

Delft University of Technology

VUV-UV-vis photoluminescence, X-ray radioluminescence and energy transfer dynamics of Ce $^{3^+}$ and Eu $^{2^+}$ in Sr $_2{\rm MgSi}_2{\rm O}_7$

Wen, Donghao; Li, Quanfeng; Ou, Yiyi; Yang, Yunlin; Qi, Zeming; Dorenbos, Pieter; Liang, Hongbin

DOI 10.1039/d2dt03165e

Publication date 2022 **Document Version** Final published version

Published in **Dalton Transactions**

Citation (APA)

Wen, D., Li, Q., Ou, Y., Yang, Y., Qi, Z., Dorenbos, P., & Liang, H. (2022). VUV-UV-vis photoluminescence, X-ray radioluminescence and energy transfer dynamics of Ce³⁺ and Eu²⁺ in Sr MgSi O. *Dalton Transactions*, *51*(46), 17809-17819. https://doi.org/10.1039/d2dt03165e²²⁷

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Dalton Transactions

PAPER

Cite this: *Dalton Trans.*, 2022, **51**, 17809

Received 29th September 2022, Accepted 28th October 2022 DOI: 10.1039/d2dt03165e

rsc.li/dalton

1. Introduction

Luminescence of Ce^{3+} and Eu^{2+} plays an important role in the detection of ionizing radiation due to their parity-allowed 4f–5d transitions. Numerous inorganic compounds doped with Ce^{3+} or Eu^{2+} ions have been widely studied, and materials such as $Lu_2SiO_5:Ce^{3+}$ and $SrI_2:Eu^{2+}$ with outstanding luminescence properties are commercially available scintillators.¹ In addition, materials like $Y_3Al_5O_{12}:Ce^{3+}$ and $BaMgAl_{10}O_{17}:Eu^{2+}$ serve successfully as yellow and blue emitting phosphors in light-emitting diodes (LEDs) and tricolor tubes for lighting and displays, respectively.² To find novel luminescent materials and to improve their luminescence performances, much attention has been directed toward energy transfer (ET) from and to Ce^{3+} and Eu^{2+} ions.^{3,4}

The composition and structure of a host compound are essential for the luminescence property of a phosphor, because it directly rules the 4f–5d transitions of Ce^{3+} and/or Eu^{2+} in this compound. Silicates are suitable as host compounds for the

VUV-UV-vis photoluminescence, X-ray radioluminescence and energy transfer dynamics of Ce³⁺ and Eu²⁺ in Sr₂MgSi₂O₇†

Donghao Wen,^a Quanfeng Li,^a Yiyi Ou,^a Yunlin Yang,^a Zeming Qi, ^b Pieter Dorenbos ^c and Hongbin Liang ^b*^a

 Ce^{3+} and Eu^{2+} doped and $Ce^{3+}-Eu^{2+}$ co-doped $Sr_2MgSi_2O_7$ phosphors are prepared *via* a high-temperature solid-state reaction technique. The synchrotron radiation vacuum ultraviolet-ultraviolet (VUV-UV) excitation and ultraviolet-visible (UV-vis) emission spectra of diluted Ce^{3+} and Eu^{2+} doped $Sr_2MgSi_2O_7$ samples are measured at cryogenic temperatures. The electron-vibrational interaction (EVI) between Ce^{3+} and its surroundings is analyzed. The dependencies of the 4f–5d transitions of Ce^{3+} on the structure of the host compounds $Sr_2MgSi_2O_7$, $Ba_2MgSi_2O_7$ and $BaMg_2Si_2O_7$ are discussed in detail. Then the thermal quenching channel is proposed based on the measurements of temperature dependent luminescence intensities and decay times of Ce^{3+} and Eu^{2+} in $Sr_2MgSi_2O_7$, and the $Ce^{3+} \rightarrow Eu^{2+}$ energy transfer mechanism is understood by three luminescence dynamic models. In addition, $Sr_2MgSi_2O_7$: Ce^{3+}/Eu^{2+} samples are evaluated for the possibilities of X-ray detection applications using X-ray excited luminescence (XEL) spectroscopy, and it was found that they are not suitable.

