

Delft University of Technology

pLUTo
Enabling Massively Parallel Computation in DRAM via Lookup Tables
Ferreira, Joao Dinis; Falcao, Gabriel; Gomez-Luna, Juan; Alser, Mohammed; Orosa, Lois; Sadrosadati,
Mohammad; Kim, Jeremie S.; Oliveira, Geraldo F.; Shahroodi, Taha; More Authors
DOI
10.1109/MICRO56248.2022.00067
Publication date
2022
Document Version
Final published version
Published in
Proceedings - 2022 55th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2022

Citation (APA)
Ferreira, J. D., Falcao, G., Gomez-Luna, J., Alser, M., Orosa, L., Sadrosadati, M., Kim, J. S., Oliveira, G. F.,
Shahroodi, T., & More Authors (2022). pLUTo: Enabling Massively Parallel Computation in DRAM via
Lookup Tables. In Proceedings - 2022 55th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2022 (pp. 900-919). (Proceedings of the Annual International Symposium on
Microarchitecture, MICRO; Vol. 2022-October). IEEE. https://doi.org/10.1109/MICRO56248.2022.00067
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MICRO56248.2022.00067
https://doi.org/10.1109/MICRO56248.2022.00067

pLUTo: Enabling Massively Parallel Computation
in DRAM via Lookup Tables

João Dinis Ferreira§ Gabriel Falcao† Juan Gómez-Luna§ Mohammed Alser§

Lois Orosa§∇ Mohammad Sadrosadati§ Jeremie S. Kim§ Geraldo F. Oliveira§

Taha Shahroodi‡ Anant Nori⋆ Onur Mutlu§

§ETH Zürich †IT, University of Coimbra ∇Galicia Supercomputing Center ‡TU Delft ⋆Intel

Data movement between the main memory and the processor
is a key contributor to execution time and energy consumption
in memory-intensive applications. This data movement bot-

tleneck can be alleviated using Processing-in-Memory (PiM).
One category of PiM is Processing-using-Memory (PuM), in
which computation takes place inside the memory array by ex-
ploiting intrinsic analog properties of the memory device. PuM
yields high performance and energy efficiency, but existing PuM
techniques support a limited range of operations. As a result,
current PuM architectures cannot efficiently perform some com-
plex operations (e.g., multiplication, division, exponentiation)
without large increases in chip area and design complexity.

To overcome these limitations of existing PuM architectures,
we introduce pLUTo (processing-using-memory with lookup
table (LUT) operations), a DRAM-based PuM architecture
that leverages the high storage density of DRAM to enable
the massively parallel storing and querying of lookup tables
(LUTs). The key idea of pLUTo is to replace complex operations
with low-cost, bulk memory reads (i.e., LUT queries) instead of
relying on complex extra logic.

We evaluate pLUTo across 11 real-world workloads that
showcase the limitations of prior PuM approaches and show
that our solution outperforms optimized CPU and GPU base-
lines by an average of 713× and 1.2×, respectively, while
simultaneously reducing energy consumption by an average
of 1855× and 39.5×. Across these workloads, pLUTo out-
performs state-of-the-art PiM architectures by an average of
18.3×. We also show that different versions of pLUTo pro-
vide different levels of flexibility and performance at differ-
ent additional DRAM area overheads (between 10.2% and
23.1%). pLUTo’s source code and all scripts required to repro-
duce the results of this paper are openly and fully available at
https://github.com/CMU-SAFARI/pLUTo.

1. Introduction
Processing-in-Memory (PiM) is a promising paradigm that aug-

ments a system’s memory with compute capability [1–5] to

alleviate the data movement bottleneck between processing and

memory units [2, 6–17]. PiM architectures can be classified into

two categories [1, 18]: 1) Processing-near-Memory (PnM),
where computation takes place in dedicated processing ele-

ments (e.g., accelerators [11, 19–43], processing cores [11, 30–

32, 41, 44–58], reconfigurable logic [59–63]) placed near the

memory array (e.g., [11, 19–41, 44–67]), and 2) Processing-
using-Memory (PuM), where computation takes place inside
the memory array by exploiting intrinsic analog operational

properties of the memory device (e.g., [41, 55, 68–91]).

In DRAM-based PnM, data is transferred from the DRAM

array to nearby processors or specialized accelerators, which

could be 1) part of the DRAM chip, but separate from the

DRAM array [22, 36–38, 42, 43, 51–54, 56, 58], e.g., near the

DRAM banks, 2) integrated into the logic layer of 3D-stacked

memories [11, 20, 21, 23–25, 28–32, 34, 39, 44–50, 55, 57, 59,

60, 66, 67], or 3) inside the memory controller [35, 92, 93].

PnM enables the design of flexible substrates that support a

diverse range of operations. However, the performance, effi-

ciency, and scalability of near-bank PnM architectures [22, 36–

38, 42, 43, 51–54, 56, 58] can be limited by design and fabrica-

tion challenges, such as 1) the difficulty in designing complex

logic due to the limited number of DRAM metal layers [94, 95],

and 2) the inefficiency of the DRAM process for the implemen-

tation of digital logic due to its heavy optimization for memory

density [51, 54]. In 3D-stacked memories, the logic layer’s

limited area and thermal budgets impose additional constraints.

All these design and fabrication issues lead to generally very

simple PnM execution engines, which are unable to exploit the

entire DRAM bandwidth [15, 47, 54].

In contrast, PuM architectures enable computation within
the memory array. The key benefit of PuM architectures is

that data does not leave the memory array during computa-
tion. As a result, PuM architectures can provide high com-

pute throughput by performing operations in a bulk paral-

lel manner, often at the granularity of memory rows. Prior

PuM works [70, 72, 74, 75, 79, 82, 84, 96, 97] propose mecha-

nisms for the execution of bulk bitwise operations (e.g., bitwise

MAJority,AND,OR,NOT) [72, 74, 78, 80, 82–85, 87, 91, 98] and

bulk arithmetic operations [70, 75, 79, 96, 97]. However, these

proposals have two important limitations: 1) the execution of

some complex operations (e.g., multiplication, division) incurs

high latency and energy consumption [75], and 2) other com-

plex operations (e.g., exponentiation, trigonometric functions)

are not even supported.

We aim to overcome these two limitations of prior PuM archi-

tectures in this work. To this end, we employ LUT-based com-
puting, i.e., the use of memory read operations (LUT queries)
to retrieve the results of complex operations from lookup tables

that hold precomputed values. Concretely, a LUT query is a

memory read operation that, for a given input value x, returns

f (x), i.e., the result of applying some function f to the input x.

Many PuM architectures [96, 97, 99] exploit LUT-based com-

puting to improve the performance of a few complex operations.

However, no prior work supports the general-purpose execution

of LUT-based complex operations.

1
900

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-6654-6272-3/22/$31.00 ©2022 IEEE
DOI 10.1109/MICRO56248.2022.00067

20
22

 5
5t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
M

ic
ro

ar
ch

ite
ct

ur
e

(M
IC

R
O

) |
 9

78
-1

-6
65

4-
62

72
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
IC

R
O

56
24

8.
20

22
.0

00
67

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

Our goal in this work is to extend the functionality of DRAM-
based PuM systems to provide support for general-purpose
execution of complex operations. To this end, we propose

pLUTo: processing-using-memory with lookup table (LUT)
operations, a DRAM-based PuM architecture that leverages

LUT-based computing via bulk querying of LUTs to perform

complex operations beyond the scope of prior DRAM-based

PuM proposals. pLUTo introduces a novel LUT-querying mech-

anism, the pLUTo LUT Query, which enables the simultaneous

querying of multiple LUTs stored in a single DRAM subarray.

In pLUTo, the number of elements stored in each LUT may be

as large as the number of rows in each DRAM subarray (e.g.,

512–1024 rows [100–102]). pLUTo requires the following two

modest modifications to DRAM hardware: 1) row sweeping
logic, which enables the sweeping of DRAM rows, i.e., the

successive activation of consecutive rows in a DRAM subarray;

2) match logic, which identifies matches between the elements
in the input row and the index of the currently active row in the

subarray that holds multiple copies of one or more LUTs. We

describe three pLUTo designs: pLUTo-BSA (Buffered Sense
Amplifier), pLUTo-GSA (Gated Sense Amplifier), and pLUTo-

GMC (Gated Memory Cell). These designs achieve different

performance, energy efficiency, and area overhead trade-offs.

To enable the seamless integration of pLUTo with the system,

we methodically describe the changes that allow programmers

to offload their applications to pLUTo. These changes com-

prise 1) pLUTo ISA instructions that enable support for each

of the DRAM operations required for pLUTo’s operation, 2)

the pLUTo Library, an API library that includes routines that

programmers can use to conveniently express pLUTo opera-

tions at a high level of abstraction, 3) the pLUTo Compiler,

which analyzes an application’s data dependency graph to plan

the in-memory placement and alignment of data, and 4) the

pLUTo Controller, a modified memory controller that supports

the execution of pLUTo ISA instructions.

We evaluate pLUTo on a diverse range of real-world arith-

metic, bitwise logic, cryptographic, image processing, and

neural network workloads that demonstrate the limitations of

existing PuM architectures and how pLUTo is able to over-

come them. These workloads include 1) bitwise (AND/OR/XOR),

arithmetic (addition, multiplication), and nonlinear operations

(substitution tables, image binarization, and color grading);

and 2) a quantized neural network. We compare pLUTo

to state-of-the-art processor-centric architectures (CPU [103],

GPU [104], FPGA [105]) and PiM architectures (PnM [67],

PuM [75, 79, 84]). Our evaluations show that pLUTo consis-

tently and considerably outperforms these five baselines in per-

formance and energy consumption.

We make the following key contributions:

• We introduce pLUTo, a new DRAM-based PuM architec-

ture that introduces support for general-purpose operations

through the use of bulk lookup table (LUT) queries.

• We propose three different and new pLUTo designs with

varying trade-offs in performance, energy efficiency, and

DRAM area overhead.

• We describe the end-to-end system integration of pLUTo,

including 1) ISA instructions, 2) an API library, 3) a compiler,

and 4) modifications to the memory controller.

• We experimentally demonstrate that pLUTo significantly

outperforms CPU [103], GPU [104], FPGA [105], and

PiM [67, 75, 79, 84] baselines across a wide variety of real-

world bitwise logic, arithmetic, cryptographic, image process-

ing, and neural network workloads.

• We open-source pLUTo’s source code and all scripts re-

quired to reproduce the results presented in this paper on

https://github.com/CMU-SAFARI/pLUTo.

2. Background
This section describes the hierarchical organization of DRAM

and provides an overview of relevant prior work we build on.

We refer the reader to prior work [79, 84, 100, 106–108] for

more detailed descriptions of DRAM operation.

2.1. DRAM Background
DRAM is organized hierarchically: each DRAM module con-

sists of multiple chips, banks, and subarrays, as Figure 1 shows.

A DRAM module (Figure 1a) consists of multiple DRAM chips
(Figure 1b), each of which contains multiple DRAM banks
(e.g., 8 for DDR3 [109], 16 for DDR4 [110]) and I/O logic.

Each DRAM bank (Figure 1c) is divided into DRAM subar-
rays [100] (Figure 1d), which are two-dimensional arrays of

DRAM cells (Figure 1e). DRAM subarrays in a bank share

peripheral circuitry (e.g., a global row decoder and a global

row buffer). Each DRAM cell contains one cell capacitor and

one access transistor. The cell capacitor encodes a single bit

as stored electrical charge. The access transistor connects the

cell capacitor to the bitline wire. Each bitline is shared by all

DRAM cells in a column and is connected to a sense amplifier
(SA in Figure 1d). The set of sense amplifiers in a subarray

makes up the local row buffer.

Figure 1: Internal organization of a DRAM module.

Reading and writing data in DRAM occurs over three phases.

1) Row Activation. The memory controller initiates a memory

request by issuing an activate (ACT) command together with a

DRAM row address to the target DRAM bank. Once the DRAM

chip receives the ACT command, it asserts the corresponding

wordline to activate the DRAM row. The row activation process

happens in three main steps. First, the wordline of the accessed

row is driven with high voltage, turning on the row’s access

2901

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

transistors and creating a path for charge sharing between each

DRAM cell and its bitline. This process induces a voltage

fluctuation, ±δ , that affects the voltage level of the precharged
(i.e., set to VDD/2) bitline. If the cell is charged, the bitline

voltage becomes VDD/2+δ . Otherwise, it becomes VDD/2−δ .

Second, each sense amplifier in the local row buffer amplifies
its bitline’s voltage fluctuation (±δ) until the bitline voltage

reaches either VDD or 0. Third, the original voltage level of each

cell capacitor in the activated row is restored, since each access

transistor allows charge to flow between each bitline and each

corresponding DRAM cell in the activated row. Once the row

activation process is complete, the local row buffer contains the

values originally stored in the cells along the asserted wordline.

2) Reading/Writing. The memory controller issues read (RD) or

write (WR) commands together with a DRAM column address to

read or write chunks of the data latched in the local row buffer.

In the case of a read, data in the corresponding columns is sent

to the CPU through the DRAM’s I/O circuitry and the memory

bus. In the case of a write, data received from the CPU modifies

the corresponding columns’ bitline (and thus cell) voltages.

3) Precharging. The memory controller issues a precharge

(PRE) command to free up the local row buffer and allow the

activation of other DRAM rows. To achieve this, the wordline

is de-asserted, which turns off the access transistors along a

DRAM row, and the subarray’s bitlines are precharged (i.e.,

restored to VDD/2).

2.2. Enhanced DRAM Architectures
pLUTo optimizes key operations by incorporating the following

previous proposals for enhanced DRAM architectures.

Intra-Subarray Data Copy. The RowClone-FPM (Fast

Parallel Mode) [81] operation enables data to be copied be-

tween two DRAM rows belonging to the same DRAM subarray.

This is achieved via two consecutive activations: first to the

source row, then to the destination row. Doing so asserts the

destination row’s wordline while the contents of the source row

are already in the subarray’s row buffer, which causes the entire

row buffer’s contents to be written to the destination row.

Inter-Subarray Data Copy. The LISA-RBM (Row Buffer

Movement) operation [108] copies the contents of one local

row buffer to another local row buffer in a different subarray in

the same bank without relying on the external memory channel.

This is achieved by linking neighboring subarrays with isolation

transistors.

Subarray-Level Parallelism. MASA [100] is a mechanism that

enables subarray-level parallelism by overlapping the latency

of memory accesses directed to different subarrays’ bitlines.

MASA enables multiple rows in different subarrays to be acti-

vated and to be accessed (read or written to) in parallel.

Bulk Bitwise Operations. Ambit [84] is a PuM architecture

that introduces native support for bulk bitwise logic operations

(MAJority,AND,OR,NOT) between rows in a DRAM subarray.

Ambit uses the triple row activation primitive (which concur-

rently asserts three wordlines, leading to the execution of the

majority function between the contents of three DRAM rows)

and the copy operation enabled by RowClone [81] to enable

these simple, row-granularity bitwise operations.

Shifting. DRISA [79] is a PuM architecture that features support

for intra-row shifting in DRAM. Using this mechanism, the

contents of a DRAM row can be shifted by 1 or 8 bits at a time,

at the cost of one ACT-ACT-PRE [84] command sequence.

3. Motivation
Our goal in this work is to extend the functionality of Processing-
using-Memory (PuM) architectures to provide support for the
general-purpose execution of complex operations. In particular,

pLUTo is motivated by the following two key observations.

First, state-of-the-art PuM architectures [41, 55, 68–91, 96] pro-

vide very high performance and energy efficiency by mitigating

data movement, but they only support a limited range of opera-

tions. For example, prior DRAM-based PuM accelerators only

support the execution of basic operations (e.g., bitwise logic, ad-

dition) [70, 74, 75, 79, 82, 84, 96, 97] or require long sequences

of DRAM commands to support more complex operations (e.g.,

multiplication, division) [75]. Second, lookup tables (LUTs)

enable the replacement of complex computations with cheaper

LUT query operations (i.e., memory reads). pLUTo improves

prior PuM works by leveraging their best features (i.e., high

parallelism, reduced data movement) and addressing their main

drawbacks (i.e., reduced range of supported operations and low

performance for complex operations). We achieve this via the

introduction of the pLUTo LUT Query operation (described in

Section 4.1), which enables the bulk querying of all the values

in a given input DRAM row.

