

Delft University of Technology

A Formal Model of Metacontrol in Maude

Päßler, Juliane; Aguado, Esther; Silva, Gustavo Rezende; Tarifa, Silvia Lizeth Tapia; Corbato, Carlos
Hernández; Johnsen, Einar Broch
DOI
10.1007/978-3-031-19849-6_32
Publication date
2022
Document Version
Final published version
Published in
Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles

Citation (APA)
Päßler, J., Aguado, E., Silva, G. R., Tarifa, S. L. T., Corbato, C. H., & Johnsen, E. B. (2022). A Formal
Model of Metacontrol in Maude. In T. Margaria, & B. Steffen (Eds.), Leveraging Applications of Formal
Methods, Verification and Validation. Verification Principles: Proceedings of the 11th International
Symposium, ISoLA 2022 (pp. 575-596). (Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13701 LNCS). Springer.
https://doi.org/10.1007/978-3-031-19849-6_32
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-19849-6_32
https://doi.org/10.1007/978-3-031-19849-6_32

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

A Formal Model of Metacontrol in Maude

Juliane Päßler1 , Esther Aguado2 , Gustavo Rezende Silva3 ,
Silvia Lizeth Tapia Tarifa1(B) , Carlos Hernández Corbato3 ,

and Einar Broch Johnsen1

1 University of Oslo, Oslo, Norway
{julipas,sltarifa,einarj}@ifi.uio.no

2 Universidad Politécnica de Madrid, Madrid, Spainpg
e.aguado@upm.es

3 Technical University of Delft, Delft, The Netherlands
{g.rezendesilva,c.h.corbato}@tudelft.nl

Abstract. Nowadays smart applications appear in domains span-
ning from commodity household applications to advanced underwater
robotics. These smart applications require adaptation to dynamic envi-
ronments, changing requirements and internal system errors Metacontrol
takes a systems of systems view on autonomous control systems and self-
adaptation, by means of an additional layer of control that manipulates
and combines the regular controllers. This paper develops a formal model
of a Metacontrol architecture. We formalise this Metacontrol architecture
in the context of an autonomous house heating application, enabling
different controllers to be dynamically combined in order to meet user
requirements to a better extent than the individual controllers in iso-
lation. The formal model is developed in the Maude rewriting system,
where we show results comparing different scenarios.

1 Introduction

There is an emerging development of “smart” applications in an increasing num-
ber of domains, ranging from commonplace IoT-based household applications to
advanced underwater robotics. A key to this smartness is the applications’ abil-
ity to flexibly adapt to variability in their operational conditions. Control theory
and recent AI-based methods enable the development of different domain con-
trollers that adapt to variability in the physical environment by combining sensor
data and a diversity of models to determine the output of the system actuators,
achieving great performance and a degree of system-level autonomy for different
requirements. This is called first-order self-adaptation [15]. However, varying user
requirements and internal system variability due to faults or emergent behaviour
in systems that comprise multiple controllers pose additional second-order adap-
tation challenges [15]. Self-adaptive systems with multiple points of view and
methodologies have been proposed from the software community to develop

This work was supported by the European Union’s Horizon 2020 Framework Pro-
gramme through the MSCA network REMARO (Grant Agreement No. 956200) and
the ROBOMINERS project (Grant Agreement No. 820971).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 575–596, 2022.
https://doi.org/10.1007/978-3-031-19849-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_32&domain=pdf
http://orcid.org/0000-0001-8515-1809
http://orcid.org/0000-0002-7860-9030
http://orcid.org/0000-0001-5253-9241
http://orcid.org/0000-0001-9948-2748
http://orcid.org/0000-0001-6094-4917
https://doi.org/10.1007/978-3-031-19849-6_32

576 J. Päßler et al.

software systems that meet the previous adaptation requirements. These sys-
tems have been commonly conceptualised following the MAPE-K schema [6,18]
that stands for Monitor, Analyse, Plan, and Execute based on Knowledge.

Metacontrol is a layered framework for achieving autonomy, independently
of the application and the system; i.e., it takes a very structured system of sys-
tems view on the self-adaptation problem. It adds an additional layer of control
that manipulates and combines the domain controllers to fulfil different combi-
nations of requirements or to ensure resilience by enabling the overall application
to adapt to changes in the underlying system such as, e.g., broken devices. Thus,
Metacontrol enables extensible self-adaptation for autonomous systems that can
accommodate new user requirements or new functionality to an application, by
addressing only second-order adaptation based on application-independent rea-
soning. For this purpose, its MAPE-K loop is driven by knowledge that adheres
to TOMASys [13] (the Teleological and Ontological Model of Autonomous Sys-
tems metamodel), which aims to provide the necessary concepts for modelling
the functional knowledge of autonomous systems [16].

In this paper, we formalise a Metacontrol architecture for a smart house,
detailing an autonomous house heating application. This use case is inspired
by the work of Arcaini et al. [2] on a model of concurrent MAPE-K controllers
(but not of Metacontrol), using abstract state machines [5]. Our main focus
here is on the logical structure of architectures based on Metacontrol; i.e., the
model captures the input assumed to be available to the different layers of the
control structure and the control decisions that the different layers make. We
develop models of independent controllers for the house heating application and
show that each of these is able to maintain some of the given user requirements,
but not the overall combined requirements. These models are then extended
with a Metacontrol layer that, by dynamically combining the different existing
controllers, is able to meet the requirements to a greater extent.

The formalisation is realised in Maude [12], a tool to develop and analyse
executable models in rewriting logic. Rewriting Logic is a flexible framework
combining computation and logic in which systems can be modelled with low
representational distance [19]. In this paper, we use simulations in Maude to
analyse the performance of the controllers with respect to the user requirements
in fairly predictable environments; in future work, we plan to expand our model
to analyse the additional responsiveness that seems achievable by exploiting a
Metacontrol layer in less predictable environments by means of model checking
techniques.

The main contributions in this paper are:

– an executable formal model of a system of systems Metacontrol architecture
developed in the Maude rewrite tool;

– a use case of autonomous layered control for a smart house heating applica-
tion, which we use to explain and illustrate the formal model; and

– we show how the formal model can be used to analyse the developed meta-
control designs with respect to user requirements.

A Formal Model of Metacontrol in Maude 577

<<Managing System>>
Metacontroller

Monitor

Analyze Plan

ExecuteKB

<<Managed System>>
domain controllers

sensors actuators

<<Environment>>
home

Fig. 1. The metacontrol framework.

requirement

type
Objective Function

measured

requiressolves

type
Function

Grounding

estimated requires

solves

Function
Design

Quality
Attribute Component

Fig. 2. Elements of TOMASys.

