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Abstract. This work addresses visual cross-view metric localization for
outdoor robotics. Given a ground-level color image and a satellite patch
that contains the local surroundings, the task is to identify the location
of the ground camera within the satellite patch. Related work addressed
this task for range-sensors (LiDAR, Radar), but for vision, only as a
secondary regression step after an initial cross-view image retrieval step.
Since the local satellite patch could also be retrieved through any rough
localization prior (e.g. from GPS/GNSS, temporal filtering), we drop the
image retrieval objective and focus on the metric localization only. We
devise a novel network architecture with denser satellite descriptors, sim-
ilarity matching at the bottleneck (rather than at the output as in image
retrieval), and a dense spatial distribution as output to capture multi-
modal localization ambiguities. We compare against a state-of-the-art
regression baseline that uses global image descriptors. Quantitative and
qualitative experimental results on the recently proposed VIGOR and
the Oxford RobotCar datasets validate our design. The produced prob-
abilities are correlated with localization accuracy, and can even be used
to roughly estimate the ground camera’s heading when its orientation
is unknown. Overall, our method reduces the median metric localiza-
tion error by 51%, 37%, and 28% compared to the state-of-the-art when
generalizing respectively in the same area, across areas, and across time.

1 Introduction

Ground-to-aerial/satellite image matching, also known as cross-view image
matching, has shown notable performance in large-scale geolocalization [8,15,
16,25,34,37,40,48]. Usually, this global localization task is formulated as image
retrieval. For each ground-level query image the system retrieves the most sim-
ilar geo-tagged aerial/satellite patch in the database and uses the location of
the center pixel in that patch as the location of the query. In practice, global
localization can also be obtained by other means in outdoor robotics, such as
temporal filtering or coarse GPS/GNSS [31,41,42], but can still have errors of
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Fig. 1. Example of visual cross-view metric localization. Given a ground-level image G
(left), and a satellite patch S (middle) with its local area, we aim to identify the location
X within S where G was taken. Our method estimates a dense probability distribution
over the satellite image. The resulting (log) probability heat map is overlayed in red on
top of the satellite patch (right). Compared to the regression-based baseline that tends
to roughly regress to the midpoint among multiple modes, our method captures the
underlying multi-modal distribution. Our final predicted location, argmax(p(X|G, S)),
is closer to the ground truth. (Color figure online)

tens of meters [4,41,42]. In this work, we therefore follow [31,41,42] by exploit-
ing a coarse location estimate, and zoom into fine-grained metric localization
within a known satellite image, i.e. to identify which image coordinates in the
satellite patch correspond to the location of ground measurement. We adopt the
common assumption [16,25,27,34,48] of known orientation, e.g. the center of a
ground panorama points north, though we will seek to loosen this restriction in
our experiments and roughly estimate the camera’s heading too.

In vision, even though ground-to-ground metric localization is a well-studied
task [1,6,13], so far in the cross-view setting, the only end-to-end approach that
considers metric localization is the regression-based approach proposed in [48],
which we will refer here to as Cross-View Regression (CVR) for simplicity. CVR
tries to solve both the global coarse localization and local metric localization. As
a result, its metric localization regressor is built on top of global image descrip-
tors and might miss fine-grained scene information from the satellite image.

Rather than formulating visual cross-view metric localization as a regression
task, we propose to produce a dense multi-modal distribution to capture localiza-
tion ambiguities, and avoid regressing to the midpoint between multiple visually
similar places, see Fig. 1. To capture more spatial information, we compute mul-
tiple local satellite image descriptors rather than a single global one, and train
these in a locally discriminative manner. We note that dense uncertainty output
for localization was shown to be successful with range-sensing modalities, like
LiDAR and Radar, for localization within top-down maps [3,38,44]. However,
these methods are not directly applicable to monocular vision, as they rely on
highly accurate depth information which images lack.

Unlike existing literature [8,16,25,27,34,37,40,48], we address local metric
localization as a standalone task in visual cross-view matching, and make the fol-
lowing contributions: (i) We propose to predict a dense multi-modal distribution
for localization, which can represent localization ambiguity. For this, we propose
a new Siamese-like network that exploits multiple local satellite descriptors and
uses similarity matching in the fusion bottleneck. It combines the metric learning
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paradigm from image retrieval with dense probabilistic output via a UNet-style
decoder, found previously only in range-based cross-view localization. (ii) We
show that the produced distribution correlates with localization quality, a desir-
able property for outlier detection, temporal filtering, and multi-sensor fusion.
Besides, we also achieved significantly lower median localization error than the
state-of-the-art. (iii) We show our proposed method is robust against small per-
turbations on the assumed orientation, and that the model’s probabilistic output
can even be used to classify a ground image orientation when it is unknown.