4. An Overview of pLUTo
The key contribution of pLUTo is the pLUTo LUT Query, an

operation that enables the bulk execution of a large number of

LUT queries inside a DRAM subarray. Each individual LUT
query is defined as a memory read operation that, given an

input value x, returns as its output value the result of applying

some arbitrary function f to x, i.e., f (x). Building on the

pLUTo LUT Query, pLUTo employs LUT-based computing
(i.e., the replacement of complex operations with equivalent
LUT queries) to perform computation under the Processing-

using-Memory paradigm. LUT-based computing requires that

each complex operation to be replaced with a LUT query be

deterministic; in other words, the behavior of the function f
being replaced with a LUT query should only depend on its
input value x. The construction of a LUT requires a one-time

effort of computing all its values, i.e., all LUT elements.

Figure 2 shows an overview of the DRAM structures required

to perform a pLUTo LUT Query.1 First, the source subarray
(1 in Figure 2) stores the LUT query input vector (i in Fig-

ure 2), which consists of a set of N-bit LUT indices associated

with LUT elements. Second, the pLUTo Match Logic (2)

comprises a set of comparators that identify matches between

1 Figure 2 assumes that pLUTo has been implemented with the pLUTo-BSA

design (described in Section 5.1). However, the key ideas of the pLUTo LUT

Query described in this section apply to all three pLUTo designs described in

Sections 5.1 to 5.3.

3902

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

1) the row index of the currently activated row in the pLUTo-

enabled subarray, and 2) each LUT index in the LUT query

input vector (i.e., the source subarray’s row buffer). Third, the

pLUTo-enabled row decoder (3) enables the successive activa-

tion of consecutive DRAM rows in the pLUTo-enabled subarray

with a single DRAM command. It also outputs the row index of

the currently activated row as input to the pLUTo Match Logic.

Fourth, the pLUTo-enabled subarray (4) stores multiple verti-

cal copies of a given LUT (ii), which consists of M-bit LUT

elements. Fifth, the pLUTo-enabled row buffer (5) allows the

reading of individual LUT elements from the activated row in

the pLUTo-enabled subarray. This is possible by extending

the DRAM sense amplifier design of the pLUTo-enabled row

buffer with switches controlled by the pLUTo Match Logic

(using the matchline signal). Sixth, the flip-flip (FF) buffer (6)

enables pLUTo to temporarily store select LUT elements by

copying them from the pLUTo-enabled row buffer, conditioned

on the output of the pLUTo Match Logic following each row

activation. Seventh, a LISA-RBM operation copies the entire

contents of the FF buffer (i.e., the LUT query output vector,

iii) into the destination row buffer, i.e., the row buffer of the

destination subarray (7).

Figure 2: Main components of pLUTo.

In contrast to the bit-serial paradigm employed by prior PuM

architectures (e.g., SIMDRAM [75]), pLUTo operates in a bit-
parallel manner; in other words, the bits that make up each

LUT element (e.g., A) are stored horizontally (i.e., in adja-

cent bitlines), and all the copies of each LUT element (i.e.,

{A,A,...,A}) take up one whole row in the depicted pLUTo-

enabled subarray (ii).2

4.1. The pLUTo LUT Query

The pLUTo LUT Query enables all the elements stored in a

source row buffer to simultaneously be used to query a LUT. We

illustrate the pLUTo LUT Query using a simple example that

employs a small LUT to store the first four prime numbers (i.e.,

{2,3,5,7}) at LUT indices {0,1,2,3}, as shown in Figure 3a.

2 Throughout this example, we assume that all {A,B,C,...} values are 8

bits wide, although this bit width is a parameter of each pLUTo LUT Query

and may vary (see Section 6.2).

In our example, the user-defined LUT query will return the

{2nd ,1st ,2nd ,4th} prime numbers, which corresponds to a LUT

query input vector [1,0,1,3] and an expected LUT query out-

put vector [3,2,3,7] (i.e., {2nd ,1st ,2nd ,4th} prime numbers

⇒ {LUT[1],LUT[0],LUT[1],LUT[3]} = {3,2,3,7}). Note

that, in this example, four individual lookup operations are

performed by a single pLUTo LUT Query.

Four copies of this LUT are stored in a pLUTo-enabled subar-

ray, as shown in Figure 3b: each row i contains repeated copies

of the element corresponding to the entry at the i-th index of the

LUT. pLUTo performs the pLUTo LUT Query operation in five

steps. First, the memory controller loads the LUT query input

vector from the source subarray (not shown) into the source

row buffer (1 in Figure 3). Second, the memory controller

issues a pLUTo Row Sweep operation (Section 5.1.1) to consec-

utively activate all four rows in the pLUTo-enabled subarray

that hold LUT elements, in order (i.e., the row indices to be ac-

tivated are {#0,#1,#2,#3}). After each row activation during

a pLUTo Row Sweep operation, the pLUTo Match Logic identi-

fies matches between 1) the row index of the currently activated

row in the pLUTo-enabled subarray, and 2) each element of the

LUT query input vector (i.e., the source row buffer). The aim of

this procedure is to allow for consecutive LUT elements, in turn,

to be copied to the FF buffer, if they are part of the final output
row for the ongoing pLUTo LUT Query operation. Consider the

activation of row #0 (2), which creates four copies of LUT[0]
(i.e., the LUT element with the value 2) in the pLUTo-enabled

row buffer (3). Concurrently with this row activation, the

pLUTo Match Logic 1) identifies a match between the index of

the currently activated row (#0) and the second LUT index in

the LUT query input vector (4), and 2) asserts the matchlines

corresponding to the second element in the pLUTo-enabled row

buffer. As a result, the switch at the second LUT element in the

pLUTo-enabled row buffer is closed, enabling the LUT element

to be copied to the second position in the FF buffer (5).

Third, the activation of row index #1 illustrates how multiple

LUT indices may be matched at once: in this case, the LUT

element of LUT[1] is required by both the first and the third
positions of the LUT query input vector (6). Therefore, the

pLUTo Match Logic asserts the matchlines corresponding to

both the first and third LUT elements, which copies both LUT

elements into the FF buffer (7). Fourth, the pLUTo LUT Query

operation progresses by activating row #2, which produces no
matches with LUT indices stored in the LUT Query input vector

(8). As a result, no LUT elements are copied into the FF buffer

(9). Fifth, when activating row #3, the pLUTo Match Logic

identifies a match between row index #1 and the fourth element

of the LUT query input vector (10), which leads to the copy of

the LUT element LUT[3] (i.e., 7) into the fourth position in the

FF buffer (11).

At this point, the pLUTo Row Sweep operation has been

completed, and the FF buffer holds the results of the pLUTo

LUT Query. The contents of the FF buffer are then copied

to the destination row buffer (not shown in Figure 3) using a

LISA-RBM command (see Section 2.2).

4903

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

Figure 3: A pLUTo LUT Query: (a) a LUT containing the first four prime numbers and an example user-specified LUT query, (b) setup
of pLUTo’s main components prior to the execution of the pLUTo LUT Query, and (c) steps of the pLUTo LUT Query. This pLUTo LUT
Query returns into the destination row buffer (not depicted) the i-th prime number for each LUT index in the source row buffer.

5. pLUTo’s Hardware Design
This section describes the hardware design of pLUTo that en-

ables the pLUTo LUT Query operation. First, we propose

three different pLUTo architectures. Each of these architectures

provides a different trade-off between performance, energy ef-

ficiency, and area overhead: 1) pLUTo-BSA (Buffered Sense
Amplifier) incurs moderate hardware overhead and provides in-

termediate performance and energy efficiency gains; 2) pLUTo-

GSA (Gated Sense Amplifier) incurs the lowest hardware over-

head but provides the lowest performance and energy efficiency;

3) pLUTo-GMC (Gated Memory Cell) incurs the highest hard-

ware overhead but provides the highest performance and energy

efficiency. Second, we describe the synergistic integration of

the novel components of pLUTo with prior PuM-based opera-

tions [79, 84, 108] and subarray-level parallelism [100].

5.1. pLUTo-BSA (Buffered Sense Amplifier) Design
To enhance a DRAM subarray with support for the execution

of pLUTo LUT Queries, we modify the DRAM subarray’s row

decoder and local row buffer to implement the pLUTo Match
Logic. Uniquely, pLUTo-BSA employs the key idea of relying

on a secondary row buffer (the FF buffer, see Section 5.1.3) to

store matching LUT elements during a pLUTo Row Sweep.

5.1.1. pLUTo-Enabled Row Decoder. The pLUTo-enabled

row decoder enhances the DRAM row decoder by introducing

support for the pLUTo Row Sweep operation. The pLUTo Row

Sweep extends the self-refresh operation (already present in

commodity DRAM [111–113]) to activate consecutive rows

quickly. With support for the pLUTo Row Sweep operation,

pLUTo activates all the rows in the pLUTo-enabled subarray

that store LUT elements during a pLUTo LUT Query operation

via a single new DRAM command. The latency of the pLUTo

Row Sweep is equal to (tRCD+tRP)×LUT#Elems, where tRCD
(≈ 12.5 ns in DDR4 [110]) is the time that must elapse to ensure

that the sense amplifiers can reliably amplify the voltage per-

turbation on the bitline, tRP (≈ 12.5 ns in DDR4 [110]) is the

time that must elapse between a PRE command and the next ACT
command, and LUT#Elems is the total number of rows swept.

5.1.2. pLUTo Match Logic. As shown in Figure 2a, we im-

plement the pLUTo Match Logic between the source subarray

and the pLUTo-enabled subarray. This logic comprises a set

of comparators; there are as many comparators in the pLUTo

Match Logic as there are elements in the source row buffer.

Every i-th comparator in the pLUTo Match Logic receives as

input the following two N-bit values, where N is the bit width of
each LUT element: 1) the row index of the currently activated

row in the pLUTo-enabled subarray, and 2) the i-th element in

the source subarray’s row buffer. Each comparator outputs an

N-bit value (the matchlines in pLUTo’s design) that depends

on the result of the comparison between its two N-bit inputs: if

the two inputs exactly match, all N matchlines at the output are

driven high; otherwise, all matchlines are driven low.

5.1.3. pLUTo-Enabled Row Buffer. Performing the pLUTo

LUT Query operation as described in Section 4.1 requires a

mechanism to perform many fine-grained (i.e., LUT-element-

wise) operations throughout a pLUTo Row Sweep, to both

1) read data from the row buffer of the pLUTo-enabled subarray,

and 2) write the result of the pLUTo LUT Query operation to

some output buffer. To realize this functionality, which com-

modity DRAM does not support, we connect one flip-flop (FF)

to every sense amplifier in the pLUTo-enabled row buffer using

a matchline-controlled switch (m-c switch, shown in Figure 4a).

Each m-c switch is closed only if there is a match between the

row index of the currently activated row in the pLUTo-enabled

subarray and the corresponding LUT index in the LUT Query

input vector. The complete row of FFs constitutes an FF buffer,

which gives pLUTo-BSA (Buffered Sense Amplifier) its name.

In this design, when a sense amplifier reads a DRAM cell’s

value, this value is also immediately written into the corre-

sponding FF, but only if the corresponding matchline signal is

high (i.e., if the m-c switch connected to the FF is closed).

5904

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

Figure 4: The three pLUTo designs. m-c switch stands for
matchline-controlled switch. Orange-dashed lines show how
charge flows in case the matchline signal is asserted.

5.1.4. Analysis of pLUTo-BSA. pLUTo-BSA’s design entails

the following pLUTo LUT Query throughput, pLUTo LUT

Query energy consumption, and area overhead values:

• Throughput: pLUTo-BSA’s maximum pLUTo LUT Query

throughput (in number of LUT queries per second, LUTs/s)

for a single pLUTo-enabled subarray depends on the number

of LUT indices that fit in the source subarray (
RowSizebytes

LUTElementSize
)

and the latency of a pLUTo Row Sweep ((tRCD+ tRP) ×
LUT#Elems). Thus, pLUTo-BSA’s maximum throughput is

BSAT hroughput =
RowSizebits/inputbit width

(tRCD+tRP)×LUT#Elems
LUT s/s.

• Energy Consumption: The energy pLUTo-BSA consumes

during a pLUTo Row Sweep depends on the energy consumed

by each DRAM row activation/precharge and LUT#Elems, the

total number of rows swept in the pLUTo-enabled subarray:

BSAEnergy = (ERCD +ERP)×LUT#Elems.

• Area Overhead: The area overhead of pLUTo-BSA in-

cludes the area of the pLUTo Match Logic (RowSizebytes ×
AreaByteComp), matchline-controlled switches (RowSizebits×
Aream−c switch), and FF buffer (RowSizebits×AreaFF). Thus,

pLUTo-BSA’s area overhead is

BSAArea = RowSizebytes ×AreaByteComp+

RowSizebits ×Aream−c switch+

RowSizebits ×AreaFF .

5.2. pLUTo-GSA (Gated Sense Amplifier) Design
pLUTo-GSA differs from pLUTo-BSA in its pLUTo-enabled

row buffer design and in its implementation of the pLUTo Row

Sweep operation. pLUTo-GSA’s key idea is to use the sense

amplifier as a buffer that stores only the LUT elements indicated

as a match by the pLUTo Match Logic. By doing this, pLUTo-

GSA eliminates the need for a secondary buffer (such as the

FF buffer in pLUTo-BSA) to store LUT elements during a

pLUTo Row Sweep operation. pLUTo-GSA provides reduced

area overhead over pLUTo-BSA, at the expense of reduced

throughput and energy efficiency.

5.2.1. pLUTo-GSA Row Buffer. Each sense amplifier in

pLUTo-GSA’s row buffer is gated from its bitline by a

matchline-controlled switch (Figure 4b). This switch (i.e., isola-

tion transistor) incurs a lower area overhead than the FF buffer

used by pLUTo-BSA, resulting in pLUTo-GSA’s higher area ef-

ficiency. During a pLUTo LUT Query, if the matchline signal is

high (i.e., the switch is closed), the sense amplifier is electrically

connected to its bitline, thus amplifying bitline voltage pertur-

bations normally. However, if the matchline signal is low (i.e.,

the switch is open), the sense amplifier does not respond to the

perturbation induced by its corresponding DRAM cell, which

leads to the loss of the cell’s contents during row activation (i.e.,

implementing pLUTo-GSA’s row buffer leads to destructive

reads). This represents a potential for LUT data loss, which

means that a LUT must be loaded into the pLUTo-enabled sub-
array before every pLUTo LUT Query in pLUTo-GSA, leading

to performance overheads compared to pLUTo-BSA.

5.2.2. The pLUTo Row Sweep. The latency of the pLUTo Row

Sweep operation is lower in pLUTo-GSA than in pLUTo-BSA.

This is because 1) row activations in pLUTo-GSA’s pLUTo

Row Sweep do not require the full-fledged activation process

required to read DRAM data, but only the triggering of the

charge sharing process, and 2) the pLUTo Row Sweep does

not require a precharge (PRE) command to be issued after ev-

ery activate (ACT) command, since each unmatched bitline re-

mains in a precharged state (i.e., the voltage in each bitline

remains at VDD/2) until the pLUTo Match Logic registers a

match. Instead, a single PRE command may be issued at the

end of the pLUTo Row Sweep. However, row activations in

pLUTo-GSA’s pLUTo Row Sweep lead to LUT data loss for

unmatched elements: when an unmatched DRAM cell capaci-

tor is discharged, its charge level will not be restored since the

matchline-controlled switch leaves the path between the bitline

and the sense amplifier open.

The total time required to perform a pLUTo Row Sweep in

pLUTo-GSA is equal to tRCD×N +tRP, where tRCD (≈ 12.5 ns

in DDR4 [110]) is the time that must elapse between the DRAM

chip receiving an ACT command and the sense amplifier finish-

ing sensing the voltage perturbation in the bitline, tRP (≈ 12.5 ns

in DDR4 [110]) is the precharge time, and LUT#Elems is the total

number of rows swept. This is about half the time a pLUTo

Row Sweep requires in pLUTo-BSA.3 However, due to the

destruction of row contents during the pLUTo Row Sweep, the

calculation of the average latency of a pLUTo LUT Query in

pLUTo-GSA must also factor in the latency of loading data into

a pLUTo-enabled subarray before every pLUTo Row Sweep

(LISARBM ×LUT#Elems). As a result, while the latency of the

pLUTo Row Sweep operation is lower in pLUTo-GSA than

in pLUTo-BSA, the latency of the total pLUTo LUT Query is

higher in pLUTo-GSA than in pLUTo-BSA.

