sequence if P0f

2 < ∞.
By the Cramér-Wold device and linearity in f , the convergence is then implied

for finite sets of f .
For convergence as processes in �∞(F) for a general Donsker class, it suffices

to prove asymptotic tightness (see e.g. Theorem 1.5.4 in [28]). The processes
n−1/2 ∑n

i=1(ξn,i − Eξn,i)f(Xi) are multiplier processes with mean zero, inde-
pendent multipliers. Because the multipliers are not i.i.d., a direct application
of the conditional multiplier central limit theorem (see Theorem 2.9.7 in [28])
is not possible. However, the multipliers have two forms Γ(1− σ, 1) and Γ(1, 1).
By Jensen’s inequality, for any collection G of functions,

Eξ

∥∥∥∥∥
n∑

i=1
(ξn,i − Eξn,i)f(Xi)

∥∥∥∥∥
∗

G

≤ Eξ,ξ′

∥∥∥∥∥
n∑

i=1

(
ξn,i − Eξn,i + ξ′n,i − Eξ′n,i

)
f(Xi)

∥∥∥∥∥
∗

G

,

for any random variables ξ′n,i independent of the ξn,i. We can choose these
variables so that all ξn,i + ξn,i

iid∼ Γ(1, 1). The process in the right side then does
have i.i.d. multipliers, and the asymptotic tightness follows from the i.i.d. case
(as in [28]), Theorems 3.6.13, 2.9.6 and 2.9.7; also see Corollary 2.9.9; we apply
the preceding inequality with G equal to the set of differences f − g of functions
f, g ∈ F with L2(P0)-norm of f − P0f − g + P0g smaller than δ).

Finally if σλ = 1, then both σ = 1 and λ = 1. The second implies that
P0 = P c

0 , Kn = n and P̃n = Pn. Thus in this case Sn(1 − σnKn/n) =∑n
i=1 Wn,if(Xi)(1−σn), for (Wn,1, . . . ,Wn,n) ∼ Dir(n, 1−σn, . . . , 1−σn), and

Tnf = Pnf(1 − σn).. We can now compute

E

( n∑
i=1

Wn,if(Xi)|X1, . . . , Xn

)
= Pnf,

Var
( n∑
i=1

Wn,if(Xi)|X1, . . . , Xn

)
=

n∑
i=1

n∑
j=1

Cov(Wn,i,Wn,j)f(Xi)f(Xj)

≤
n∑

i=1

(n− 1)f2(Xi)
n2(n(1 − σn) + 1) ≤ Pnf

2

n(1 − σn) ,

as the covariances between the Wn,i are negative. This implies that the condi-
tional mean and variance of

√
n(Sn(1−σn)−Tnf) tend to zero, as σn → 1.
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We are ready to complete the proof of Theorem 1. If Kn → ∞, then Lem-
mas 11–10 together with the convergence Kn/n → λ immediately give the con-
vergence of the second and third terms in the decomposition (8). Furthermore,
these lemmas give that Sn−Qn → Tf/(1−σλ), which combined with Lemma 9
gives the convergence of the first term in (8).

If Kn remains bounded, then Lemma 10 does not apply. However, since the
process Qn will run through finitely many different Pitman-Yor processes, we
have Qn −G = OP (1) and hence the third term in (8) is OP (1/

√
n), still under

the assumption that Kn is bounded. Lemma 11 is still valid, and hence the
second term in (8) converges to a Gaussian process as before. We can divide
this term by 1 − σKn/n → 1, to see that Sn → T , in view of Lemma 8. The
sequence Kn can remain bounded only if λ = 0 and then the normal limit in
Lemma 9 is degenerate, whence

√
n(Rn − 1) = −σKn/

√
n + oP (1) = oP (1),

almost surely, again under the assumption that Kn is bounded. Combined this
shows that the first term in (8) tends to zero.

4.2. Proof of Theorem 5

Make the dependence on σ of the Pitman-Yor posterior process and its limit
explicit by writing PYn(σ) and G(σ) for the process PYn in (6) and the right
side in Theorem 1, and set

CPYn(σ) =
√
n
(
PYn(σ) − Pn − σKn

n
(G− P̃n)

)
.