luminescence of lanthanide and transition metal ions.^{5,6} Sr₂MgSi₂O₇ with akermanite structure is of particular interest to us in these silicates.⁷⁻¹⁰ A similar composition of Sr₂MgSi₂O₇ to those of Ba₂MgSi₂O₇ and BaMg₂Si₂O₇, and the single Sr²⁺/Ba²⁺ site in these compounds make Sr₂MgSi₂O₇ an appropriate choice for studying the composition and structure dependent 4f–5d transitions and energy transfer of Ce³⁺ and Eu²⁺ ions.

In this paper, synchrotron radiation VUV-UV excitation and UV-vis emission spectra are recorded to fully understand the 5d energies of Ce^{3+} in $Sr_2MgSi_2O_7$, and the electron–phonon coupling of Ce^{3+} is analyzed in consideration of its significant influences on luminescence performances such as the Stokes shift and the bandwidth. In particular, the impacts of coordination surroundings on the 5d energies and luminescence properties of Ce^{3+} ions are systematically discussed for three compounds $Sr_2MgSi_2O_7$, $Ba_2MgSi_2O_7$ and $BaMg_2Si_2O_7$ with similar compositions. Furthermore, the thermal quenching channel of Ce^{3+} and Eu^{2+} ions, and the Ce^{3+} – Eu^{2+} energy transfer dynamics in $Sr_2MgSi_2O_7$ are discussed in detail. Finally, XEL measurements are performed to assess the application possibilities of Ce^{3+} and Eu^{2+} doped phosphors for X-ray detection.

2. Experimental

2.1 Sample preparation

Three series of powder samples, $Sr_{2-2x}Ce_xNa_xMgSi_2O_7$ (x = 0, 0.001, 0.005, 0.03), $Sr_{2-x}Eu_xMgSi_2O_7$ (x = 0.001, 0.003) and

View Article Online

^aMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China

^bNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China

^cFaculty of Applied Sciences, Delft University of Technology, 2629 JB Delft, The Netherlands

[†]Electronic supplementary information (ESI) available. See DOI: https://doi.org/ 10.1039/d2dt03165e

Sr_{1.99-x}Ce_{0.005}Eu_xNa_{0.005}MgSi₂O₇ (x = 0.001, 0.005, 0.01), were prepared *via* a high-temperature solid-state reaction technique. SrCO₃ (Analytical Reagent, A.R.), 4MgCO₃·Mg(OH)₂·5H₂O (A. R.), SiO₂ (99.99%), CeO₂ (99.99%), and Eu₂O₃ (99.99%) were used as the initial materials. 4 mol% H₃BO₃ (A.R.) was added as a flux, and the aliovalent substitution between trivalent Ce³⁺ and divalent Sr²⁺ in samples Sr_{2-2x}Ce_xNa_xMgSi₂O₇ and Sr_{1.99-x}Ce_{0.005}Eu_xNa_{0.005}MgSi₂O₇ was balanced by using monovalent Na⁺ provided by Na₂CO₃ (99.99%) as charge compensators. The stoichiometric raw materials were ground in an agate mortar and then calcined at 1523 K for 4 h in a CO reducing ambience. The target products were obtained by grinding after cooling down to room temperature (RT).

2.2 Measurements

The phase purity of the samples was checked *via* the powder X-ray diffraction (XRD) technique using a Rigaku D-MAX 2200 VPC X-ray diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) at 40 kV and 26 mA. The Rietveld structural refinement of the host compound was performed using the TOPAS-Academic program,¹¹ and then its high quality XRD data were collected using a Bruker D8 advanced X-ray diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) at 40 kV and 40 mA with a step interval of 0.02°. The far infrared reflectance spectrum of the host compound was recorded on the BL01B beamline of the National Synchrotron Radiation Laboratory (NSRL, Hefei, China) at RT.¹²

