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  Abstract 

Delineation of tumours and organs-at-risk permits detecting and correcting changes 

in the patients' anatomy throughout the treatment, making it a core step of adaptive 

external beam radiotherapy. Although auto-contouring technologies have sped up this 

process, the time needed to perform the quality assessment of the generated contours 

remains a bottleneck, taking clinicians between several minutes and an hour to 

complete. The authors of this article conducted several interviews and an 

observational study at two treatment centres in the Netherlands to identify challenges 

and opportunities for speeding up the delineation process in adaptive therapies. The 

study revealed three contextual variables that influence contouring performance: 

usable additional information, applicable domain-specific knowledge, and available 

editing capabilities in contouring software. In practice, clinicians leverage these 

variables to accelerate contouring in two ways. First, they use domain-specific 

knowledge and relevant clinical features such as the proximity of the organs-at-risk to 

the tumour to enable targeted inspection of the delineation. Second, clinicians 

modulate editing precision depending on the effect they anticipate the edit will have 

on the patient outcome. By implementing these acceleration strategies in guidelines 

and contouring tools, developers and workflow builders could increase contouring 

efficiency and consistency without affecting the patient outcome. 

  Introduction 

External Beam Radiotherapy (EBRT) is the most common form of RT and has 

become one of humanity’s main tools against cancer, together with surgery and 

systemic treatment. In EBRT, ionizing radiation is directed at the patient’s tumour to 

destroy the malignant cells. Over the last decades, significant technological 

improvements have been made in treatment planning and delivery, which increased 

the precision of EBRT. For instance, proton beam therapy (PT) can harness the ability 

of protons to deposit all their energy at a specific spot (Newhauser & Zhang, 2015; 

Wilson, 1946). This capability permits PT more precisely shape the radiation dose to 

the tumor, minimizing the dose to the surrounding healthy tissue and reducing side 
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effects (Langendijk et al., 2013; Lundkvist et al., 2005; Simone et al., 2011; Thomas 

& Timmermann, 2020).  

Harnessing the precision increase of dose delivery technology requires adapting the 

patient’s treatment plan to the anatomy of the day. Figure 1 presents the general 

workflow of this treatment paradigm known as adaptive EBRT. Adaptive EBRT 

imposes severe time constraints on online treatment planning processes (orange boxes 

in Figure 1) because longer within fraction times can lead to new anatomical changes, 

offsetting the value of the adaptation. Also, an increase in the footprint of treatment 

planning processes would reduce patient throughput, compromising the viability of 

adaptive EBRT.  

 
Figure 1. Schematic of external beam radiotherapy (EBRT) dose delivery pipeline. Each box 

corresponds to one process, and the diamonds to decisions in the workflow. The goal is to 

deliver the prescribed dose to the patient (red box) in F fractions spread over several days. 

Adaptive strategies help mitigate dose deviations due to changes in the patient's anatomy 

during the treatment. Adaptation can be online within a fraction (orange boxes) or offline 

between fractions (blue boxes). 

The present study investigates the challenges that the contouring process poses to the 

implementation of adaptive EBRT. Despite the availability of auto-contouring 

technologies, contouring remains human-centred because clinicians need to perform 

an extensive quality assessment of the generated delineations to ensure that they do 

not contain inaccuracies (Cardenas et al., 2019; Nikolov et al., 2020; van Dijk et al., 

2020; Vandewinckele et al., 2020). Therefore, to reduce the footprint of the contouring 

process, it is necessary to understand human factors that impact its duration. 

This study extends prior works in two ways. First, it focuses on the time dimension of 

contouring performance, uncovering factors that influence it. Traditionally, 

researchers have directed their attention to analysing the effect of different image 

modalities, guidelines, contouring software, and experience on output-based 

performance metrics like accuracy and inter-observer contouring variability 
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(Bekelman et al., 2009; Brouwer et al., 2014; Steenbakkers et al., 2005, 2006; Vinod 

et al., 2016). This focus makes sense considering the influence that these metrics have 

on patient safety (Karsh et al., 2006; Njeh, 2008). Nevertheless, factors that affect 

time can also impact accuracy, motivating the need to study them. On the one hand, 

other things equal, accuracy degrades in time-constrained scenarios (Chignell et al., 

2014; Pew, 1969). On the other, if clinicians perform demanding tasks for extended 

periods, they can become fatigued and lose situation awareness, which will also 

impact accuracy (Endsley, 2021; Evans et al., 2019).  