Lemmas 9–11 give

sup
σ∈(0,1)

sup
h∈BL1

∣∣∣E(h(CPYn(σ)
)
|X1, . . . , Xn

)
− Eh

(
G(σ)

)∣∣∣ → 0, (13)

in probability. This immediately gives that for every data-dependent σ̂n that
take their values in the interval (0, 1),

sup
h∈BL1

∣∣∣E(h(CPYn(σ̂n)
)
|X1, . . . , Xn

)
− Eh

(
G(σ̂n)

)∣∣∣ → 0,

in probability, where the second expectation is on the limit process G(σ̂n) for
given, fixed σ̂n. The continuity of the limit process in σ shows that, for σ̂n → σ0
in probability,

sup
h∈BL1

∣∣∣Eh(G(σ̂n)
)
− Eh

(
G(σ0)

)∣∣∣ → 0,

in probability. Combined the two preceding displays give the first assertion of
Theorem 5.

For discrete P0 with regularly varying atoms, the convergence of the maxi-
mum likelihood estimator σ̂n to its coefficient of regular variation σ0 ∈ (0, 1) is
shown in Theorem 12, and hence the preceding argument applies.
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In a hierarchical Bayesian setup with a prior on σ and given σ the Pitman-Yor
prior on P , the posterior distribution of P can be decomposed as

E
(
h
(
CPYn(σ)|X1, . . . , Xn

)
=

∫
E

(
h
(
CPYn(σ)

)
|σ,X1, . . . , Xn

)
Πn(dσ|X1, . . . , Xn),

where Πn(dσ|X1, . . . , Xn) refers to the posterior distribution of σ given the ob-
servations X1, . . . , Xn, and CPYn(σ)|σ,X1, . . . , Xn is the standardised Pitman-
Yor posterior distribution for given σ, considered in Theorem 1. The unifor-
mity (13) shows that the expectation in the integral on the right side can be
replaced asymptotically by Eh

(
G(σ)

)
, uniformly in h ∈ BL1, whenever the

posterior distribution of σ concentrates with probability tending to one on the
interval (0, 1). In particular, this is true if the posterior distribution of σ is con-
sistent for some value σ0 ∈ (0, 1), i.e. if it concentrates asymptotically within
the interval (σ0 − ε, σ0 + ε), for every ε > 0. This consistency is shown in the
proposition below. Given posterior consistency, by the continuity of the limit
process in σ, the expectation Eh

(
G(σ)

)
can in turn in the limit be replaced by

Eh
(
G(σ0)

)
, uniformly in h ∈ BL1. This gives the second assertion of Theorem 5.

4.3. Estimating the type parameter

A measurable function α : [1,∞) → R+ is said to be regularly varying (at ∞)
of order γ if, for all u > 0, as n → ∞,

α(nu)
α(n) → uγ . (14)

It is known (see e.g. [2] or the appendix to [9]) that if the limit of the sequence
of quotients on the left exists for every u, then it necessarily has the form uγ ,
for some γ, as in (14). If we write α(u) = uγL(u), then L will be slowly varying:
a function that is regularly varying of order 0. Then α(n) = nγL(n), and it
can be shown that nγ−δ � α(n) � αn+δ, for every δ > 0, so that the rate of
growth of α is nγ to “first order”. (See Potter’s theorem, [2], Theorem 1.5.6, or
[9], Proposition B.1.9-5).

Example. For the probability distribution (pj)j∈N with pj = C/jα, for some
α > 1, the function α(u) := #(j : 1/pj ≤ u) = �(Cu)1/α� is regularly varying of
order γ = 1/α.

We consider the empirical Bayes estimator σ̂n, the maximum likelihood es-
timator in the model P |σ ∼ PY (σ,M,G) and X1, . . . , Xn|P, σ ∼ P given
observations X1, . . . , Xn. We also consider the posterior distribution of σ given
X1, . . . , Xn in the model σ ∼ Πσ, P |σ ∼ PY (σ,M,G) and X1, . . . , Xn|P, σ ∼
P , for a given prior distribution Πσ on (0, 1). In both cases the likelihood for
observing X1, . . . , Xn is proportional to (5). Hence σ̂n is the point of maximum
of this function and, by Bayes theorem, the posterior distribution has density
relative to Πσ proportional to (5).
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In the following theorem we consider these objects under the assumption that
X1, . . . , Xn are an i.i.d. sample from a distribution P0. Consistency of σ̂n for σ0
means that σ̂n → σ0 in probability. Contraction of the posterior distribution to
σ0 means that Πn(σ : |σ − σ0| > ε|X1, . . . , Xn) tends to zero in probability, for
every ε > 0.