5.2.3. Analysis of pLUTo-GSA. pLUTo-GSA’s design entails

the following pLUTo LUT Query throughput, pLUTo LUT

Query energy consumption, and area overhead values:

• Throughput: pLUTo-GSA’s maximum throughput (in number
of LUT queries per second, LUTs/s) for a single pLUTo-

enabled subarray depends on the number of LUT indices

that fit in the source subarray (
RowSizebytes

LUTElementSize
), the latency of

a pLUTo Row Sweep operation (tRCD×LUT#Elems + tRP),

3 The ratio between the latencies of the pLUTo Row Sweep in pLUTo-

BSA and pLUTo-GSA is given by
(tRCD+tRP)×N
tRCD×N+tRP . Under the assumption that

tRCD ≈ tRP, this simplifies to 2×N
1+N , which approaches 2 for large values of N.

6905

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

and the latency of loading LUT elements into the pLUTo-

enabled subarray, since LUT elements are destroyed after

each pLUTo Row Sweep (LISARBM ×LUT#Elems). Thus, the

maximum throughput achievable with pLUTo-GSA is

GSAT hroughput =
RowSizebits/inputbit width

LISARBM ×LUT#Elems +(tRCD×LUT#Elems +tRP)
LUT s/s.

• Energy Consumption: The energy pLUTo-GSA consumes

during a pLUTo Row Sweep operation depends on the number

of elements in the LUT and the energy consumed by a DRAM

row activation and precharge operation:

GSAEnergy = ELISARBM ×LUT#Elems +ERCD ×LUT#Elems +ERP.

• Area Overhead: The area overhead of pLUTo-GSA’s

design includes the area of the pLUTo Match Logic

(RowSizebytes × AreaByteComp), and matchline-controlled

switches (RowSizebits ×Aream−c switch). Thus, the total area

overhead of pLUTo-GSA is

GSAArea = RowSizebytes ×AreaByteComp+

RowSizebits ×Aream−c switch.

5.3. pLUTo-GMC (Gated Memory Cell) Design
pLUTo-GMC provides higher throughput and energy efficiency

over pLUTo-BSA, at the expense of increased area overhead.

pLUTo-GMC differs from pLUTo-BSA in its DRAM cell de-

sign, pLUTo-enabled row buffer design, and pLUTo Row Sweep

implementation. Similarly to pLUTo-GSA, pLUTo-GMC’s key
idea is to use the sense amplifier in the pLUTo-enabled subarray

as a buffer to store the matched LUT elements during a pLUTo

LUT Query (instead of adding a new buffer, as pLUTo-BSA

does). However, in contrast to pLUTo-GSA, row activations dur-

ing the pLUTo Row Sweep in pLUTo-GMC are not destructive,

since charge is allowed to flow from the DRAM cell to the bit-

line only if there is a match between the row index and the LUT

indices in the source subarray. To do so, pLUTo-GMC adds

an extra transistor in each DRAM cell of the pLUTo-enabled

subarray. As such, pLUTo-GMC is the most intrusive to the

subarray design (because it changes the DRAM cell itself).

5.3.1. pLUTo-GMC DRAM Cell. pLUTo-GMC implements

a 2T1C DRAM cell instead of the conventional 1T1C design

(described in Section 2.1). An additional transistor connects

the DRAM cell’s access transistor to the bitline. The output

of the pLUTo Match Logic (i.e., the matchline) controls the

additional transistor in each cell, as shown in Figure 4c. The

matchline signal thus controls whether a cell in an activated row

shares charge with the bitline. This significantly reduces the

overall movement of charge, since charge only flows between

the DRAM cell and the bitline if the pLUTo Match Logic out-

puts a match during the pLUTo LUT Query operation, which

reduces the overall energy consumption of pLUTo-GMC dur-

ing a pLUTo Row Sweep compared to both pLUTo-BSA and

pLUTo-GSA.

5.3.2. pLUTo-GMC Row Buffer. In pLUTo-GMC, additional

matchline-controlled switches exist between each sense ampli-

fier and its enable signal. The role of these switches is to ensure

that, when a row is activated, the sense amplifier connected

to a given DRAM cell only senses the bitline voltage if both
the wordline and the matchline signals are high. Without this

safeguard, the sense amplifiers would be activated when cells

in the active row are not connected to the bitline (i.e., when the

wordline signal is high for a given row, but the matchline signals

are low for one or more cells in that row), which would lead

to undefined behavior. In addition, these matchline-controlled

switches enable pLUTo-GMC to perform back-to-back activa-

tions without needing to precharge the subarray. This happens

because, when a matchline signal is low, the corresponding

bitline behaves as if it had remained inactive, which keeps it

in its precharged state. Conversely, only when the matchline is
high does the sense amplifier become enabled.

5.3.3. The pLUTo Row Sweep. pLUTo-GMC optimizes the

pLUTo Row Sweep operation by introducing the ability to per-

form back-to-back activations without the need to precharge

the bitlines. Leveraging this optimization, pLUTo-GMC outper-

forms pLUTo-BSA in the pLUTo Row Sweep by almost 2×.4

To achieve this optimization, pLUTo-GMC adopts the following

two key design features. First, a sense amplifier is only enabled

when there is a match in the corresponding pLUTo Match Logic.

This means that an activation only perturbs a bitline if the associ-

ated matchline signal is high, and that the voltage in the bitlines

is kept at VDD/2 (i.e., in the precharged state) if the matchline

signal is low. Second, since each source row element necessarily

only has one match in a LUT, the sense amplifier is only enabled

for a single row activation during an entire pLUTo LUT Query.

Therefore, we can guarantee that back-to-back row activations

will not open the gating transistors of any two cells sharing the

same bitline, and thus will not destroy the data in the cell. As in

pLUTo-GSA, the total time required to perform a pLUTo Row

Sweep in pLUTo-GMC is tRCD×LUT#Elems+tRP. In addition,

due to matchline-controlled switches (Section 5.1.3), pLUTo-

GMC does not destroy the data in the LUTs; this translates into

significant performance gains, as there is no need to repeatedly

load LUT data into the subarray.

5.3.4. Analysis of pLUTo-GMC. pLUTo-GMC’s design entails

the following pLUTo LUT Query throughput, pLUTo LUT

Query energy consumption, and area overhead values:

• Throughput: pLUTo-GMC’s maximum throughput (in num-
ber of LUT queries per second, LUTs/s) for a single pLUTo-

enabled subarray depends on the number of LUT indices

that fit in the source subarray (RowSizebits/inputbit width) and

the latency of a pLUTo Row Sweep operation (tRCD+tRP×
LUT#Elems). Thus, the maximum throughput achievable with

pLUTo-GMC is

GMCT hroughput =
RowSizebits/inputbit width

tRCD×LUT#Elems +tRP
LUT s/s.

• Energy Consumption: The energy pLUTo-GMC consumes

during a pLUTo LUT Query operation depends on the number

of elements in the LUT and the energy consumed by a DRAM

row activation and precharge operation:

GMCEnergy = ERCD ×LUT#Elems +ERP.

4 See Footnote 3. The latency of the pLUTo Row Sweep in pLUTo-GSA and

pLUTo-GMC is the same.

7906

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

• Area Overhead: The area overhead of pLUTo-GMC’s design

includes the area of the pLUTo Match Logic (RowSizebytes×
AreaByteComp) and matchline-controlled switches (#Rows×
RowSizebits×Aream−c switch). Thus, the total area overhead of

pLUTo-GMC is

GMCArea = RowSizebytes ×AreaByteComp+

#Rows×RowSizebits ×Aream−c switch.

5.4. Summary of pLUTo Architectures
While the pLUTo-BSA design provides a balanced trade-off

between performance, energy efficiency, and area overhead,

the system designer could prefer to optimize for one of these

three metrics in isolation. To provide this added flexibility,

we described pLUTo-GSA and pLUTo-GMC, two additional

pLUTo designs with different trade-offs in performance, energy

efficiency, and area overhead. Table 1 summarizes the trade-offs

of each of the proposed pLUTo designs.

Table 1: Comparison of pLUTo designs’ core attributes. Bold cells
represent key benefits of a pLUTo design compared to others. N
corresponds to LUT elements (i.e., LUT#Elems).

pLUTo-BSA pLUTo-GSA pLUTo-GMC

Area Efficiency Medium High Low

Throughput Medium Low High
Energy Efficiency Medium Low High
Destructive Reads No Yes No
LUT Data Loading Once After every use Once

Query Latency (tRCD+tRP)×N LISARBM ×N +tRCD×N +tRP tRCD×N +tRP

Query Energy (ERCD+ERP)×N ELISARBM ×N +ERCD×N +ERP ERCD×N +ERP

Table 1 and the expressions for throughput, energy consump-

tion and area overhead derived in Sections 5.1.4, 5.2.3 and 5.3.4

enable three key observations. First, pLUTo-GMC provides

the highest throughput of the three designs (GMCT hroughput >
BSAT hroughput > GSAT hroughput). pLUTo-GMC achieves this

by 1) eliminating the need to issue PRE commands follow-

ing every row activation in the pLUTo-enabled subarray (as

in pLUTo-BSA), and 2) eliminating the need to load all LUT

elements before each pLUTo LUT Query operation (as re-

quired by pLUTo-GSA, due to the destructive row activations

required by its pLUTo Row Sweep operation). Second, GMC

provides the highest energy efficiency of the three designs

(GMCEnergy < BSAEnergy <GSAEnergy). pLUTo-GMC achieves

this by 1) eliminating the energy overhead associated with the

issuance of PRE commands following every row activation in

the pLUTo-enabled subarray (as in pLUTo-BSA), and 2) elimi-

nating the energy overhead associated with loading the LUTs

before each pLUTo LUT Query (as in pLUTo-GSA). Third,

GSA incurs the smallest area overhead of the three designs

(GSAArea < BSAArea <GMCArea). pLUTo-GSA’s area overhead

is minimized by making as few modifications to the DRAM

array as possible. In particular, pLUTo-GSA does not employ

the logic components required for the operation of pLUTo-BSA

(i.e., the FF buffer) or pLUTo-GMC (i.e., per-cell matchline-

controlled switches).

We conclude that pLUTo-GSA is the most well-suited design

to minimize area overhead, pLUTo-GMC is the most well-suited

design to maximize either performance or energy efficiency, and

pLUTo-BSA provides a trade-off point that offers intermediate

throughput, energy efficiency, and area overhead metrics.

5.5. Subarray-Level Parallelism
Since the lookup operations of different input values are in-

dependent of one another, many pLUTo LUT Queries can be

executed simultaneously across multiple subarrays by exploit-

ing subarray-level parallelism (SALP) [100], as described in

Section 2.2. Two important use cases benefit from the distribu-

tion of LUT queries across multiple subarrays: 1) LUT query

input vectors with a very large number of LUT indices can be

partitioned across multiple source subarrays to be queried simul-

taneously; and 2) independent pLUTo LUT Queries (possibly

belonging to different threads or applications) can be executed

concurrently.

The achievable degree of subarray-level parallelism is limited

by the tFAW DRAM timing constant [109, 110], which corre-

sponds to the duration of the time window during which at
most four ACT commands can be issued, per DRAM rank. This

constraint protects against the deterioration of the DRAM refer-

ence voltage, although DRAM manufacturers have been able to

mitigate it substantially in commodity DRAM chips in recent

years [114], as well as to perform a targeted reduction of this

parameter specifically for PiM architectures where it becomes

a performance bottleneck [115]. These advances suggest that

this parameter may not limit pLUTo’s scalability severely.

5.6. Limitations of pLUTo’s Subarray Design
For a single-subarray pLUTo LUT Query, the number of LUT

elements can scale up to the number of rows in the subarray. To

query LUTs with a greater number of elements, it is possible

to partition a pLUTo LUT Query across subarrays. Note that

partitioning the query does not increase latency (since multiple

subarrays operate simultaneously), but does increase energy

consumption N-fold, for a pLUTo LUT Query distributed across

N subarrays. For this reason, the design of pLUTo is not well

suited for executing large-bit-width lookup queries. We leave

the potential exploration of alternative designs that address this

limitation for future work.

5.7. The Role of pLUTo in the PiM Landscape
As discussed in Section 1, PnM and PuM are complementary

approaches: the former enables flexible substrates that support

a diverse range of operations, while the latter yields maximal

performance and energy efficiency benefits. pLUTo does not
aim to replace prior PuM proposals. Instead, it addresses an

important gap in the literature and enables PuM to support more

complex operations, as many applications require. Ideally, a

real-world PiM system would combine the strengths of differ-

ent proposals: for example, relying on SIMDRAM [75] for

addition, pLUTo for trigonometric functions and bit counting

operations, and near-memory general-purpose cores [67] for

serial reduction and other irregular tasks. Mapping application

segments to their most suitable PiM substrates is a rich area for

future work.

8907

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

6. System Integration
This section describes the system integration stack that enables

pLUTo to operate seamlessly with the host system. There

are four key components in this stack: 1) the pLUTo ISA (Sec-

tion 6.1), a set of instructions that express i) pLUTo Row Sweep

operations (pluto_op), ii) bitwise logic operations [84], iii)

bit- and byte-level shifting operations [79], and iv) data move-

ment operations involving multiple DRAM rows [108]; 2) the

pLUTo library (Section 6.2), a set of routines that implement

complex operations (i.e., operations that involve several pLUTo

ISA instructions); 3) the pLUTo Compiler (Section 6.3), which

analyzes data dependences (necessary for data allocation and

alignment) and translates pLUTo library routines to pLUTo ISA

instructions; 4) the pLUTo Controller (Section 6.4), a modified

DRAM controller that supports the execution of pLUTo ISA in-

structions (i.e., given a pluto_op, the pLUTo Controller carries

out the corresponding pLUTo Row Sweep operation through

a series of ACT and PRE DRAM commands). The description

of the entire system integration stack is depicted by Figure 5,

which shows an end-to-end example of pLUTo’s operation,

from reference C code (a) to in-memory computation (e).

This example describes the implementation of the multiply-and-

add (A⊙B+C) operation between three vectors: Row A (2-bit

elements), Row B (2-bit elements), and Row C (4-bit elements).

Section 6.5 describes the methods of creating the LUTs used in

pLUTo LUT Queries. Finally, Section 6.6 discusses the limita-

tions of our proposed system integration of pLUTo and how we

can mitigate these limitations.

uint2_t *A,*B,*C = (uint2_t *)malloc(input_size*2); // Inputs
uint4_t *out = (uint4_t *)malloc(input_size*4); // Output

// Array initialization
// ...
// Multiply-and-add loop
for (int i = 0; i < input_size; i++) {

out[i] = A[i]*B[i] + C[i];
}

// Array allocation
uint2_t *A, *B = pluto_malloc(size=input_size, bitwidth=2);
uint2_t *C, *tmp = pluto_malloc(size=input_size, bitwidth=4);
uint4_t *out = pluto_malloc(size=input_size, bitwidth=5);

// Multiply-and-add loop
for (int i = 0; i < input_size/row_size; i++){

api_pluto_mul(in1 = A, in2 = B, out = tmp, bitwidth = 2);
api_pluto_add(in1 = C, in2 = tmp, out = out, bitwidth = 4);

}

Array allocation
pluto_row_alloc $prg0, input_size, 2 # Allocate A
pluto_row_alloc $prg1, input_size, 2 # Allocate B
pluto_row_alloc $prg2, input_size, 4 # Allocate C
pluto_row_alloc $prg3, input_size, 4 # Allocate tmp
pluto_row_alloc $prg4, input_size, 5 # Allocate out

Allocate and load LUTs
pluto_subarray_alloc $lut_rg0, “mul2_lut_file.dat”
pluto_subarray_alloc $lut_rg1, “add4_lut_file.dat”

Allocate temporary row for OR operation
pluto_row_alloc $prg5, input_size, 8

Multiply-and-add loop
div $r0, input_size, row_size # Initialize loop counter
LOOP:

pluto_bit_shift_l $pgr0, 4 # Shift A 4 bits to the left
pluto_or $prg5, $prg0, $prg1 # $prg5 <- A | B
pluto_op $prg3, $prg5, $lut_rg0, 256, 4 # tmp <- LUT[A|B]
pluto_bit_shift_l $pgr3, 4 # Shift tmp 4 bits to the left
pluto_or $prg5, $prg3, $prg2 # $pgr5 <- tmp | C
pluto_op $prg4, $prg5, $lut_rg1, 256, 8 # out <- LUT[tmp|C]
Update input addresses
subi $r0, 0 # decrement loop counter
bne $r0, LOOP # next loop iteration

Am
bi
t-
OR

Am
bi
t-
OR

Ro
w
Sw
ee
p

Ro
w
Sw
ee
p

Figure 5: pLUTo’s system integration stack. An example is shown
for the C code displayed in a . Subsequent steps are shown in top-
down, left-to-right order: b implementation using pLUTo’s API
Library, c the transformation of the pLUTo API code performed
by the pLUTo Compiler, d data dependency graph analysis, e
the role of the pLUTo Controller and in-memory execution.