Second, this work studies the contouring process in its clinical context. Prior works 

have investigated the effect of input devices and user interfaces on contouring time 

using experiments in highly controlled environments (Multi-Institutional Target 

Delineation in Oncology Group, 2011; Ramkumar, 2017; Steenbakkers et al., 2005). 

These studies' findings hold for the general contouring case. Nevertheless, this needs 

not to be the case in the time-constrained phase of adaptive EBRT (orange boxes in 

Figure 1). This study follows a qualitative context-driven approach to uncover factors 

that affect contouring performance in adaptive EBRT and discusses potential context-

aware strategies to mitigate them. Adopting an ecological approach to researching 

human factors that affect contouring performance can help designing representative 

experiments and evaluations for contouring in time-critical scenarios (Flach et al., 

2018). Furthermore, the findings from this study represent the initial step of 

methodologies like Ecological Interface Design, which aims to develop systems that 

promote adaptive performance (Vicente, 2002).  

To summarize, the present study investigates factors that affect the duration of the 

contouring process and discusses potential mitigation strategies. It complements and 

extends prior studies that analysed human factors of contouring performance 

(Aselmaa et al., 2014; Ramkumar et al., 2017), providing an updated account of the 

process workflow in the time-critical context of adaptive EBRT. Finally, the present 

study contributes to the state-of-the-art of clinical contouring workflows in adaptive 

EBRT in two ways: 

1. It reports the results of an observational study in two cancer treatment centres in 

the Netherlands. The study of the Contouring Workflow provided a situated 

account of the current contouring workflows in the context of adaptive EBRT, 

together with factors that can affect its performance. 

2. It discusses acceleration strategies based on the context of adaptive EBRT that 

tool developers and clinicians can leverage to adapt the contouring workflow to 

time-constrained scenarios. 

  The Contouring Activity 

An exploratory literature review was performed to establish baseline knowledge about 

the contouring activity and its role in adaptive therapies. The query used for the search 

(Scopus, PubMed, and Google Scholar) included the keywords: adaptive, adaptation, 

proton therapy, radiotherapy, contouring, automatic, semi-automatic, workflow, and 

head-and-neck. The latter term was relevant since the study's participants (next 

section) were specialists in this region. The search yielded around 50 articles with 

publishing years ranging between 2008 and 2021.  
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As Figure 2 depicts, the main inputs of the contouring activity are 3D images (stacks 

of hundreds of 2D images) that describe the patient anatomy. Among these, there is 

an image to contour, usually a Computerized Tomography (CT), and supporting 

information such as previous contours of the patient and other image modalities such 

as Magnetic Resonance Imaging (MRI) and Positron Emission Technology CT (PET-

CT). Using available information, contouring consists of drawing the boundaries of 

anatomical structures relevant to the patient’s cancer in the image to contour. The two 

main anatomical groups are the target volumes (TVs), which correspond to areas 

affected by tumoral cells, and the organs at risk (OARs), which correspond to healthy 

tissue.  

 

Figure 2. Components of the contouring activity. The inputs (left) are the image to contour and, 

optionally, other three-dimensional datasets like MRI and PET-CT scans and dose distribution 

volumes. The contouring activity has two main processes that several actors perform: 

generation of contours and its quality assessment. After approving the contours, clinicians can 

use them to create/update the patient's treatment plan and assess its quality. 