2 Background

2.1 Metacontrol

Metacontrol [13] gives systems the capability to perform self-adaptation in order
to maintain their functionalities at an expected performance, in the presence
of external disturbances, faults, and unexpected behaviour. Thus, Metacontrol
enables an increased level of autonomy and reliability in a system.

Metacontrol is realised by adding an extra control layer that closes a feedback
loop with the original system, monitoring, and adapting the original system
through architectural reconfiguration when necessary. According to the MAPE-
K model for self-adaptive systems, this results in the separation of the system into
two distinct layers or subsystems: the managing system, whose main element is a
reusable metacontroller, and the managed system, which is the original system.

For the metacontroller to be application independent, it exploits engineering
knowledge at runtime. System engineers model relevant information about how
the system works following the TOMASys metamodel [13], and this model forms
the basis for the knowledge base (KB), which drives the Metacontrol MAPE-K
adaptation loop. All steps interact with the KB, storing additional information,
and retrieving system knowledge to facilitate decision making (see Fig. 1).

The monitor step is responsible for measuring so-called quality attributes
(discussed below) for the functionalities of the system. The analyse step is
responsible for deciding whether the managed system needs to reconfigure. For
this, it needs to decide whether the measured quality attributes meet the require-
ments of the current configuration of the managed system. When reconfiguration
is needed, the plan step is responsible for selecting a new configuration for the
managed system that potentially satisfies its requirements. The execute step is
responsible for carrying out the reconfiguration of the managed system.

Figure 2 shows a high-level representation of the TOMASys metamodel for
the Metacontrol functional layer, which is our focus in this paper. A function

578 J. Päßler et al.

represents an abstract functionality of the system, e.g., controlling the temper-
ature. A function design is an engineering design solution that solves a specific
function, e.g., a specific controller to control the temperature. An objective is a
concrete instance of a function that the system desires to achieve at runtime, e.g.,
maintaining the room temperature in the range 18 –22 ◦C. A function grounding
is the runtime instantiation of a function design that is selected to solve a spe-
cific objective. A quality attribute (QA) is a measurable property of a system
that is used to indicate how well the system satisfies its requirements, e.g., the
amount of energy that the temperature control system consumes. In TOMASys
there are required, expected, and measured QAs:

– required QAs capture quantitative requirements that a function should meet;
– estimated QAs are assumed for each function design as expected performance

values with respect to the corresponding quantitative requirements; and
– measured QAs are associated to function groundings to capture the current

performance with respect to the corresponding quantitative requirements.

2.2 Maude

Maude [12,22] is a specification and analysis system based on rewriting logic
(RL) [19]. While algebraic specification techniques [25] can be used to specify
the static structure of the system and the relations between the data, RL extends
an algebraic specification with transitions rules which capture the dynamic
behaviour of a system. In a rewrite theory (Σ,E,R), Σ defines the (ground)
terms tr as operators over sorts (which can be understood as types), E is a
set of equations that define equivalences between terms in Σ, and R is a set of
labelled rewrite rules.

Equational theories (Σ,E) are developed by first defining sorts st and func-
tions from a (possibly empty) list stlist of sorts to a given sort st:

sort st .
op f : stlist −→ st .

Terms tr are then built from functions in a sort-correct manner, and patterns t
are terms in which some functions are replaced by variables. Conditional equa-
tions in E, which express the equality of any terms that match given patterns
if a given condition holds, are specified by

ceq t = t′ if cond

where the matching substitution additionally applies to the condition. The con-
dition can be a conjunction of equalities between patterns. Maude assumes that
the equations form a terminating and confluent reduction system which is used
to represent equivalence classes by canonical terms (i.e., all terms can be reduced
to unique normal forms).

Rewrite theories (Σ,E,R) additionally specify conditional rewrite rules in R,
which express that a term matching a given pattern can transition into another
term if a condition holds, as follows:

A Formal Model of Metacontrol in Maude 579

Req. Name Description

R1 Morning water
heating

The water heater should be turned on in the morning.

R2 Minimise
dispersion

The system should avoid high dispersion states, i.e., window
wide open and strong heating together.

R3 Comfortable
temperature

The smart house temperature shall always be between a range
of comfortable temperatures.

R4 Air purity The heating system shall maintain a good air quality level.

Fig. 3. Requirements of the heating system. Here, the requirements R3 and R4 are
quantitative system properties which are monitored by the quality attributes.

crl [label] : t ⇒ t′ if cond .

Here, the condition is a conjunction of rewrites and equalities that must hold
for the rule to apply to a given term which matches t. Rewrite rules apply to
equivalence classes of terms; i.e., Maude uses the equations to reduce terms to
normal form in between rule applications. Therefore, when auxiliary functions
are needed, these can be defined in equational logic and thus evaluated in between
the state transitions [19].

When modelling executable systems, system components are typically mod-
elled by terms of suitable sorts, organised hierarchically in modules, and the
global state configuration is represented as a multiset of these terms [22]. An
object in a given state can have the form < Oid : Class | a1 : v1, . . . , an : vn >,
where Class is the class name, Oid the object identifier, and ai are attributes with
corresponding values vi. Given an initial configuration, the Maude tool supports
simulation and breadth-first search through reachable states, and model checking
of systems with a finite number of reachable states [12,22].

3 The Smart House Use Case

Act. Stat. Temp. Air Qu.

Heater
VH 1.23 -0.9
FH 0.615 -0.45
OFF 0 0

Water ON 0,3 -0,125
heater OFF 0 0

Window
O -2.0 2.0
HO -1.0 1.0
C 0 -0.125

Fig. 4. Assumed actuator effects on
temperature and air quality.

Let us consider a smart house with an
automatic heating system. This use case
was originally presented in [2]. Here, we
present a variation of the use case to moti-
vate a self-adaptive heating system that
includes various controllers that partially
fulfil the requirements and a metacon-
troller that turns the different controllers
on and off with the aim of improving the
system behaviour. The house consists of
a room with one window, one heater and
one water heater. Its intended behaviour
is specified through a set of requirements
defined in Fig. 3. The smart house system has various controllers that control

580 J. Päßler et al.

three actuators, the heater, the water heater, and the window, and it has a tem-
perature sensor (a thermometer), an air quality sensor, and a global clock to
keep track of time.

The heater can be set to very hot VH, fairly hot FH or OFF, the water
heater to ON or OFF, and the window to open O, half open HO, or closed C.
A thermometer measures the temperature as a float value, where a comfortable
temperature ranges over values between (and including) 18 and 22 ◦C. An air
quality sensor measures the air quality as a float value, where a good level is
represented by a value ≥ 0. The clock ranges over integer values from 1 to 24,
and changes in a round-robin manner to represent discrete time units as time
advances during a 24-hour day. We define all time units between, and including,
6 and 12 to be MORNING and all other time units as NOT MORNING.