Theorem 12. If P0 is discrete with atoms such that α0(u) := #{x : 1/P0{x} ≤
u} is regularly varying of exponent σ0 ∈ (0, 1), then the empirical Bayes estima-
tor σ̂n is consistent for σ0. Furthermore, for a prior distribution Πσ on σ with
a density that is bounded away from zero and infinity, the posterior distribution
of σ contracts to σ0.

Proof. Up to an additive constant the log likelihood can be written

Λn(σ) =
Kn−1∑
l=1

log(M + lσ) +
Kn∑

j=1:Nn,j≥2

Nn,j−2∑
l=0

log(1 − σ + l)

=
Kn−1∑
l=1

log(M + lσ) +
n−1∑
l=1

log(l − σ)Zn,l+1,

where Zn,l = #(1 ≤ j ≤ Kn : Nn,j ≥ l) is the number of distinct values of
multiplicity at least l in the sample X1, . . . , Xn. (In the case that all observations
are distinct and hence Nn,j = 1 for every j, the second term of the likelihood
is equal to 0.) The concavity of the logarithm shows that the log likelihood is
a strictly concave function of σ. For σ ↓ 0, it tends to a finite value, while for
σ ↑ 1 it tends to −∞ if the term with l = 1 is present in the second sum, i.e. if
there is at least one tied observation. This happens with probability tending to
1 as n → ∞. The derivative of the log likelihood is equal to

Λ′
n(σ) =

Kn−1∑
l=1

l

M + lσ
−

n−1∑
l=1

1
l − σ

Zn,l+1. (15)

The left limit at σ = 0 is Λ′
n(0) = 1

2Kn(Kn − 1) −
∑n−1

l=1 l−1Zn,l+1. Since
Zn,l ≤ Zn,1 = Kn, a crude bound on the sum is Kn logn, which shows that
the derivative at σ = 0 tends to infinity if Kn � logn. In that case the unique
maximum of the log likelihood in [0, 1] is taken in the interior of the interval,
and hence σ̂n satisfies Λ′

n(σ̂n) = 0.
Under the condition that α0 is regularly varying of exponent σ0 ∈ (0, 1),

the sequence αn := α0(n) is of the order nσ0 up to slowly varying terms. By
Theorems 9 and 1‘ of [17], the sequence Kn/αn tends almost surely to Γ(1−σ0)
and hence in particular Kn � logn.

We show below that Λ′
n(σ)/αn → λ(σ) in probability, for every σ, and a

strictly decreasing function λ with λ(σ0) = 0. It follows that Λ′
n(σ0 − ε) > 0

and Λ′
n(σ0 + ε) < 0 with probability tending to one, for every fixed ε > 0. Then

σ0 − ε < σ̂n < σ0 + ε with probability tending to one, by the monotonicity of
σ �→ Λ′

n(σ), and hence the consistency of σ̂n follows.
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The monotonicity of Λ′
n and the fact that Λ′

n(σ̂n) = 0, give that on the event
σ0 + ε > σ̂n,

Λn(σ) ≥ Λn(σ0 + ε), if σ̂n < σ < σ0 + ε,

Λn(σ) ≤ Λn(σ0 + ε) + Λ′
n(σ0 + ε)(σ − σ0 − ε), if σ > σ0 + ε.