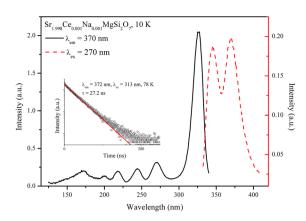
An Edinburgh FLS1000 combined fluorescence lifetime and steady state spectrometer was used to record UV-vis excitation/ emission spectra and luminescence decay curves. A 450 W xenon lamp was used as the excitation source for recording steady state luminescence spectra, and the excitation source used for obtaining luminescence decay curves was a 150 W nF900 lamp with a pulse width of 1 ns and a pulse rate of 40 kHz, or a 340 nm EPLED (picosecond pulsed light emitting diode) with a typical pulse width of 790 ps and a typical average power of 2.0 μ W at 10 MHz, respectively. The temperature of the samples is controlled using a MercuryiTC Model temperature controller.

Synchrotron radiation VUV-UV excitation and corresponding emission spectroscopy were performed on the beamline 4B8 of the Beijing Synchrotron Radiation Facility (BSRF). XEL spectra were recorded using a Philips PW2253/20 X-ray tube at the Delft University of Technology, the Netherlands. More details can be found in ref. 13.

3. Results and discussion

3.1. XRD and crystal structure

The Rietveld refinement of the high-quality XRD data of the un-doped host compound $Sr_2MgSi_2O_7$ is first performed (Fig. S1(a)†). The acquired refinement parameters of R_p , R_{wp} , and R_{bragg} are 3.906%, 5.220%, and 2.710%, respectively, which prove the reliability of the result and purity of the sample. $Sr_2MgSi_2O_7$ has a tetragonal structure with the space group $P\bar{4}21m$. The lattice parameters are a = b = 8.011 Å, c =


5.165 Å, and V = 331.4 Å³. There is only one eight-fold coordinated Sr²⁺ site with C_1 symmetry in Sr₂MgSi₂O₇ and the average Sr²⁺–O²⁻ bond length is 2.669 Å (Fig. S1(b)†).⁷ The distance between the two nearest neighboring Sr²⁺ ions is 3.743 Å. The Mg²⁺ and Si⁴⁺ ions connect to four oxygen ions to form regular tetrahedra. Fig. S1(c)† depicts the crystal structure of Sr₂MgSi₂O₇, which is a layer structure arrangement in the *c*-axis direction. The Sr²⁺ ions form a layer separately, while the Mg²⁺ and Si⁴⁺ tetrahedra form another layer together between Sr²⁺ ions. Two [SiO₄]²⁻ tetrahedra connect with each other *via* a corner-sharing oxygen ion and form a [Si₂O₇]⁶⁻ cluster.

typical XRD The patterns of Sr₂MgSi₂O₇, $Sr_{2-2x}Ce_xNa_xMgSi_2O_7$ (x = 0.001, 0.03), $Sr_{2-x}Eu_xMgSi_2O_7$ (x = 0.001) and $Sr_{1.99-x}Ce_{0.005}Eu_xNa_{0.005}MgSi_2O_7$ (x = 0.01) samples at RT shown in Fig. S1(d)[†] match well with the standard card (PDF# 75-1736) of $Sr_2MgSi_2O_7$,⁷ showing that the impurity phase content would be below the detection limit of XRD if it existed in the samples and demonstrating that Ce³⁺, Eu²⁺ and Na⁺ ions do not significantly change the crystal structure. Due to the similar ion radii of eight-fold coordinated Ce³⁺ (~1.14 Å), Na⁺ (~1.18 Å), Eu²⁺ (~1.25 Å) and Sr²⁺ (~1.26 Å), the doped Ce^{3+} , Eu^{2+} and Na^+ ions are thought to occupy the Sr^{2+} sites in the samples.

