
 
 

Delft University of Technology

Time Series Predictive Models for Opponent Behavior Modeling in Bilateral Negotiations

Yesevi, Gevher; Keskin, Mehmet Onur; Doğru, Anıl; Aydoğan, Reyhan

DOI
10.1007/978-3-031-21203-1_23
Publication date
2023
Document Version
Final published version
Published in
PRIMA 2022

Citation (APA)
Yesevi, G., Keskin, M. O., Doğru, A., & Aydoğan, R. (2023). Time Series Predictive Models for Opponent
Behavior Modeling in Bilateral Negotiations. In R. Aydoğan, N. Criado, V. Sanchez-Anguix, J. Lang, & M.
Serramia (Eds.), PRIMA 2022: Principles and Practice of Multi-Agent Systems - 24th International
Conference, Proceedings (pp. 381-398). (Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13753 LNAI). Springer.
https://doi.org/10.1007/978-3-031-21203-1_23
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-21203-1_23
https://doi.org/10.1007/978-3-031-21203-1_23


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Time Series Predictive Models
for Opponent Behavior Modeling

in Bilateral Negotiations

Gevher Yesevi1(B) , Mehmet Onur Keskin1 , Anıl Doğru1 ,
and Reyhan Aydoğan1,2

1 Computer Science, Özyeğin University, Istanbul, Turkey
{gevher.yesevi,onur.keskin,anil.dogru}@ozu.edu.tr,

reyhan.aydogan@ozyegin.edu.tr
2 Interactive Intelligence, TU Delft, Delft, The Netherlands

Abstract. In agent-based negotiations, it is crucial to understand the
opponent’s behavior and predict its bidding pattern to act strategically.
Foreseeing the utility of the opponent’s coming offer provides valuable
insight to the agent so that it can decide its next move wisely. Accordingly,
this paper addresses predicting the opponent’s coming offers by employing
two deep learning-based approaches: Long Short-Term Memory Networks
and Transformers. The learning process has three different targets: esti-
mating the agent’s utility of the opponent’s coming offer, estimating the
agent’s utility of that without using opponent-related variables, and esti-
mating the opponent’s utility of that by using opponent-related variables.
This work reports the performances of these models that are evaluated
in various negotiation scenarios. Our evaluation showed promising results
regarding the prediction performance of the proposed methods.

Keywords: Automated negotiation · Multi-agent systems ·
Time-series prediction · Utility prediction

1 Introduction

Autonomous negotiating agents decide on their behaviors by considering various
factors such as time pressure, the competitiveness of the underlying negotiation
domain, the opponent’s collaborative level, and so on [8,14]. Sophisticated strate-
gies aim to detect the opponent’s behaviors and make reciprocating moves. Thus,
understanding the fundamental causes of behavior is one of the essential research
questions in agent-based negotiation systems. Once the underlying causes of their
opponent’s behaviors are observed, negotiating agents can act strategically to get
better negotiation outcomes sooner. Consequently, agents can target to maximize
their utility or increase social welfare depending on the context.

In autonomous negotiations, decisions on when to accept the opponent’s
counter-offer or what offer to make (i.e., acceptance and bidding) are made
according to the employed strategies. These strategies are often defined based
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on the target utility calculations [2,7,11]. Therefore, predicting opponents’ target
utility for future rounds would be an excellent approach to grasp their behav-
iors. In the literature, some attempts aim to detect the opponent’s moves/target
utilities and act accordingly [4,7]. For instance, Williams et al. present a Gaus-
sian process to foresee the concession rate of the opponent [19]. Furthermore,
researchers apply reinforcement learning to determine their target utility based
on the exchanged offers and remaining negotiation time during the negotiation
[1,16]. Those studies implicitly take the opponent’s behavior into account. More-
over, Chen et al. suggest applying transfer learning in negotiation to benefit from
previous negotiation experiences [5].