As the right panel of Figure 2 indicates, the goal of the contouring activity is to 

produce contours suitable for creating or updating the patient treatment plan and 

assessing its quality. Several actors participate in this workflow in the clinic, 

distributing contouring tasks based on the anatomical structures' groups. In general, 

radiotherapy technologists (RTTs) start by delineating the OARs. After this, the 

radiation oncologists (ROs), who are directly responsible for the patient’s outcome, 

assess the quality of the OARs contours and draw the boundaries of the TVs, the 

structures with the highest priority. The study described in the next section was 

designed based on this understanding of the contouring activity. 

  Study of the Contouring Workflow 

A study of the contouring workflow was conducted to identify characteristics of 

adaptive EBRT affecting contouring performance and to identify context-dependent 

strategies that tool developers can leverage to improve it. The following subsections 

detail the study's design and describe the methodology used for analysing the resulting 

data. 
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  Study design  

  Participants 

Two radiation oncologists (RO) and two radiotherapy technologists (RTT) from two 

cancer treatment centres in the Netherlands specializing in the head-and-neck area 

joined the study. Table 1 summarizes the participants’ information. One of the 

institutes, the Leiden University Medical Center (LUMC), offers photon-based 

volumetric modulated arc therapy (VMAT) treatments. The second, the Holland 

Proton Therapy Centre (HollandPTC), offers proton therapy (PT). Despite the 

differences in dose delivery technology, both institutions have a similar workflow, 

performing offline adaptations. The latter means that the patient's treatment plan is 

updated sparsely during treatment (entails re-executing blue boxes in Figure 1). The 

Institutional Review Board at the Delft University of Technology approved this 

research. Each participant provided informed consent to be part of the study. 

  Procedure 

The study had three sessions. The first one, a one-hour-long semi structured interview, 

permitted establishing rapport with the participants and validated the initial 

understanding of the EBRT workflow. In the second and third sessions, the 

participants performed their contouring duties while being recorded. As Table 1 

shows, these meetings lasted between one and two hours, depending on the 

participants’ time. In the second session, clinicians performed initial contouring. The 

third focused on adaptive contouring, where clinicians perform a quality assessment 

of automatically generated contours. Given the limited clinicians' time to participate, 

they contoured a subset of anatomical including the tumours and organs close to them 

that could affect the patient outcome. 

Table 1. Participants of the qualitative sessions. Two radiation oncologists (RO) and two 

radiotherapy technologists (RTT) from two institutions in the Netherlands participated. In 

some cases, due to their tight schedules, they could not attend all the sessions. 

ID Institution Role Session Time (hours) 

P1 LUMC RO 1, 2, 3 5 

P2 LUMC RTT 2, 3 2 

P3 HollandPTC RO 1, 2 3 

P4 HollandPTC RTT 1, 2, 3 5 

 

  Materials 

For the observational sessions, clinicians at each centre had access to the data of two 

previously treated head and neck patients. Each patient file included initial treatment 

planning data such as CT, PET-CT, and MRI scans and daily images such as CBCT 

and CT, relevant for sessions 2 and 3, respectively. For session 3, starting delineations 

could have been generated by another clinician or automated methods like deformable 

or rigid registration and deep learning-based contouring. For inspecting and editing 

the contours, clinicians used their routine software. 
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  Data Analysis 

Table 2. The first column presents the themes that emerged during the Thematic Analysis of 

the transcripts of the semi-structured interviews and observational sessions of the Study of the 

Contouring Workflow. The second column presents the coarser codes obtained after several 

grouping iterations finer ones. Lastly, the third column displays, for each theme, a 

representative example from the transcribed data.  

Theme Codes Example 

Adaptive 

contouring context 

Clinical workflow, 

standardization, physical 

and clinical artifacts, 

training, institution specific 

considerations, EBRT 

technology  

 

“Now it takes one day to do the 

whole plan. So, we have to make a 

new calculation and it has to go into 

the the LINAC so it has to get 

another check.” [P2] 

Structure priority 

and effect of 

inaccuracies on 

patient’s treatment 

Anatomical knowledge, 

downstream effects, 

characteristics of different 

anatomical structures, 

clinical priorities, tumour-

related considerations 

“I guess if it's an inner region where 

for instance the cheek region here. 