It follows that on the event σ0 + ε > σ̂n,

Πn

(
σ > σ0 + ε|X1, . . . , Xn

)
=

∫ 1
σ0+ε

eΛn(σ) dΠσ(σ)∫ 1
0 eΛn(σ) dΠσ(σ)

≤
∫ 1
σ0+ε

eΛn(σ0+ε)+Λ′
n(σ0+ε)(σ−σ0−ε) dΠσ(σ)∫ σ0+ε

σ̂n
eΛn(σ0+ε) dΠσ(σ)

�
∫∞
0 eΛ′

n(σ0+ε)u du

σ0 + ε− σ̂n
= 1

−Λ′
n(σ0 + ε)(σ0 + ε− σ̂n) ,

where the proportionality constant depends on the density of Πσ only. Since
−Λ′

n(σ0 + ε)/αn → −λ(σ0 + ε) > 0 and σ0 + ε− σ̂n → ε in probability, the right
side tends to zero in probability. Combined with a similar argument on the
left tail of the posterior distribution, this shows that the posterior distribution
contracts to σ0.

It remains to be shown that Λ′
n(σ)/αn → λ(σ), in probability for a strictly

decreasing function λ with a unique zero at σ0. The variables Zn,l can be written
as Zn,l =

∑∞
j=1 1Mn,j≥l, for Mn,j the number of observations equal to xj . As

Kn = Zn,1, the function Λ′
n can be written in the form

Λ′
n(σ)=

Kn−1∑
l=1

l

M + lσ
−

∞∑
l=1

∞∑
j=1

1Mn,j≥l+1

l − σ
=

∞∑
j=1

[1Mn,j≥1

σ
−gσ(Mn,j)

]
−hσ(Kn)

σ
,

where gσ(0) = gσ(1) = 0 and gσ(m) =
∑m−1

l=1
1

l−σ , for m ≥ 2, and hσ(k) = 1 +∑k−1
l=1 M/(M+lσ) ≤ 1+(M/σ) log(1+kσ/M). It is shown in [17] (and repeated

below) that EKn/αn → Γ(1 − σ0) and hence Ehσ(Kn) ≤ 1 + (M/σ) log(1 +
EKnσ/M) = O(logn) = o(αn), so that the term on the far right is asymptoti-
cally negligible.

It is shown in Lemma 13 that

E
1
αn

∞∑
j=1

[1Mn,j≥1

σ
− gσ(Mn,j)

]
→ Γ(1 − σ0)

σ
−

∞∑
m=1

Γ(m + 1 − σ0)
m!(m− σ) =: λ(σ).

The limit function λ is strictly decreasing. The value of the series at σ = σ0 is
equal to

∞∑
m=1

Γ(m− σ0)
m! =

∫ ∞

0
(ex − 1)x−σ0−1e−x dx =

∫ ∞

0
(1 − e−x)x−σ0−1 dx.
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By partial integration, this can be further rewritten as
∫∞
0 x−σ0/σ0 e

−x dx =
Γ(1 − σ0)/σ0. We conclude that λ(σ0) = 0.

To complete the proof it suffices to show that the variance of the variables in
the left side of the second last display tend to zero. For i �= j, the conditional
distribution of Mn,i given Mn,j = m is binomial with parameters (n − m, pi),
which is stochastically smaller than the marginal binomial (n, pi) distribution
of Mn,i. It follows that E(h(Mn,i)|Mn,j) ≤ Eh(Mn,i), for every nondecreasing
function h, whence h(Mn,i) and h(Mn,j) are negatively correlated for every
nonnegative, nondecreasing function h. Applying this with h(m) = 1m≥1 and
h = gσ, we find that

Var 1
αn

∞∑
j=1

1Mn,j≥1 ≤ 1
α2
n

∞∑
j=1

Var 1Mn,j≥1 ≤ 1
α2
n

∞∑
j=1

E1Mn,j≥1,

Var 1
αn

∞∑
j=1

gσ(Mn,j) ≤
1
α2
n

∞∑
j=1

Var gσ(Mn,j) ≤
1
α2
n

∞∑
j=1

Eg2
σ(Mn,j).

By Lemma 13, both right sides are of the order O(1/αn). This concludes the
proof that Λ′

n(σ)/αn → λ(σ), in probability.