Our experiments use the recent large-scale VIGOR dataset for standalone
cross-view metric localization to test generalization to new locations in both
known and unknown areas. We also collect and stitch additional satellite data
for data augmentation and metric localization on the Oxford RobotCar dataset,
testing generalization to new measurements along the same route across time.1

2 Related Work

We here review the works most related to visual cross-view metric localization.
Cross-view Image Retrieval is a special case of image retrieval. For place

recognition [17], a majority of works [5,35,36] construct a reference database
using ground-level images, but it is infeasible to guarantee the coverage of the
images everywhere. Alternatively, satellite images provide continuous coverage
over the world and are publicly available. Given this advantage, a series of
approaches [15,37,40] have been proposed to solve large-scale geolocalization
using ground-to-satellite cross-view image retrieval. CVM-Net [8] adopts the
powerful image descriptor NetVLAD [2] to summarize the view-point invariant
information for the cross-view image retrieval. In [16], the authors encode the
azimuth and altitude of the pixels in the ground-level query to guide the ground-
to-satellite matching. To explicitly minimize the visual difference between satel-
lite and ground domains, various improvements have been proposed. SAFA [25]
proposes to use a polar transformation to warp the satellite patch towards the
ground-level panorama and uses attention modules to extract the specific fea-
tures that are visible from both views. In [21,34], a conditional GAN [10] is
used to generate synthetic satellite images from the ground-level panorama or
to synthesize the panoramic street view from the satellite image to direct the
cross-view matching. Instead of constructing a visually similar input, CVFT
[27] tries to transport the features from the ground domain towards the satellite
domain inside an end-to-end network. Some works [26,37,47] jointly estimate the
orientation of the ground query during retrieval without any metric localization.
Recently, transformers [43,46] are also used in cross-view image retrieval.

Limitations in Cross-view Image Retrieval are also evident despite its
increasing popularity for geolocalization. Recently, [48] points out that cross-
view image retrieval methods assume that query ground images correspond to
the center of satellite patches in the database, and this assumption is not valid
1 Models and code, plus extended data are available at

https://github.com/tudelft-iv/CrossViewMetricLocalization.

https://github.com/tudelft-iv/CrossViewMetricLocalization
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during test time. To break this assumption, [48] introduces a new cross-view
matching benchmark VIGOR in which the ground images are not aligned with
the center of satellite patches. Another limitation of retrieval is the trade-off
between localization accuracy and computation or dataset density. To acquire
meter-level localization accuracy, reference satellite patches often have a large
overlap with each other, such as sampling the patch every 5m as done in [9,41].

Range Sensing Sensors-to-satellite Metric Localization received more
attention than its visual counterpart. RSL-Net [31] localizes Radar scans on a
known satellite image. This task is formulated as generating a top-down Radar
scan conditioned on the satellite image using [10], and then comparing the online
scan to synthetic scan for pose estimation. Later, this idea is extended to self-
supervised learning [30]. In [29], the top-down representation of a LiDAR scan
is compared to UNet [22] encoded satellite features for metric localization. The
range information is crucial in representing the measurement in a top-down view.

LiDAR-to-BEV Map Metric Localization is another frontier that ben-
efited from the range sensing. Dense pixel-to-pixel matchable LiDAR and bird’s
eye view (BEV) map embeddings can be learned by a deep network [3]. Local-
ization becomes finding the position that has the maximum cross-correlation
between two embeddings. Later work [38] shows that it is possible to localize
the online LiDAR sweep on HD maps in a similar manner. Those works deliver
a dense probabilistic output by formulating the localization task as a classifica-
tion problem. This property is ideal in probabilistic robot localization [32], as it
enables multi-sensor fusion and temporal filtering.