In Fig. 4 we model the impact that the state of the actuators has on the
temperature and air quality. For every time step, the total impact on the tem-
perature and air quality is calculated as the sum of the effects of each actuator.
The temperature of the smart house is also affected by the environment, e.g., the
outside temperature, which varies depending on the time of the day. We further
consider additional variability of the environment (see the online material).

3.1 The Controller Layer

The operation of the smart house system is based on controllers that receive
readings from the temperature and air quality sensors as well as the clock value
as input. Depending on the sensor readings and whether it is morning or not,
the active controller selects a status for each actuator. The controller’s goal is
to fulfil some of the requirements displayed in Fig. 3 by changing the state of
the actuators. The smart house heating system has four controllers: a controller
that prioritises temperature (comfort controller), a controller that prioritises air
quality (eco controller), and two degraded controllers, which only act upon one
of the heaters, using only two of the three actuators in the smart house.

The controllers have policies based on rules to decide upon the state of the
actuators, depending on the inputs (temperature, air quality, and clock), and
assuming that the actuators’ effect on the temperature and air quality in the
room are as the presented in Fig. 4.

The comfort controller uses all actuators and has a strong preference for
comfort temperature. Its control policy is defined to meet to a certain degree
the requirements in Fig. 3: (1) a policy stricter than R3: reach and maintain
the desired comfort temperature measurements as a priority, even if that means
slightly worse air purity measurements, and (2) R1: the water heater is always
on in the morning.

The controller policy is depicted as a decision diagram in Fig. 5. The nodes
represent the temperature T , clock CLK, air quality AQ, and window W . The
edges represent the status of each node. The leaves represent the desired state of
the actuators, as described in Fig. 4, in the order: heater, water heater, and win-
dow. Note that the controllers check whether the temperature is within 19.0 ◦C

A Formal Model of Metacontrol in Maude 581

T<19 T>21

T

AQ≥1 AQ<1

AQ

19≤T≤21

MORNING NOT
MORNING

CLK

NOT
MORNING

MORNING

CLK

NOT
MORNING

MORNING

CLK

AQ≥1 AQ<1

AQ

OFF, OFF, C

NOT
OPENOPEN

W

VH, OFF, HOVH, OFF, O

VH, ON, C OFF, OFF, O

OFF, ON, C

NOT
OPEN

OPEN

W

FH, ON, HOVH, ON, O

FH, ON, C OFF, ON, O

Fig. 5. Decision diagram for the comfort controller, where the leaf nodes indicate the
controller’s decision for the state of the heater, water heater and window.

and 21.0 ◦C and whether the air quality is above 1, so they use different values
than the ones defined in the system requirements. This was done to create some
buffer during which the controllers can react before the temperature and air
quality pass the thresholds of 18.0 ◦C and 22.0 ◦C, respectively 0. Based on the
decision tree, we can already observe that some requirements of Fig. 3 are not
met, as the controller prioritises a comfortable temperature. In particular, some
rules violate R2 since the controller uses the very hot heater state VH and the
open window state O together.

The eco controller uses all actuators and has a strong preference for air
purity. Its control policy is defined to meet to a certain degree the requirements
in Fig. 3: (1) a policy stricter than R4: reach and maintain the desired air purity
measurements as a priority, even if it means a slightly worse comfortable tem-
perature measurements, (2) R1: the water heater is always on in the morning,
(3) an extension of R2: if the temperature is high and it is morning, only reduce
the temperature with the window half open to avoid losing heat too quickly.

Degraded controllers are defined for each heater that may break, so the
degraded controllers can be used when that happens. Degraded controller A
assumes that the heater is broken and therefore always OFF. Degraded controller
B assumes that the water heater is broken and therefore always OFF.

Decision diagrams, similar to the one showed in Fig. 5, are included for the
remaining controllers in the online repository1.

1 The full model of the smart house Metacontrol architecture, including all scenarios
and results, is available at https://github.com/remaro-network/Maude Metacontrol.

https://github.com/remaro-network/Maude_Metacontrol

582 J. Päßler et al.

<<component>>
H

<<component>>
WH

<<component>>
W

type

solves

requires requires requires requires

<<function>>
fnObj

<<function design>>

QAestcomf
CT

QAestcomf
AP

fdcomf

: 0.7

: 0.4

<<function design>>

QAesteco
CT

QAesteco
AP

fdeco

: 0.5

: 0.7

<<function design>>

QAestdegr
CT

QA estdegr
AP

fddegrA

: 0.3

: 0.2

<<function design>>
fddegrB

QAestdegr
CT

QA estdegr
AP

: 0.3

: 0.2

<<objective>>

QAreq
CT

QAreq
AP

: 0.3
: 0.2

Obj

Fig. 6. Elements of the smart house TOMASys metamodel.

4 The Metacontrol Layer for the Smart House Use Case

In this section we present the Metacontrol layer for the smart house use case,
modelling R3 and R4 in Fig. 3 as an abstract functionality of the system that
the metacontroller aims to maintain. The overall system includes all the con-
trollers presented in Sect. 3.1. The comfort controller prioritises R3 over R4,
while the policy of the eco controller does the opposite. In case a heater breaks,
the degraded controllers can be used. The adaptation problem that the meta-
controller solves is configuring the smart house application by selecting at each
instant the best controller to perform both R3 and R4.

4.1 The TOMASys Metamodel

The quantitative requirements R3 and R4 are captured in the TOMASys meta-
model, as explained in Sect. 2.1. Figure 6 provides an overview of the TOMASys
model for this use case.

Function. Requirements R3 and R4 can be represented as a function fn: use
a controller to keep the smart house temperature and air quality at a desired
level. Observe that in the general case, the metacontroller can operate based on
different functions that depend on different quality attributes at the same time.

Quality Attributes. To quantify the extent to which the system satisfies the
requirements R3 and R4, we use the quality attributes QACT (comfortable tem-
perature) and QAAP (air purity). These quality attributes occur as required

A Formal Model of Metacontrol in Maude 583

quality attributes in the objective, as estimated quality attributes in the func-
tion designs, and as measured quality attributes in the function grounding, and
will be further discussed in the respective paragraphs.

Objective. An objective is a concrete instance of the function fn. A desired
range for the temperature and a good level for the air quality are given by the
objective Obj: keep the smart house temperature between (and including) 18
and 22 ◦C and the air quality ≥ 0. To evaluate whether an objective has been
fulfilled, the metacontroller uses minimum thresholds for each quality attribute,
such thresholds are denoted as required quality attributes QAreq

CT and QAreq
AP .