3.2. Photoluminescence of Ce^{3+} in $Sr_2MgSi_2O_7$

Fig. S2[†] shows the height-normalized excitation spectra at different emission wavelengths ($\lambda_{em} = 350, 368, 373$ and 382 nm) and the height-normalized emission spectra at varying excitation wavelengths ($\lambda_{ex} = 267, 272, 277, 319, 326$ and 332 nm) of the sample Sr_{1.998}Ce_{0.001}Na_{0.001}MgSi₂O₇ at RT for comparison. It can be seen that either four normalized excitation curves or six normalized emission spectra well overlap each other, respectively. These phenomena indicate that the material does not contain impurities that affect the luminescence spectrum in this wavelength range, the doped Ce³⁺ ions occupy only one type of lattice site in the host compound and the inhomogeneous broadening of Ce³⁺ 4f-5d transitions does not occur in this diluted sample.¹⁴ As mentioned above, we deem that Ce³⁺ ions are incorporated into eight-fold coordinated Sr²⁺ sites. The excitation peaks at approximately 326 and 273 nm result from the first and the second 4f-5d excitation bands of Ce³⁺ in this [SrO₈] site of the host compound and their positions are in good agreement with those in Fig. 1 and close to those in references.9,15 Two partially overlapped broad bands are seen in the emission curves and their peaks are at about 345 and 371 nm with an energy difference of about 0.24 eV (19.5×10^3 cm⁻¹). Obviously, these two bands correspond to the transitions from the relaxed lowest (the first) 5d to ${}^{2}F_{I}$ (J = 5/2, 7/2) states of Ce³⁺ ions in the Sr²⁺ sites of the host compound.

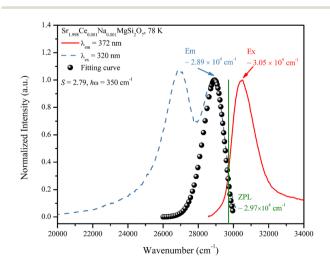
Fig. 1 displays the VUV-UV excitation ($\lambda_{em} = 370$ nm) and corresponding emission ($\lambda_{ex} = 270$ nm) spectra of the sample Sr_{1.998}Ce_{0.001}Na_{0.001}MgSi₂O₇ recorded by BSRF at 10 K. The typical broad doublet emission bands are at their maxima of about 345 and 368 nm in the emission spectrum, respectively. Their separation is clearer than that in Fig. S2[†] due to the

Fig. 1 The synchrotron radiation VUV-UV excitation ($\lambda_{em} = 370$ nm) and emission ($\lambda_{ex} = 270$ nm) spectra of the sample Sr_{1.998}Ce_{0.001}Na_{0.001}MgSi₂O₇ at 10 K. The inset shows its luminescence decay curve ($\lambda_{ex} = 313$ nm, $\lambda_{em} = 372$ nm) at 78 K.

measurement at a cryogenic temperature of 10 K in Fig. 1, and their peaks are consistent with those (about 345 and 371 nm) in Fig. S2.† As shown in the inset, the luminescence decay curve was exponential, and the decay time was estimated to be \sim 27.2 ns.

There are six distinct excitation bands in the VUV-UV excitation spectrum (the black solid line) in the range of 125–340 nm, which originate from the host-related absorption and the 4f–5d transitions of Ce³⁺. The host related absorption band peaked at ~170 nm (7.29 eV, 58.8 × 10³ cm⁻¹) is identified as the host exciton creation absorption energy E^{ex} . The band gap between the bottom of the conduction band and the top of the valence band is equal to this exciton creation energy plus the exciton binding energy. The empirical formula 0.008 × $(E^{\text{ex}})^2 = 0.43$ eV was used to estimate the exciton binding energy.¹⁶ Then, the band gap of Sr₂MgSi₂O₇ was evaluated to be ~7.72 eV.