Visual Ground-to-satellite Metric Localization cannot directly reuse
the same architecture used to localize LiDAR scans in a BEV map, since an
RGB ground image does not provide reliable depth information. Hence pixel-
level dense comparison, such as cross-correlation, cannot be leveraged. [45] pre-
dicts ground-view semantics from aerial imagery for orientation estimation, and
shows only qualitatively that metric localization is possible by comparing the
predicted semantics across viewpoints. To the best of our knowledge, CVR [48]
is the only end-to-end approach in the vision domain that attempts metric local-
ization on a satellite patch. Given a ground-level query, it first retrieves the
matched satellite patch and then regresses the offset between the ground image
and satellite patch center. However, its offset regression is based on global feature
descriptors, which might cause the regression head to miss detailed scene layout
information, and it limits the output to uni-modal estimates. Plus, CVR lacks
dense uncertainty estimation to identify ambiguous locations, or a way to filter
out unreliable results. A concurrent work [24] perform unimodal localization and
orientation estimation by warping features across views and solving an iterative
optimization.

3 Methodology

In our work, we assume that a rough prior localization estimate is avail-
able, e.g. through GPS/GNSS, odometry, or some other robot-localization tech-
niques [31,41,42]. Given a ground-level image G and a top-down L × L satellite
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Fig. 2. An overview of the proposed cross-view metric localization architecture (train-
able parts in bold). Dashed skip connection is optional, see ablation study. We overlay
an exemplar output heat map on top of the input satellite image for intuition.

image S that represents the local area where G was taken, our metric localiza-
tion objective is to estimate the 2D image coordinates X ∈ [0, 1]2 within S that
correspond to the ground location of the camera of G. Moreover, we aim for a
dense probabilistic output to benefit a downstream sensor fusion task, similar
to [3]. Note that in practice, G and S are often provided with their heading pre-
aligned [16,48], such that the center vertical line of G points in the up direction
of S.

Both the baseline CVR [48] and our proposed method adapt a common
cross-view image retrieval architecture [25]. This basic backbone is a Siamese-
like architecture without weight-sharing. Both the ground and satellite input
branches consist of a VGG [28] feature extractor. E.g. for the satellite branch,
these features form a L′ × L′ × 512 volume. On the feature volume 8 Spatial-
Aware Feature Aggregation (SAFA) modules [25] are applied, each generating
a 512-dimensional vector, which is all concatenated. Each branch thus yields a
single global 1 × 1 × 4096-dimensional descriptor. In an image retrieval task,
this network would be trained through metric learning such that descriptors of
matching (S,G) pairs are close together in the 4906-dimensional space.

Importantly, our proposed architecture and CVR make distinct choices on
(1) the used descriptor representation for S, (2) how the descriptors are fused,
(3) how the output head represents the localization result, and (4) consequently,
the losses. We explain these choices for both methods in turn.

3.1 Baseline Cross-View Regression

The CVR method in [48] uses a single architecture for a two-step approach. First
global localization is done through image retrieval by comparing descriptor G
to descriptors of all known satellite patches. After retrieving satellite patch S,
metric localization is performed using the already computed descriptors of both
G and S. We employ CVR here for the metric localization task only, and therefore
keep its proposed architecture, but will not train it for image retrieval. Focusing
on metric localization only, our CVR baseline makes the following design choices:
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Feature Descriptors: CVR follows the image-retrieval concept of encoding
the satellite and ground image each into a single image-global 4096-dimensional
descriptor. Both descriptors are fed as-is to the fusion step.

Fusion: CVR simply concatenates the two feature descriptors into a single
8192-dimensional vector.

Output Head: A multi-layer perceptron is used on the fused descriptors which
outputs the relative 2D offset ΔX between G’s true location within S and the
center XS = (0.5, 0.5) of the satellite patch, s.t. X = XS + ΔX.

Loss: The standard L2 regression loss is used on the predicted offset and true
offset.

We note that most of these choices follow from the need to use a single global
descriptor for a whole satellite patch, as such descriptors are necessary for image
retrieval. Our argument is however that if a localization prior is already available
and global image retrieval is not necessary, this state-of-the-art architecture is
sub-optimal for metric localization only compared to our proposed approach.