6.1. The pLUTo ISA

We propose ISA extension instructions that express the opera-

tions required by pLUTo to perform in-memory computation.

The instructions in the pLUTo ISA manipulate special-purpose

pLUTo registers that keep track of the currently allocated pLUTo

data structures. We describe ISA instructions for 1) allocating

memory, 2) querying LUTs (the pluto_op), and 3) manipulat-

ing data (in-memory bitwise logic [84], bit shifting [79], and

data copy [108] operations), as summarized in Table 2. Fig-

ure 5 c shows the translation of instructions from the reference

program (a) into a sequence of pLUTo ISA instructions.

Table 2: Summary of pLUTo ISA extension instructions.

Operation Instruction Proposed in
pLUTo

Register Allocation
pluto_row_alloc dst, size, bitwidth This work
pluto_subarray_alloc dst, num_rows, lut_file This work

pLUTo
Row Sweep

pluto_op dst, src, lut_subarr, lut_size, lut_bitw This work

Bitwise
Logic Operations

pluto_{not, and, or} dst, src1, scr2 [84]

Bit- and Byte-
Level Shifting

pluto_bit_{shift_l, shift_r} src, #N [79]
pluto_byte_{shift_l, shift_r} src, #N [79]

In-DRAM
Data Movement

pluto_move dst, src [108]

pLUTo Registers. pLUTo’s instructions operate at the gran-

ularity of contiguously allocated DRAM rows (for both LUT

query input and output vectors) and contiguously allocated
DRAM subarrays (pLUTo-enabled subarrays that hold LUTs).

To guarantee that the physical memory addresses of all DRAM

rows involved in a pLUTo LUT Query operation are contigu-

ously allocated in the DRAM array, we define two data struc-

tures (row registers and subarray registers) that separately cap-

ture these two abstractions. Each pLUTo Row Register is a

special-purpose architectural register that identifies a DRAM

row to be used either as the input or the output of a pLUTo LUT

Query. Each pLUTo Subarray Register is a special-purpose

architectural register that identifies a LUT-holding DRAM sub-
array to be used in a pLUTo LUT Query. These two types of

registers are used as arguments of pLUTo’s ISA instructions

where appropriate. The allocation of pLUTo Registers is per-

formed by the operating system via a call to a pLUTo allocation

routine (see “Memory Allocation”, Section 6.1). The allocation

of both register types is recorded in an in-memory allocation

table, which the pLUTo Controller (Section 6.4) accesses to

derive the physical memory addresses required to issue DRAM

commands during the execution of pLUTo LUT Queries.

Memory Allocation. We introduce two instructions to enable

the compiler or the programmer to allocate pLUTo Registers.

The first instruction, pluto_row_alloc, allocates the mem-

ory space (as a whole number of memory rows) to be used

by a source or destination row involved in the execution of

pLUTo ISA instructions. This instruction has two inputs (size
and bitwidth) and one output (dst). It sets dst to a valid

pLUTo Row Register that is used to reference the allocated

size-byte memory row(s) whose elements are bitwidth-bits

wide. bitwidth is only a meaningful parameter for data struc-

tures used as inputs, and is equal to log2(lut_size), where

lut_size is number of elements in the LUT to query.

9908

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

The second instruction, pluto_subarray_alloc, allocates

memory space corresponding to consecutive rows belonging to

a single subarray, in which the LUT required by a pluto_op
will be stored. This instruction has two inputs (num_rows and

lut_file) and one output (dst). It sets dst to a valid pointer

that references the allocated DRAM subarray. num_rows is the

number of rows to be reserved, i.e., the number of elements in

the associated LUT, and lut_file is a memory location that

holds the LUT data to be stored in the allocated subarray.

LUT Querying. A pLUTo LUT Query (Section 4.1) uniquely

maps to a pluto_op instruction, which has three inputs (src,

lut_subarr, lut_size, and lut_bitw) and one output (dst).

Here, dst and src are the pLUTo Row Registers of the desti-

nation and source rows. lut_subarr is the physical address of

the pLUTo-enabled subarray where the LUT to query is stored.

lut_size is the number of LUT elements, i.e., the number of

rows to sweep. lut_size must be a power of two: more specif-

ically, lut_size ∶= 2N , where N is the bit width of each source

row value; for example, a 4-bit-input LUT contains 24 = 16

elements, and thus requires the sweeping of 16 rows. lut_bitw
specifies the bit width of the LUT elements,5 i.e., the width of

the match logic’s comparators for this pluto_op. A pluto_op
instruction always operates at the granularity of a DRAM row;

as a result, operating on S input bytes requires ⌈ S
DRAMrow size

⌉

pluto_op instructions.

Bit Manipulation. pLUTo requires bit manipulation operations

proposed by prior works [79, 84, 108], as shown in Table 2.

We use these operations to align source row values (bit shift-

ing using pluto_bit_* and pluto_byte_*), merge operands

between source rows (bitwise OR using pluto_or), apply bit

masks to input and output rows (bitwise AND using pluto_and),

and copy rows in-memory (row buffer to row buffer data copy

using pluto_move).

6.2. The pLUTo Library
The pLUTo library encompasses 1) computation routines, which

the programmer may conveniently use to express operations at a

high level of abstraction, and 2) a routine for memory allocation
(pluto_alloc), which the programmer may use to instantiate

the data structures involved in pLUTo’s operation (i.e., the

source and destination rows and the LUT-holding subarrays).

Computation. Examples of pLUTo Library computation rou-

tines include common operations (e.g., api_pluto_add and

api_pluto_mul express addition and multiplication). Fig-

ure 5 b contains a code example with pLUTo library calls

(api_pluto_add, api_pluto_mul) in place of the addition and

multiplication operations in the reference code (Figure 5 a).

Each of the routines in the pLUTo library translates into a pre-

determined, constant sequence of pLUTo ISA instructions. For

example, the 4-bit addition operation

api_pluto_add(in1,in2,out,bitwidth=4)

5 lut_bitw can only be greater than or equal to N. If lut_bitw > N,

the source row values will be zero-padded: as an example, for N = 1 and

lut_bitw = 8, the 1-bit values {0,1} would be zero-padded to a width of 8 bits

(i.e., {00000000,00000001}) and used to query a 2-entry LUT whose elements

may be any 8-bit value (e.g., {00000000,11111111}).

always corresponds to the following sequence of pLUTo ISA

instructions:

pluto_or temp,in1,in2

pluto_op dst,temp,add4_lut,lut_size=256,lut_bitw=8

Here, dst denotes the destination row to which the result will

be stored, temp holds the result of the bitwise OR operation that

combines the two source rows, add4_lut denotes the subarray

that holds the LUT with the results for the 4-bit addition, and

lut_size and lut_bitw are uniquely determined by the bit

width of this operation (256 and 8, respectively, in this exam-

ple). pLUTo library routines always assume a specific data

alignment (e.g., the pluto_add operation assumes that the left

and right operands are concatenated before performing the LUT

query). However, these routines do not explicitly guarantee
this alignment; instead, the responsibility of ensuring correct

input operand alignment is assumed by the pLUTo Compiler,

as explained in Section 6.3.

Memory Allocation. To abstract the low-level memory

allocation instructions defined in Section 6.1, the pLUTo

Library implements the pluto_malloc routine, defined as

pluto_malloc(size,bitwidth). Here, size is the number

of bits to be allocated, and bitwidth is the bit width of each

element (either an input/output value, or a LUT element).

Based on the dependences between the arguments of this func-

tion, the pLUTo Compiler (Section 6.3) is able to infer a se-

quence of pLUTo ISA instructions (i.e., pluto_row_alloc,

pluto_subarray_alloc) that are equivalent to it. b and c in

Figure 5 show an example of this compilation process.

6.3. The pLUTo Compiler
The role of the pLUTo Compiler is to identify the dependences

between operands used by pLUTo library routines to ensure

the correct allocation (i.e., pluto_alloc_*) and alignment of

these operands. The compiler may achieve operand alignment

by inserting additional pLUTo ISA instructions to perform

bit shifting (pluto_{bit,byte}_*), bit masking (pluto_and),

and row merging (pluto_or) operations as needed, in addition
to the pLUTo ISA instructions specified by each pLUTo Library
routine. As an example of the role of the compiler, consider

the multiplication between the 2-bit elements of arrays A and B
using the api_pluto_mul instruction, as shown in Figure 5 c .

The translation from the api_pluto_mul call to pLUTo ISA

instructions yields only a pluto_or and a pluto_op, and there-

fore does not guarantee that each value from A is combined with

its counterpart from B to create the value to be queried in the

LUT. In this example, the compiler guarantees correct operand

alignment by performing the operations shown in d , namely 1)

shifting the contents of input row A to the left by two bits, and

2) merging the result of operation 1) with input row B using a

bitwise OR.

6.4. The pLUTo Controller
The pLUTo Controller, which extends the DRAM controller, ex-

ecutes the pLUTo ISA instructions that are either 1) specified by

the programmer using pLUTo Library routines, or 2) inserted by

the pLUTo Compiler to ensure correct operand alignment. Each

10909

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

of these ISA instructions translates into either i) a predefined

sequence of ACT and PRE commands, which the pLUTo Con-

troller stores in an internal ROM (for the execution of bitwise

logic operations, bit- and byte-level shifting, and in-DRAM data

movement operations); or ii) a pLUTo Row Sweep command.

The pLUTo Controller’s hardware consists of: 1) a small

internal ROM that maps each pLUTo ISA instruction to ap-

propriate DRAM commands; 2) a small register file that holds

pLUTo Row Registers; and 3) a finite state machine that de-

codes pLUTo ISA instructions, gathers the physical addresses

of all operands of a pLUTo ISA instruction and controls the

execution flow of pLUTo’s in-memory operations. The hard-

ware and operation of the pLUTo Controller resemble those of

SIMDRAM’s Control Unit [75], and thus incur negligible area

overhead on the host CPU die (< 0.08%).

6.5. Loading LUT Data
To load the LUTs required by pLUTo LUT Queries, it

is necessary to 1) allocate LUT subarrays (using the

pluto_subarray_alloc operation) that are adjacent or in close

physical proximity to the source and destination rows, and 2)

load the LUTs into these subarrays. The loading of LUTs may

take place in one of three ways, which we quantitatively com-

pare in Section 8.5:

1. First-Time Generation. The first time a LUT is required,

its elements must be computed from scratch. Optionally, these

values may then be saved in memory for later reuse. This

procedure is similar to operand memoization [116] and presents

an opportunity for potential further optimizations, as described

in prior works [116–120]. We leave the exploration of more

complex memoization strategies for future work.

2. Loading From Memory. If a LUT already exists in mem-

ory, the most efficient way to reuse it is by copying it to the

designated pLUTo-enabled subarray using LISA-RBM [108]

(if the source and destination subarrays are in close physical

proximity) or a CPU-mediated copy operation.

3. Loading From Secondary Storage. If a LUT is stored

in secondary storage (e.g., at compile time, or following First-

Time Generation), it may be loaded into the main memory at

runtime using a direct memory access (DMA) operation.

6.6. Limitations of the System Integration Stack
Address Translation. Ensuring the physical proximity between

the source row, the LUT-holding subarray, and the destination

row requires knowledge of the physical address mapping of the

involved DRAM subarrays, banks, and ranks. Two possible

approaches to achieve this are 1) via the help of a memory

controller that can provide this information, and 2) via an a pri-
ori reverse-engineering effort that allows the memory mapping

scheme to be recovered [121].

Coherence. pLUTo does not provide means to enforce coher-

ence between the data stored in pLUTo subarrays and the data

stored in other locations in the system (e.g., CPU caches). For

this reason, programmers are responsible for preventing data de-

coherence stemming from modifications by simultaneous CPU

and pLUTo operations (e.g., using instructions to flush cache

lines belonging to memory addresses that pLUTo will operate

on). pLUTo can leverage coherence optimizations tailored to

PiM to improve overall performance [32, 48, 122].

7. Methodology
We evaluate the three proposed pLUTo designs: pLUTo-GSA,

pLUTo-BSA, and pLUTo-GMC. Unless stated otherwise, our

implementations assume the parallel operation of 16 subar-

rays with 8 kB row buffers for DDR4 memory [100], and 512

subarrays with 256 B row buffers for 3D-stacked (3DS) [65]

memory. These two design points are comparable since the vol-

ume of data processed per operation is identical in both cases:

16×8 kB = 512×256 B = 128 kB. We compare each pLUTo

design against four baselines: 1) a state-of-the-art CPU, 2) a

state-of-the-art GPU, 3) a simulated Processing-near-Memory

(PnM) accelerator, and 4) a simulated FPGA. Table 3 shows the

main parameters we use in our evaluations.

Table 3: Configuration of the simulated system.

Parameter Configuration

Main Memory

DDR4 2400 MHz, 8 GB, 1-channel, 1-rank, 4-bank

groups, 4-banks per bank group, 512 rows per subar-

ray, 8 kB per row; timings 17-17-17 (14.16 ns)

PnM

HMC Model [67] with support for bitwise opera-

tions [84] and bit shifting [79]; on-die core with

1.25 GHz clock, 10 W TDP

FPGA Zynq® UltraScale+ MPSoC ZCU102 [105]

pLUTo
16-subarray parallelism [100] unless stated otherwise;

unthrottled rate of row activations (tFAW = 0s)

7.1. Evaluation Frameworks
Baselines. We evaluated the CPU and GPU baselines on a real

system equipped with an Intel® Xeon Gold 5118 [103] CPU

and an NVIDIA® GeForce RTX 3080 Ti [104] GPU. The CPU

versions of our evaluated workloads employ SSE2 and SSE4

Intel® Streaming SIMD Extensions. We evaluate the FPGA

baseline using high-level synthesis (HLS) implementations cre-

ated with Vitis 2020.1 [123] and Vivado 2020.1 [124], and

perform post-synthesis simulation for a Xilinx Zynq UltraScale

ZCU102 FPGA [105]. For the evaluation of the PnM baseline,

we simulate an HMC-based system [67] with support for bulk

bitwise operations as described in Ambit [84] and bit shifting

as described in DRISA [79]. We simulate various configura-

tions of pLUTo on DDR4 [110] and HMC [67] memory models

using a custom-built simulator, which we have made publicly

available at [125, 126] under an open-source license.

pLUTo. Our simulator estimates the performance of pLUTo

operations by parsing the sequence of memory commands re-

quired to perform them and enforcing the memory’s timing

parameters. The simulator then outputs the total time elapsed

and energy consumed to complete the operations.

Energy and Area. We evaluate the energy consumption and

area overhead of pLUTo configurations using CACTI 7 [127]

DDR4 and HMC models. These models supply the energy con-

sumption of each memory command and the area of each mem-

ory component. Using these values, we extrapolate pLUTo’s

11910

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

energy consumption and area overhead by considering the tran-

sistor count associated with the logic required to implement

its functionality, including 1) the addition of the match logic,

2) modifications to the subarray architecture and memory con-

troller, and 3) the addition of the pLUTo controller.

7.2. Workloads
Table 4 shows the names and characteristics of the workloads

we evaluate. We select these workloads because 1) they exem-

plify general-purpose, real-world functions that cannot be effi-

ciently executed by previous Processing-using-Memory archi-

tectures [75, 84] (e.g., substitution tables [128, 129], polynomial

division [130]), 2) they include segments that are well-suited

for LUT-based computation, and 3) their typical working sets

are much larger than the cache size of modern systems.

Table 4: Evaluated workloads.