Four clear excitation bands at about 326 nm (3.80 eV, $30.7 \times$ 10^3 cm^{-1}), 269 nm (4.61 eV, 37.2 × 10^3 cm^{-1}), 244 nm (5.08 eV, $41.0 \times 10^3 \text{ cm}^{-1}$), and 217 nm (5.71 eV, $46.1 \times 10^3 \text{ cm}^{-1}$) and a relatively weak band at about 200 nm (6.20 eV, 50.0×10^3 cm^{-1}) were observed in the 190–340 nm range of the excitation spectrum. These bands are attributed to the five $4f-5d_i$ (*i* = 1, 2, ...5) excitation bands of Ce^{3+} . The number of observed 4f-5d excitation bands is in good agreement with that of the theoretical prediction of 5d undegenerated orbitals after the crystal field splitting of Ce^{3+} in the C_1 low-symmetry [SrO₈] site of Sr₂MgSi₂O₇. Accordingly, the 5d crystal field splitting (CFS) energy of Ce^{3+} is evaluated to be about 2.40 eV (19.3 × 10³ cm⁻¹) and the 5d centroid energy is about 5.08 eV (41.0×10^3 cm^{-1}). The 5d centroid energy of Ce^{3+} in a compound depends on the covalence between anion ligands and the 5d-orbital, and the spectroscopic polarizability of the anions in the first coordination sphere around Ce³⁺, which are closely related to the nephelauxetic effect.¹⁷ In the present case, the 5d centroid energy of Ce^{3+} (41.0 × 10³ cm⁻¹) is higher than that of silicates like $Lu_2Si_2O_7$ (38.8 × 10³ cm⁻¹) and Li_2CaSiO_4 (39.6 × 10³


cm⁻¹).^{18,19} Clearly, a relatively higher 5d centroid energy implies a weaker covalence, spectroscopic polarizability and nephelauxetic effect in this case. The 5d CFS of Ce³⁺ is significantly affected by the size and shape of the first anion coordination polyhedron around Ce³⁺, especially the symmetry of the site, the coordination number and the $Ce^{3+}-O^{2-}$ bond length. The 5d CFS of Ce^{3+} (2.40 eV) in the present case falls in between that of other eight-fold coordinated sites of silicates, such as the C_1 symmetry of Ba²⁺ in BaMg₂Si₂O₇ (1.97 eV) and the C_2 symmetry of Ca²⁺ in CaMgSiO₆ (2.61 eV),^{5,20} which is in good agreement with the average Ce-O bond length in $Sr_2MgSi_2O_7$ (2.669 Å) between those in $BaMg_2Si_2O_7$ (2.882 Å) and CaMgSiO₆ (2.501 Å). With the peaks of the lowest 5d and ${}^{2}F_{5/2}$ transitions in the excitation (326 nm) and emission (345 nm) spectra, the Stokes shift was estimated to be about 0.21 eV (1.69 \times 10³ cm⁻¹), which is smaller than the average value ~0.31 eV $(2.5 \times 10^3 \text{ cm}^{-1})$ of Ce³⁺-doped compounds and suggests a smaller electron-vibrational interaction (EVI) for the 4f-5d transitions of Ce³⁺ in Sr₂MgSi₂O₇.

The EVI of a Ce³⁺ impurity center is characterized by three parameters, including the Stokes shift, the Huang–Rhys factor (*S*) and the effective phonon energy ($\hbar\omega$). All of them describe the shift of the electronic states corresponding to the ground and excited electronic states. The value of *S* and $\hbar\omega$ can be estimated using eqn (1) and (2):²¹

$$\Delta E_{\rm s} = (2S - 1)\hbar\omega \tag{1}$$

$$\Gamma(T) = \sqrt{8\ln 2}\hbar\omega \left[S \coth\left(\frac{\hbar\omega}{2kT}\right)\right]^{1/2}$$
(2)

where *T* is the temperature (K), $\Gamma(T)$ is the full width at half maximum (FWHM) of the emission band at temperature *T*, and *k* is the Boltzmann constant (8.62 × 10⁻⁵ eV K⁻¹). The $\Gamma(T)$ of the 5d to ${}^{2}F_{5/2}$ emission band at 78 K was estimated to be 1380 cm⁻¹ *via* a Gaussian fit according to the experimental result shown in Fig. 2. With the solution, we can predict the

Fig. 2 The height-normalized excitation (λ_{em} = 372 nm) and emission (λ_{ex} = 320 nm) spectra of the sample Sr_{1.998}Ce_{0.001}Na_{0.001}MgSi₂O₇ at 78 K and the fitting curve *via* EVI analysis.