These values also reflect the priorities that are set in the system. The higher the
value, the higher the priority. For the smart house use case, we want to prioritise
comfortable temperature; therefore QAreq

CT > QAreq
AP , see Fig. 6. We denote this

objective as Obj(QAreq
CT , QAreq

AP). Observe that, in general, there is one objective
for each function since the objective is an instance of a function.

Function Design. We denote each function design in Fig. 6 as

fdid(QAestid
CT , QAestid

AP ,Cmpid) ,

where

– id is one of the identifiers of the controllers,
– QAest

CT and QAest
AP are estimated quality attribute values for comfortable tem-

perature and air purity, and
– Cmp ⊆ {heater,waterheater,window} are required components.

Function Grounding. If a controller is selected, we ground its function design.
This instance is then called function grounding. In the function grounding, we
store the measured quality attributes QAmeas

CT and QAmeas
AP that reflect the degree

to which the quality attributes are fulfilled at the moment.
If one of the actuators fails or the measured quality attribute values are lower

than the required ones, then the function grounding will be marked as in error,
which will trigger reconfiguration in the metacontroller. This includes grounding
a (new) function design.

Quality Attribute Values. Figure 6 includes the required and estimated val-
ues for the quality attributes used in the use case. The function design fdcomf

captures the goal of the comfort controller: to prioritise a comfortable tempera-
ture in the room and then, if the temperature is good enough, try to maintain
a reasonable air quality, thus QAestcomf

CT > QA
estcomf

AP . The function design fdeco

focuses on a good air quality, therefore QAesteco
CT < QAesteco

AP .
For simplicity all degraded controllers have the same estimated values in our

model, which are assumed to be lower than the estimated values for the other
controllers, and prioritise room temperature.

584 J. Päßler et al.

All the above elements are used by the metacontroller to decide when to
switch between the different controllers, so that the system does its best to meet
both requirements R3 and R4.

4.2 Metacontrol Operation

We now detail the operation of the metacontroller, following the MAPE-K loop,
where the knowledge base of the MAPE-K loop includes all the elements and
relationships among the elements defined in Sect. 4.1.

Monitor. During the monitor step, the metacontroller uses some collected logs
in the system to calculate the current measured values of the quality attributes.
In particular, we assume that the heating system has a log for the temperature
values in the room T = t0, t1, . . . , tn and a log for the air quality values in
the room A = a0, a1, . . . , an, where ti, ai ∈ Q for all i = 0, . . . , n. They were
retrieved from the sensors every time step 0, . . . , n, where n is the current time
step. Let N ∈ N be the size of the time window that we want to consider for
the computation of the current values of the quality attributes. We now decide
whether a temperature ti is considered to be a comfortable temperature. Let
CT : Q −→ {0, 1} be defined as

CT(ti) =

{
1 if 19.1 ≤ ti ≤ 21.5,

0 otherwise.
(1)

The measured quality attribute QAmeas
CT for comfortable temperature is then

given by the function QAmeas
CT : N × Qn −→ [0, 1], defined as follows:

QAmeas
CT (N,T) =

∑n
i=(n−N) CT(ti)

N
. (2)

We compute the measured air purity as a function AP : Q −→ {0, 1}, defined
as:

AP(ai) =

{
1 if ai ≥ 0.7,

0 otherwise.
(3)

The measured quality attribute QAmeas
AP for air purity is then given by a function

QAmeas
AP : N × Qn −→ [0, 1], defined as follows:

QAmeas
AP (N,A) =

∑n
i=(n−N) AP(ai)

N
. (4)

Observe that the thresholds for comfortable temperature and air purity in CT
and AP differ from the system requirements in Sect. 3. This difference anticipates
the adaptation that will be done the metacontroller. Finally, if n < N , we only
consider the first n time steps in both QAmeas

CT and QAmeas
AP .

A Formal Model of Metacontrol in Maude 585

Analyse. During the analysis step, the metacontroller first checks whether one
of the actuators is in error. If yes, then the current function grounding is marked
to be in error. If all actuators work, the metacontroller compares the measured
quality attribute values QAmeas

CT and QAmeas
AP with the required QA values in

the objective Obj(QAreq
CT , QAreq

AP). If at least one measured QA value is lower
than the respective required QA value, then the current function grounding is
marked to be in error. The QAs that have a lower measured than required value
are marked as underachieved. For example, if QAmeas

CT = 0.2, then QACT is
marked as underachieving since QAreq

CT = 0.3, see Fig. 6.

Plan. If the metacontroller marked the function grounding to be in error, then
during the planning step the metacontroller needs to select a new function
design to ground. In the case where both quality attributes are underachieved,
the objective Obj(QAreq

CT ,QAreq
AP) prioritises the QA for comfortable temperature

since QAreq
CT > QAreq

AP .
Assuming that the system is at time step n, we define availablen as the set of

function designs that are available at time step n, i.e., the set of function designs
whose required components only contain components that are not broken. Fur-
thermore, we define poorQAn as the set of QAs that are underachieved at time
step n. The planning step in the metacontroller acts slightly different depending
on two cases:

Case 1: The metacontroller only needs to look at the required components to
choose a function design. In our particular scenario, this is the case in which
either the heater or the water heater is failing.
In this case availablen ⊆ {fddegrA, fddegrB}. Since in our scenario only one of
the heaters can be broken, availablen will have exactly one element, which
the metacontroller chooses to be grounded in the execute step.

Case 2: The metacontroller needs to look into the QAs that are marked as
underachieved. In our particular scenario, this is the case in which all the actu-
ators are working normally. Thus, availablen consists of all function designs.
In this case poorQAn ⊆ {QACT , QAAP }. Observe that poorQAn contains at
least one element. Let QAx ∈ poorQAn be the QA with the highest priority
in poorQAn. The metacontroller searches for the function design in availablen
with the highest estimated value for QAx, i.e., the function design with iden-
tifier i such that for all function designs in availablen with identifier j it holds
that QAesti

x ≥ QAestj
x .

Execute. During the execute step, the chosen function design is grounded and
the controller associated with this function design is activated, triggering execu-
tion in the controller layer as described in Sect. 3.1.

586 J. Päßler et al.

1 op 〈 Scheduler | Status : : 〉 : ScheduleComp Bool Scheduler .
2 op 〈 : Clock | Timesteps : : : : 〉
3 : Oid Timesteps Time TVPList TVPList Clock .
4 op 〈 : Thermometer | Degrees : 〉 : Oid Temperature Thermometer .
5 op 〈 : Airquality | Value : 〉 : Oid AirqualityStatus Airquality .
6 op 〈 : Heater | 〉 : Oid Attribute Heater .
7 op 〈 : Waterheater | 〉 : Oid Attribute Waterheater .
8 op 〈 : Window | 〉 : Oid Attribute Window .
9 op 〈 : ComfortController | Selected : 〉 : Oid Selected ComfortController .