Name Parameters

Vector Addition, LUT-based [131] Element width: 4 bits

Vector Point-Wise Multiplication [131] Q Format: Q1.7, Q1.15

Row-Level Bitwise Logic Operations [84] # LUT entries: 4

Bit Counting [130]
BC-4: 4 bits, 16-entry LUT; BC-

8: 8 bits, 256-entry LUT

CRC-8/16/32 [130] Packet size: 128 B

Salsa20 [128], VMPC [129] Packet size: 512 B

Image Binarization (ImgBin) [132]
3-channel 8-bit image, 936000

pixels; threshold: 50%

Color Grading (ColorGrade) [133]
One 3-channel 8-bit image,

936000 pixels; 8-bit to 8-bit

8. Evaluation
In this section, we evaluate pLUTo’s reliable and correct opera-

tion (Section 8.1), performance (Section 8.2), energy consump-

tion (Section 8.3), and area overhead (Section 8.4). We also

carry out performance sensitivity analyses to assess the cost

of loading LUTs (Section 8.5), the scalability of pLUTo (Sec-

tion 8.6), tFAW’s impact on performance (Section 8.7), and the

effect of varying degrees of subarray-level parallelism (Sec-

tion 8.8). Finally, we discuss how pLUTo compares to various

prior approaches (Section 8.9).

8.1. Reliability and Correctness
We perform circuit-level SPICE simulations to verify that the

modifications required by each of the three pLUTo designs do

not compromise the correct and reliable operation of DRAM.

We model the effect of activating a DRAM row in unmodified

DRAM and in each of the three designs of pLUTo. We model

DRAM cells based on Low-Power 22nm Metal Gate PTM tran-

sistors [134], and conduct Monte Carlo simulations of 100 runs,

where the process variation is assumed to be 5%. Figure 6

shows the results of these simulations. Our results show that

the proposed changes in each of the three pLUTo designs do
not introduce errors in DRAM operation. The observed distur-

bances in the final bitline voltage following a row activation

correspond to only 0.9% of the reference voltage value.

We make three key observations. First, the correctness of

the row activation is not affected in any of the proposed de-

signs, since the bitline voltage reaches the value required to

Baseline

pLUTo−BSA

pLUTo−GSA

pLUTo−GMC

0 25 50 75 100 125 0 25 50 75 100 125

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Time (ns)

Bi
tli

ne
 V

ol
ta

ge
 (V

)

Figure 6: Bitline voltage level over time in response to wordline
activation at time = 0. Shades of blue indicate different runs of our
Monte Carlo simulation.
trigger the activation in all cases. Second, in all pLUTo designs,

the activation time is not affected by the introduced DRAM

modifications. Third, the activation procedure is the noisiest

for pLUTo-GSA. This is expected due to the operational prin-

ciples of pLUTo-GSA (Section 5.2), whereby the contents of

DRAM cells in consecutive rows are shared with the bitline

without precharging the array after each activation until the end

of the pLUTo Row Sweep. However, we observe correct row

activation behavior even in this case.

8.2. Performance
Figure 7 shows the performance of GPU, PnM, and pLUTo

systems, normalized to the baseline CPU. For the DDR4

(3DS) implementation, the performance of pLUTo-GSA,

pLUTo-BSA, and pLUTo-GMC mechanisms, on average

across all workloads, is 357×/0.6×/9.2× (496×/0.8×/12.7×),

713×/1.2×/18.3× (990×/1.6×/25.4×), and 1413×/2.3×/36.2×
(1962×/3.2×/50.3×) that of the CPU/GPU/PnM baselines, re-

spectively. All pLUTo designs achieve performance comparable

to or higher than that of the GPU, and consistently outperform

the PnM baseline. We make two key observations. First, the

3DS-based pLUTo designs consistently outperform their DDR4

counterparts by 38% on average across the three pLUTo designs.

This is due to HMC’s faster row activations, which lead to faster

pLUTo LUT Queries. Second, the CRC workloads show the

smallest overall benefit from execution in pLUTo. The speedup

in these workloads is bottlenecked by a serial reduction step,

which must be performed in the CPU (pLUTo-DDR4) or in the

logic layer of HMC (pLUTo-3DS). Nevertheless, the accelera-

tion of the parallel portion of the CRC workloads still allows

most pLUTo designs to achieve performance comparable to

or higher than that of the GPU. We conclude that pLUTo sig-

nificantly improves the performance of a variety of workloads

compared to both processor-centric and PnM architectures.

10−2
10−1
100
101
102
103
104

CRC−8 CRC−16 CRC−32 Salsa20 VMPC ImgBin ColorGrade GMEANSp
ee

du
p

ov
er

 C
PU

GPU
PnM

pLUTo−GSA
pLUTo−BSA

pLUTo−GMC
pLUTo−GSA−3DS

pLUTo−BSA−3DS
pLUTo−GMC−3DS

Figure 7: Speedup of GPU, PnM, and pLUTo relative to the base-
line CPU. The y-axis uses a logarithmic scale; higher is better.

12911

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

8.2.1. Performance per Area. Figure 8 shows the speedup

per unit area of GPU and pLUTo systems, normalized to

the baseline CPU. The area overhead of pLUTo-3DS de-

signs is calculated assuming an area overhead of 4.4 mm2 per

vault [11, 48, 67]. For the DDR4 (3DS) implementation, the

performance per unit area of pLUTo-GSA, pLUTo-BSA, and

pLUTo-GMC mechanisms, on average across all workloads, is

426×/441× (12405×/12856×), 801×/830× (24747×/25646×),

and 1504×/1558× (39245×/40670×) that of the CPU/GPU base-

lines, respectively. We make three key observations. First, all

pLUTo designs provide substantially higher performance per

unit area than both the CPU and the GPU (4283× and 2577×,

respectively, on average across all pLUTo designs), and con-

sistently outperform both baselines by a wide margin. This

improvement is considerably greater than the one observed

when considering performance in isolation (Section 8.2) and

highlights the potential benefits of scaling pLUTo’s design fur-

ther with larger DRAM systems. Second, pLUTo-3DS designs

are more area-efficient than their DDR4 counterparts across

all workloads. This is a consequence of the large available

area and 3D density in the HMC substrate. Third, we observe

pLUTo’s greatest improvements in Salsa20 and VMPC (respec-

tively 2970×/50591× and 273×/106151× the performance per

unit area of the CPU/GPU, on average across all pLUTo de-

signs). These workloads are very memory-intensive, and are

therefore well-suited for in-memory execution. In contrast, for

the Salsa20 and VMPC workloads, the GPU baseline provides

performance per unit area results that fall below even those of

the baseline CPU, which highlights the negative impact of data

movement bottlenecks in the execution of memory-intensive

workloads under a processor-centric computing paradigm.

10−2

100

102

104

CRC−8 CRC−16 CRC−32 Salsa20 VMPC ImgBin ColorGrade GMEANSp
ee

du
p

pe
r U

ni
t A

re
a GPU

pLUTo−GSA
pLUTo−BSA
pLUTo−GMC

pLUTo−GSA−3DS
pLUTo−BSA−3DS

pLUTo−GMC−3DS

Figure 8: Speedup of GPU and pLUTo relative to CPU, normalized
to area. The y-axis uses a logarithmic scale; higher is better.

8.2.2. Comparison with FPGA. Figure 9 shows the perfor-

mance of the evaluated pLUTo systems normalized to the base-

line FPGA. We observe that pLUTo outperforms the FPGA

baseline across all workloads we evaluate. For the DDR4 (3DS)

implementation, the performance of pLUTo-GSA, pLUTo-BSA,

and pLUTo-GMC mechanisms, on average across all work-

loads, is 160× (111×), 274× (190×), and 459× (318×) that of

the FPGA baseline, respectively. The most significant gains

are associated with workloads that rely on smaller LUTs (e.g.,

BC4, ImgBin), and the smallest gains correspond to operations

with large input bit widths (e.g., MUL16). We conclude that,

although both the FPGA and pLUTo rely on LUT-based com-

putation, the former’s access to data in memory is still limited

by main memory bandwidth. In contrast, pLUTo exploits much

higher main memory bandwidth via the pLUTo LUT Query,

leading to overall higher performance.

100

101

102

103

104

ADD4 ADD8 MUL8 MUL16 BC4 BC8 CRC−8 CRC−16 CRC−32 ImgBin GMEANSp
ee

du
p

ov
er

 F
PG

A

pLUTo−GSA
pLUTo−BSA

pLUTo−GMC
pLUTo−GSA−3DS

pLUTo−BSA−3DS
pLUTo−GMC−3DS

Figure 9: pLUTo speedup relative to the baseline FPGA. The y-
axis uses a logarithmic scale; higher is better.

8.3. Energy Consumption

Figure 10 shows the energy consumed by the GPU and pLUTo

systems when executing the evaluated workloads, normalized

to the baseline CPU. pLUTo’s energy consumption depends on

the total number of DRAM operations required by the executed

pLUTo ISA instructions (Table 2), and therefore does not vary
with different degrees of subarray-level parallelism. For the

DDR4 (3DS) implementation, pLUTo-GSA, pLUTo-BSA, and

pLUTo-GMC systems, on average across all workloads, con-

sume 1361.7×/29× (154.3×/3.3×) 1855×/39.5× (235.8×/5×)

3071.4×/65.3× (430.8×/9.2×) less energy than the CPU/GPU

baselines, respectively.

We make two key observations. First, the energy savings en-

abled by pLUTo are considerably greater in workloads that are

especially memory-intensive (e.g., VMPC) or require simple

operations (e.g., ImgBin), but becomes lower as workload com-

plexity increases (e.g., CRC-8/16/32). This trend is consistent

with our observations from Section 8.2.1. Second, in some of

the workloads (e.g., CRC-8/16/32, Salsa20), the energy con-

sumption values of all three pLUTo designs are similar to each

other. This is due to the relatively small number of pLUTo Row

Sweep operations required to execute these workloads, which

are not enough to highlight the differences in energy consump-

tion of each pLUTo design. As a result, the overall impact of the

improved efficiency of the pLUTo Row Sweep in pLUTo-BSA

and pLUTo-GMC relative to pLUTo-GSA becomes less pro-

nounced. We conclude that pLUTo significantly reduces energy

consumption compared to processor-centric architectures for

various workloads.

100
101
102
103
104
105

CRC−8 CRC−16 CRC−32 Salsa20 VMPC ImgBin ColorGrade GMEAN

C
PU

−N
or

m
al

iz
ed

 E
ne

rg
y GPU

pLUTo−GSA
pLUTo−BSA
pLUTo−GMC

pLUTo−GSA−3DS
pLUTo−BSA−3DS

pLUTo−GMC−3DS

Figure 10: Energy consumption of GPU and pLUTo compared to
the CPU. The y-axis uses a logarithmic scale; higher is better.

8.4. Area Overhead

Table 5 shows the estimated area of the baseline DRAM and

three pLUTo designs, broken down by DRAM component.

These estimates are derived from transistor count estimates and

rely on the DRAM area models provided by CACTI 7 [127].

pLUTo-GSA. The estimated area overhead of the matchline-

controlled switch (shown in Figure 4b) is 20% of the area of a

sense amplifier per bitline. The total area overhead of pLUTo-

GSA is 10.2% of the DRAM chip area.

13912

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

pLUTo-BSA. The estimated area overhead of the matchline-

controlled switch and the FF (shown in Figure 4a) is 60% of

the area taken up by sense amplifiers in the base DRAM chip.

The total area overhead of pLUTo-BSA is 16.7% of the DRAM

chip area.

pLUTo-GMC. The estimated area overhead of the matchline-

controlled switch per 2T1C DRAM cell (shown in Figure 4c) is

25%. The total area overhead of pLUTo-GMC is 23.1% of the

DRAM chip area.

Table 5: Area breakdown for DRAM and the three pLUTo designs.
Base DRAM pLUTo-GSA pLUTo-BSA pLUTo-GMC

A
re

a
(m

m
2
)

DRAM Cell 45.23 45.23 45.23 56.53
Local WL driver 12.45 12.45 12.45 12.45

Match Logic - 4.61 4.61 4.61
Match Lines - 0.02 0.02 0.02
Sense Amp 11.40 13.67 18.23 11.40

Row Decoder 0.16 0.47 0.47 0.47
Column Decoder 0.01 0.01 0.01 0.01

Other 0.99 0.99 0.99 0.99

Total 70.23
77.44

(+10.2%)

82.00

(+16.7%)

86.47

(+23.1%)

The area overheads of the match logic and match lines de-

scribed in Section 5.1.2, which are identical for all three designs,

are shown separately in Table 5. The Row Decoder overhead

includes that of the logic required for the pLUTo Row Sweep

operation. The only pLUTo design that requires modifications

to the DRAM cell design is pLUTo-GMC. Its per-cell overhead

is indicated in the DRAM Cell row of Table 5. In the baseline

system, DRAM cell access transistors take up approximately

15.1 mm2. The overhead associated with these transistors dou-

bles in pLUTo-GMC’s 2T1C cell.

8.5. LUT Loading Overhead
Figure 11 shows the fraction of total computation time spent

loading LUT data (y-axis), as a function of the total volume of

data queried (x-axis). We evaluate two scenarios for the loading

of LUTs, as described in Section 6.5: Loading from Memory
and Loading from Secondary Storage. For the first scenario,

we assume a DDR4 memory bandwidth of 19.2 GB/s [135];

for the second scenario, we assume an M.2 SSD bandwidth of

7500 MB/s [136]. As an example of how to interpret this plot, if

data is loaded from memory (i.e., from DRAM), when querying

around 20 MB of data (x-axis), approximately 10% of the LUT

query execution time (y-axis) is spent loading the LUT’s data

into DRAM (accordingly, 90% of the execution time is spent

performing pLUTo LUT Queries).

We make three key observations. First, it is sufficient to

process 1.9 MB of data in the DDR4-based scenario (� in Fig-

ure 11) for the LUT loading time to equal the LUT query time.

This observation illustrates that the cost of loading LUTs into

DRAM can be quickly amortized, even for small volumes of

input data. Second, as the volume of data to be processed

increases, the fraction of time spent loading the LUTs into

memory quickly decreases, both for the DDR4- and the SSD-

based scenarios. For example, for an input of 120 MB of data

(� in Figure 11), the fraction of time spent loading LUTs is

only about 2% in the case of DDR4. Third, although loading

LUTs from the SSD takes longer than doing so from DRAM,

this difference does not significantly impact the volume data

that needs to be queried to amortize the LUT loading time.

We conclude that loading LUTs both from DRAM and from a

secondary storage device (i.e., M.2 SSD) are well-suited and

practical approaches to support pLUTo’s operation.

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100 120
Volume of Queried Data (MB)

Fr
ac

tio
n

of
 T

im
e

Sp
en

t L
oa

di
ng

 D
at

a

DDR4 SSD

Figure 11: Fraction of time spent loading LUTs (from DDR4
DRAM [135] and M.2 SSD [136]) versus the volume of LUT input
data.

8.6. Scalability Analysis
This section analyzes the scalability of pLUTo’s LUT query

operation. Our goals are 1) to fundamentally understand the

performance limits of the pLUTo LUT Query, and 2) to study

the suitability of different PiM architectures for multiplication,

a commonly used operation. First, in Figure 12a, we show an

analysis of the throughput and energy consumption scaling of

the three proposed pLUTo designs, as determined by the equa-

tions and timing parameters in Table 1 and by the equations

derived in Sections 5.1.4, 5.2.3 and 5.3.4. Second, in Figure 12b,

we compare the energy efficiency (in # Multiplications/J)

of three systems: 1) pLUTo-BSA, 2) a bit-serial PuM mecha-

nism (SIMDRAM [75]), and 3) our baseline PnM device, while

varying the bit width of the operands involved in the multipli-

cation. We note that the multiplication operation is especially

costly for SIMDRAM to execute, as discussed in Section 8.9.

We make two key observations from the figures. First, all

three pLUTo designs provide high throughput and low energy

consumption for small LUT query sizes (N ≤ 8). This happens

(a)
0

1 × 1011

2 × 1011

3 × 1011

0

4 × 10−7

8 × 10−7

1.2 × 10−6

1 2 4 8 16 32 64 128 256 512 1024
LUT Query SizeTh

ro
ug

hp
ut

 (L
U

T
Q

ue
ry

/s
)

Energy (J)

pLUTo−GSA pLUTo−BSA pLUTo−GMC

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)
10−5

100

105

1010

1015

1 2 4 8 16 32
Bit WidthEn

er
gy

 E
ffi

ci
en

cy
 (O

Ps
/J

) pLUTo−BSA PuM (SIMDRAM) PnM

Figure 12: Scalability analysis for pLUTo’s LUT query operation:
(a) shows LUT query throughput (lines in the primary/left y-axis)
and energy consumption (bars in the secondary/right y-axis) for the
three pLUTo designs while varying LUT query size; (b) compares
the energy efficiency (in OPs/J) of pLUTo-BSA against a prior
PuM mechanism (SIMDRAM [75]) and the PnM baseline.

