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Abstract—Electromagnetic (EM) waves propagate through the
atmosphere where they are refracted depending on the compo-
sition of the atmosphere. This refraction highly influences the
propagation of the EM-waves. Certain atmospheric conditions
can cause EM-waves to get trapped within a duct. In these
ducts blind zones may occur, where there is no EM-wave
coverage. These blind zones show up in the results of ray tracing
simulations. However, these codes provide no insight into the
dependence of the blind zone on the atmospheric conditions and
the transmitter height. In this research analytical expressions are
derived for the range of these blind zones. The expressions have
been verified by ray trace simulations for several transmitter
heights under ducting conditions. Results show that the blind
zone range can be accurately predicted.

Index Terms—Ducting, Ray Tracing, Blind Zone, Radar

I. INTRODUCTION

Under certain atmospheric conditions, radar waves can be
trapped within a duct [1], [2]. Though this duct may cause
radar coverage to extend at low altitudes, coverage is certainly
not guaranteed within the duct. This is because for specific

Fig. 1. Rays getting trapped within a duct, shown in the left figure. Blue ray
represents the maximum trapping elevation angle, black is a zero elevation
angle and green is a minimum elevation angle. Rays are transmitted from a
30 meter antenna height, and with associated M-profile in the right figure.

ducting conditions so called blind zone’s can arise in the
duct. Such a blind zone can be seen at a range from 40 to 80
kilometer in Figure 1. Hence, a blind zone within the duct is
an area which the transmitted EM-waves do not reach, and
therefore the radar cannot detect any objects in this area.
From a naval operational point of view, radar blind zone’s

reduce the ability to create situational awareness. For example
a sea skimming missile could approach a naval vessel
relatively close before detection. Or low flying aircrafts
suddenly disappear from the radar screen when entering a
blind zone. It is therefore essential to determine the position
of these blind zone’s.
Fortunately, simple ray tracing codes are available to calculate
the path of an EM-wave (as shown in the left part of Figure
1). Basically, these codes only need a set of refractive
conditions which describe the atmosphere. These refractive
conditions can be provided by a M-profile (as in the right
part of Figure 1) [3], [4]. The ray tracing code then calculates
a path for a given transmitter height and elevation angle.
However, the dependence of the path on the atmospheric
conditions and transmitter height is in these codes not easily
deducible. For instance there is no insight in the influence of
the transmitter height on the range of a blind zone. Also it is
not clear which elevation angles get trapped. Insight in the
ray paths direction, due to atmospheric conditions, transmitter
height and elevation angle, gives more understanding to
atmospheric ducting and the use of radar systems in general.
Whether the wave gets trapped, depends on the elevation
angle of the transmitted wave, the transmitter height and
the prevailing ducting conditions. This trapping situation is
depicted in Figure 2. The left part of the figure shows the

Fig. 2. Illustrational relation between M-Profile (left) and a ray trace (right).
Point TR represents the transmitter, point TP is the turning point within the
duct.

978-83-956020-3-0 ©2022 Warsaw University of Technology
MIKON-2022,Gdańsk, PolandAuthorized licensed use limited to: TU Delft Library. Downloaded on December 07,2022 at 08:21:54 UTC from IEEE Xplore.  Restrictions apply. 



M-profile associated with the ducting conditions. The right
part of this figure shows an EM-wave, represented by a ray,
transmitted from point TR. In this case the wave has a zero
degree initial elevation angle and initially refracts upwards.
The upwards refraction is caused by the positive gradient of
the M-profile, which continues up to the duct-base-height zb.
At this point, the gradient becomes negative, which causes
the EM-wave to refract downwards. When the EM-wave
gets trapped within the duct, the elevation angle of the
EM-wave changes from positive to negative at a height
below the duct height. We call this point the turning point
TP. If the initial elevation angle is positive, it is possible
that a ray propagates upwards towards a turning point and
then propagates downwards towards a reflection point at sea
level (as depicted by the blue line in Figure 1). If the initial
elevation angle is negative, it is possible that the ray has a
turning point at sea level (as depicted by the green line in
Figure 1). In case the position of the reflection point exceeds
the position of the turning point at sea level, a blind zone
occurs.