Lemma 13. Suppose that α(u) := #{j : 1/pj ≤ u} is regularly varying at ∞
of order γ ∈ (0, 1). For any σ ∈ (0, 1), and gσ(m) =

∑m−1
l=1

1
l−σ , for m ≥ 2, and

Mn,j ∼ Binomial(n, pj),

(i) 1
α(n)

∑∞
j=1 E1Mn,j≥1 → Γ(1 − γ),

(ii) 1
α(n)

∑∞
j=1 Egσ(Mn,j) →

∑∞
m=1

Γ(m+1−γ)
m!(m−σ) ,

(iii) 1
α(n)

∑∞
j=1 Eg

2
σ(Mn,j) →

∑∞
k=1

∑∞
l=1

Γ(k∨l+1−γ)
(k−σ)(l−σ)(k∨l)! .

Proof. Because Pr(Mn,j = 0) = (1 − pj)n, the series in the left side of (i) is
equal to

∞∑
j=1

(
1 − (1 − pj)n

)
=

∫ ∞

1

(
1 −

(
1 − 1

u

)n)
dα(u) = n

∫ 1

0
α
(1
s

)
(1 − s)n−1 ds,

by Fubini’s theorem, since 1− (1− 1/u)n =
∫ 1/u
0 n(1− s)n−1 ds. It follows that

the left side of (i) can be written
∫ n

0

α(n/s)
α(n)

(
1 − s

n

)n−1
ds.

By regular variation of α, the integrand tends pointwise to s−γe−s, as n → ∞.
By Potter’s theorem, the quotient α(n/s)/α(n) is bounded above by a multiple
of (1/s)γ−δ ∨ (1/s)γ+δ, for any given δ > 0, while (1 − s/n)n−1 ≤ e−s(1−δ), by
the inequality 1−x ≤ e−x, for x ∈ R. Therefore, by the dominated convergence
theorem the integral converges to

∫∞
0 s−γe−s ds = Γ(1 − γ).
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The series in the left side of (ii) is equal to

∞∑
j=1

n∑
m=2

gσ(m)
(
n

m

)
pmj (1−pj)n−m=

n∑
m=2

gσ(m)
(
n

m

)∫ ∞

1

(1
u

)m(
1− 1

u

)n−m

dα(u).

Writing (1/u)m(1− 1/u)n−m =
∫ 1/u
0 sm−1(1− s)n−m−1(m−ns) ds (for m ≥ 1)

and applying Fubini’s theorem, we can rewrite this as

n∑
m=2

gσ(m)
(
n

m

)∫ 1

0
α
(1
s

)
sm−1(1 − s)n−m−1(m− ns) ds

=
∫ 1

0

n−1∑
l=1

1
l − σ

n∑
m=l+1

(
n

m

)
sm−1(1 − s)n−m−1(m− ns)α

(1
s

)
ds

=
∫ 1

0

n−1∑
l=1

n− l

l − σ

(
n

l

)
sl(1 − s)n−l−1 α

(1
s

)
ds =

n−1∑
l=1

1
l − σ

Eα
( 1
Sl,n

)
,

for Sl,n ∼ Beta(l+1, n−l), where the second last equality follows from Lemma 14.
Representing Sl,n as Γl/(Γl + Γn−l), for independent variables Γl ∼ Γ(l + 1, 1)
and Γn−l ∼ Γ(n− l, 1), we see that the left side of (ii) is equal to

n−1∑
l=1

1
l − σ

E
α
(
1 + Γn−l/Γl

)
α(n) =

n−1∑
l=1

1
l − σ

E
α
(
(n−1 + n−1Γn−l/Γl)n

)
α(n) .

The sequence Ul,n := (n−1 + n−1Γn−l/Γl) tends almost surely to 1/Γl, by the
law of large numbers, as n → ∞, for fixed l. Since the convergence in (14) is
automatically uniform in compacta contained in (0,∞) (see [9], Theorem B.1.4),
it follows that α(Ul,nn)/α(n) → (1/Γl)γ , almost surely. Furthermore, by Potter’s
theorem α(Ul,nn)/α(n) � Uγ+δ

l,n ∨Uγ−δ
l,n , where Uβ

l,n ≤ 1 + (n−1Γn−l)β(1/Γl)β is
uniformly integrable for every β < 1, since n−1Γn−l → 1 in L1 and E(1/Γl)β <
∞, so that n−1Γn−l/Γl → 1/Γl in L1, in view of the independence of Γn−l and
Γl. By dominated convergence we conclude that Eα(Ul,nn)/α(n) → E(1/Γl)γ =
Γ(l+1−γ)/l!. Since EUγ+δ

l,n ∨Uγ−δ
l,n � E(1/Γl)−γ+δ � l−γ+δ, a second application

of the dominated convergence theorem shows that the preceding display tends
to

∑∞
l=1(l − σ)−1Γ(l + 1 − γ)/l!.