10 op 〈 : EcoController | Selected : 〉 : Oid Selected EcoController .
11 op 〈 : DegradedContrA | Selected : 〉 : Oid Selected DegradedContrA .
12 op 〈 : DegradedContrB | Selected : 〉 : Oid Selected DegradedContrB .
13 op 〈 Environment | Version : 〉 : Nat Environment .

Fig. 7. Selected objects of the smart house heating system, modelled in Maude.

5 Modelling the Smart House Use Case in Maude

We now describe the Maude model of the metacontrolled smart house applica-
tion, including all elements described in Sects. 3 and 4. A multiset Configuration
is used to represent the components of the Metacontrol ecosystem, as suggested
in Sect. 2.2. A Configuration contains all objects that are crucial for the model
of the smart house, detailed in the sequel. Figures 7 and 11 give the syntax of a
selection of these objects. The full model can be found in the online repository.

5.1 Model Dynamics

The following elements model the execution of the entire self-adaptive system,
as described in Fig. 1.

Scheduler is an object of sort Scheduler (see Fig. 7, Line 1) that captures the
MAPE-K loop and ensures that rules are applied in the correct order, according to
Fig. 8. It keeps track of which sets of rules can be applied, using the attribute Sta-
tus, and schedules which components can apply rules. The attribute RuleApplied
indicates whether one of the rules in the active set has already been applied. The
scheduler object is present in all rules. A rule can only be applied if the scheduler
object has the right value in the attribute Status, and if the attribute RuleApplied
is false, e.g., see the rule in Fig. 9. The scheduler makes the model deterministic.
However, different configurations will trigger different rules inside the sets.

Time is modelled with an object of sort Clock (see Fig. 7, Line 2) that captures
the passage of time in the system, which works together with a rule for modelling
how time advances. It has attributes

– Timesteps: a natural number representing the current time step in the system,
– Time: the current time, and
– TVPList: a list of (Timestep, Float)-pairs.

A Formal Model of Metacontrol in Maude 587

Fig. 8. The order in which the different set of rules are applied.

After each time step, a pair representing the current time step and temperature
(air quality) is added to the temperature log TempLog (respectively to the air
quality log AqLog). As described in Sect. 3, we assume that one time step is one
hour, so the time is computed as the current time steps modulo 24. Furthermore,
a sort TimedConfiguration is introduced. It is used in certain rules to ensure that
rules are applied to the full global state configuration and not only to subsets. If
the scheduler indicates that the time should advance, then a rule that increases
the Timesteps by one, computes the new Time and adds new pairs to TempLog
and AqLog is applied.

5.2 The Smart House Model

In this section, we present the model of the managed system, as displayed in
Fig. 1 and described in Sect. 3.

Thermometer models the measurement of the current temperature in the
room. An object of sort Thermometer (see Fig. 7, Line 4) has the attribute Tem-
perature that is a float value that reflects the current temperature in the smart
house.

Air quality sensor models the measurement of the current air quality value
in the room. An object of sort Airquality (see Fig. 7, Line 5) has the attribute
AirqualityStatus that is a float value that reflects the current air quality value in
the smart house.

Actuators have an object identifier Oid and a multiset of Attributes (see Fig. 7,
Lines 6–8). Thus, the attributes that are necessary for an actuator are not explic-
itly specified. However, each actuator should have exactly one instance of the
following attributes:

– Status: can be of sort HeaterStatus, WaterheaterStatus or WindowStatus,
depending on the actuator, and represents the current status of the actu-
ator;

– EffectTemp: the effect of the actuator on the temperature, specified as a float
value;

– EffectAQ: the effect of the actuator on the air quality, specified as a float
value; and

– Broken: indicates whether the actuator is broken or not.

See Fig. 4 for further details about the effect of the actuators on the temperature
and air quality.

588 J. Päßler et al.

1 crl [CContrTempOkAqOk] :
2 〈 H : Heater | A 〉 〈 WH : Waterheater | A1 〉 〈 W : Window | A2 〉
3 〈 T : Thermometer | Degrees : DG 〉 〈 AQ : Airquality | Value : AQS 〉
4 〈 C : Clock | Timesteps : TS, Time : TI, TempLog : TL, AqLog : AL 〉
5 〈 CC : ComfortController | Selected : true 〉
6 〈 Scheduler | Status : ContrChange, RuleApplied : false 〉
7 ⇒
8 (msg hOff from CC to H)(msg whOff from CC to WH)(msg closed from CC to W)
9 〈 H : Heater | A 〉 〈 WH : Waterheater | A1 〉 〈 W : Window | A2 〉

10 〈 T : Thermometer | Degrees : DG 〉 〈 AQ : Airquality | Value : AQS 〉
11 〈 C : Clock | Timesteps : TS, Time : TI, TempLog : TL, AqLog : AL 〉
12 〈 CC : ComfortController | Selected : true 〉
13 〈 Scheduler | Status : ContrChange, RuleApplied : true 〉
14 if morning(TI) ==false / /
15 /

hot(DG) ==false cold(DG) ==false
aqok(AQS) ==true .

Fig. 9. A rule for the comfort controller in Maude (coloured text highlights changed
or new elements).

Physics. If the scheduler indicates that the temperature and air quality should
be changed, then a rule is applied to change them according to the status of
the actuators and the time, as specified in Sect. 3. We also implemented three
different ways the environment can influence the temperature and air quality in
the room, where two of them do not only depend on the time of the day, but also
on the time step. The environment behaviour can be selected via the attribute
Value of the object Environment (see Fig. 7, Line 13).

5.3 The Controller Layer

The controllers, defined in Sect. 3.1, are modelled as objects; the attribute
Selected indicates if a controller is currently active (see Fig. 7, Lines 9–12).

The policies of the controllers are captured as rules. If a controller is active
and the scheduler indicates that the controller should apply a rule, then the
appropriate rule, which aims to change the status of the actuators, is applied.
However, if an actuator is broken, its status should not be changed. We use
a sort Msg for passing messages from a controller to an actuator, defined as
opmsg from to : ActuatorStatus Oid Oid → Msg . A broken actuator will not
change its status when consuming the message. Otherwise it will change its
status to the desired one.