Fig. 3. A M-profile represented by the M-base-deficit Mb, duct-base-height
zb in meters, M-duct-deficit Md, the duct-thickness dth in meters, and its
starting point M0.

In this paper we present the equations to calculate the height
and range of a ray turning point, given a refractivity profile.
These equations are deduced for zero degree, positive and
negative elevation angles. Consequently, an expression for the
blind zone range can be found. This expression contains the
contribution of the atmospheric parameters to the blind zone,
as well as the transmitter height and initial elevation angle.
We assume a vertically stratified atmosphere, which may be
defined by the M-base-deficit Mb, duct-base-height zb, M-
duct-deficit Md and the duct-thickness dth [5], as depicted
in Figure 3.

II. BLIND ZONE RANGE EQUATIONS

First we discuss the mathematics of ray tracing which is based
on the use of Snell’s law. This law states that:

n(z) sin θi = C, (1)

where n(z) is the refractive index at height z, θ is the angle
of incidence at any height z and C is a constant characteristic
of the ray [6]. Observe that the incidence angle θi is related
to the elevation angle θe by

sin θi = cos θe. (2)

It is often easier to analyze the results of ray tracing, in a flat
earth projection. We are therefore interested in the relative
curvature of the rays with respect to the earth’s surface.
To compensate the earth’s curvature we use the modified
refractivity M , which is related to the refractive index n by:

M(z) =

((
n(z)− 1

)
+

z

Rearth

)
· 106, (3)

where z is the height above the earth’s surface in meters and
Rearth the earth radius in meters [7]. We now define the
modified refractive index m as

m(z) = 1 +M(z) · 10−6, (4)

which basically is the refractive index at height z with respect
to a flattened earth [8]. Hence, when M is 330 M-units, m
will be 1.00033, which is typical for the North Sea at low
altitudes. We will use the modified refractive index to find an
expression for turning point height.

A. Turning Point Height

In this section we find the maximum and minimum elevation
angle which can get trapped within the duct. Therefore we

Fig. 4. A ray getting trapped within a duct, transmitter elevation angle is
zero degree.

apply (1) to define following relation between the incidence
angle at point TR and point TP (Figure 4). From Snell’s law
it follows that

nTR sin θTR = nTP sin θTP , (5)

where nTR and nTP are the refractive indexes at point TR
and TP respectively. Angles θTR and θTP are the incidence
angles at point TR and TP respectively. Equation 5 in earth
flattening coordinates reduces to [8]

mTR sin θTR = mTP sin θTP . (6)
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Since point TR in Figure 2 is actually the transmitter, we can
also write

mTR cos θ0 = mTP sin θTP , (7)

where θ0 is the initial elevation angle. Note that the angle θ0
for which the EM waves get trapped is very small, typically
tenths of a degree.

If we assume that the transmitter height hT is below
the duct-base-height zb, we can define to modified refractive
index at height hT and the turning point at height hTP , as
follows

mTR =

(
M0 +

Mb

zb
hT

)
· 10−6 + 1, (8)

and

mTP =

(
M0 +Mb +

Md

dth
(zb − hTP )

)
· 10−6 + 1. (9)

Hence we can write (7) as((
M0 +

Mb

zb
hT

)
· 10−6 + 1

)
cos θ0 =((

M0 +Mb +
Md

dth
(zb − hTP )

)
· 10−6 + 1

)
sin θTP .

(10)

Since the angle of incidence at the turning point is 90 degrees,
(10) simplifies to((

M0 +
Mb

zb
hT

)
· 10−6 + 1

)
cos θ0 =(

M0 +Mb +
Md

dth
(zb − hTP )

)
· 10−6 + 1. (11)

Hence, the turning point height when hT < zb may be defined
as

hTP = zb +
dth
Md

(
(1− cos θ0)(M0 + 106)+

Mb

(
1− hT

zb
cos θ0

))
, (12)

where hTP is the height of the ray’s turning point in meters.
Since the turning point height can not exceed the duct height
zb + dth, we can calculate the maximum initial elevation
angle θ0 which allows the EM-wave to remain in the duct.
We therefore rewrite (12) to find that the maximum initial
elevation angle, which will be trapped in a vertically stratified
atmosphere, is defined as

cos θ0 <
106 +M0 +Mb −Md

106 +M0 +
Mb

zb
hT

. (13)

From (13) it follows that the initial elevation angle which gets
trapped increases, as the transmitter height increases.