For the proof of (iii) we write g2
σ(m) =

∑m−1
k=1

∑m−1
l=1 (k − σ)−1(l − σ)−1 and

follow the same steps as in (ii) to write the left side of (iii) as

n−1∑
k=1

n−1∑
l=1

1
k − σ

1
l − σ

E
α(1/Sk∨l,n)

α(n) .

This is seen to converge to the limit as claimed by the same arguments as under
(ii).
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Lemma 14. For every p ∈ [0, 1] and l ∈ N ∪ {0} and n ∈ N,

n∑
m=l+1

(
n

m

)
pm−1(1 − p)n−m−1(m− np) = (n− l)

(
n

l

)
pl(1 − p)n−l−1.

Proof. For Xn−1 and Xn the numbers of successes in the first n − 1 and n
independent Bernoulli trials with success probability p, we have {Xn ≥ l+1} ⊂
{Xn−1 ≥ l} and {Xn−1 ≥ l} − {Xn ≥ l + 1} = {Xn−1 = l, Bn = 0}, for Bn

the outcome of the nth trial. This gives the identity Pr(Xn−1 ≥ l) − Pr(Xn ≥
l + 1) = Pr(Xn−1 = l)(1 − p). We multiply this by n/(1 − p) to obtain the
identity given by the lemma, which we first rewrite using that m

(
n
m

)
= n

(
n−1
m−1

)
and (n− l)

(
n
l

)
= n

(
n−1
l

)
.

Finally consider the situation that P0 possesses a nontrivial continuous com-
ponent. In this case the empirical Bayes estimator tends to 1.

Theorem 15. If P0 = (1 − λ)P d
0 + λP c

0 where P d
0 is a discrete and P c

0 an
atomless probability distribution with λ > 0 and such that α0(u) := #{x :
1/P0{x} ≤ u} is regularly varying of exponent σ0 ∈ (0, 1), then σ̂n → 1 in
probability.

Proof. By Lemma 7 the sequence Kn/n tends to λ in probability. The second
term in the derivative of the log likelihood (15) depends on tied observations
only (through the variables Zn,l with l ≥ 2), and the arguments from the proof
of Theorem 12 show that this term retains the order OP (α0(n)). Thus it fol-
lows that Λ′

n(σ)/n → λ/σ in probability, whence it is positive with probability
tending to one and the likelihood increasing in σ.
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Appendix A: Mean and variance of posterior distribution

In this appendix we derive explicit formulas for the mean and variance of the
posterior distribution. The limit of the variances can be seen to be equal to
variance of the limit variable in Theorem 1.

Lemma 16. Let P ∼ PY(σ,M,G) where σ ≥ 0. Then the mean and variance
of the posterior distribution of P based on observations X1, . . . , Xn|P iid∼ P are
as follows

E[Pf |X1, . . . , Xn] =
Kn∑
j=1

Nj,n − σ

n + M
f(X̃j) + M + σKn

n + M
Gf,
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Var (Pf |X1, . . . , Xn) =
[Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j) −Gf

]2 (n− σKn)(M + σKn)
(n + M)2(n + M + 1)

−

(∑Kn

j=1(Nj,n − σ)f(X̃j)
)2

(n− σKn)(n + M)(n+M+1) +
∑Kn

j=1(Nj,n − σ)f(X̃j)2

(n + M)(n+M+1)

+ (1 − σ)(M + σKn + 1)
(n + M)(n + M + 1) VarG(f).