With the growing need for decision-making processes in complex domains,
there is an increasing interest in understanding the behavior of other agents
such as logistics and transportation [6,8,16]. Some of them focus on learning
the patterns and trends in an agent’s behavior. For this type of prediction, time
series analysis is a promising approach to build such predictors. In automated
negotiation, Li et al. recently adopt such a time series analysis to recognize the
opponent’s strategy during the negotiation [12]. In their work, the agent aims to
classify what strategy its opponent employs by analyzing the history of the offers
made by the opponent. Inspired by that study and considering the importance
of the target utility estimation in negotiation, we propose adopting time series
predictors to guess the utility of the opponent’s coming offers so that the agent
can strategically make its decisions.

Accordingly, the goal of this study can be summarized twofold: (i) introducing
two deep learning-based models, namely Long short-term memory (LSTM) [10]
and Transformer models [18], to guess the utility of the opponent’s following
offers, and (ii) studying the effect of opponent’s strategy and the size of the
negotiation domain on the performance of the implemented predictors. This work
could lead to a promising research direction toward recognizing the opponent’s
strategy. We believe that predicting the utility of the opponent’s following offers
(i.e., next-step utility prediction) helps the agent developers design resilient and
robust negotiation strategies.

The following sections in this paper are as follows: Sects. 2 and 3 provide
the information on the reviewed literature and the necessary background about
automated negotiations. The proposed approach and the details of the prediction
models are explained in Sect. 4 while its evaluation is elaborately reported in
Sect. 5. Finally, Sect. 6 concludes this paper with future work.

2 Related Work

Various negotiation strategies have been proposed in the literature. Existing
strategies usually calculate a target utility at each round and generate a bid
with that utility. Time-based strategies such as Conceder and Boulware agents
determine the target utility through a function of remaining negotiation time [7].
Opponent agents can straightforwardly exploit such strategies since they do not
consider opponent’s behaviors. Thus, strategies like Tit-for-Tat consider oppo-
nent’s consecutive offers to determine their coming offers by mimicking their
opponent to some extent. For a more robust strategy, Faratin et al. suggest
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adopting a hybrid strategy, which combines both time and behavior-dependent
tactics similar to the strategy presented in [11]. Moreover, another strategy deter-
mines several negotiation states and proposes adopting a specific bidding tactic
for each state while considering the opponent’s consecutive offers [15].

The aforementioned strategies consider their opponent’s behavior based on
their previous offers during the negotiation. Besides, guessing an opponent’s
future moves may enable a negotiating agent to act strategically. Regarding
predicting the opponent’s future behavior, there is some literature work. For
instance, Williams et al. present a Gaussian process to predict the utility of the
opponent’s next offer [19] by assuming that the opponent concedes over time.
Consequently, the agent can estimate its opponent’s future concession.

Another direction is to build a prediction model for the opponent’s strategy.
Accordingly, Li et al. introduce the idea of applying a time series prediction
model to classify an opponent’s strategy among a predefined set of strategies
[12]. It is claimed that the proposed idea can be adopted independently from the
domain. For this purpose, the authors use the agents of the negotiation platform
called Genius [13]. Notably, they use the LSTM model for recognizing the oppo-
nent’s strategy. In some cases, such classifiers may not perform well, especially
when facing an opponent employing a sophisticated unknown strategy. There-
fore, unlike that study, we propose adopting time series models such as LSTM
[10] and Transformers [18] to predict the utility of the opponent’s following offers.
To our knowledge, Transformers have not been used yet in this context.