3.2 Proposed Method

Our proposed architecture starts with a mostly similar Siamese-like backbone.
The method overview is shown in Fig. 2. It differs from CVR as follows:

Feature Descriptors: Instead of building one image-global descriptor to rep-
resent S, we increase the top-down spatial resolution by splitting the satellite
L′ × L′ × 512 feature volume along spatial directions into N × N sub-volumes,
where N is a hyper-parameter. Now the 8 SAFA [25] modules are applied to
each L′/N × L′/N × 512 sub-volume in parallel, resulting in an N × N × 4096
descriptor g(S) for the satellite branch, shown as the green vectors in Fig. 2. Let
g(S)ij denote the i-th row j-th column of the satellite descriptor, 1 ≤ i, j < N .
The ground image is still encoded as a single global 4096-dimensional descriptor
f(G), shown as the blue vector in Fig. 2.

Fusion: To help distinguish different satellite image sub-regions, we compute
the cosine similarity between f(G) and each g(S)ij , and use this similarity as a
feature itself at this fusion bottleneck. This similarity computation results in a
N × N × 1 matching score map M , thus M ij = sim(f(G), g(S)ij). To complete
our fusion step, the M is concatenated to the satellite descriptors g(S) through
a skip connection, shown as the upper yellow solid arrow in Fig. 2. Optionally,
one could also concatenate f(G) again into the fused descriptor (yellow dashed
arrow), similar to CVR; we explore this in our experiments.

Output Head: Rather than treating metric localization as a regression task,
we seek to generate a dense distribution over the image coordinates. Such output
enables us to represent localization ambiguities and estimate the (un)certainty of
our prediction. Towards this, we feed the fusion volume to a decoder which can
progressively up-sample the N × N matching map to higher resolutions. Akin
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to the UNet architecture [22], skip connections between satellite encoder and
decoder are used to pass the fine-grained scene layout information to guide the
decoding. Finally, a softmax activation function is applied on the last layer, and
outputs a L × L × 1 heat map H, where each pixel Hu,v = p(X ∈ c(u, v)|G,S)
represents the probability of G being located within pixel area c(u, v). This
heat map is useful by itself, e.g. in a sensor fusion framework. For a single frame
estimate, we simply output the center image coordinates c[·] of the most probable
pixel, i.e. X = c[argmax(u,v)H

u,v].

Losses: A benefit of our framework is that we can add losses on both the final
output and the fusion bottleneck. The full loss L = Lout + β × Lsim is thus a
weighted sum of the output loss, Lout, and the bottleneck loss, Lsim, where β is
a hyper-parameter. We discuss each term next.

Since the output H is a discrete probability distribution that sums to one,
we treat our task as a multi-class classification problem. Lout is simply a cross-
entropy loss over the L × L output cells. The ground truth is one-hot encoded
as a heat map with the same L × L resolution and label 1 at the true location
and 0 elsewhere, In practice, we will apply Gaussian label smoothing to the
one-hot encoding of the output head, and tune the smoothing σ as part of the
hyperparameter optimization.

To guide the model to already learn locally discriminative satellite descrip-
tors at the fusion bottleneck, we apply the infoNCE loss [20] from contrastive
representation learning [11], which can be seen as a generalized version of triplet
loss [23] used in image retrieval in the case of multiple negative samples are
presented at the same time,

L′(ij+) = − log
exp(sim(f(G), g(S)ij

+
)/τ)

∑
i,j exp(sim(f(G), g(S)ij)/τ)

. (1)

Here τ is a hyper-parameter introduced by [20], and its role is similar to the
margin between positive and negative samples in triplet loss, and (ij+) is the
cell index of the positive satellite descriptor w.r.t. the ground descriptor.

We reuse the smoothed one-hot encoding from the output loss to allow multi-
ple soft positives if the true location is near a cell border. We max-pool the L×L
target map to the N ×N resolution and renormalize it to generate ‘positiveness’
weights w+

ij for each cell 1 ≤ i, j ≤ N . Our bottleneck loss is simply a weighted
version of Eq. (1), Lsim =

∑
i,j w+

ij L′(ij).