emission band of Ce^{3+} using eqn (3) and further confirm the solution validity,

$$I = \frac{e^{-S}S^{p}}{p!} \left(1 + S^{2} \frac{e^{-\frac{\hbar\omega}{kT}}}{p+1} \right), p = \frac{E_{0} - E}{\hbar\omega}$$
(3)

where E_0 is the zero-phonon line (ZPL) energy and p is the number of effective phonons involved in the emission transition. The ZPL is located at the point of intersection of the excitation and emission spectra at 337 nm $(29.7 \times 10^3 \text{ cm}^{-1})$ in this case. By solving eqn (1) and (2), the acquired values are S = 2.79 and $\hbar\omega$ = 350 cm⁻¹. With these values, the best simulation of the Ce³⁺ emission band is achieved as shown in Fig. 2, which is in good agreement with the emission band shape, illustrating the validities of S and $\hbar\omega$ values. The far infrared reflectance spectrum of Sr₂MgSi₂O₇ is displayed in Fig. S3.[†] Peaks in the range of 480–1100 cm⁻¹ are attributed to the stretching and bending modes of Si-O-Si, and those below 480 cm⁻¹ are due to the M–O (M = Sr, Mg) stretching and bending modes.²² Accordingly, the effective phonons should correspond to the M-O (M = Sr, Mg) stretching and bending vibrations, and the infrared spectrum verifies the validities of the fitted effective phonon energy $\hbar\omega$. Such smaller S and $\hbar\omega$ values further confirm the weak electron-phonon coupling.

 Ce^{3+} doping concentration dependent luminescence is also studied as shown in Fig. S4 of the ESI.[†] The nearly identical spectral profiles and overlapped luminescence decay curves indicate that concentration quenching has not occurred yet in the doping range. The lifetime of Ce^{3+} at RT shown in Fig. S4(b)[†] is consistent with that at 78 K shown in the inset of Fig. 1, implying that temperature quenching does not occur below RT, as discussed in detail below.

Fig. 3(a) shows the excitation ($\lambda_{em} = 372 \text{ nm}$) and emission ($\lambda_{ex} = 320 \text{ nm}$) spectra of Sr_{1.998}Ce_{0.001}Na_{0.001}MgSi₂O₇ at 78–500 K. The band intensities of excitation and emission decrease significantly with the increase of the temperature. A

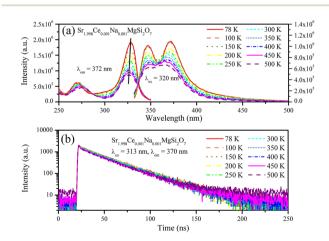
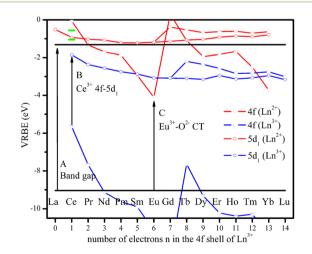



Fig. 3 (a) The excitation ($\lambda_{em} = 372$ nm) and emission ($\lambda_{ex} = 320$ nm) spectra and (b) luminescence decay curves ($\lambda_{ex} = 313$ nm, $\lambda_{em} = 370$ nm) of the Sr_{1.998}Ce_{0.001}Na_{0.001}MgSi₂O₇ sample in the temperature range of 78 to 500 K.

careful examination of the excitation spectrum shows that the first excitation peak slightly moves toward the short-wavelength direction (from ~326 nm at 78 K to ~323 nm at 500 K) as the temperature increases, resulting from the decrease of Ce^{3+} 5d CFS with the lattice expansion at a higher temperature. Meanwhile, the doublet emission bands gradually merge into one broad band due to the heat-stimulated electron-phonon interaction.

The luminescence decay curves of the sample $Sr_{1.998}Ce_{0.001}Na_{0.001}MgSi_2O_7$ in Fig. 3(b) nearly overlap each other in the 78–500 K range and conform to the exponential characteristics, which manifests that thermal quenching does not occur within this temperature range, indicating the good thermal stability of Ce³⁺ luminescence. This can be further corroborated by the vacuum referred binding energy (VRBE) scheme of lanthanide ions in $Sr_2MgSi_2O_7$ as follows.