14913

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

because, as Table 1 shows, the latency and energy consumption

of a pLUTo Row Sweep increase linearly with the LUT query

size (i.e., consequently, the throughput of a pLUTo Row Sweep

decreases linearly with the LUT query size). Therefore, pLUTo

achieves its highest throughput and lowest energy consumption

for small LUT query sizes. Second, pLUTo provides higher

energy efficiency than the alternative SIMDRAM and PnM

Processing-in-Memory architectures for low-precision multipli-

cation (bit width ≤ 8 bits). Executing multiplication in pLUTo

leads to better energy efficiency than in SIMDRAM for all

evaluated bit widths. This happens because executing bit-serial

multiplications (as SIMDRAM does) incurs a quadratic number

of DRAM activations [75]. We conclude that pLUTo is well-

suited to perform low-bit-width LUT queries, which can be

adopted alongside alternative solutions (e.g., SIMDRAM and

PnM) to take full advantage of the underlying DRAM substrate.

8.7. Impact of tFAW on Performance
The tFAW timing parameter limits the activation rate in a DRAM

chip to meet power and reliability constraints. Since the activa-

tion operation is central to pLUTo, it is important to evaluate

the impact of this parameter on performance. Figure 13 shows

the effect on the performance of a single pLUTo LUT Query of

varying tFAW between 0% and 100% of its nominal value (i.e.,

the actual tFAW value in the DRAM chip we model, 13.328 ns),

across our examined workloads. When tFAW = 0%, it is possible

to issue an unlimited number of activations concurrently; when

tFAW = 50%, it is possible to issue twice as many activations per

unit of time as commodity DRAM permits; when tFAW = 100%,

the number of activations issued per unit of time corresponds to

exactly as many as commodity DRAM permits.

0%

25%

50%

75%

100%

CRC−8 CRC−16 CRC−32 Salsa20 VMPC ImgBin ColorGrade GMEAN

R
el

at
iv

e
Pe

rfo
rm

an
ce

tFAW = 0% (no constraint) tFAW = 50% tFAW = 100% (nominal)

Figure 13: The impact of tFAW on the performance of pLUTo.
We make two key observations. First, the performance loss

is approximately 10% for tFAW = 50%, and approximately 20%

for tFAW = 100%, compared to not having the tFAW limitation

at all. Even accounting for this performance penalty of tFAW,

pLUTo still outperforms the CPU and GPU baselines, as shown

in Section 8.2. Second, the performance penalty is very similar

across all of the evaluated workloads for the same value of tFAW.

We conclude that, despite tFAW’s limited impact on pLUTo, the

use of more powerful charge pumps could further relax power

constraints of pLUTo-capable DRAMs.

8.8. Effect of Subarray-Level Parallelism
We evaluate the three pLUTo designs (pLUTo-GSA, pLUTo-

BSA, pLUTo-GMC) with varying degrees of subarray-level

parallelism for both DDR4 and 3D-stacked memory. Figure 14

plots the speedup (averaged across all evaluated workloads)

of each configuration against the baseline CPU. We make two

key observations. First, due to the different row buffer sizes

DDR4 3DS

1 16 256 2048 512 8192
100
101
102
103
104

Number of Subarrays

Sp
ee

du
p

ov
er

 C
PU

pLUTo−GSA pLUTo−BSA pLUTo−GMC

Figure 14: Geometric mean speedup of pLUTo over CPU, for
varying degrees of subarray-level parallelism. The y-axis uses a
logarithmic scale; higher is better.
of DDR4 (8 kB) and 3DS (256 B) memories (as discussed in

Section 7), the same degree of subarray-level parallelism results

in higher speedup for pLUTo-DDR4 than pLUTo-3DS. Second,

performance scaling is approximately proportional to the num-

ber of subarrays operating in parallel in both cases, provided

that the size of the input to be queried is sufficiently large. This

linear relationship between subarray count and performance

improvement shows that 1) although the volume of internal

data movement required by pLUTo’s operation increases with

the degree of subarray-level parallelism, this factor does not
limit pLUTo’s scalability, and 2) pLUTo should be configured

to operate with as high a degree of subarray-level parallelism as

the memory technology supports.6

8.9. Comparison With Prior PuM Systems
As demonstrated in Table 6 and discussed in Section 3, prior

DRAM-based PuM architectures (e.g., [79, 84, 96]) achieve

very high throughput and energy efficiency, but do so while

supporting a very limited range of operations. These works can

address this limitation by exploiting alternatives to conventional

bit-parallel algorithms. For example, it is possible to efficiently

realize arithmetic operations in Ambit [84] using bit-serial algo-

rithms [75]. We show that the additional flexibility afforded by

pLUTo’s native support for LUT operations allows it to outper-

form prior PuM architectures. We substantiate this claim with

Table 6, which shows the latency of each operation of interest

under Ambit [84], SIMDRAM [75], LAcc [96], DRISA [79]

and pLUTo. In each case, we assume the use of ideal data

layout for each system as defined in the original works (e.g.,

bit-parallel for pLUTo, bit-serial for SIMDRAM) and report the

best-case achievable performance for each design.7 As an ex-

ample, bitwise operations between input sets A (’a1a2...’) and B
(’b1b2...’), under pLUTo’s LUT-based paradigm require that in-

put operands be shuffled (’a1b1a2b2...’); in contrast, the input

sets A and B are ideally stored in two separate DRAM rows for

all prior PuM designs (Ambit [84], SIMDRAM [75], LAcc [96],

DRISA [79]). To make fair comparisons, the memory capacity

for each design is such that the area overheads for all designs

remain in a narrow range (the area values across the five PuM

comparison points average 62.5 mm2 ± 5.2 mm2), which is sim-

ilar to the area of commodity DRAM devices (≈70.23 mm2, see

Table 5). As a result, due to its inferior storage density, the

capacity of DRISA [79] is limited to 2 GB.

6 As discussed in Section 8.3, energy consumption is not affected by different

degrees of subarray-level parallelism.
7 Supporting each architecture’s ideal data layout requires system-level

changes.

15914

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

Table 6: Comparison of operations supported by pLUTo vs. prior
PuM. All performance per area and energy efficiency values are
normalized to pLUTo-BSA with 4-subarray parallelism.

Ambit [84] SIMDRAM [75] LAcc [96] DRISA [79] pLUTo-BSA
Capacity 8 GB 8 GB 8 GB 2 GB 8 GB

Area (mm2) 61.0 61.1 54.8 65.2 70.5

Power (W) 5.3 5.3 5.3 98.0 11

NOT (ns) 135.0 135.0 135.0 207.6 105.0

AND (ns) 270.0 270.0 270.0 415.2 165.0

OR (ns) 270.0 270.0 270.0 415.2 165.0

XOR (ns) 585.0 585.0 450.0 691.9 165.0

XNOR (ns) 585.0 585.0 450.0 691.9 165.0

Performance Per Area 0.54 0.54 0.67 0.37 1.00
(higher is better)
Energy Efficiency 0.54 0.54 0.67 0.02 1.00
(higher is better)
4-bit Addition (ns) 5081.0 1585.0 1142.3 1756.5 1920.0

4-bit Multiplication (ns) 19065.0 7451.0 5365.4 8250.1 1920.0

4-bit Bit Counting (ns) 2936.0 1156.0 - 6649.9 120.0

8-bit Bit Counting (ns) 6901.0 2696.0 - 13580.0 1920.0

Performance Per Area 0.34 0.45 1.00∗ 0.17 1.00
(higher is better)
Energy Efficiency 0.69 0.94 2.00∗ 0.02 1.00
(higher is better)

6-bit to 2-bit LUT Query (ns) - - - - 480.0

8-bit to 8-bit LUT Query (ns) - - - - 1920.0

8-bit Binarization (ns) - - - - 1920.0

8-bit Exponentiation (ns) - - - - 1920.0

− indicates that the operation is not supported by the proposed mechanism.
∗ indicates that the result was obtained from partial data.

We draw three key observations from Table 6. First, due to

their complexity, some operations (e.g., binarization, exponenti-

ation) cannot be implemented in a time-efficient manner using

any prior design. In pLUTo, it is possible to perform exponenti-

ation with high efficiency when operating on small bit widths

(for best results, up to 8 bits). Second, pLUTo’s throughput

for bitwise logic operations matches or exceeds that of all prior

works. Third, pLUTo consistently outperforms all four other ap-

proaches for most of the considered operations in performance

(absolute and normalized to area) and energy efficiency. This

improvement is not universal: for instance, pLUTo slightly lags

behind all baselines for 4-bit addition. We conclude that pLUTo

achieves its main goal of extending the range and complexity

of operations that the DRAM-based PuM paradigm supports.

9. Case Study: Quantized Neural Networks
Building on the observation that pLUTo is especially well-suited

for executing low-bit-width operations (Section 8.9), we eval-

uate the benefits of pLUTo on neural networks quantized to

1 and 4 bits, an emerging machine learning application that

is especially useful for power-limited devices [137–139]. We

evaluate a quantized version of the LeNet-5 network [140] to

classify digits from the MNIST dataset [140] as a proof of con-

cept. For this evaluation, the CPU and FPGA baselines are

those described in Section 7.1; the GPU is a data-center-grade

NVIDIA P100 [141], which was specifically developed for ma-

chine learning applications. Table 7 shows the inference times

for CPU, GPU, FPGA, and pLUTo-BSA. pLUTo-BSA outper-

forms the CPU (10×, 30× for 1-bit, 4-bit inference), the GPU

(2×, 7×) and the FPGA (6×, 19×) in inference time. pLUTo’s

performance improvements for these operations result from the

bulk querying of input values using only short sequences of

DRAM commands to perform bitwise logic operations. Simul-

taneously, pLUTo provides large energy savings over both the

CPU (110×, 109×), the GPU (80×, 81×) and the FPGA (15×,

16×), for both 1- and 4-bit precision. The key reason behind

this increase in energy efficiency is the reduction in overall data

movement (since many operations are performed in-place) and

the energy efficiency of DRAM commands. We conclude that

pLUTo is well-suited to accelerate quantized neural network

inferencing and to reduce the energy cost of this workload, es-

pecially in heavily energy-constrained devices, such as edge

and IoT devices.

Table 7: LeNet-5 inference times (in μs) and energy (in mJ) for
CPU, GPU, FPGA, and pLUTo.

Bit
Width

Accuracy
[138]

CPU GPU FPGA pLUTo-BSA
Time Energy Time Energy Time Energy Time Energy

1 bit 97.4 % 249 2.2 56 1.6 141 0.3 23 0.02

4 bits 99.1 % 997 8.7 224 6.5 563 1.3 30 0.08

10. Related Work
To our knowledge, pLUTo is the first work that enables the

efficient bulk querying of lookup tables (LUTs) inside DRAM

to enable the execution of complex operations. In this section,

we describe relevant prior works.

Processing-using-Memory (PuM). Many prior works pro-

pose various forms of Processing-using-Memory [41, 55, 68–

92, 96, 98, 108, 142–193]. All these approaches provide signifi-

cant performance and energy improvements, but focus mainly

on a reduced set of operations (e.g., data movement [81, 108],

bulk bitwise operations [68, 78, 84, 188], or neural network

acceleration [70, 71, 79, 96]). By combining the pLUTo LUT

Query with fast and efficient bitwise logic [84] and bit shift-

ing operations [79] enabled by these prior works, pLUTo sup-

ports a much wider range of operations. While pPIM [97] and

LAcc [96], for example, leverage dedicated LUT hardware for

neural network acceleration, the pLUTo LUT Query is suit-

able for a greater range of operations (by supporting a broader

set of input-output configurations, with greater performance

and energy efficiency). DRAF [99] employs a DRAM-based

FPGA-like LUT-based computing paradigm that allows it to

outperform an FPGA baseline in area and energy efficiency;

however, DRAF lags in throughput and latency. In contrast,

pLUTo enables high-throughput LUT queries without compro-

mising energy efficiency and with small overhead (between

10.2% and 23.1%, for different versions of pLUTo) on the stor-

age density of the DRAM array.

Processing-near-Memory (PnM). 3D-stacked memories [67,

194, 195] enable the stacking of memory layers on top of a logic

layer [11, 20, 21, 23–25, 28–32, 34, 39, 44–50, 55, 57, 59, 60, 66,

196–212]. This technology provides higher bandwidth com-

pared to 2D DRAM. pLUTo is complementary to 3D-stacked

memory: the two can be combined as shown in Section 8.

Content-Addressable Memories (CAMs). CAM-based ac-

celerators (e.g., [192, 213–219]) return the address of matched

data given an input query and can therefore be used to per-

form LUT-based computing. Most CAMs are SRAM-based

and provide low area density compared to DRAM-based mem-

ories. DRAM-based CAMs also exist [220–222], but require

a greater number of transistors per cell than pLUTo-GMC, our

most expensive design.

16915

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

Automata Processors (APs). APs are specialized process-

ing engines that support the hardware-native execution of

nondeterministc-finite-automata [223, 224]. These automata

may be used for pattern recognition tasks and the querying

of unstructured data sources, but have a relatively narrow do-

main of applications and are therefore not well-suited for the

offloading of complex functions by memoization.

11. Conclusion
We introduced pLUTo, a new DRAM-based Processing-using-

Memory architecture that enables the storage and bulk querying

of lookup tables completely in-DRAM. We build pLUTo based

on the key observation that enabling bulk lookup-table-query

operations inside DRAM enables the efficient execution of com-

plex operations with high performance and energy efficiency.

We describe 1) the hardware design of three different pLUTo

architectures, each providing a different trade-off between per-

formance, energy efficiency, and area overhead, and 2) the

necessary system integration support to enable the execution

of in-DRAM pLUTo operations. Our evaluations show that

pLUTo significantly outperforms the baseline CPU-, GPU-,

FPGA-, PnM-, and PuM-based systems in terms of execution

time, performance per area, and energy consumption. We hope

that future work explores new ways of taking advantage of

pLUTo and in-DRAM LUT-based computing to provide even

greater performance and energy benefits for more applications

that can take advantage of the PuM paradigm.

Acknowledgments
We thank the anonymous reviewers of HPCA (2020), ISCA

(2020, 2021, 2022), ICCD (2020), MICRO (2021, 2022), and

ASPLOS (2022) for their valuable comments and feedback. We

thank the SAFARI Research Group members for their valuable

feedback and the stimulating intellectual environment they pro-

vide. We acknowledge the generous gifts provided by our indus-

trial partners: Google, Huawei, Intel, Microsoft, and VMware.

This work was supported in part by the Semiconductor Research

Corporation (SRC) and the ETH Future Computing Laboratory.

This work was supported in part by the Instituto de Telecomu-

nicações and the Fundação para a Ciência e a Tecnologia (FCT),

under grant numbers UIDB/50008/2020-UIDP/50008/2020 and

EXPL/EEI-HAC/1511/2021.

References
[1] S. Ghose et al., “The Processing-in-Memory Paradigm: Mechanisms to Enable

Adoption,” in Beyond-CMOS Technologies for Next Generation Computer Design,
2019.

[2] O. Mutlu et al., “Processing Data Where It Makes Sense: Enabling In-Memory
Computation,” in Microprocessors and Microsystems, 2019.

[3] O. Mutlu et al., “Enabling Practical Processing in and Near Memory For Data-
Intensive Computing,” in DAC, 2019.

[4] S. Ghose et al., “Processing-in-Memory: A Workload-Driven Perspective,” in IBM
J. Res. Dev., 2019.

[5] P. Siegl et al., “Data-Centric Computing Frontiers: A Survey on Processing-in-
Memory,” in MEMSYS, 2016.

[6] D. Pandiyan and C. Wu, “Quantifying the Energy Cost of Data Movement for
Emerging Smart Phone Workloads on Mobile Platforms,” in IISWC, 2014.