B. Circular Arc Approach

In Figure 4 we saw that the range of the turning point is
defined as

RTP = R1 +R2, (14)

where RTP is the ground range between transmitter and the
turning point, R1 is the ground range between the transmitter
and the intersection, and R2 is the ground range between the
intersection and the turning point. Since the M-profile varies

Fig. 5. A ray trapped within a duct, transmitter elevation angle is zero degree.
The ray is described as a circular arc.

linearly with height, the ray paths describe circular arcs [9].
This is depicted in Figure 5. Therefore, if θ0 = 90◦, i.e. a zero
degree elevation angle, the ray at point A is perpendicular to
the line AC, and the ray at point B is perpendicular to the
line BC. Defining angles φ1, φ2, φ3 and ψ using the triangles
ABC, BCD and BCE allows us to write

φ1 + φ2 + φ3 = 90◦, (15)

ψ + φ3 + 2(φ1 + φ2) = 180◦, (16)

ψ + φ1 + φ3 = 90◦. (17)

We now rewrite (15) as:

φ1 = 90◦ − φ2 − φ3, (18)

and (17) as
ψ = 90◦ − φ1 − φ3. (19)

Substitute (19) in (16) yields

φ1 + 2φ2 = 90◦. (20)

When substituting (18) in (20) we find that

φ2 = φ3, (21)
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and that ψ = φ3. We will use the relation between φ2 and φ3
to determine R1. Since the line BD actually represents the
range R1, we can write

tanφ2 =
AD

BD
=
zb − hT
R1

. (22)

Observe from Figure 5 that

φ2 = 90◦ − φ3 − θ1. (23)

Using (21) and (23) in (22) yields

tan
90◦ − θ1

2
=
zb − hT
R1

. (24)

Using standard geometric relations this can be written as√
1− sin θ1
1 + sin θ1

=
zb − hT
R1

. (25)

In a similar way as (7), we can find an expression for sin θ1
based on the atmospheric M-profile. In case of a zero degree
elevation angle, i.e. θ0 = 0, we get the following expression
for R1

R1 =
√
2(zb − hT )

/√
Mb

zb
(zb − hT ) · 103, (26)

where R1 is in meters. We find for R2

R2 =
√
2(hTP − zb)

/√
Md

dth
(hTP − zb) · 103, (27)

where R2 is in meters. Finally to find the range of the turning
point, for zero degree elevation, we apply (14).

Fig. 6. A complete ray within a duct, with a turning point TP and a reflection
point RP. The initial transmitted elevation angle is positive.

For a positive elevation angle we can get next to a turning
point also reflection point, as depicted in Figure 6. To find
an expression for the blind zone, we are interested in the
maximum positive elevation angle which is represented by the
blue line in Figure 1. To find an expression for the range of
this reflection point, we use again the circular arc approach
and find

R1 =
√
2(zb − hT )

/√
1 + sin(θ0 − θ1), (28)

where θ0 is the initial elevation angle and θ1 is the incidence
angle at height zb, and R1 is in meters. Using Snell’s law we
can find an expression for θ1:

sin θ1 =
mhT

mzb

cos θ0, (29)

where mhT
and mzb are the modified refractive indexes at

the transmitter and duct-base-height respectively, and R2 is in
meters. The range R2 can be found using (27). Observe that
since hTP = zb + dth, this equation simplifies to

R2 =
√
2dth

/√
Md · 103. (30)

Finally, using the circular arc approach, we find that the range
R3 in meters is defined by

R3 = hT

/
tan

(
θ0 + θr

2

)
, (31)

where initial elevation angle θ0 and the reflection angle θr are
related by

m0 cos θr = mhT
cos θ0. (32)

with

m0 = 1 +M0 · 10−6. (33)

In case of a negative elevation angle, it is possible for the ray
to have a turning point below the transmitter. The range at
which this turning point occurs, is defined as

R =
√
2(hT − hTP )