4 Experiments

In this section, we first introduce the two datasets and evaluation metrics for
our experiments. Then we motivate each of our design choices and provide a
detailed ablation study. Finally, our model is compared to the baseline CVR
approach [48] to show our advantage in metric localization in generalizing to
new measurements in the same area, across areas, and across time.
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4.1 Datasets

The first used dataset, VIGOR [48], contains geo-tagged ground-level
panoramic images and satellite images collected in four cities in the US. Unlike
previous cross-view image retrieval datasets [14,16,33,45], the satellite patches in
VIGOR seamlessly cover the target area. Importantly, the ground-level panora-
mas are not located at the center of satellite patches. Each satellite patch cor-
responds to 72.96 × 72.96 m ground area with a ground resolution of 0.114 m.
The orientation of the satellite patch and ground panorama are aligned in a way
that the vertical line at the center of the panorama corresponds to the north
direction in the satellite patch. Typically, each patch has ∼50% overlap with its
neighboring patch in the North, South, East, and West direction. This means
every ground image is covered by 4 satellite patches. If the ground image is
at the center 1/4 area of a satellite patch, the patch is denoted as “positive”,
otherwise “semi-positive”. In practice, “positive” samples simulate the case that
the global localization prior is more accurate, e.g. error <

√
2 × 18.24 m in the

case of VIGOR. Similarly, “positive + semi-positive” samples would be a result
of a coarser localization prior, e.g. error <

√
2 × 36.48 m. During training, we

include both “positives” and “semi-positives” samples. Our main evaluation will
be based on positive samples, since it is representative for most real-world situa-
tions, e.g. localization prior from GNSS positioning in an open area or temporal
filtering. For completeness, we also evaluate on “positive + semi-positive”, to
showcase how the methods behave with a less certain localization prior, e.g.
GNSS positioning in an urban canyon. We adopt the “same-area” and “cross-
area” splits from [48] to test the model’s generalization in the same cities and
across different cities. To find one set of hyper-parameters for both “same-area”
and “cross-area”, we create a subset of the shared training data from New York
as a smaller “tuning” split with 11108/2777 training/validation samples.

The second dataset, Oxford RobotCar [18,19] contains multi-sensor mea-
surements from multiple traversals over a consistent route through Oxford col-
lected over a year. The original dataset does not contain satellite images. To
enable cross-view metric localization, we stitch the satellite patches provided
by [41,42] and our additionally collected ones to create a continuous satellite
map that covers the target area. We follow the same data split as in [41] to test
how our method generalizes to new ground images collected at different time. In
total, there are 17067, 1698, and 5089 ground-level front-viewing images in the
training, validation, and test set respectively. The test set contains 3 traversals
collected at later times of day than the training recordings. Benefiting from a full
continuous satellite map, we randomly and uniformly sample satellite patches
around the ground image locations during training for data augmentation. Each
patch is rotationally aligned with the view direction of the ground image and
has a resolution of 800pixels× 800pixels, which corresponds to 73.92 × 73.92 m
on the ground. A fixed set of satellite patches is used for validation and testing.
Each patch has a 50% area overlap with the closest neighboring patches. We
pair each ground image with the patch at the closest center location to allow for
mutual information between the satellite and ground front-facing views.
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Similarly, during training, we also control the sampled locations to make sure
the ground image locates inside the central area of the sampled satellite patch.

4.2 Evaluation Metrics

To measure the localization error, we report the mean and median distance
between the predicted location and ground truth location in meters over all
samples. Note that the mean error can be biased by a few samples with large
error, and including the median error provides a measurement more robust w.r.t.
outliers. In practice, a localization method that operates on a single image frame
can be extended to process a sequence of data using a Bayesian filter [9,41]. In
such a setting, the estimated probability at the ground truth location plays
an important role in accurately localizing over the whole path. Motivated by
this, we include the probability at the ground truth pixel area as an additional
metric. The baseline CVR method does not have any probability estimation on
its output. Hence, we post-process the baseline output by assuming the regressed
location is the mean of an isotropic Gaussian distribution, and we estimate the
standard deviation of this Gauss on the validation set.

4.3 Hyper-parameters and Ablation Study

We first discuss our hyper-parameter choices, then investigate the main compo-
nents in our proposed architecture. The weight β in our loss function is set to
104, and the τ in infoNCE loss is set to 0.1, as done in [20]. The loss is opti-
mized by Adam optimizer [12] with a learning rate of 1 × 10−5, and the VGG
feature extractors are pre-trained on ImageNet [7]. Our main model variations
and hyper-parameters are now compared on the VIGOR “tuning” split.

We initially set N = 8 for the matching at the bottleneck. The infoNCE
loss at the bottleneck is key to improve the final model output. The model
trained with it achieves a much better mean error, 14.30 m, than the model
trained without it, 19.25 m. Label smoothing with σ = 4 pixels further reduces
the mean error to 13.39 m (we tested σ = 1, 2, 4, 8). We use both in all future
experiments.