Those are minor [edits], but if we 

see this region where you have the 

parotid gland. There it could 

influence dose to the OARs quite 

significantly. So there. Then I would 

say it's a major [edit].” [P1] 

 

Dealing with 

uncertain regions 

in the image-to-

contour 

Anatomical knowledge, 

image modalities, papers 

and guidelines, information 

required for certainty 

“With the nasopharyngeal cancers, 

then I will take an MRI and then I 

will draw on the MRI. So, then I 

know exactly where the brainstem 

is.” [P4] 

 

Editing capabilities 

of contouring 

software 

Characteristics of 

contouring software, 

experience with the tools, 

use of automation 

“It seems to me that it's a model 

based one [automatically generated 

contour] because the model based 

one always has trouble here at the 

head of the mandible at the joint.” 

[P3] 

 

Distribution of 

labour and 

clinicians 

experience 

Experience with the 

contouring task, 

collaboration, task 

distribution, protocols 

“When an RTT does it [a contour]? 

Sometimes it's very nice and when a 

not so experienced RTT does it it's 

not a very good delineation and then 

it costs me either a lot of time to 

adjust every slice or I just start again 

and that's most of the time.” [P3] 

 

The recordings of the three sessions were transcribed and analysed using Thematic 

Analysis (Braun & Clarke, 2006). The coding process was bottom-up, first labelling 

patterns in the transcripts and then grouping the resulting fine-grained codes into 

coarser ones based on their similarity. Table 2 displays the underlying coarser codes, 

the resulting themes, and sample data excerpts. The screen recordings of sessions 2 

and 3 were also relevant as they showcased the way clinicians interact with the user 
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interface during the contouring process. The interactions were mapped onto a timeline 

like the one that Figure 4 depicts. For the y-axis, the authors drew inspiration from the 

literature on contouring tasks (Aselmaa et al., 2017) but grouped them into four 

categories to simplify the coding process and the analysis. These are direct and 

indirect manipulation, navigation, and non-contouring interactions. 

  Initial Contouring  

  Results 

Initial contouring (IC) occurs when executing the plan creation and offline adaptation 

process in Figure 1 for the first time. At LUMC and HollandPTC, initial contouring 

(IC) takes two to six hours for head-and-neck (HN) cancers, requiring delineating 

more than twenty structures. The following paragraphs group the observations about 

the IC workflow into three characteristics, finishing with a discussion on how these 

can affect contouring performance. 

 

Figure 3. Available information available at contouring. The central input is the image to 

contour which, as panel A depicts, is a three-dimensional image made from several 2D slices. 

Other three-dimensional images available at the surveyed centres are magnetic resonance 

imaging (MRI) and positron imaging technology CT (PET-CT) scans. As panel B shows, MRI 

helps differentiate soft tissue, and PET-CT aids in detecting and delineating tumours. 

  Usable Additional Information 

At IC, no pre-existing contours of the patients exist, given that this process occurs 

after they have started treatment. Instead, clinicians use information from multiple 

image modalities acquired beforehand. The main image modality in radiotherapy, CT, 
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usually does not provide enough boundary information when the contrast between 

adjacent tissues is not enough or when there is noise or artifacts in the image 

acquisition process. In these cases, clinicians rely on Magnetic Resonance Imaging 

(MRI) and Positron Emission Technology-CT (PET-CT) scans, acquired for most 

patients at HollandPTC and LUMC. As Figure 3 shows, MRI helps differentiate soft 

tissue structures: ”MRI makes it easier for us to delineate the parotid glands because 

you can see them very good at an MRI.”. For PET-CT, this modality permits clinicians 

to locate tumours and estimate their boundaries with higher precision: ”We actually 

scan all of our head and neck patients [with PET-CT] because it makes our 

delineations so much accurate, so that is now standard.” [P1].  

In practice, clinicians align additional images to the CT before using them for 

contouring. This process, known as image registration, can take several minutes per 

image pair and requires the clinician’s intervention to verify the alignment’s quality. 