By using the experimental data including the band gap energy (7.72 eV, arrow A in Fig. 4), the centroid energy of Ce^{3+} 5d states (5.08 eV) and the lowest 5d excitation energy of Ce³⁺ (3.80 eV, arrow B) obtained above, as well as the Eu³⁺-O²⁻ charge transfer energy (4.96 eV, arrow C) from Fig. S5,† the U value, which corresponds to the energy between Eu²⁺ and Eu³⁺ ground states, was calculated to be about 7.03 eV, and the VRBE scheme of the 4f ground states and the first 5d excited states of all trivalent and divalent lanthanide ions in Sr₂MgSi₂O₇ can be constructed as displayed in Fig. 4. It can be found that the energy difference (E_{dc}) between the lowest 5d multiplet $(5d_1)$ of Ce³⁺ and the conduction band minimum of $Sr_2MgSi_2O_7$ is ~0.53 eV, which is larger than those in silicates such as Sr₂Al₂SiO₇ (0.45 eV) and SrB₂Si₂O₈ (0.21 eV), implying the better luminescence thermal stability of Ce³⁺ in Sr₂MgSi₂O₇ provided that thermal-ionization is the main cause for luminescence thermal-quenching.23,24 In addition, the

Fig. 4 The vacuum referred binding energy (VRBE) scheme of all trivalent and divalent lanthanide (Ln^{3+} and Ln^{2+}) ions in $Sr_2MgSi_2O_7$. The upper solid line is the conduction band minimum (CBM) and the lower one is the valence band maximum (VBM). The blue lines are the 4f ground states and the lowest 5d states of Ln^{3+} , while the red lines are related to Ln^{2+} . The green horizontal bars are 5d₂ and 5d₃ of Ce³⁺.

short green bars in Fig. 4 depict the second and third 5d excitation states $(5d_2, 5d_3)$ of Ce^{3+} in the compound, which are located in the conduction band. This explains the weak excitation band intensities of the $4f-5d_{2,3,4,5}$ transitions in relation to the unambiguously intense $4f-5d_1$ transition shown in Fig. 1 due to the auto-ionization processes of electrons in these higher $5d_{2,3,4,5}$ excited states.¹³

3.3. Impact of the local structure on the luminescence of Ce^{3^+} in $Sr_2MgSi_2O_7,\,Ba_2MgSi_2O_7$ and $BaMg_2Si_2O_7$

Sr₂MgSi₂O₇, Ba₂MgSi₂O₇ and BaMg₂Si₂O₇ are three typical alkaline earth pyrosilicates with similar compositions.^{20,25} In these compounds, there is only one type of eight-fold coordinated Ba²⁺ or Sr²⁺ site with C_1 symmetry as listed in Table 1. The doped Ce³⁺ ions are expected to enter Ba²⁺ or Sr²⁺ sites but not occupy Mg²⁺ sites because the ionic radius of Mg²⁺ is evidently smaller than that of Ce³⁺. Based on these structural characteristics, they should be suitable compounds to understand the dependence of luminescence properties on the local structure of Ce³⁺ in the host compounds. It is of significance to compare the structure and the band gap of the three host compounds and discuss their impact on luminescence properties such as the 5d centroid energy, the Stokes shift, the 5d CFS and the decay time of Ce³⁺ in these host compounds.

Firstly, we discuss the band gap and the band structure. From the data in Table 1, it can be found that the wavelength of the exciton peak slowly increases according to the relative order $BaMg_2Si_2O_7$ (162 nm) < $Sr_2MgSi_2O_7$ (170 nm) < $Ba_2MgSi_2O_7$ (180 nm), while the estimated band gap energy certainly follows the opposite sequence BaMg₂Si₂O₇ (8.12 eV) > $Sr_2MgSi_2O_7$ (7.72 eV) > $Ba_2MgSi_2O_7$ (7.27 eV). The mean band gap energy of the three compounds was calculated to be 7.70 \pm 0.42 eV. The band gap is thought to be strongly dependent on the compound composition and structure. The density functional theory (DFT) study of Ba₂MgSi₂O₇ indicates that the valence band maximum (VBM) is dominated by O 2p states, and the conduction band minimum (CBM) is mainly formed by Ba 5d states with a small contribution from O 2p states through Ba-O bonding.²⁶ We speculate that the other two compounds also have similar band structures because of their similar layered structures and band gaps. The difference in the alkaline earth cations forming a single layer in the layered structure may be responsible for the slight alteration of the band gap among these three cases.²⁷