Lemma 17. Suppose X1, . . . , Xn
iid∼ P0, where P0 = (1 − λ)P d

0 + λP c
0 . If

P follows a PY (σ,M,G) process, then the posterior distribution in the model
X1, . . . , Xn|P ∼ P , P0 almost surely

E[Pf |X1, . . . , Xn] → (1 − λ)P d
0 + (1 − σ)λP c

0 + λσG

nVar (Pf |X1, . . . , Xn) → (1 − λ)VarPd
0
(f) + (1 − σ)λVarP c

0
(f)

+ (1 − σ)σλVarG(f)

+ (1 − σ)λ(1 − λ)
1 − σλ

(
P d

0 (f) − P c
0 (f)

)2

+ (1 − σλ)σλ
(

(1 − λ)P d
0 (f) + (1 − σ)λP c

0 (f)
1 − σλ

−Gf

)2

.

Proof of Lemma 16. We begin by recalling the posterior distribution from Sec-
tion 4. Note that we have the following results:

• E[Rn] = n−Knσ
n+M and Var(Rn) = (n−Knσ)(M+Knσ)

(n+M)2(n+M+1) .
• E[Qn(f)] = G(f), Var(Qn(f)) = 1−σ

M+σKn
VarG(f).

The first two results are standard results for Beta distributed random variables,
and the last two results are because Qn is a Pitman-Yor process. Now we just
need to compute the moments for the weights Wj . We use the following results
from the Dirichlet distribution. If X̃ ∼ Dir (Kn, α1, . . . , αKn), then

E[X̃i] = αi∑Kn

k=1 αk

,

Var(X̃i) =
αi(

∑Kn

k=1 αk − αi)
(
∑Kn

k=1 αk)2(1 +
∑Kn

k=1 αk)
,

and
Cov(X̃i, X̃j) = −αiαj

(
∑Kn

k=1 αk)2(1 +
∑Kn

k=1 αk)
.

In our case αi = Ni,n − σ, K = Kn and
∑Kn

k=1 αk = n − σKn. Then a direct
computation shows that

E[
Kn∑
j=1

Wjf(X̃j)] =
Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j).
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For the variance we use that, for independent random variables, the variance of
the sum is the sum of the covariances.

Var(
Kn∑
i=1

Wjf(X̃j)|X1, . . . , Xn)

=
∑
i �=j

Cov(Wi,Wj)f(X̃i)f(X̃j) +
Kn∑
i=1

Var(Wi)f(X̃i)2

=
∑
i �=j

−(Ni,n − σ)(Nj,n − σ)
(n− σKn)2(n− σKn + 1)f(X̃i)f(X̃j)

+
Kn∑
i=1

(Ni,n − σ)(n− σKn −Ni,n + σ)
(n− σKn)2(n− σKn + 1) f(X̃i)2

= −

(∑Kn

j=1(Nj,n − σ)f(X̃j)
)2

(n− σKn)2(n− σKn + 1) +
∑Kn

j=1(Nj,n − σ)f(X̃j)2

(n− σKn)(n− σKn + 1) .

Now we can compute the mean and variance. Using independence between
Rn,W and Qn and linearity we see that

E[P (f)|X1, . . . , Xn] =
Kn∑
j=1

Nj,n − σ

n + M
f(X̃j) + M + σKn

n + M
G(f).

In order to compute the variance we apply the law of total variance. For any
two random variables X,Y with finite second moment we have that

Var(X) = E[Var (X|Y )] + Var (E[X|Y ]) .

We split into conditioning on Rn and the rest, so we can use the independence
between W and Qn. We compute these piece by piece. First consider

First consider

E

⎡
⎣Var

⎛
⎝Rn

Kn∑
j=1

Wjf(X̃j) + (1 −Rn)Qn(f)|Rn

⎞
⎠
⎤
⎦ .

Due to the independence of W and Qn given Rn

= E

⎡
⎣R2

nVar

⎛
⎝Kn∑

j=1
Wjf(X̃j)

⎞
⎠ + (1 −Rn)2Var (Qn(f))

⎤
⎦ .

Simplifying the expression yields

= E[R2
n]Var

⎛
⎝Kn∑

j=1
Wjf(X̃j)

⎞
⎠ + E[(1 −Rn)2]Var (Qn(f))].
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Filling in the known moments results in

= (n− σKn)(n + 1 − σKn)
(n + M)(n + M + 1) Var

⎛
⎝Kn∑

j=1
Wjf(X̃j)

⎞
⎠

+ (M + σKn)(M + σKn + 1)
(n + M)(n + M + 1) Var (Qn(f)) .