Registering the images allows clinicians to scroll through them in parallel using the 

contouring software, enabling direct comparison of the structures in both scans. 

Applicable Domain-Specific Knowledge 

In some cases, the information in the images is not enough. At IC, this happens when 

MRI and PET-CT scans are not available and moreover there are no pre-existing 

contours of the patients (they just started the treatment). In these cases, clinicians rely 

on domain-specific knowledge they access in two ways. First, they leverage 

guidelines (Brouwer et al., 2015) and atlases that describe and indicate what the 

contours should look like, respectively. Second, they draw on their experience. 

Experienced clinicians know what areas can be challenging to delineate given the 

available data. They use this domain-specific anatomical knowledge to direct their 

attention and estimate contours over unclear image boundaries. An example of this 

dynamic occurs when the radiation oncologists (ROs) review the delineations created 

by the radiotherapy technologists (RTTs): “We [ROs] think that it [delineating the 

swallowing muscles] is too hard for RTTs, need quite a bit of anatomical knowledge 

to know where they are exactly. And in this case, this patient doesn't have a very big 

tumour in the throat, but most of the time patients have quite a big tumour here. And 

you can't see the swallowing muscles that good. So, then you need to know exactly 

where they run from to delineate them.” [P1]. 

  Editing Capabilities of Contouring Software 

In practice, at IC, clinicians create the contours from scratch. As the timeline on the 

top section of Figure 4 depicts, this entails starting with an empty delineation and 

gradually building the contours through a series of interactions. At the surveyed 

institutions, clinicians favoured a semi-automatic workflow, which consisted of two 

phases. First, they generated initial contours using the between-slice interpolation 

tool. This tool requires clinicians to manually delineate a subset of the slices spanning 

the structure, after which the rest of the structure's contours will be interpolated (this 

autocompletion corresponds to the indirect editing interaction around the second 

eighty in Figure 4). Finally, revert to the manual brush tool to correct inaccuracies. As 

the timeline shows, the generation of contours takes more time than the refinement, 

and clinicians spend most of the time directly editing the delineations with the brush. 
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Figure 4. Interaction timelines for initial and adaptive contouring. In both cases, a 

radiotherapy technologist from LUMC (P2 in Table 1), delineated the right submandibular 

gland of a head and neck cancer patient. The x-axis encodes time, and the y-axis differentiates 

the principal interaction categories. Non-contouring interactions correspond to changes in the 

interface that do not affect the contours, like changing the layout or visualization parameters. 

Navigation refers to changing the current slice of the image to contour. Finally, direct and 

indirect manipulations entail altering the delineations in the 2D slice or through a button in the 

menu, respectively. Note how initial contouring starts from scratch (empty circle) while 

adaptive contouring starts with pre-generated delineations (partially filled circle). 

  Discussion 

Clinicians use contours produced at IC to create the patient’s treatment plan.  

Therefore, they seek maximal accuracy, often at the expense of longer task durations. 

The three characteristics of the IC context described before affect contouring time in 

several ways. First, extra image modalities reduce the task difficulty, which can result 

in reduced dwelling times to determine where the contour should go. Nevertheless, 

additional images need to be registered to the main one, a time-consuming process 

that could offset the performance benefits gains that the process offers.  Second, 

domain-specific knowledge can reduce the extent of the contouring task by letting 

clinicians direct their attention to where it is needed. Yet, following the accuracy 

directive, they still must go through the whole volume to ensure no inaccuracy 

remains. Finally, the semi-automatic between slice interpolation tool spares clinicians 

from needing to edit several slices but still requires significant manual effort to 

initialize the method. 

  Adaptive Contouring  

  Results 

LUMC and HollandPTC implement an offline-adaptive dose delivery pipeline, which 

entails updating the treatment plan several times during treatment by repeating the 

plan creation and offline adaptation process between fractions. Adaptive contouring 

(AC) occurs in this setting and differs from initial contouring (IC) in that the time is 
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more critical and the resources scarcer. At the surveyed institutions, AC takes one to 

two hours for head and neck cancer patients. Like the previous section, the following 

paragraphs detail the AC context and discuss how it affects the process’ performance. 