3 Automated Negotiation

In automated negotiation, agents negotiate over a finite set of n issues I =
{1, 2, . . . , n}. Each issue i ∈ I has a range Di of possible instantiations. An
outcome, o ∈ Ω, is a complete assignment to the set of issues where Ω is the
Cartesian Product of the ranges of instantiations per issue. Formally, the set of
all possible outcomes is defined as Ω = D1 X D2 X... X Dn. The assessment
of each offer/outcome is done using a utility function mapping each negotiation
outcome to a real number [0, 1], the desirability of that outcome. The utility
function is a mathematical representation of the agent’s preferences. As usual,
additive utility functions are used for this purpose [8]. Eq. 1 shows the function
where wi represents the importance of the negotiation issue Ii (i.e., issue weight),
oi represents the value for issue i in offer o, and Vi is the valuation function for
issue i, which returns the desirability of the issue value. Without losing generality,
it is assumed that

∑
i∈n wi = 1 and the domain of Vi is (0, 1) for any i. An issue

value is preferred when its valuation value Vi is higher. A negotiating agent
utilizes its utility function to determine what to offer and when to accept.

U(o) =
n∑

i=1

wi × Vi(oi) (1)

Stacked Alternating Offers Protocol (SAOP) governs the interaction among
agents (i.e., what actions can be taken under which condition and when to stop
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the negotiation) [3]. As there is a deadline to reach an agreement, the interaction
ends when agents find a consensus or reach the deadline. The interaction starts
with an offer made by one of the agents. In each turn, the agent receiving an offer
can (i) accept the current offer, (ii) make a counteroffer, or (iii) end the negoti-
ation without an agreement. The interaction continues in a turn-taking fashion
and ends until reaching an agreement or deadline. Agents generally do not know
their opponent’s preferences or negotiation strategies. However, they can try to
learn those preferences/strategies over time by analyzing offer exchanges as we
aim in this study.

To analyze the behavioral changes of negotiating agents during the negotia-
tion, Hindriks et al. define six negotiation moves. A move is determined based on
the utility difference of the negotiator’s subsequent offers for both sides. These
moves are defined as follows: fortunate, nice, concession, selfish, unfortunate, and
silent [9]. Table 1 demonstrates the calculation of move types of a player where
ΔUA and ΔUOp represent the utility difference for the negotiator itself and that
for the opponent, respectively.

Table 1. Move specification of a negotiator [9]

Self difference Opponent difference

Silent ΔUA = 0 ΔUOp = 0
Nice ΔUA = 0 ΔUOp >0

Concession ΔUA <0 ΔUOp >0

Unfortunate ΔUA <0 ΔUOp <0

Fortunate ΔUA >0 ΔUOp >0

Selfish ΔUA >0 ΔUOp <0

4 Proposed Prediction Approach

The main focus of this study is to build a prediction module that generates
next-step utility value predictions during bilateral negotiations to improve the
decision-making process of the agents. Consequently, agents may avoid making
an offer whose utility is lower than the utility of its opponent’s next offer (i.e.,
leaving money on the table). In particular, when the agent negotiates with the
same opponent several times, it can foresee its behavior and act wisely to find a
consensus sooner. Those predictions may play an essential role in capturing the
trends of opponent behavior and help to recognize the opponent’s strategies.

Accordingly, this study aims to predict the utility of the opponent’s following
offers to design sophisticated and robust negotiation strategies by adopting the
three objectives listed below:
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– Objective 1: Predicting the utility of its opponent’s coming offer for itself,
UA(ot+1), based on remaining time and bid exchanges so far.

– Objective 2: Improving the performance of the prediction gained in Objec-
tive 1 by considering additional features such as estimated opponent utility,
Nash Distance, and opponent’s moves.

– Objective 3: Predicting its opponent’s estimated utility of its opponent’s
next offer, ÛOp(ot+1), based on remaining time, bid exchanges so far and
additional features used in Objective 2.

Accordingly, Fig. 1 illustrates the inputs used within our next-step utility pre-
diction for achieving each objective mentioned above. For any kind of analysis, a
negotiating agent can keep track of all offers made during the negotiation and cal-
culate their utilities for itself by using its utility function (< UA(o0), ..., UA(ot) >)
at time t. To achieve the first objective, we suggest adopting a time series pre-
dictor that can be fed by the remaining time (tremain) and the agent’s utility
of a chunk (we will refer to it as ‘window’ for the rest of the paper) of previous
consecutive offer exchanges (< UA(ot−k), ..., UA(ot) >). The designer can choose
the size of the window k to be used for each training set1.