The Maude model has rules that cover all the cases of the decision diagrams
of the controllers. A sample rule for the comfort controller, given in Fig. 9, cap-
tures a path in the decision diagram of Fig. 5. This rule is applied when it is
not morning and the temperature and air quality are OK. The pattern on the
left hand side of the rule describes a configuration with the involved actua-
tors, sensors, controllers. The scheduler has status ContrChange and a RuleAp-
plied attribute with value false. The rule creates three messages and changes the
attribute RuleApplied to true, which ensures that the controller only applies one

A Formal Model of Metacontrol in Maude 589

1 rl [AnalyseDegA] :
2 〈 H : Heater | Broken : yes, A 〉
3 〈 MC : Metacontroller | MetaLog : ML 〉
4 〈 Scheduler | Status : MCAnalyse, RuleApplied : false 〉
5 〈 ErrorPropagation | FgError : false, QaCtError : B, QaApError : B1,
6 ActError : AIE 〉
7 CONF
8 ⇒
9 〈 H : Heater | Broken : yes, A 〉

10 〈 MC : Metacontroller | MetaLog : ML 〉
11 〈 Scheduler | Status : MCAnalyse, RuleApplied : true 〉
12 〈 ErrorPropagation | FgError : true, QaCtError : false, QaApError : false,
13 ActError : heater 〉
14 deselect(CONF)

Fig. 10. A rule for the metacontroller in Maude. The rule is applied when the heater
is broken (coloured text highlights changed or new elements).

rule per time step. The rule uses auxiliary functions; e.g., the function morning
determines whether the current time is between 6 and 12 o’clock, cold, the func-
tions cold and hot whether it is cold (i.e., less than 19.0 ◦C) or hot (i.e., more
than 21.0 ◦C), and the function aqok whether the current air quality is above
1.0.

5.4 The Metacontrol Layer

We now present the model of the managing system, as shown in Fig. 1 and
described in Sect. 4.

Metacontroller is captured by an object of sort Metacontroller (see Fig. 11,
Line 1). The attribute MetaLog contains a list of pairs (Timestep, Value), where
Value can be Eco, Comf, DegA, or DegB. At a time step i, the metacontroller
might switch between controllers. If so, it adds a pair (i, Ci) to the MetaLog,
where Ci represents the controller which has been activated.

A sample rule of the metacontroller in Maude is displayed in Fig. 10. This
rule is part of the set of rules for the analysis step. The rule is applied when the
heater is broken to propagate the error and to signal in the Metacontrol layer
that the system needs reconfiguration. Note that the curly brackets around the
configuration enforce that this rule can only be applied to the configuration as
a whole. The pattern on the left hand side of the rule describes a configuration
with a broken heater, all the necessary components used by the metacontroller,
as well as the whole configuration CONF which is not further specified. The
scheduler has status MCAnalyse and a RuleApplied attribute with value false. The
ErrorPropagation object has a FgError attribute with value false, QaCtError and
QaApError attributes with arbitrary boolean values, and an attribute ActError
with an arbitrary list of actuators as value. The rule changes the RuleApplied

590 J. Päßler et al.

1 op 〈 : Metacontroller | MetaLog : 〉 : Oid MetaLog Metacontroller .
2 op 〈 RequiredQAs | requQaCT : requQaAP : 〉 : Rat Rat Objective .
3 op 〈 : QaComfTemp | 〉 : Oid QaAttributes QaComfTemp .
4 op 〈 : QaAirPurity | 〉 : Oid QaAttributes QaAirPurity .
5 op 〈 : FDContr | 〉 : Oid FDAttributes FunctionDesign .
6 op 〈 ErrorPropagation | FgError : QaCtError : QaApError : ActError : 〉
7 : Bool Bool Bool ActuatorList InError .

Fig. 11. Selected objects used by the metacontroller in Maude.

attribute to true, which ensures that only one analyse rule can be applied every
time step. Furthermore, it changes the attribute FgError to true because the
function grounding is in error, the attributes QaCtError and QaApError to false,
and the attribute ActError to heater because the heater is broken. Lastly, it uses
the auxiliary function deselect to deselect the currently active controller.

Quality Attributes can be required, expected and measured QAs, see Sect. 4.1.
They occur in different parts of the model in Maude. The required QA values
are captured in an object of sort Objective (see Fig. 11, Line 2), where requQaCT
and requQaAP are the required QA values for comfortable temperature and
air purity, respectively. The expected QA values are captured in the function
designs (described later). The measured QA values are captured in objects of
sort QaComfTemp and QaAirPurity (see Fig. 11, Lines 3–4), where QaAttributes
is a multiset sort of attributes. Each quality attribute should include each of the
following attributes exactly once:

– Consider: a natural number that reflects how many time steps should be con-
sidered for the computation of the quality attribute;

– Past: a list of Boolean values recording CT (ti) in QaComfTemp and AP (ai)
in QaAirPurity, defined in Eqs. 1 and 3, for each time step i;

– Status: the current value of the quality attribute, computed according to Eq. 2
for QaComfTemp and according to Eq. 4 for QaAirPurity;

– QaComputed: a Boolean value that indicates whether the QA was computed
in the current time step.

The rules that update the attribute Past and compute the new measured QA
values are applied. when enabled by the scheduler.

Function design objects of sort FunctionDesign are defined for every controller
Contr, where FDAttributes is a multiset sort of attributes (see Fig. 11, Line 5).
Function design objects include the following attributes:

– ConContr: the Oid of the controller connected to this function design;
– ExpQaCT: the expected QA value for comfortable temperature;
– ExpQaAP: the expected air purity QA value; and
– RequActuators: a list of required actuators.

A Formal Model of Metacontrol in Maude 591

Controllers
NoViol IntViol

Tmp. AirQu. Total Tmp. AirQu. Total

Comfort 0 48 48 0.00 16.45 16.45
Eco 29 0 29 15.19 0.00 15.19
Metacontroller 10 14 24 4.815 4.65 9.465

Fig. 12. Collected metrics from running Scenario 1 in Maude.

Function grounding is represented implicitly. Error propagation happens
when certain actuators are in error and when quality attributes are under-
achieved. This is captured with an object of sort InError (see Fig. 11, Lines 6
and 7), where the Boolean values indicate whether the function grounding, the
QA comfortable temperature, or the QA air purity are in error, and ActError is
a (possibly empty) list of actuators that are in error.

An Analyse rule is applied before a Plan rule, when enabled by the scheduler.
The rules follow the procedure described in Sect. 4.2.

6 Evaluating the Executable Model of the Smart House

This section reports on simulation experiments to evaluate the performance of
the controllers and the impact of adding the Metacontrol framework to the sys-
tem using the developed Maude model. The experiments consist of running the
Maude model of the smart house for 200 time steps, measuring relevant metrics,
and comparing how the system behaves with the comfort and eco controllers,
and with the Metacontrol layer. The experiments were done for the following
scenarios: (1) all actuators are working, (2) the heater breaks at time step 75,
and (3) the water heater breaks at time step 75. The experiments were also
repeated for two other variations of the environment, which gave similar results
to the ones reported in the paper. Note that given an initial configuration, the
model is deterministic due to the round-robin scheduling policy and the simplifi-
cation of the variability in the environment. Therefore, one simulation is enough
to capture the behaviour of the system in the different scenarios.