Next, we study the influence of different resolutions N × N at
the model bottleneck. When N = 1, 2, 4,8, 16, the mean error is
19.62, 15.98, 15.23,13.39, 15.04 meters respectively (best in bold). With N = 1
no infoNCE loss is applied, and the decoder receives a single matching score
concatenated with features from the satellite branch. Increasing N improves the
spatial resolution at the model bottleneck. However, with larger N the decoder
also operates on larger inputs but with fewer upsampling layers. We observe a
balance at N = 8.

To further explore the role of metric learning at the bottleneck and the
feature concatenation, we create four extra model variations in Table 1. Directly
concatenating the ground with a single global satellite descriptor (see “1,S+G”)
is akin to CVR’s fusion with a decoder head instead of regression, but this
change alone does not perform well. The model does not work when the decoder
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Table 1. Fusion bottleneck, error on tuning split: “S” stands for satellite descriptors
g(S), “G” for ground descriptors f(G), “M” for cosine similarity feature. Best in bold

N , descriptors 1,S+G 8,M 8,S+G 8,S+M+G 8,S+M

Mean error (m) 18.62 24.37 18.35 13.83 13.39

Table 2. Localization error on VIGOR. Best in bold. “Center-only” denotes using
satellite patch center as the prediction. The term “Positives” stands for evaluation on
positive satellite patches. “Pos.+semi-pos.” takes the mean over the results from the
positive satellite patches and all semi-positive satellite patches

Same-area Cross-area

Positives Pos.+semi-pos. Positives Pos.+semi-pos.

Error(m) Mean Median Mean Median Mean Median Mean Median

Center-only 14.15 14.82 27.78 28.85 14.07 14.07 27.80 28.89

CVR [48] 10.55 9.31 16.64 13.82 11.26 10.02 18.66 16.73

Ours 9.86 4.58 13.45 5.39 13.06 6.31 17.13 7.78

operates on only a single channel map (“8,M”) without any context from the
satellite patch. Increasing the satellite resolution is also still insufficient with
only ground descriptors (“8,S+G”), the descriptors must also be trained to be
locally discriminative. Interestingly, we do not observe any benefit from also
concatenating the ground descriptor (“8,S+M+G”) to our default of satellite
descriptors with matching scores (“8,S+M”). In all next experiments, we fuse
only the satellite descriptors and the matching score.

We note that to forward-pass an input pair from VIGOR on a Tesla V100
GPU, CVR uses 0.020s, and our best-performing model 0.034s (i.e. ∼ 30 FPS).

4.4 Generalization in the Same Area/Across Areas

We now compare our method to CVR on the VIGOR splits for generalizing to
unseen ground images inside the same area, and across areas. When tested on the
“same-area” correctly retrieved samples, CVR trained for only regression has a
better mean (−1.5 m) and median (−1.1 m) localization error than CVR trained
for both retrieval and regression, as expected. From now on, we will always train
CVR model for regression only as the baseline.

Metric Error: The quantitative comparison against CVR on both VIGOR
splits is summarized in Table 2. To highlight the value of conducting cross-view
metric localization, we also include a “center-only” prediction which always out-
puts X = (0.5, 0.5). Note that retrieval-only methods typically assume that the
center of a satellite patch is representative of the true location.

When the ground image is compared to the positive-only satellite patches, our
model reduces the median error by 51% over CVR when generalizing within the
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(a) (b)

(c) (d)

Fig. 3. Error distributions (plots a,b: regular, c,d: cumulative, a,c: positives, b,d: pos-
itives and semi-positives) on VIGOR, for same-area and cross-area experiments.

same area (4.58 m vs 9.31m), and by 37% when generalizing across areas (6.31 m
vs 10.02 m). Generally, our model improves over the baselines, but across areas,
our mean error is higher than that of CVR. The error (cumulative) distribution
in Fig. 3 confirms that this is due to a few large-error outliers in our prediction.
These outliers are a result of selecting a wrong mode, or of large uncertainty in
our multi-modal output, whereas regression might pick an averaged location in
the middle resulting in neither small nor very large errors. We will show below
that our location’s probability can be used to detect such potential large error
cases. This would aid an external sensor fusion module, which can also directly
integrate the distribution to reduce the uncertainty through other measurements.