Fig. 1. Inputs and outputs for next-step utility prediction

For Objective 2, we suggest including the opponent’s utilities of the offer
exchanges, negotiation move analysis, and the Nash distances. Although the
agent has no access to the opponent’s preferences, it could employ an opponent

1 In our work, we consider five previous consecutive offer exchanges.
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modeling for learning the opponent’s preferences over time in terms of utilities.
Any opponent modeling study from the literature [4] could be utilized for this
purpose. For our work, a frequency-based opponent modeling mechanism is cho-
sen [17]. Consequently, the agent can exploit additional estimated information
such as the opponent’s utility of a given offer, negotiation move types, and the
Nash distances of the given offers. It is worth noting that the accuracy of the
selected opponent model may affect the predictor’s performance for the next-step
utility value. To sum up, the following inputs feed the second predictor:

– Agent’s utilities for the offer window, < UA(ot−k), ..., UA(ot) >,
– Estimated opponent utilities for the offer window, < ÛOp(ot−k), ..., ÛOp(ot) >,
– Nash distances for the offer window, < ΔN(ot−k),ΔN(ot) >,
– Estimated moves for the offer window, < m(ot−k, ot−k+1), ...,m(ot−1, ot) >,
– Remaining negotiation time, tremain.

To accomplish the third object, we utilize the same inputs used for Objective
2, but the output of the model is the estimated opponent’s utility of the oppo-
nent’s coming offer, ÛOp(ot+1). All offer-related inputs can be kept as a time
series during negotiation. This allows us to use supervised learning models to
learn the sequential behaviors of negotiating agents and predict the next-step
utility values accordingly. Due to the sequence-based characteristics of negoti-
ation sessions, selecting a suitable multi-variate time series prediction method
is essential. Considering these requirements, we decided on two deep learning
architectures with sequence processing behaviors: LSTM and Transformer mod-
els.

4.1 Time Series Predictive Model Architectures

Next-step utility value prediction is essential for a negotiating agent for decision-
making. With time series prediction methods, it becomes possible to observe the
historical data patterns and foresee the behaviors in the following steps. Selected
models, namely LSTM and Transformer models, have been used widely for this
purpose. LSTM model is an extension of recurrent neural networks (RNN). This
model has been selected due to the high predictive performance in similar com-
petitive markets. After producing successful results on different sequence-based
learning tasks like Natural Language Processing (NLP) and Computer Vision,
LSTM models have become prevalent in regression tasks involving sequential
data. When the Attention layers are introduced to replace RNNs, many use
cases that prefer LSTM models have considered Transformer models in different
learning tasks like NLP and Computer Vision. Therefore, we included Trans-
former models in our prediction module to test this assumption for next-step
utility predictions.

Sequential information is fed to the aforementioned models with a sliding
window approach. This approach first requires a number of time steps to decide
the window size of data it will carry. Then, each iteration utilizes this window
in the computations by sliding the window by one step. The inputs of each



Time Series Predictive Models for Opponent Behavior Modeling 387

iteration not only depend on the current step but are also fed by the previous
inputs received by the window, as can be seen in Fig. 2.

Fig. 2. Sliding window approach of model input and output

Long Short-Term Memory (LSTM) Model Architecture: Recurrent
Neural Network (RNN) deep learning architectures are designed for processing
sequential inputs. It is a widely used neural network since its ability to model
the time dependency in its architecture. There are many variations of RNN to
improve its efficiency. One of these variations is LSTM [10]. Mainly, deep neu-
ral networks suffer from the vanishing gradient problem, which occurs when the
calculated gradient gets close to zero value during back-propagation operation.
This situation causes the information to be lost during the model training. To
resolve this problem, LSTM architecture introduces memory gates to control the
input flow. This way, the information of long sequences can be preserved during
the training and processed in a unidirectional way.