The requirements R3 and R4 reported in Fig. 3 are instantiated as follows:
We assume that a comfortable temperature is between 18 and 22 ◦C and a good
air quality level is above 0. The results obtained for Scenario 1 are summarised
in Figs. 12, 13, and 14, respectively, where we considered an initial temperature
of 19 ◦C and an initial air quality of 1.3. We collect metrics that measure the
following: NoViol counts how many time steps the requirements R3 and R4

presented in Fig. 3 are violated. If, for example, the air quality drops below 0
for 2 time steps, NoViol will be equal to 2. IntViol sums up the severity of the
violation with respect to the thresholds. If for example the air quality is –0.5
in time step 1, –1 in time step 2, and 0 in time step 3, it would result in an
intensity of violation of –1.5. The collected metrics are shown in Fig. 12.

Figures 13 and 14 show that the comfort controller does not violate R3, but
violates R4, and the eco controller violates R3, but not R4. When Metacontrol is

592 J. Päßler et al.

Fig. 13. The evolution of temperature for Scenario 1.

Fig. 14. The evolution of air quality for Scenario 1.

used, both requirements are violated, but the number of times and the intensity
of the violations are lower than when the comfort or eco controllers are used
in isolation. Similar results were also obtained with the Metacontrol layer for
Scenarios 2 and 3. Further experiments injected variability in the environment,
where the metacontroller still performed better than the comfort and eco con-
troller in Scenario 1 and at least as good as the comfort controller in Scenarios
2 and 3. All the experiments can be reproduced following the instructions in the
online repository.

The results show that for the smart house use case, the additional Metacon-
trol layer, as modelled in this work, allowed the smart house system to adapt
and improve its performance in all the experiments reported in this section.

A Formal Model of Metacontrol in Maude 593

7 Related Work

Multiple works have addressed formal models of self-adaptive systems in the con-
text of providing assurances [24]. ActivFORMS [17] is a self-adaptation approach
that explicitly uses formal models at runtime in the form of timed automata to
promote adaptation, thus ensuring that the properties verified at design time are
guaranteed at runtime. Compared with Metacontrol, ActivFORMS requires to
develop the entire system, i.e. first and second order self-adaptation, using for-
mal methods, while Metacontrol allows to leverage existing domain controllers.
ENTRUST [9] is a generic methodology to design reliable self-adaptive software
and its associated assurance cases, based on developing verifiable models, such
as the automata in ActivFORMS, to check if they satisfy certain properties,
such as that the controllers are deadlock free. Our work relates to ActivFORMS
and ENTRUST regarding the development and verification of the self-adaptive
system models. Our aim is to use Maude to formally model Metacontrol archi-
tectures and use it to analyse their properties.

The analysis of self-adaptive systems has been addressed using various formal
methods. For example, an abstract modelling framework based on automata is
introduced in [3], several papers [10,14,21] use (a subclass of) Petri nets to
model self-adaptive systems, and a domain specific language has been proposed
to support compositional verification of self-adaptive cyber-physical systems [4].

In our work, we took inspiration from the work of Arcaina et al. [2] on mod-
elling MAPE-K feedback loops with Abstract State Machines, which introduced
the Smart House Case Study that we adapted in our paper. However, the con-
trollers they considered in their work correspond to the managed system in our
paper; i.e., they model the control level rather than the Metacontrol level con-
sidered in our work. Furthermore, they consider a scenario in which multiple
controllers can be active at the same time, which differs from our work which
only considered the Metacontrol level activating and deactivating different con-
trollers. Thus, they considered a different form of adaptation than in our work.
Their work is further developed, for example, in [1].

Maude has previously been used to formalise and study reflection. In par-
ticular, rewriting logic allows a universal theory of reflection [11], which is also
supported by Maude. Maude has also been used to formalise and study reflection
in actor models using a “Russian dolls” architecture [20], especially in the context
of reflective middleware [23]. Bruni et. al. [7] proposed a conceptual framework
for self-adaptation that they realised in Maude [8]. Their work resembles ours in
using a layered model of self-adaptation by means of MAPE-K feedback loops,
but differs from ours in that they use a white box approach for implementing
self-adaptation, whereas Metacontrol uses a black box approach.

8 Conclusion and Future Work

In this paper, we present the first executable formal model of a self-adaptive sys-
tem based on Metacontrol. The use of Maude has allowed us to model a use case

594 J. Päßler et al.

based on the smart house use case by Arcani et al. [2], including all the layers in
such a self-adaptive system of systems, from the physics of the environment, via
the first-order adaptation layer formed by the sensors, actuators and controllers,
to the second-order adaptation layer defined by the Metacontrol architecture.
The results presented in Sect. 6 for different scenarios of environment inputs and
system failures validate our model of second-order self-adaptation with Metacon-
trol. They show an improved performance of the smart house system with respect
to its requirements when the metacontroller performs architectural adaptation
using the alternative controllers, compared to when the system’s behaviour is
limited to one of the individual controllers.

We highlight that the goal of this work is not to model the best controllers
in the market, but to demonstrate that for scenarios where there are different
controllers with specific advantages and limitations, Metacontrol can be used
to capture and exploit this knowledge in order to improve the overall system
performance. However, the potential to improve performance is deeply dependent
on how well-designed the TOMASys metamodel is, especially the QAs.

In this paper, we have used simulations to analyse the benefits of Metacon-
trol in scenarios with fairly deterministic environments. In future work, we plan
to use stronger analysis techniques, such as model checking and the exploration
of what-if scenarios, to verify safety as well as liveness properties of the Meta-
control layer’s abilities for self-adaptation in more unpredictable environments.
For example, it would be interesting to verify properties related to the respon-
siveness and coverage; e.g., the Metacontrol layer’s ability to always eventually
regain correct behaviour, the maximal delay in this process, and whether the
choice of active controllers will always fluctuate or eventually stabilise. Our long
term goal is to analyse Metacontrol under assumptions about the managed sys-
tem, and identify minimal requirements to the managed system such that the
Metacontrol layer can guarantee desired overall correctness properties. A first
step in this direction will be to generalise the formal model of the Metacontrol
framework by replacing the executable models of the managed system and its
environment by declarative specifications of their behaviour.

From the perspective of the design of the Metacontrol framework, our work
on the Maude model has already provided insights into the current limitations
of both the Metacontrol self-adaptation reasoning based on the TOMASys con-
ceptual model and its execution model. In future work, we plan to extend the
TOMASys metamodel to evaluate and prioritise conflicting requirements. Fur-
thermore, we plan to explore the use of behavioural specifications of system
components, as discussed above, to enrich the knowledge base of the Metacon-
trol architecture and integrate predictive analyses by means of formal models in
the Metacontrol’s self-adaptation layer.