Expanding the variance terms and simplifying gives

= −

(∑Kn

j=1(Nj,n − σ)f(X̃j)
)2

(n− σKn)(n + M)(n + M + 1) +
∑Kn

j=1(Nj,n − σ)f(X̃j)2

(n + M)(n + M + 1)

+ (1 − σ)(M + σKn + 1)
(n + M)(n + M + 1) VarG(f).

Next wel deal with

Var

⎛
⎝E[Rn

Kn∑
j=1

Wjf(X̃j) + (1 −Rn)Qn(f)|Rn]

⎞
⎠ .

Computing the expected value gives

= Var

⎛
⎝Rn

Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j) + (1 −Rn)G(f)

⎞
⎠ .

Reorganising terms

= Var

⎛
⎝G(f) + Rn(

Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j) −G(f))

⎞
⎠ .

The constant term does not contribute to the variance so can be, and then
taking the square of the constant in front of Rn results in

= (
Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j) −G(f))2Var (Rn) .

Computing the variance of Rn gives

= (
Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j) −G(f))2 (n− σKn)(M + σKn)

(n + M)2(n + M + 1) .

Therefore by the law of total variance we find the result.
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Proof of Lemma 17. We begin with some basic results which we will apply in
several places. We note the following two almost sure limits: Kn

n → λ P0-almost
surely and

∑Kn

j=1(Nj,n − σ)f(X̃j)
n

→ (1 − λ)P d
0 (f) + (1 − σ)λP c

0 (f) P0-a.s.

For the posterior mean we know the exact formula by 16 and therefore the
following limit can be computed:

E[P (f)|X1, . . . , Xn] =
Kn∑
j=1

Nj,n − σ

n + M
f(X̃j) + M + σKn

n + M
G(f)

→ (1 − λ)P d
0 (f) + (1 − σ)λP c

0 (f) + λσG(f)P0-a.s.

Recall from 16 the formula for the posterior variance. We analyse this term
by term. They all follow directly from the remarks at the beginning of the the
proof, and the limits hold P0-almost surely.

First we find that

Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j) →

(1 − λ)P d
0 (f) + (1 − σ)λP c

0 (f)
1 − σλ

.

Secondly,

n
(n− σKn)(M + σKn)
(n + M)2(n + M + 1) → (1 − σλ)σλ.

Next,

−n

(∑Kn

j=1(Nj,n − σ)f(X̃j)
)2

(n− σKn)(n + M)(n + M + 1) → −
(
(1 − λ)P d

0 (f) + (1 − σ)λP c
0 (f)

)2
1 − σλ

.

Also,

n

∑Kn

j=1(Nj,n − σ)f(X̃j)2

(n + M)(n + M + 1) → (1 − λ)P d
0 (f2) + (1 − σ)λP c

0 (f2).

And finally,

n
(1 − σ)(M + σKn + 1)
(n + M)(n + M + 1) VarG(f) → (1 − σ)σλVarG(f).
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This means we now have computed the limit of the posterior variance. We will
now add all the terms together, and by the continuous mapping theorem we
find that,

nVar (P (f)|X1, . . . , Xn) → (1 − σλ)σλ(
(1 − λ)P d

0 (f) + (1 − σ)λP c
0 (f)

1 − σλ
−G(f)

)2

−
(
(1 − λ)P d

0 (f) + (1 − σ)λP c
0 (f)

)2
1 − σλ

+ (1 − λ)P d
0 (f2) + (1 − σ)λP c

0 (f2)
+ (1 − σ)σλVarG(f) a.s. P0.

Note that

−
(
(1 − λ)P d

0 (f) + (1 − σ)λP c
0 (f)

)2
1 − σλ

+ (1 − λ)P d
0 (f2) + (1 − σ)λP c

0 (f2)
= (1 − λ)VarPd

0
(f) + (1 − σ)λVarP c

0
(f)

+ (1 − σ)λ(1 − λ)
1 − σλ

(
P d

0 (f) − P c
0 (f)

)2
.

Combining everything yields the Lemma.
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