When ground images could be located further from the center, as in the
“positive+semi-positive” test cases, there is less matchable visual information
between the two views. In this case, the performance of both CVR and our model
somewhat degenerates, though our model suffers less than CVR. Our mean and
median errors are lower than CVR’s, both within the same area and across areas.
Moreover, our method’s advantage in the median error further increases. In the
Sup. Mat. we furthermore investigate the effect of using a CVR-like regression
layer and loss on top of our dense output but find it hurts median performance.

Qualitative Results: To intuitively understand where our advantage comes
from, we provide qualitative examples of success and failure cases in Fig. 4. In
the context of image-based cross-view metric localization, there can exist multi-
ple visually similar locations on the satellite image given a ground image. In such
cases, it is important for the model to have the capability to express the under-
lying localization uncertainty. In our model, the uncertainty is already present
at the model bottleneck, see Fig. 4 top row. This distribution is upsampled by
the decoder and aligned with the observed environmental features, such as roads
and crossings, resulting in the dense multi-modal uncertainty map. We empha-
size that no explicit semantic map information, e.g. on road layout, was used
during training. Since the regression-based baseline method forces the output to
be a single location, it risks ‘averaging’ multiple similar locations and provides
a wrong final estimate without any uncertainty information.

We argue that in practice our outliers are still more acceptable than CVR’s
errors. When our model is uncertain about the exact location, our output heat
map can be rather homogeneous. As shown in Fig. 4 example 3, given a ground
image taken on the road, our model assigns high probability to roads in the
center and on the left. In this situation, the distance between our predicted
location and the ground truth can be large. Instead, CVR tends to output the
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Fig. 4. Top: input ground images and matching score maps at the model bottleneck,
bottom: input satellite image overlayed with outputs from CVR and our method. From
left to right: 1: VIGOR, same-area, 2,3: VIGOR: cross-area, 4: Oxford RobotCar.

Fig. 5. Ranking the predictions using their probabilities on VIGOR “positives”. Red
lines show our error statistics over the top x%. Cyan/orange: error between median
and 25%/75% quantile line. As x decreases, only the more probable predictions are
kept. Blue lines: CVR cannot rank predictions this way. (Color figure online)

average between the visually similar areas, which can result in a location near
the center but that is intuitively unreasonable, e.g. within some vegetation, even
though it may have a smaller distance to the ground truth location.

Probability Evaluation: Apart from the metric localization error, we will
compare how well each model can predict the probability at the ground truth
location. For CVR we estimate this assuming a fixed Gaussian error distribution,
see Sect. 4.2. Table 3 reports both mean and median probabilities at the ground
truth pixel. Our multi-modal approach outperforms the fixed error distribution
for CVR. Importantly, the probability at our predicted location (the maximum
in H) is correlated to its localization error. If we apply a rejection threshold to
only keep the top x%, predictions, we can reduce the expected error. See Fig. 5
with the statistics over the top-ranked estimates. These properties are beneficial
when the single frame localization results are temporally filtered or fused with
other sensors.

Orientation: Till now, we have relied on a known orientation during test
time, e.g. estimated in the preceding retrieval step [26,37,47] or by the sensor
stack [39]. We here study our model’s robustness against orientation perturba-
tions and ability to infer orientation when it is unknown without retraining. To
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Table 3. Probabilities at the ground truth pixel on VIGOR. Best in bold. The mag-
nitude of the probabilities is low due to the normalization over the 512 × 512 grid.
“Uniform” shows for reference the prob. at GT for a homogeneous map, 1/(512× 512)

Prob. at GT, Same-area Cross-area

Positives Mean Median Mean Median

Uniform 3.81 × 10−6 3.81 × 10−6 3.81 × 10−6 3.81 × 10−6

CVR [48] 1.55 × 10−5 1.70 × 10−5 1.57 × 10−5 1.72 × 10−5

Ours 2.93× 10−4 1.17× 10−4 1.54× 10−4 7.06× 10−5

Fig. 6. Left: robustness of our model against small perturbations in orientation. Right:
directly using our model to infer the unknown orientation.

test robustness, we uniformly sample angular noise from a range up to ±20◦ [27]
to horizontally shift the ground panoramas (i.e. “rotate” the heading) at test
time. As shown in Fig. 6 left, the predicted location of our model remains stable
under such noise.