A Formal Model of Metacontrol in Maude 595

References

1. Arcaini, P., Mirandola, R., Riccobene, E., Scandurra, P.: MSL: a pattern language
for engineering self-adaptive systems. J. Syst. Softw. 164, 110558 (2020). https://
doi.org/10.1016/j.jss.2020.110558

2. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-
adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst. 11,
1–35 (2016)

3. Borda, A., Koutavas, V.: Self-adaptive automata. In: Proceedings of the 6th Con-
ference on Formal Methods in Software Engineering (FormaliSE 2018), pp. 64–73.
ACM, June 2018. https://doi.org/10.1145/3193992.3194001

4. Borda, A., Pasquale, L., Koutavas, V., Nuseibeh, B.: Compositional Verification
of self-adaptive cyber-physical systems. In: Proceedings of the 13th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2018), pp. 1–11, May 2018

5. Börger, E., Stärk, R.F.: Abstract state machines. A method for high-level system
design and analysis. In: Boca, P., Bowen, J., Siddiqi, J. (eds.) Formal Methods:
State of the Art and New Directions. Springer, London (2003). https://doi.org/10.
1007/978-1-84882-736-3 3

6. Brun, Y., et al.: engineering self-adaptive systems through feedback loops. In:
Cheng, Betty H. C.., de Lemos, Rogério, Giese, Holger, Inverardi, Paola, Magee,
Jeff (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp.
48–70. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 3

7. Bruni, Roberto, Corradini, Andrea, Gadducci, Fabio, Lluch Lafuente, Alberto,
Vandin, Andrea: A conceptual framework for adaptation. In: de Lara, Juan, Zis-
man, Andrea (eds.) FASE 2012. LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28872-2 17

8. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with Maude. Sci. Comput. Pro-
gram. 99, 75–94 (2015). https://doi.org/10.1016/j.scico.2013.11.043

9. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engi-
neering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Softw. Eng. 44(11), 1039–1069 (2017)

10. Camilli, M., Capra, L.: Formal specification and verification of decentralized self-
adaptive systems using symmetric nets. Discrete Event Dyn. Syst. 31(4), 609–657
(2021). https://doi.org/10.1007/s10626-021-00343-3

11. Clavel, M.: Reflection in Rewriting Logic: Metalogical Foundations and Metapro-
gramming Applications. CSLI Publications, Stanford (2000)

12. Clavel, M., et al. (eds.): All About Maude - A High-Performance Logical Frame-
work, How to Specify, Program and Verify Systems in Rewriting Logic, LNCS, vol.
4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

13. Corbato, C.H.: Model-based self-awareness patterns for autonomy. Ph.D. thesis,
Universidad Politécnica de Madrid (2013)

14. Fakhir, M.I., Kazmi, S.A.R.: Formal specification and verification of self-adaptive
concurrent systems. IEEE Access 6, 34790–34803 (2018). https://doi.org/10.1109/
ACCESS.2018.2849821

15. Garlan, D.: The unknown unknowns are not totally unknown. In: Proceedings
of the International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2021), pp. 264–265. IEEE, May 2021. https://doi.org/
10.1109/SEAMS51251.2021.00047

https://doi.org/10.1016/j.jss.2020.110558
https://doi.org/10.1016/j.jss.2020.110558
https://doi.org/10.1145/3193992.3194001
https://doi.org/10.1007/978-1-84882-736-3_3
https://doi.org/10.1007/978-1-84882-736-3_3
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-28872-2_17
https://doi.org/10.1016/j.scico.2013.11.043
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1109/ACCESS.2018.2849821
https://doi.org/10.1109/ACCESS.2018.2849821
https://doi.org/10.1109/SEAMS51251.2021.00047
https://doi.org/10.1109/SEAMS51251.2021.00047

596 J. Päßler et al.

16. Hernández, C., Bermejo-Alonso, J., Sanz, R.: A self-adaptation framework based
on functional knowledge for augmented autonomy in robots. Integr. Comput. Aided
Eng. 25(2), 157–172 (2018)

17. Iftikhar, M.U., Weyns, D.: ActivFORMS: active formal models for self-adaptation.
In: Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2014), pp. 125–134. ACM (2014)

18. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

19. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebraic Methods Program.
81(7–8), 721–781 (2012). https://doi.org/10.1016/j.jlap.2012.06.003

20. Meseguer, José, Talcott, Carolyn: Semantic models for distributed object reflection.
In: Magnusson, Boris (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-47993-7 1

21. Mian, N.A., Ahmad, F.: Modeling and analysis of MAPE-K loop in Self Adaptive
Systems using Petri Nets. Int. J. Comput. Sci. Netw. Secur (IJCSNS) 17, 6 (2017)

22. Ölveczky, P.C.: Designing Reliable Distributed Systems - A Formal Methods App-
roach Based on Executable Modeling in Maude. Springer London (2017). https://
doi.org/10.1007/978-1-4471-6687-0

23. Venkatasubramanian, N., Talcott, C., Agha, G.A.: A formal model for reason-
ing about adaptive QoS-enabled middleware. ACM Trans. Softw. Eng. Methodol.
13(1), 86–147 (2004)

24. Weyns, D., et al.: Perpetual assurances for self-adaptive systems. In: de Lemos,
Rogério, Garlan, David, Ghezzi, Carlo, Giese, Holger (eds.) Software Engineering
for Self-Adaptive Systems III. Assurances. LNCS, vol. 9640, pp. 31–63. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-74183-3 2

25. Wirsing, M.: Algebraic specification. In: Handbook of Theoretical Computer Sci-
ence, vol. B: Formal Models and Sematics, pp. 675–788. Elsevier and MIT Pres,
London (1990)

https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1007/3-540-47993-7_1
https://doi.org/10.1007/978-1-4471-6687-0
https://doi.org/10.1007/978-1-4471-6687-0
https://doi.org/10.1007/978-3-319-74183-3_2

	A Formal Model of Metacontrol in Maude
	1 Introduction
	2 Background
	2.1 Metacontrol
	2.2 Maude

	3 The Smart House Use Case
	3.1 The Controller Layer

	4 The Metacontrol Layer for the Smart House Use Case
	4.1 The TOMASys Metamodel
	4.2 Metacontrol Operation

	5 Modelling the Smart House Use Case in Maude
	5.1 Model Dynamics
	5.2 The Smart House Model
	5.3 The Controller Layer
	5.4 The Metacontrol Layer

	6 Evaluating the Executable Model of the Smart House
	7 Related Work
	8 Conclusion and Future Work
	References