[7] S. Kanev et al., “Profiling a Warehouse-Scale Computer,” in ISCA, 2015.
[8] I. Paul et al., “Harmonia: Balancing Compute and Memory Power in High-

Performance GPUs,” in ISCA, 2015.

[9] M. Ware et al., “Architecting for Power Management: The IBM® Power7™ Ap-
proach,” in HPCA, 2010.

[10] C. Lefurgy et al., “Energy Management for Commercial Servers,” in Computer,
2003.

[11] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks,” in ASPLOS, 2018.

[12] T. Vogelsang, “Understanding the Energy Consumption of Dynamic Random Access
Memories,” in MICRO, 2010.

[13] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications of the
Obvious,” in CAN, 1995.

[14] B. Dally, “The Path to Exascale Computing,” https://bit.ly/3CIzc1l, 2015.
[15] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark Suite for

Evaluating Data Movement Bottlenecks,” IEEE Access, 2021.
[16] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[17] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.
[18] O. Mutlu et al., “A Modern Primer on Processing in Memory,” in Emerging Com-

puting: From Devices to Systems - Looking Beyond Moore and Von Neumann,
2021.

[19] L. Nai et al., “GraphPIM: Enabling Instruction-Level PIM Offloading in Graph
Computing Frameworks,” in HPCA, 2017.

[20] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
using Processing-in-Memory Technologies,” in APBC, 2018.

[21] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture,” in ISCA, 2015.

[22] M. Gao et al., “TETRIS: Scalable and Efficient Neural Network Acceleration with
3D Memory,” in ASPLOS, 2017.

[23] D. Kim et al., “Neurocube: A Programmable Digital Neuromorphic Architecture
with High-Density 3D Memory,” in ISCA, 2016.

[24] D. S. Cali et al., “GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis,” in MICRO,
2020.

[25] B. Akin et al., “Data Reorganization in Memory Using 3D-Stacked DRAM,” in
ISCA, 2016.

[26] K. Hsieh et al., “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation,” in ICCD, 2016.

[27] O. O. Babarinsa and S. Idreos, “JAFAR: Near-Data Processing for Databases,” in
SIGMOD, 2015.

[28] A. Boroumand et al., “Mitigating Edge Machine Learning Inference Bottlenecks: An
Empirical Study on Accelerating Google Edge Models,” arXiv:2103.00768 [cs.AR],
2021.

[29] A. Boroumand et al., “Google Neural Network Models for Edge Devices: Analyzing
and Mitigating Machine Learning Inference Bottlenecks,” in PACT, 2021.

[30] A. Boroumand et al., “Polynesia: Enabling High-Performance and Energy-Efficient
Hybrid Transactional/Analytical Databases with Hardware/Software Co-Design,” in
ICDE, 2022.

[31] A. Boroumand et al., “Polynesia: Enabling Effective Hybrid Transac-
tional/Analytical Databases with Specialized Hardware/Software Co-Design,”
arXiv:2103.00798 [cs.AR], 2021.

[32] A. Boroumand, “Practical Mechanisms for Reducing Processor-Memory Data Move-
ment in Modern Workloads,” Ph.D. dissertation, Carnegie Mellon University, 2020.

[33] N. M. Ghiasi et al., “GenStore: A High-Performance and Energy-Efficient In-Storage
Computing System for Genome Sequence Analysis,” in ASPLOS, 2022.

[34] I. Fernandez et al., “NATSA: A Near-Data Processing Accelerator for Time Series
Analysis,” in ICCD, 2020.

[35] G. Singh et al., “NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling,” in FPL, 2020.

[36] S. Lee et al., “A 1ynm 1.25V 8Gb, 16Gb/s/Pin GDDR6-Based Accelerator-in-
Memory Supporting 1TFLOPS MAC Operation and Various Activation Functions
for Deep-Learning Applications,” in ISSCC, 2022.

[37] Y.-C. Kwon et al., “A 20nm 6GB Function-in-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism,
for Machine Learning Applications,” in ISSCC, 2021.

[38] S. Lee et al., “Hardware Architecture and Software Stack for PIM Based on Com-
mercial DRAM Technology: Industrial Product,” in ISCA, 2021.

[39] D. Niu et al., “184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with
Process-Near-Memory Engine for Recommendation System,” in ISSCC, 2022.

[40] P. Rosenfeld, “Performance Exploration of the Hybrid Memory Cube,” Ph.D. disser-
tation, University of Maryland, 2014.

[41] G. F. Oliveira et al., “Accelerating Neural Network Inference with Processing-in-
DRAM: From the Edge to the Cloud,” IEEE Micro, 2022.

[42] S. Cho et al., “McDRAM v2: In-Dynamic Random Access Memory Systolic Array
Accelerator to Address the Large Model Problem in Deep Neural Networks on the
Edge,” IEEE Access, 2020.

[43] H. Shin et al., “McDRAM: Low Latency and Energy-Efficient Matrix Computations
in DRAM,” IEEE TCADICS, 2018.

[44] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel Graph
Processing,” in ISCA, 2015.

[45] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence Mechanism for
Processing-in-Memory,” in CAL, 2016.

[46] D. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable Processing in
Memory,” in HPDC, 2014.

[47] M. Drumond et al., “The Mondrian Data Engine,” in ISCA, 2017.

17916

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

[48] A. Boroumand et al., “CoNDA: Efficient Cache Coherence Support for Near-Data
Accelerators,” in ISCA, 2019.

[49] K. Hsieh et al., “Transparent Offloading and Mapping (TOM): Enabling Programmer-
Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.

[50] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with Processing-
in-Memory Capabilities,” in PACT, 2016.

[51] F. Devaux, “The True Processing in Memory Accelerator,” in HC, 2019.
[52] J. Gómez-Luna et al., “Benchmarking Memory-Centric Computing Systems: Analy-

sis of Real Processing-in-Memory Hardware,” in CUT, 2021.
[53] J. Gómez-Luna et al., “Benchmarking a New Paradigm: An Experimental Analysis

of a Real Processing-in-Memory Architecture,” arXiv:2105.03814 [cs.AR], 2021.
[54] J. Gómez-Luna et al., “Benchmarking a New Paradigm: An Experimental Analysis

of a Real Processing-in-Memory Architecture,” IEEE Access, 2022.
[55] M. Besta et al., “SISA: Set-Centric Instruction Set Architecture for Graph Mining

on Processing-in-Memory Systems,” in MICRO, 2021.
[56] C. Giannoula et al., “SynCron: Efficient Synchronization Support for Near-Data-

Processing Architectures,” in HPCA, 2021.
[57] G. Singh et al., “NAPEL: Near-Memory Computing Application Performance

Prediction via Ensemble Learning,” in DAC, 2019.
[58] C. Giannoula et al., “SparseP: Towards Efficient Sparse Matrix Vector Multiplication

on Real Processing-in-Memory Systems,” in SIGMETRICS, 2022.
[59] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable Logic for

Near-Data Processing,” in HPCA, 2016.
[60] P. C. Santos et al., “Operand Size Reconfiguration for Big Data Processing in

Memory,” in DATE, 2017.
[61] G. F. Oliveira et al., “NIM: An HMC-Based Machine for Neuron Computation,” in

ARC, 2017.
[62] A. Farmahini-Farahani et al., “NDA: Near-DRAM Acceleration Architecture Lever-

aging Commodity DRAM Devices and Standard Memory Modules,” in HPCA,
2015.

[63] L. Ke et al., “Near-Memory Processing in Action: Accelerating Personalized Rec-
ommendation with AxDIMM,” IEEE Micro, 2021.

[64] D. U. Lee et al., “A 1.2V 8Gb 8-Channel 128GB/s High-Bandwidth Memory (HBM)
Stacked DRAM with Effective Microbump I/O Test Methods Using 29nm Process
and TSV,” in ISSCC, 2014.

[65] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” in HCS, 2011.
[66] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core Processors,” in ISCA,

2008.
[67] Hybrid Memory Cube Consortium et al., “Hybrid Memory Cube Specification 2.1,”

Retrieved from micron.com, 2014.
[68] S. Aga et al., “Compute Caches,” in HPCA, 2017.
[69] P. Chi et al., “PRIME: A Novel Processing-in-Memory Architecture for Neural

Network Computation in ReRAM-Based Main Memory,” in ISCA, 2016.
[70] Q. Deng et al., “DrAcc: A DRAM Based Accelerator for Accurate CNN Inference,”

in DAC, 2018.
[71] C. Eckert et al., “Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural

Networks,” in ISCA, 2018.
[72] J. Park et al., “Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent

Computation Capability of NAND Flash Memory,” in MICRO, 2022.
[73] D. Fujiki et al., “Duality Cache for Data Parallel Acceleration,” in ISCA, 2019.
[74] F. Gao et al., “ComputeDRAM: In-Memory Compute Using Off-The-Shelf DRAMs,”

in MICRO, 2019.
[75] N. Hajinazar et al., “SIMDRAM: A Framework for Bit-Serial SIMD Processing

Using DRAM,” in ASPLOS, 2021.
[76] Z. He et al., “Sparse BD-Net: A Multiplication-Less DNN with Sparse Binarized

Depth-Wise Separable Convolution,” JETC, 2020.
[77] M. Imani et al., “FloatPIM: In-Memory Acceleration of Deep Neural Network

Training with High Precision,” in ISCA, 2019.
[78] S. Li et al., “Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise

Operations in Emerging Non-Volatile Memories,” in DAC, 2016.
[79] S. Li et al., “DRISA: A DRAM-Based Reconfigurable In-Situ Accelerator,” in

MICRO, 2017.
[80] V. Seshadri et al., “Buddy-RAM: Improving the Performance and Efficiency of Bulk

Bitwise Operations Using DRAM,” arXiv:1611.09988 [cs:AR], 2016.
[81] V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy

and Initialization,” in MICRO, 2013.
[82] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” in CAL, 2015.
[83] V. Seshadri and O. Mutlu, “The Processing Using Memory Paradigm: In-DRAM

Bulk Copy, Initialization, Bitwise AND and OR,” arXiv:1610.09603 [cs.AR], 2016.
[84] V. Seshadri et al., “Ambit: In-Memory Accelerator For Bulk Bitwise Operations

Using Commodity DRAM Technology,” in MICRO, 2017.
[85] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce Data Move-

ment,” in Adv. Comput., 2017.
[86] V. Seshadri et al., “RowClone: Accelerating Data Movement and Initialization

Using DRAM,” arXiv:1805.03502 [cs.AR], 2018.
[87] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”

arXiv:1905.09822 [cs.AR], 2019.
[88] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator with In-Situ

Analog Arithmetic in Crossbars,” in ISCA, 2016.
[89] L. Song et al., “PipeLayer: A Pipelined ReRAM-Based Accelerator for Deep

Learning,” in HPCA, 2017.
[90] L. Song et al., “GraphR: Accelerating Graph Processing Using ReRAM,” in HPCA,

2018.

[91] X. Xin et al., “ELP2IM: Efficient and Low Power Bitwise Operation Processing in
DRAM,” in HPCA, 2020.

[92] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Translation to Im-
prove the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[93] M. Hashemi et al., “Accelerating Dependent Cache Misses With an Enhanced
Memory Controller,” in ISCA, 2016.

[94] D. Weber et al., “Current and Future Challenges of DRAM Metallization,” in IITC,
2005.

[95] Y. Peng et al., “Design, Packaging, and Architectural Policy Co-Optimization for
DC Power Integrity in 3D DRAM,” in DAC, 2015.

[96] Q. Deng et al., “LAcc: Exploiting Lookup Table-Based Fast and Accurate Vector
Multiplication in DRAM-Based CNN Accelerator,” in DAC, 2019.

[97] P. R. Sutradhar et al., “pPIM: A Programmable Processor-in-Memory Architecture
with Precision-Scaling For Deep Learning,” in CAL, 2020.

[98] S. Angizi and D. Fan, “ReDRAM: A Reconfigurable Processing-in-DRAM Platform
for Accelerating Bulk Bit-Wise Operations,” in ICCAD, 2019.

[99] M. Gao et al., “DRAF: A Low-Power DRAM-Based Reconfigurable Acceleration
Fabric,” in ISCA, 2016.

[100] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,”
in ISCA, 2012.

[101] J. Kim et al., “Solar-DRAM: Reducing DRAM Access Latency by Exploiting the
Variation in Local Bitlines,” in ICCD, 2018.

[102] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips: Charac-
terization, Analysis, and Latency Reduction Mechanisms,” in SIGMETRICS, 2017.

[103] Intel, “Intel® Xeon® Gold 5118 Processor Specifications.” [Online]. Available:
https://intel.ly/3e3ZUXL

[104] NVIDIA, “NVIDIA GeForce RTX 3080 Ti Graphics Card.” [Online]. Available:
https://bit.ly/3Rl05Nr

[105] Xilinx, Inc., “ZCU102 Evaluation Board: User Guide,” https://bit.ly/3Ky0TvJ, 2019.
[106] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM

Architecture,” in HPCA, 2013.
[107] D. Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by

Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.
[108] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-

Subarray Data Movement in DRAM,” in HPCA, 2016.
[109] "JEDEC Solid State Technology Assn.", “JESD79-3D: DDR3 SDRAM Standard,”

July 2012.
[110] "JEDEC Solid State Technology Assn.", “JESD79-4B: DDR4 SDRAM Standard,”

July 2017.
[111] P. S. Lazar and S. C. Oh, “DRAM with Total Self Refresh And Control Circuit,”

May 25 2004, US Patent 6,741,515.
[112] V. C. Patel et al., “DRAM Power Management With Self-Refresh,” Nov. 15 1994,

US Patent 5,365,487.
[113] T. Y. Kim, “Self-Refresh Apparatus and Method,” Sep. 27 2005, US Patent

6,950,364.
[114] Micron, “Micron Collaborates with Broadcom to Solve DRAM Timing Chal-

lenge, Delivering Improved Performance for Networking Customers,” https://bit.ly/
3RmxI0L, 2013.

[115] M. He et al., “Newton: A DRAM-Maker’s Accelerator-in-Memory (AiM) Architec-
ture for Machine Learning,” in MICRO, 2020.

[116] A. Suresh et al., “Compile-Time Function Memoization,” in CC, 2017.
[117] C. Wilcox et al., “Mesa: Automatic Generation of Lookup Table Optimizations,” in

IWMSE, 2011.
[118] L. Besnard et al., “A Framework for Automatic and Parameterizable Memoization,”

SoftwareX, 2019.
[119] P. Pinto and J. M. Cardoso, “A Methodology and Framework for Software Memo-

ization of Functions,” in CF, 2021.
[120] G. F. Oliveira et al., “Employing Classification-Based Algorithms for General-

Purpose Approximate Computing,” in DAC, 2018.
[121] A. Barenghi et al., “Software-Only Reverse Engineering of Physical DRAM Map-

pings for Rowhammer Attacks,” in IVSW, 2018.
[122] A. Boroumand et al., “LazyPIM: Efficient Support for Cache Coherence in

Processing-in-Memory Architectures,” in CAL, 2017.
[123] Xilinx, Inc., “Vitis 2020.1,” https://bit.ly/3ABqwqN, 2020.
[124] Xilinx, Inc., “Vivado 2020.1,” https://bit.ly/3ABQfzl, 2020.
[125] SAFARI Research Group, “pLUTo GitHub Repository,” https://github.com/

CMU-SAFARI/pLUTo.
[126] SAFARI Research Group, “pLUTo Zenodo Repository,” https://doi.org/10.5281/

zenodo.694205.
[127] R. Balasubramonian et al., “CACTI 7: New Tools for Interconnect Exploration in

Innovative Off-Chip Memories,” in TACO, 2017.
[128] D. J. Bernstein, “Salsa20 Specification,” https://bit.ly/3CJsnMO, 2005.
[129] B. Zoltak, “VMPC One-Way Function and Stream Cipher,” in FSE, 2004.
[130] H. S. Warren, Hacker’s Delight. Addison-Wesley, 2013.
[131] Q. Wang et al., “AUGEM: Automatically Generate High Performance Dense Linear

Algebra Kernels on X86 CPUs,” in SC, 2013.
[132] MathWorks, “imbinarize Specification,” https://bit.ly/3pZR9AU, 2022.
[133] Apple Inc., Final Cut Pro User Guide, 2022, ch. “Apply LUTs in Final Cut Pro”,

https://apple.co/3R7eHj4.
[134] Nanoscale Integration and Modeling (NIMO) Group, ASU, “Predictive Technology

Model (PTM),” http://ptm.asu.edu/, 2012.
[135] CT8G4SFS8 DDR4 SDRAM SODIMM, Crucial, 2016, Rev. 04/01/16.
[136] CS3140 Solid State Drives, PNY Technologies, Inc., 2012, ver. 01-08-21.