  Usable Additional Information 

In contrast with IC, at AC, no extra images of the patient are acquired. Therefore, 

clinicians have access to the image to contour, a CT at LUMC and HollandPTC, the 

images acquired for IC, and the approved IC contours. In practice, clinicians only use 

the latter and do so in two ways. First, because IC contours document all the clinical 

decisions made for the current patient, they use them as a patient-specific atlas to 

resolve complex contouring tasks. Regarding having an atlas for contouring, P4 

mentioned that ”it’s always nice to have it [the atlas] like a verification. Because the 

brainstem isn’t that difficult, but like if you have the swallowing muscles or 

something, that’s really something. If you have the atlas side by side, it really can 

come in handy.” [P4] Second, clinicians use approved IC contours to create an initial 

segmentation. For this, they align, or register, the IC and AC images and then 

“propagate” the contours from the former to the latter. 

  Applicable Domain-Specific Knowledge 

In addition to general anatomical knowledge, at AC, clinicians use knowledge about 

dosimetry and the patient tumour to structure and guide the contouring process. On 

the one hand, it can help them direct their attention to critical areas. On the other, it 

lets them modulate the contouring based on the structure’s relevance to the patient’s 

treatment plan. For instance, P2 mentioned that while some contours require maximal 

attention and precision: ”…with this type of organs, as with all the nervical organs, as 

in optical nerves and brain stem and spinal cord, when it’s critical, so when the PTV 

is nearby, then it’s very important that we draw this very precise.” Others accept 

rougher contours as they will not significantly impact the patient’s outcome: ”this 

submandibular gland, it gets too much dose, so it won’t work. After irradiation, this 

one is gone. So, at that point, we can decide to delineate, but it isn’t, it’s OK if it isn’t 

quite perfect.” 

  Editing Capabilities of Contouring Software 

As mentioned before, clinicians do not start delineating from scratch at AC. Instead, 

they generate a starting point by propagating the contours from the initial scan to the 

current one. Therefore, the goal at AC is to perform a quality assessment (QA) of 

these delineations. The timeline in the bottom section of Figure 4 exemplifies the 

series of interactions that clinicians usually perform during the QA process. In the 

timeline, it is possible to see how starting from partial delineations, they reach the 

final ones after a series of relatively long direct editing interactions interleaved with 

brief navigation operation ones. Between slice interpolation, the tool clinicians use for 

contouring from scratch does not work for contour refinement. Therefore, for 

extensive errors across multiple slices like the one Figure 5 depicts, clinicians face 

two options. Either manually fix the contour on every slide or delete the delineation 

and re-do it from scratch using between-slice interpolation. 
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Figure 2. Editing faulty delineations often entails redundant interactions. The top image 

presents an inaccurate auto-generated contour of a tumoral structure. As can be observed, the 

internal side of the contour fails to include the whole structure, which causes an error that 

spans three slices. The images below present the sequence of steps that P1 followed to amend 

the inaccuracy. 

  Discussion 

While clinicians use IC contours for creating the treatment plan, they use AC contours 

to update the plan. For this reason, at this stage, their primary concern therefore 

seemed to be to faithfully translate IC contours to the current patient anatomy. The 

identified contextual characteristics affect AC performance in several ways. First, 

having information about the role that each structure plays in the patient's treatment 

helps direct clinicians' attention to delineations that can affect the patient outcome. A 

potential pitfall of the current prioritization approach is that it is purely heuristic and 

based on clinicians’ experience instead of available information such as the planned 

dose. Second, by using IC-approved contours, clinicians can reduce the time for 

analysing and editing complex or large regions by propagating them via registration. 

Nevertheless, same as with other image modalities at IC, the time it takes to perform 

the registration might offset the time gains. Finally, although contouring is overall 

faster at AC due to the contours being pre-generated, there is no tool to efficiently 

perform QA, requiring clinicians to invest significant manual effort. 