Still, the model’s confidence is not invariant to orientation shift, as our pre-
diction confidence can help classify a ground panorama’s unknown orientation.
We rotate the ground panorama by multiples of 22.5◦ up to 360◦, apply our
model to each rotated panorama with the satellite patch, and collect all 16 acti-
vation maps before the final softmax operation. The classification output is the
orientation of the map with the highest activation. As shown in Fig. 6 right, for
same and across areas, our model correctly classifies 50% and 37% samples into
the true orientation class out of 16 classes. Most erroneous predictions have an
error of 180◦, corresponding to the opposite driving direction.

4.5 Generalization Across Time

Finally, we test how our method generalizes to new measurements collected at
different times and days on the Oxford RobotCar dataset. For a comparison to
cross-view image retrieval, we include “GeolocalRetrieval”, which was previously
also proposed on the Oxford RobotCar dataset [41]. While regular image retrieval
is trained to be globally discriminative, this method learns descriptors that are
only discriminative for nearby satellite patches within a 50 m radius, and thus
assumes a localization prior during both training and testing, similar to our
task. To increase its localization accuracy, we feed it a larger idealized dataset
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Table 4. Localization error on Oxford RobotCar. Shown are the average ± standard
deviation of ‘mean’ and ‘median’ errors over 3 test traversals. Best results in bold. �:
uses the same training and test ground images, but more overlapping satellite patches
to obtain finer localization through image retrieval only

Error (meters) Mean Median

Center-only 12.09 ± 0.02 12.65 ± 0.01

GeolocalRetrieval� [41] 6.01 ± 0.68 4.62 ± 0.49

CVR [48] 2.29 ± 0.31 1.72 ± 0.21

Ours 1.77± 0.25 1.24± 0.10

of satellite patches at more densely sampled locations (200+ patches in a 50 m
radius) including even patches centered on the actual test locations. Therefore
GeolocalRetrieval could obtain zero meter error if it correctly retrieves the exact
satellite patch at each test image location.

Table 4 shows the localization error among all included methods. As expected,
with the idealized satellite patches, GeolocalRetrieval delivers lower error than
“center-only”. However, metric localization methods (CVR and ours) show a
clear advantage over GeolocalRetrieval. This highlights the benefit of conducting
metric localization over simply densifying the dataset for retrieval. Moreover,
using our model for metric localization reduces the mean error by 23% and the
median error by 28% compared to using CVR. Qualitatively, we again observe
the benefit of expressing multi-modal distribution over the CVR’s regression
even without the use of panoramic ground images, see Fig. 4 example 4. The
probability evaluation also aligns with the findings on VIGOR. Our probability
at the ground truth pixel are consistently higher than that under CVR with its
estimated error distribution over three test traversals. Averaged over three test
traversals, the mean/median probability at the ground truth pixel for CVR are
1.67 × 10−4/1.89 × 10−4, and for ours are 1.54 × 10−3/1.38 × 10−3.

We also test classification of the orientation on this non-panoramic dataset.
Instead of shifting the ground image, we now rotate the satellite patch 16 times
with 22.5◦, starting at 0◦ where north points in the vertical up direction. The
orientation of a ground image is inferred by selecting the peak probability as
we did for VIGOR. On three test traversals, 72.3%, 70.7%, and 70.6% of the
test samples are predicted with the correct orientation out of the 16 possible
directions. More details on orientation classification and the localization results
with unknown orientation can be found in the Supplementary Material.

To summarize, also for test images at new days our method shows all-round
superiority, similar to generalization within the same and across areas.

5 Conclusion

In this work, we focused on visual cross-view metric localization on a known
satellite image, a relatively unexplored task. In contrast to the state-of-the-art
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regression-based baseline, our method provides a dense multi-modal spatial dis-
tribution. We studied the architectural design differences, and showed general-
ization to new measurements in the same area, across areas, and generalizing
across time on two state-of-the-art datasets. Our method surpasses the state-
of-the-art by 51%, 37%, and 28% respectively in the median localization error.
In a few cases the multi-modal output yields higher distance errors, e.g. when
an incorrect mode is deemed more probable. Still, our probabilities can be used
to filter such large errors and have less risk of excluding the true location. We
show that our method is robust against small orientation noise, and is capable
to roughly classify the orientation from its prediction confidence. Future work
will address temporal filtering and fine-grained orientation estimation.
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Learning (EDL) with project number P16-25, which is (partly) financed by the Dutch
Research Council (NWO).
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