The LSTM architecture we employed contains one LSTM layer with 45 units
and a fully connected layer to produce the predictions, as shown in Fig. 3. The
model takes last five inputs; X(t−4), X(t−3), X(t−2), X(t−1), X(t) as a sequence
and predicts next value Y(t+1). The data is processed in the model with a batch
size of 32. ‘Mean Squared Error’ is used as the loss function, whereas ‘RMSProp’
is selected as the optimizer since it is widely preferred for regression problems.
The model is trained for 50 epochs with a 0.001 learning rate.

Fig. 3. The left-hand side demonstrates the proposed LSTM model, while the right-
hand side demonstrates the LSTM architecture
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Transformer Architecture: Transformer models stand out with the self-
attention mechanism they employ to draw dependencies between inputs and
outputs instead of focusing on recurrence in neural networks (i.e., allowing data
to be processed regardless of a direction) [18]. This attention mechanism takes
the positions of input and output sequences, connects them to each other, and
traverses among them to decide on what to pay attention to the most. While
connecting the sequences, the architecture limits the process with a constant
number of sequentially executed operations, whereas recurrent layers require
O(n) sequential operations. The advantage of having lower complexity pays off
when the tasks involve very long sequences.

Recent studies show that Transformer-based architectures can be used to
predict time series [21]. Wu et al. use an encoder-decoder based approach for
time series prediction in their study [20]. Their model takes the time series
inputs with a window size of five, and the output as a sequence with the shifted
input indices. After experimenting with various Transformer-based architectures
for our task, we propose an encoder-decoder model with shifted inputs. Figure 4
shows the Transformer block and input-output design of this architecture that
is used in our study.

Fig. 4. Proposed Transformer based encoder-decoder model

Encoder: The model’s encoder is shown on the left-hand side of Fig. 4. It takes
the first 3 inputs of sequence (X(t−4), X(t−3), X(t−2)). In the study introduc-
ing attention layers, Vaswani et al. use input embedding for the ‘token2vector’
operation [18]. However, we prefer to use a fully connected layer instead of input
embedding to adapt the original structure of Transformer models to time series
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prediction tasks, similar to the work of Wu et al. [20]. Note that the other com-
ponents of the original Transformer structure remained the same. The encoder
of the model has two Transformer blocks.

Decoder: The model’s decoder is shown on the right-hand side of Fig. 4. It takes
the last 3 inputs of sequence (X(t−2), X(t−1), Xt), and predicts the corresponding
shifted outputs (Y(t−1), Yt, Y(t+1)). Similar to the encoder, the decoder uses a
fully connected layer instead of input embedding and contains two Transformer
blocks. The inputs used in both Transformer blocks are the same, except the
inputs obtained from the encoder and fed into the decoder. The decoder part
of the architecture contains two fully connected layers right after the second
Transformer block.

Similar to the LSTM architecture, we build the Transformer model with a
window size of five and batch size of 32, then train it for 50 epochs. ‘Mean
Squared Error’ is selected as the loss function while ‘RMSProp’ optimizer is
used with a 0.001 learning rate.

5 Evaluation

The objectives of this study have been evaluated elaborately in varying negoti-
ation settings (i.e., different negotiation scenarios and opponent strategies). We
pre-trained the selected model architectures with historical negotiation sessions
to feed the prediction models with the defined input and target variables. This
section reports the actions taken for model training and evaluations of three dif-
ferent objectives. Accordingly, Sect. 5.1 describes our experimental setting where
the results are analyzed and discussed in Sect. 5.2.