122  Chaves-de-Plaza, et al. 

 

  Discussion 

The Study of the Contouring Workflow provided an understanding of several 

characteristics that affect contouring duration in adaptive EBRT. This section takes 

these observations as input and lays down several ways of accelerating the adaptive 

contouring activity, which is increasingly time-pressured due to clinics implementing 

more responsive adaptative workflows. The discussion differentiates between the 

inspection, navigation, and editing tasks, which account for most of the delineation 

time. Figure 6 summarizes the study's findings and the resulting context-dependent 

acceleration strategies. 

 

Figure 3. Schematic of the approach that the present study followed. First, it identified three 

variables that influence contouring performance and described their roles in the initial and 

adaptive contouring contexts. These variables were then mapped to strategies for accelerating 

the inspection, navigation, and editing tasks. 

  Inspection and Navigation  

In adaptive contouring, clinicians prioritized inspection of tumour contours because 

an error could result in overexposure of surrounding organs to radiation or, worse, in 

underexposure of the cancerous tissue (Aliotta et al., 2019). This observation suggests 

that patient-specific treatment-level information provides a valuable signal to define 

the contouring priority of anatomical structures. Heuristics based on dose information 

allow clinicians to decide faster (Marewski & Gigerenzer, 2012). Nevertheless, 

problems like cognitive bias, loss of situation awareness, or varying levels of 

experience can introduce inconsistencies in a heuristic-based contouring process, 

which could risk patient safety (Graber et al., 2002; Tversky & Kahneman, 1974). 

Protocols and checklists could be implemented to enable effective heuristics usage 

while mitigating their pitfalls (Chan et al., 2012; Chera et al., 2012; Marks et al., 

2011). These could be based on metrics like Normal Tissue Complication Probability 
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(NTCP) that have been shown to affect the patient outcome (Brouwer et al., 2014). 

Figure 7 presents an example of prioritization based on the local characteristics of the 

dose distribution. As can be observed, while a potential inaccuracy in the tumour 

delineation has a high priority, errors in the parotid glands are less urgent due to their 

lower impact on the patient’s treatment.   

Before prioritizing errors, clinicians need to detect them. Several methods have been 

proposed in the literature for assisting this task. They vary in the information and the 

mechanism used to perform the search. As for the former, it is possible to compute 

shape (Heimann & Meinzer, 2009; Hermann & Klein, 2015) and image or appearance-

related (Gao et al., 2010) characteristics of the contours, e.g. the surface area or the 

intensity histogram, respectively. Another possible indicator of the contours' quality 

is their uncertainty or variability, which can come from historical patient data (Chu et 

al., 2013), the auto-contouring algorithm (LaBonte et al., 2020; Mody et al., 2021), or 

directly from the image-to-contour (Top et al., 2011). After gathering all these sources 

of information, available techniques identify potential errors in two ways. Firstly, by 

letting a classifier automatically find data-based rules for separating inaccurate from 

the accurate regions (Altman et al., 2015; Chen et al., 2015; Hui et al., 2018; Kalpathy-

Cramer & Fuller, 2010; McIntosh et al., 2013; Rhee et al., 2019; Sandfort et al., 2021). 

Secondly, they delegate the search task to the users, presenting them with the 

traditional two-dimensional image and contour slices together with informative 

overlays such as uncertainty iso-lines (Al-Taie et al., 2014; Prassni et al., 2010) and 

contour box plots (Whitaker et al., 2013). These two-dimensional visualizations have 

been augmented by adding three-dimensional views (Lundström et al., 2007; Raidou 

et al., 2016) and letting the user interact with the data by filtering and sorting 

mechanisms (Furmanová et al., 2021; Saad et al., 2010). 