18917

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

[137] I. Hubara et al., “Quantized Neural Networks: Training Neural Networks With Low
Precision Weights and Activations,” JMLR, 2017.

[138] S. Khoram and J. Li, “Adaptive Quantization of Neural Networks,” in ICLR, 2018.
[139] A. Garofalo et al., “PULP-NN: Accelerating Quantized Neural Networks on Parallel

Ultra-Low-Power RISC-V Processors,” Philos. Trans. R. Soc. A, 2020.
[140] Y. LeCun et al., “Gradient-Based Learning Applied to Document Recognition,” Proc.

IEEE, 1998.
[141] NVIDIA, “NVIDIA Tesla P100.” [Online]. Available: https://bit.ly/3CMcpld
[142] A. Akerib et al., “Using Storage Cells to Perform Computation,” 2012, US Patent

8,238,173.
[143] S. Angizi et al., “Design and Evaluation of A Spintronic In-Memory Processing

Platform for Nonvolatile Data Encryption,” in TCAD, 2017.
[144] S. Angizi et al., “Energy Efficient In-Memory Computing Platform Based on 4-

Terminal Spin Hall Effect-Driven Domain Wall Motion Devices,” in GLSVLSI,
2017.

[145] S. Angizi and D. Fan, “IMC: Energy-Efficient In-Memory Convolver for Accelerat-
ing Binarized Deep Neural Network,” in NCS, 2017.

[146] S. Angizi et al., “RIMPA: A New Reconfigurable Dual-Mode In-Memory Processing
Architecture with Spin Hall Effect-Driven Domain Wall Motion Device,” in ISVLSI,
2017.

[147] S. Angizi et al., “CMP-PIM: An Energy-Efficient Comparator-Based Processing-in-
Memory Neural Network Accelerator,” in DAC, 2018.

[148] S. Angizi et al., “DIMA: A Depthwise CNN In-Memory Accelerator,” in ICCAD,
2018.

[149] S. Angizi et al., “IMCE: Energy-Efficient Bit-Wise In-Memory Convolution Engine
for Deep Neural Network,” in ASP-DAC, 2018.

[150] S. Angizi et al., “PIMA-Logic: A Novel Processing-in-Memory Architecture for
Highly Flexible and Energy-Efficient Logic Computation,” in DAC, 2018.

[151] S. Angizi et al., “AlignS: A Processing-in-Memory Accelerator for DNA Short Read
Alignment Leveraging SOT-MRAM,” in DAC, 2019.

[152] S. Angizi and D. Fan, “Deep Neural Network Acceleration in Non-Volatile Memory:
A Digital Approach,” in NANOARCH, 2019.

[153] S. Angizi and D. Fan, “GraphiDe: A Graph Processing Accelerator Leveraging
In-DRAM-Computing,” in GLSVLSI, 2019.

[154] S. Angizi et al., “GraphS: A Graph Processing Accelerator Leveraging SOT-MRAM,”
in DATE, 2019.

[155] S. Angizi et al., “ParaPIM: A Parallel Processing-in-Memory Accelerator for Binary-
Weight Deep Neural Networks,” in ASP-DAC, 2019.

[156] S. Angizi et al., “Exploring DNA Alignment-in-Memory Leveraging Emerging
SOT-MRAM,” in GLSVLSI, 2020.

[157] S. Angizi et al., “PIM-Aligner: A Processing-in-MRAM Platform for Biological
Sequence Alignment,” in DATE, 2020.

[158] S. Angizi et al., “PIM-Assembler: A Processing-in-Memory Platform for Genome
Assembly,” in DAC, 2020.

[159] D. Fan, “Low Power In-Memory Computing Platform with Four Terminal Magnetic
Domain Wall Motion Devices,” in NANOARCH, 2016.

[160] D. Fan and S. Angizi, “Energy Efficient In-Memory Binary Deep Neural Network
Accelerator With Dual-Mode SOT-MRAM,” in ICCD, 2017.

[161] D. Fan et al., “Leveraging Spintronic Devices for Ultra-Low Power In-Memory
Computing: Logic and Neural Network,” in MWSCAS, 2017.

[162] D. Fan et al., “In-Memory Computing With Spintronic Devices,” in ISVLSI, 2017.
[163] P.-E. Gaillardon et al., “The Programmable Logic-in-Memory (PLiM) Computer,”

in DATE, 2016.
[164] P. Gu et al., “DLUX: A LUT-Based Near-Bank Accelerator for Data Center Deep

Learning Training Workloads,” in TCAD, 2020.
[165] S. Hamdioui et al., “Memristor Based Computation-in-Memory Architecture for

Data-Intensive Applications,” in DATE, 2015.
[166] S. Hamdioui et al., “Memristor for Computing: Myth or Reality?” in DATE, 2017.
[167] Z. He et al., “Exploring STT-MRAM Based In-Memory Computing Paradigm with

Application of Image Edge Extraction,” in ICCD, 2017.
[168] Z. He et al., “High Performance and Energy-Efficient In-Memory Computing Archi-

tecture Based on SOT-MRAM,” in NANOARCH, 2017.
[169] Z. He et al., “Leveraging Dual-Mode Magnetic Crossbar for Ultra-Low Energy

In-Memory Data Encryption,” in GLSVLSI, 2017.
[170] M. Kang et al., “An Energy-Efficient VLSI Architecture for Pattern Recognition via

Deep Embedding of Computation in SRAM,” in ICASSP, 2014.
[171] S. Kvatinsky et al., “Memristor-Based Imply Logic Design Procedure,” in ICCD,

2011.
[172] S. Kvatinsky et al., “Memristor-Based Material Implication (IMPLY) Logic: Design

Principles and Methodologies,” in VLSI, 2013.
[173] S. Kvatinsky et al., “MAGIC–Memristor-Aided Logic,” in TCAS II, 2014.
[174] P. V. Lea, “Apparatuses and Methods for In-Memory Operations,” 2019, US Patent

10,268,389.
[175] Y. Levy et al., “Logic Operations in Memory using a Memristive Akers Array,” in

Microelectronics Journal, 2014.
[176] S. Li et al., “SCOPE: A Stochastic Computing Engine for DRAM-Based In-Situ

Accelerator,” in MICRO, 2018.
[177] T. A. Manning, “Apparatuses and Methods for Comparing Data Patterns in Memory,”

2018, US Patent 9,934,856.
[178] F. Parveen et al., “Hybrid Polymorphic Logic Gate with 5-Terminal Magnetic

Domain Wall Motion Device,” in ISVLSI, 2017.
[179] F. Parveen et al., “Low Power In-Memory Computing Based on Dual-Mode SOT-

MRAM,” in ISLPED, 2017.

[180] F. Parveen et al., “HielM: Highly Flexible In-Memory Computing using STT
MRAM,” in ASP-DAC, 2018.

[181] F. Parveen et al., “IMCS2: Novel Device-to-Architecture Co-Design For Low-Power
In-Memory Computing Platform using Coterminous Spin Switch,” in IEEE Trans.
Magn., 2018.

[182] A. S. Rakin et al., “PIM-TGAN: A Processing-in-Memory Accelerator for Ternary
Generative Adversarial Networks,” in ICCD, 2018.

[183] A. K. Ramanathan et al., “Look-Up Table Based Energy Efficient Processing in
Cache Support for Neural Network Acceleration,” in MICRO, 2020.

[184] S. H. S. Rezaei et al., “NoM: Network-on-Memory for Inter-Bank Data Transfer in
Highly-Banked Memories,” in CAL, 2020.

[185] Y. Tian et al., “ApproxLUT: A Novel Approximate Lookup Table-Based Accelerator,”
in ICCAD, 2017.

[186] L. Wu et al., “DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching,”
in CAL, 2022.

[187] L. Xie et al., “Fast Boolean Logic Mapped on Memristor Crossbar,” in ICCD, 2015.
[188] X. Xin et al., “ROC: DRAM-Based Processing with Reduced Operation Cycles,” in

DAC, 2019.
[189] L. Yang et al., “A Flexible Processing-in-Memory Accelerator for Dynamic Channel-

Adaptive Deep Neural Networks,” in ASP-DAC, 2020.
[190] J. Yu et al., “Memristive Devices for Computation-in-Memory,” in DATE, 2018.
[191] J. T. Zawodny and G. E. Hush, “Apparatuses and Methods to Reverse Data Stored

in Memory,” 2018, US Patent 9,959,923.
[192] Y. Zha and J. Li, “Hyper-AP: Enhancing Associative Processing through a Full-Stack

Optimization,” in ISCA, 2020.
[193] H. Zhao et al., “Apparatuses and Methods to Control Body Potential in Memory

Operations,” 2017, US Patent 9,536,618.
[194] D. U. Lee et al., “A 1.2 V 8 Gb 8-Channel 128 Gb/S High-Bandwidth Memory

(HBM) Stacked DRAM With Effective I/O Test Circuits,” in JSSC, 2014.
[195] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory

Bandwidth at Low Cost,” ACM TACO, 2016.
[196] A. O. Glova et al., “Near-Data Acceleration of Privacy-Preserving Biomarker Search

with 3D-Stacked Memory,” in DATE, 2019.
[197] C. Xie et al., “Processing-in-Memory Enabled Graphics Processors for 3D Render-

ing,” in HPCA, 2017.
[198] C. D. Kersey et al., “Lightweight SIMT Core Designs for Intelligent 3D Stacked

DRAM,” in MEMSYS, 2017.
[199] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and System

Design,” in WoNDP, 2014.
[200] R. Hadidi et al., “Performance Implications of NoCs on 3D-Stacked Memories:

Insights from the Hybrid Memory Cube,” in ISPASS, 2018.
[201] P. Liu et al., “3D-Stacked Many-Core Architecture for Biological Sequence Analysis

Problems,” IJPP, 2017.
[202] S. H. Pugsley et al., “NDC: Analyzing the Impact of 3D-Stacked Memory+Logic

Devices on MapReduce Workloads,” in ISPASS, 2014.
[203] J. P. C. de Lima et al., “Design Space Exploration for PIM Architectures in 3D-

Stacked Memories,” in CF, 2018.
[204] P. C. Santos et al., “Processing in 3D Memories to Speed Up Operations on Complex

Data Structures,” in DATE, 2018.
[205] Q. Zhu et al., “A 3D-Stacked Logic-in-Memory Accelerator for Application-Specific

Data Intensive Computing,” in 3DIC, 2013.
[206] Q. Zhu et al., “Accelerating Sparse Matrix-Matrix Multiplication with 3D-Stacked

Logic-in-Memory Hardware,” in HPEC, 2013.
[207] E. Azarkhish et al., “A Case for Near Memory Computation Inside the Smart

Memory Cube,” in EMS, 2016.
[208] J. Jang et al., “Charon: Specialized Near-Memory Processing Architecture for

Clearing Dead Objects in Memory,” in MICRO, 2019.
[209] P.-A. Tsai et al., “Adaptive Scheduling for Systems with Asymmetric Memory

Hierarchies,” in MICRO, 2018.
[210] G. F. Oliveira et al., “A Generic Processing in Memory Cycle Accurate Simulator

Under Hybrid Memory Cube Architecture,” in SAMOS, 2017.
[211] J. Picorel et al., “Near-Memory Address Translation,” in PACT, 2017.
[212] R. Hadidi et al., “CAIRO: A Compiler-Assisted Technique for Enabling Instruction-

Level Offloading of Processing-in-Memory,” TACO, 2017.
[213] H. Caminal et al., “CAPE: A Content-Addressable Processing Engine,” in HPCA,

2021.
[214] H. Caminal et al., “Accelerating Database Analytic Query Workloads using an

Associative Processor,” in ISCA, 2022.
[215] L. Yavits et al., “GIRAF: General Purpose In-Storage Resistive Associative Frame-

work,” TPDS, 2021.
[216] E. Garzón et al., “AIDA: Associative In-Memory Deep learning Accelerator,” IEEE

Micro, 2022.
[217] R. Kaplan et al., “PRINS: Processing-in-Storage Acceleration of Machine Learning,”

TNANO, 2018.
[218] A. Morad et al., “Resistive GP-SIMD Processing-in-Memory,” TACO, 2016.
[219] R. Kaplan et al., “A Resistive CAM Processing-in-Storage Architecture for DNA

Sequence Alignment,” IEEE Micro, 2017.
[220] V. Patel, “DRAM CAM Memory,” Aug. 8 2006, US Patent 7,088,603.
[221] A. Makosiej et al., “CAM Memory Cell,” Mar. 14 2019, US Patent App. 16/083,314.
[222] K. A. Batson et al., “DRAM CAM Cell with Hidden Refresh,” Aug. 6 2002, US

Patent 6,430,073.
[223] A. Subramaniyan and R. Das, “Parallel Automata Processor,” in ISCA, 2017.
[224] K. Wang et al., “An Overview of Micron’s Automata Processor,” in CODES, 2016.

19918

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

A. Artifact Appendix
A.1. Abstract
Our artifacts span two components of the evaluation of pLUTo:

1) SPICE simulations (Section 8.1), and 2) throughput and

energy consumption estimations (Sections 8.2 to 8.8). We eval-

uate the correct circuit-level functionality of pLUTo cells using

DRAM cell models based on Low-Power 22nm Metal Gate

PTM transistors [134]. We evaluate the performance and energy

consumption of pLUTo using a custom Python-based analytical

timing and energy model. To aid the reproducibility of our

results, we provide a Jupyter Notebook that may be used to

automatically 1) run the Python-based performance and energy

model, and 2) plot the ensuing results. The artifact repository

is available at https://doi.org/10.5281/zenodo.6942058
and at https://github.com/CMU-SAFARI/pLUTo.

A.2. Artifact Check-List (Meta-Information)
• Program: LTSpice, Python
• Metrics: voltage level, cycle count, energy consumption
• Experiments: DRAM cell operation, evaluated workloads
• Disk space requirements: 10 MB
• Time required to prepare the workflow: 1 hour
• Time required to complete the experiments: 1 hour
• Publicly available: yes
• Code license: MIT License
• DOI: 10.5281/zenodo.6942058

A.3. Description
A.3.1. How to Access. The repository containing the artifacts

may be accessed at https://doi.org/10.5281/zenodo.
6942058 or at https://github.com/CMU-SAFARI/pLUTo.

A.3.2. Software Dependencies. The reproduction of our

artifacts requires LTSpice, Python 3, and NumPy. The interac-

tive artifact generation walkthrough further requires the Jupyter,

pandas, SciPy, and Matplotlib Python libraries.

A.4. Installation
No installation is required. The simulator may be launched

either directly as a Python script or via the provided interactive

Jupyter Notebook. Detailed step-by-step directions for achiev-

ing this are provided in the repository and in Appendix A.5.

A.5. Experiment Workflow
A.5.1. SPICE Simulation. Please follow the following instruc-

tions to reproduce these results:

1. Download LTSpice.

2. Open the .asc files and run a Monte Carlo simulation.

3. Probe the bitline voltage by clicking the bitline node. A

similar (results are stochastic) plot to Figure 6 will appear.

A.5.2. Performance and Energy Model. These results can be

easily reproduced by following the step-by-step instructions in

the provided sim_walkthrough.ipynb file. This Jupyter Note-

book will automatically generate three output CSV files contain-

ing the performance and energy values for each of the 6 (DDR4-

and 3DS-based pLUTo-GSA, pLUTo-BSA, and pLUTo-GMC)

configurations of pLUTo.

A.6. Evaluation and Expected Results
A.6.1. SPICE Simulation. Inspection of the resulting bitline

voltages should reveal similar results to those shown in Figure 6

(small variations are expected due to the randomness inherent

to the Monte Carlo simulation).

A.6.2. Performance and Energy Model. The execution of the

provided simulator should result in the creation of files iden-

tical to the provided pluto_sim/pysim_reference/pLUTo
_*.csv. In addition, when executing the provided Jupyter Note-

book, plots depicting the same data as shown in Figures 7 to 12

should appear.

20919

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2022 at 14:12:00 UTC from IEEE Xplore. Restrictions apply.