5.1 Experimental Setup

Defined model architectures must be fed with historical negotiation sessions to
capture the opponent agent’s behaviors during the negotiation. For this rea-
son, multiple negotiations with different settings have been conducted using
the GeniusWeb negotiation framework [13] whose collected sessions are used for
model training purposes. Note that GeniusWeb is the Web version of Genius,
which allows agent developers to design their agents in Python. It supports
machine learning libraries that are available in Python for time series predic-
tions. Unfortunately, we cannot directly use agents available in Genius on this
platform. There are a few agent strategies available at this moment. For the
baseline agent that performs the learning process, we implemented an additional
strategy – a hybrid bidding strategy [11] with a frequency-based opponent model
[17]. The negotiations have been conducted between this baseline agent and five
available agents, which employ Boulware, Conceder, behavior-based, hybrid, and
another hybrid strategy with opponent modeling. The brief information about
those agents is given below:
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– Time-based strategies: These strategies calculate a target utility consider-
ing the remaining time and generate an offer with that utility [7]. The agents
adopt a function of normalized negotiation time to determine the utility of
their coming offer. They tend to concede on their target utility over time. The
main difference between the Conceder and Boulware agents is their concession
curve. While the Conceder agent concedes quickly over time, the Boulware
agent tends to concede only when the deadline is approaching.

– Behaviour-based strategy : The opponents that employ this strategy are
expected to be opponent-aware and behave accordingly. The agents that
adopt a behavior-based strategy mimic the behavior of the opponent. To
do so, the agent calculates the utility difference between the opponent’s two
consecutive offers and applies the concession amount proportionally [7].

– Hybrid strategy : The agents employing the hybrid strategy make their deci-
sions by considering both remaining time and the behaviors of the agent they
negotiate with. The target utility is a linear combination of the target utilities
calculated by time-based and behavior-based strategies as shown in Eq. 2 [11].
The principal intuition is that when time is not crucial (e.g., at the beginning
of the negotiation), the agent pays more attention to its opponent’s behavior
while deciding on its next bid’s target utility. As the deadline approaches,
it tends to find an agreement urgently; therefore, it cares more about the
remaining time. We use two versions of this agent with and without oppo-
nent modeling in our work.

TUHybrid = (t2) × TUTimes + (1 − t2) × TUBehavior (2)

To assess the performance of the proposed approaches, we run negotiation
tournaments with varying negotiation scenarios (i.e., domain with two preference
profiles for bilateral negotiation). For this purpose, we selected nine negotiation
domains available in the GeniusWeb negotiation platform. Table 2 shows the
selected domain information of negotiation sessions that are used for training and
testing purposes. In order to evaluate the effect of domain sizes, two large, two
medium, and two small-sized domains have been selected for training sessions,
whereas one domain for each size group has been selected for testing purposes.
The baseline agent negotiates with all opponents for each domain and preference
profile. The negotiations are repeated ten times for each negotiation configura-
tion with a session deadline of three minutes. After completing the negotiation
sessions with five opponents, two preference profiles, and six domains ten times,
we obtained 600 different negotiation sessions for training purposes. Other than
that, 60 negotiation sessions are collected for testing purposes after negotiating
with five opponents, two profiles, and three different domains twice.

In addition to feeding all collected data into the models, the filtered sessions
of the small, medium, and large domains have been trained separately. There-
fore, collected negotiation sessions have been grouped by domain sizes before
training models. When the training data becomes ready, training sessions for
each objective have been conducted with prepared data sets.
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Table 2. Domain details for both training and test data

DomainID Category Issue & Value List Bid Space Opposition

Train 1 Small [2, 3, 2, 2, 2, 3, 3] 432 0.189
2 Small [8, 2, 2, 8, 2] 512 0.096
3 Medium [5, 11, 8, 9] 3,960 0.260
4 Medium [17, 4, 5, 3, 2] 2,040 0.056
5 Large [26, 20, 8, 4] 16,640 0.281
6 Large [26, 22, 10, 8] 45,760 0.255

Test 7 Small [2, 3, 2, 2, 11, 2] 528 0.080
8 Medium [4, 3, 2, 2, 5, 5, 3] 3,600 0.191
9 Large [26, 8, 26, 2] 10,816 0.280