Two challenges that existing error detection tools face are maintaining users’ trust in 

the system and lowering the cognitive load they impose. As to the former, a system 

failing to spot inaccuracies that affect the patient's treatment (false negatives) would 

erode the users’ trust (Asan et al., 2020; White et al., 2011). This might explain the 

limited adoption of automatic error detection systems in clinical practice. Regarding 

cognitive load, abrupt context changes when guiding clinicians' attention to different 

parts of the 3D image can build up fatigue, potentially leading to errors like classifying 

a true positive the system suggested as a false positive (Allnutt, 1987; Persson et al., 

2019). Visualization methods like 3D views complementing attention guidance 

mechanisms could help mitigate this issue.  

  Editing 

Currently, clinicians use mostly manual tools when fixing an inaccuracy. For errors 

that occupy a large portion of the volume, like the example in Figure 5, this often 

means that the user will perform similar edits across slices. Existing semi-automatic 

interactive contouring techniques mitigate this issue by extrapolating rough feedback 

provided by the clinician. Their general workflow consists of two steps. First, the 

clinician provides a rough indication of the change to be made or the area to update 

via coarse inputs such as scribbles, points, or a bounding box. Based on this input, the 

algorithm proceeds to update the segmentation. Traditionally Markov Random Field-

based algorithms are being used (Kato & Zerubia, 2012; Rother et al., 2004). Recently, 
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deep learning-based implementations have appeared that offer more sophisticated 

suggestions based on the clinician’s input (Dai et al., 2015; Lin et al., 2016; Maninis 

et al., 2018). 

 

Figure 4. Components for accelerating the inspection, navigation, and editing tasks. The first 

step (leftmost column) is to generate the contours and gather extra information like delineation 

variability and the dose distribution. Based on these sources, potential errors can be flagged 

and categorized depending on their effect on the patient outcome. In the example, an error in 

the tumour’s delineations was flagged as high priority (red) because it can significantly change 

the treatment plan. As for the parotid glands, the orange inaccuracy is in a region where the 

dose distribution varies more quickly than in the case of the green one. Therefore, subsequent 

processes (like treatment plan updating) that rely on the orange contours could be more 

sensitive to changes in these contours. 

The adoption of these semi-automatic interactive editing tools in the clinic remains 

challenging. Based on discussions with clinicians, the reason for their resistance to 

these interactive editing tools seems to be that they perceive scribbles as a blunt tool 

for communicating to the algorithm what they want. Therefore, more research is 

needed to determine which type of input mechanism the clinicians prefer and how the 

algorithm should respond (Amrehn et al., 2016; Hebbalaguppe et al., 2013). For 

instance, do they prefer coarse inputs like scribbles? Or would they be more 

comfortable with high precision inputs such as selecting a contour from an ensemble 

of candidates (Ferstl et al., 2016)? With editing being the most time-consuming QA 

operation, obtaining a synergy between humans and AI is paramount. 

  Limitations and Future Work 

A limitation of this work is the reduced number of treatment centres and clinicians 

surveyed in the study, which might have led to weighting heavily on custom 

institutional practices and personal preferences. As a promising solution, 

questionnaires like the one reported in (Bertholet et al., 2020) could be prepared to 
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validate the conclusions with a larger pool of participants. Another limitation is the 

qualitative nature of the timelines used to illustrate the dynamics between the 

clinicians and the contouring software. In further studies, we plan to use keystroke 

logging software to include more fine-grained actions and more accurate timings. The 

latter would be especially valuable for comparing different segmentation tools. 

In terms of future work, we will translate the findings of this study into a practical 

human-centred contouring protocol that clinicians can adapt to their institution-

specific adaptive EBRT capabilities and constraints. In addition to the clinician-level 

considerations that the present article considered, such protocol will also account for 

team dynamics, which also emerged as a performance factor in the surveyed 

institutions. 

  Conclusion 

This study characterized the contouring workflows in adaptive EBRT. An 

observational study at two treatment centres in the Netherlands revealed several 

context-dependent characteristics that influence delineation performance. Based on 

these observations, strategies for accelerating inspection, navigation, and editing tasks 

were discussed. By applying these when developing and commissioning tools, tool 

builders and clinicians can decrease the delineation time and thus increase the 

suitability of this process for time-critical therapies like online-adaptive EBRT. 
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