/√
Mb

zb
(hT − hTP ) · 103, (34)

where R is in meters. The lowest possible turning point is
depicted as the green line in Figure 1, and has its turning
point a sea level, i.e. hTP = 0. Therefore (34) reduces to

R =
√
2hT

/√
Mb

zb
· 103. (35)

C. Blind zone range

From Figure 1 at can be seen that the blind zone range can
be defined using the expressions for R and R1, R2 and R3,
where hTP = zb + dth. In this case we define the blind zone
range as follows

Rbz1 < Blind Zone Range < Rbz2 (36)

where Rbz1 is given by (35). And Rbz2 is given by

Rbz2 = 2R1 + 2R2 +R3, (37)

where R1, R2 and R3 are given by (28), (30) and (31)
respectively.
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III. RESULTS

Let us describe the atmosphere by the following M-profile
parameters Mb = 8, zb = 100, Md = 12 and dth = 50 (which
represents a surface-based duct). We will calculate the blind
zone range for a transmitter height of 15, 25 and 35 meter
respectively. In case the transmitter height is 15 meter, we
find using (13) a beam width of 0.36949 degrees which gets
fully trapped. The propagation of rays within this beam width
is depicted in Figure 7. If we consequently calculate the blind
zone range using (36), we find this to be from 19.4 km up to
87.6 km.

Fig. 7. Blind zone within a duct for hT = 15 and M-profile
[8 100 12 50]. Blue ray represents the maximum trapping elevation
angle, and green is a minimum elevation angle. Maximum beam width is
0.36949 degrees, which results in a blind zone from 19.4 up to 87.6km.

We now increase the transmitter height to 25 meter. From (13)
follows that the maximum beam width increases to 0.39689
degrees. The results of the ray trace simulation is depicted in
Figure 8. The resulting blind zone is at a range from 25 km up
to 84.6 km. If we increase the transmitter height further to 35
meter, we find a maximum trapping beam width of 0.42252
degrees. The resulting blind zone is at a range from 29.6 km
up to 81.9 km (Figure 9).
While increasing hT we detect an increase of Rbz1. This
follows from (35), since Rbz1 ∝

√
hT . We also detect a

decrease of Rbz2. Recall that Rbz2 depends on the maximum
possible turning point height, i.e. hTP = zb + dth. Since we
assumed a vertically stratified atmosphere, with hT < zb, R2

does not depend on hT . Therefore R2 = C1, where C1 is some
constant. Consequently, the incidence angles at the duct base
height zb, for the upward and downward propagation ray, are
also independent of hT . Therefore, the circular arc describing
the downward propagating ray from the duct base height zb
towards the reflection point RP is constant, i.e. R1+R3 = C2,
where C2 is some constant. Consequently we can rewrite (37)
as

Rbz2 = R1 + 2C1 + C2. (38)

Equation (28) shows that increasing hT reduces R1, since
R1 ∝ (zb − hT ). Therefore, if R1 decreases, Rbz2 also
decreases. Hence, an increasing transmitter height results in
a decreasing blind zone.

Fig. 8. Blind zone within a duct for hT = 25 and M-profile
[8 100 12 50]. Blue ray represents the maximum trapping elevation
angle, and green is a minimum elevation angle. Maximum beam width is
0.39689 degrees, which results in a blind zone from 25 up to 84.6km.

Fig. 9. Blind zone within a duct for hT = 35 and M-profile
[8 100 12 50]. Blue ray represents the maximum trapping elevation
angle, and green is a minimum elevation angle. Maximum beam width is
0.42252 degrees, which results in a blind zone from 29.6 up to 81.9km.

IV. CONCLUSION

The prediction of EM-wave blind zones within a duct is
important since no object can be detected in a blind zone by a
radar. In this paper, we have derived analytical expressions
that describe blind zone range for EM-wave propagation
in an atmospheric duct. These expressions depend on the
parameters describing a tri-linear atmospheric M-profile and
the transmitter height. We have validated our blind zone range
based on ray tracing simulations. The ranges found with ray
tracing agree with our expressions. It has been found out that
the starting point of the blind zone increases as the transmitter
height increases. The end point of the blind zone however
decreases for an increasing transmitter height. Therefore the
total blind zone reduces as the transmitter height increases.
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