5.2 Results

After training the neural networks (LSTM and Transformer) with 600 negotia-
tion sessions with given configurations, we generate the predictions of the oppo-
nent’s next-step utility values on the test data for all rounds after the fifth round.
Predicted values are compared with the actual values by using two evaluation
metrics; the root-mean-square error (RMSE) and the mean absolute percentage
error (MAPE). Recall that we make predictions for 60 negotiation sessions in
total. For the final results, we take the average of calculated RMSE and MAPE
metrics. Additionally, we analyze the effect of the domain size per each objective.
Remind that Objective 1 and Objective 2 have a shared target variable which is
the agent’s utility value of the opponent’s next offer, whereas Objective 3 makes
use of the same opponent-related input variables as Objective 2 during training.
However, its target is to guess the opponent’s utility. Therefore, the evaluations
are formed with the consideration of these differences.

We first evaluate the performance of the predictions regarding to Objective 1
and Objective 2. Figure 5 shows the MAPE scores of each model on each domain
size for both objectives. The blue bars show their prediction performance on all
test scenarios. It can be said that the Objective 1 achieved prediction with 17%
and 18% MAPE by Transformer and LSTM, respectively. Here, the performance
of the Transformer is slightly better than the LSTM. Moreover, it is obvious
that the prediction error decreases when the models consider the opponent-
related features (i.e., estimated opponent’s utility of its previous offers, their
Nash distances, and estimated opponent moves described in Table 1). Therefore,
we can say that Objective 2 is achieved.

To investigate the effect of the domain size on Transformer and LSTM mod-
els, we train separate predictors for different sized scenarios (i.e., small, medium,
and large), which are shown by orange, grey, and yellow bars, respectively. We
observed that predicting agents’ utilities on large domains have the highest error
rates regardless of the chosen model. This situation may mainly stem from the
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Fig. 5. Model comparison among different domain sizes for Objectives 1 & 2

high complexity of possible offer distributions in large negotiation domains. Com-
pared to other domain sizes, a regular negotiation session in large domains covers
a small portion of the bid space, which might decrease the model’s generalization
ability. On the other hand, the models trained with whole data show the best
performances among others since they are introduced to more diverse examples
in the training data. For more detailed analysis, Fig. 6 elaborately summarizes
both MAPE and RMSE scores per each setting for Objective 1 and Objective 2.
According to the RMSE and MAPE scores of Objective 1 and Objective 2, it can
be observed that both metric scores of Objective 2 are lower than of Objective
1. This observation shows that both models are improved as they are enriched
with additional opponent-related variables, as expected.

Fig. 6. Model comparison among different domain sizes for Objectives 1 & 2

The evaluation of Objectives 1 and 2 is important to understand the oppo-
nent’s attitude from the agent’s utility change perspective. Besides, it is crucial
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to predict the opponent’s utilities of their coming offers since most of the oppo-
nents generate their offers by considering their utility. Accordingly, Objective 3
aims to learn opponent’s utility. Note that the agent does not know the oppo-
nent’s utility function. Therefore, we first assess the predictor’s performance by
comparing the predictions with the estimated utilities by relying on the current
opponent model. Then, we compare these predictions with actual utilities cal-
culated by the opponent’s utility function in the system. It is worth noting that
these actual utilities are not accessible by the agent during the training process
and the adopted opponent modeling approach may affect the performance of
this comparison between predicted opponent utilities and the actual opponent
utilities since the models are trained with the estimations. Implicitly, this com-
parison can give some insights about the performance of the opponent modeling
technique employed by the agent.

Figure 7 compares the predictions with estimated and actual opponent util-
ities. For both models, the predictions have higher error rates when compared
to the actual opponent utilities as expected. However, the performance of pre-
dicting the estimated values shows the positive impact of utilizing opponent-
related inputs to predict opponent utility. Inherently, this shows that improv-
ing the employed opponent model’s accuracy might help obtaining lower error
rates while predicting actual opponent utilities, which can lead to an interesting
research direction. In general, the performance of the LSTM models seems to be
slightly better than Transformer in all domain categories except small domains.

Fig. 7. Model comparison among different domain sizes for Objective 3 according to
estimated & real values

We also analyze how well the general models work against different oppo-
nents as far as the different characteristics of the opponents are concerned.
Figure 8 shows the error distribution of the general models among different oppo-
nent strategies regarding the Objectives 1 and 2. We might think that learning



394 G. Yesevi et al.

the utilities of the opponent’s next offers would be easier when they employ
a time-based concession strategy since they are generated through a function
of normalized negotiation. However, the Objectives 1 and 2 aim to learn the
agent’s utility, not the opponent’s utility. Therefore, there may not be a regular
pattern as far as the agent’s utility is concerned due to varying opposition of
the domains as shown in Table 2. In other words, the received utilities by the
agent may have some fluctuations. On the other hand, we expect behavior-based
strategies to show a more regular pattern since they consider the other side’s
utilities. Therefore, the predictors’ performance against such agents is lower than
the behavior-based agents. The performance of the predictors is better for the
Objective 2 because of considering opponent-related features. While the models
perform best against behavior-based opponents, their performance drastically
drops due to the stochastic behavior shown by the hybrid agents.

Fig. 8. Model comparison among different opponents for Objectives 1 & 2

Figure 9 shows the model comparison against each opponent strategy for
Objective 3 and demonstrates the metrics for estimated and actual oppo-
nent utilities. In general, next-step utility predictions against Hybrid strategies
demonstrate lower performance than time-based and behavior-based strategies,
as expected, since they have higher complexity for involving time-based and
behavior-based strategies. However, predictions against Hybrid strategies only
perform better while comparing Objective 3 predictions with the real opponent
utilities in terms of MAPE. This can stem from estimating the opponent’s offers
by the employed opponent model.
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To sum up, it is observed that there is no significant difference between LSTM
and Transformer results. RMSE and MAPE values were observed similarly for
each objective, as shown in Fig. 10. The similarity of the model performances
can also be interpreted by the prediction examples shown in Fig. 11. Although
the models can be refined by adding more complexity and potentially achiev-
ing higher success, this study used basic architectures to focus on the predic-
tion generalization capability on different domain sizes and employed opponent
strategies.

Fig. 9. Model comparison among different opponents for Objective 3 according to
estimated & real values

Fig. 10. Averaged RMSE and MAPE results models for different objectives



396 G. Yesevi et al.

(a) LSTM (RMSE: 0.135) (b) Transformer (RMSE: 0.104)

Fig. 11. Comparing predicted utilities in Objective 3 for a large domain

6 Conclusion

This study proposes time series predictive models, namely LSTM and Trans-
formers, to guess the utility values of the opponent’s coming offers during the
bilateral negotiation. Three different objectives have been introduced with the
motivation to foresee the utility of the opponent’s next offer from the agent’s and
opponent’s perspectives and investigate the effect of the opponent-related fea-
tures. To assess the performance of the proposed approaches, we trained LSTM
and Transformer models with data obtained from 600 negotiation sessions. The
results are analyzed elaborately by considering the effect of domain size and the
opponent’s strategy. The results support that the models can learn the utilities
of the opponent’s following offers to a certain extent. Since the opponent mod-
eling significantly influences the estimated utilities, different opponent modeling
approaches could be applied and compared in future work. Moreover, other time
series prediction models could be used and evaluated.

The models used in the study are selected based on their sequence processing
behaviors. LSTM models process the sequential utility values unidirectionally,
whereas Transformers process the data in a bidirectional manner. The bidirec-
tional behavior of Transformer models outperforms the LSTM models in some
tasks such as Natural Language Processing (NLP) and Computer Vision. How-
ever, we observed that it does not significantly exceed the unidirectional pro-
cessing behavior of LSTM models in next-utility value predictions. The situation
might stem from the fact that most agents make decisions by only considering
their previous and/or current rounds. In our opinion, if they act by considering
their future steps, Transformers might perform better.
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