Then we deal with the 5d centroid energy and the Stokes shift of Ce³⁺. A fascinating phenomenon that the sequence of the 5d centroid energy of Ce^{3+} is consistent with the order of band gap values is found in Table 1. It shows that the wider the band gap is, the higher the 5d centroid of Ce³⁺ is. As mentioned above, the 5d centroid of Ce³⁺ is closely related to the covalence between anion ligands and the 5d-orbital of Ce^{3+} , the spectroscopic polarizability of the anions in the first coordination sphere around Ce³⁺ and/or the nephelauxetic effect. This observation seems to imply that the covalence/ spectroscopic polarizability/nephelauxetic effect affects the band gap through bonding strength, but more examples need to be taken into account. Besides, the Stokes shift of the Ce³⁺ 4f-5d transition seems to increase with the decrease of the band gap of the host compound, showing that the electronvibrational interaction is getting weaker from Ba2MgSi2O7 to Sr₂MgSi₂O₇ and BaMg₂Si₂O₇, which further proves that the large band gap is associated with strong bonding.

Thirdly, it can be noted that the increase in the sequence of Ce^{3+} 5d CFS energy in the order of $BaMg_2Si_2O_7$ (1.97 eV) < $Ba_2MgSi_2O_7$ (2.02 eV) < $Sr_2MgSi_2O_7$ (2.40 eV) is in good agreement with the decrease in the sequence of average M–O (M = Ba or Sr) bond lengths in the order of $BaMg_2Si_2O_7$ (2.884 Å) > $Ba_2MgSi_2O_7$ (2.813 Å) > $Sr_2MgSi_2O_7$ (2.669 Å). Because the Ce^{3+} ions occupy the C_1 symmetry [MO₈] (M = Ba or Sr) sites in all three cases, the magnitude of Ce^{3+} 5d CFS is mainly decided by the site size herein. The larger the M²⁺ site size, the longer the average M–O bond length, and the smaller the Ce^{3+} 5d CFS energy.

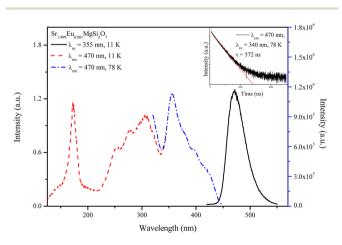
Finally, we compare the luminescence decay time of Ce³⁺ in three cases. Fig. S6† displays a good linear relationship of λ^3 $\nu s. \tau$ for Ce³⁺ in Sr₂MgSi₂O₇, Ba₂MgSi₂O₇ and BaMg₂Si₂O₇, where λ (nm) is the emission peak wavelength of the 5d–²F_{5/2} transition derived from Table 1 and τ (s) represents its luminescence decay time. It is widely accepted that luminescence decay is positively correlated with the emission wavelength, and the polarization effect or the local-field effect that has

Host compound	$Sr_2MgSi_2O_7$	$Ba_2MgSi_2O_7$	$BaMg_2Si_2O_7$
Crystal system	Tetragonal (P421m)	Orthorhombic $(C2/c)$	Orthorhombic $(C2/c)$
Coordination number of Sr ²⁺ /Ba ²⁺ ions	8	8	8
Symmetry of Sr ²⁺ /Ba ²⁺ sites	C_1	C_1	C_1
Average bond length of $Sr^{2+}/Ba^{2+}-O^{2-}(Å)$	2.669	2.813	2.884
Exciton peak (nm)	170	180	162
Band gap (eV)	7.72	7.27	8.12
Ce^{3+} 5d energy (eV)	3.80, 4.61, 5.08, 5.71, 6.20	4.00, 4.25, 4.88, 5.69, 6.02	4.17, 4.48, 5.08, 5.71, 6.14
Ce^{3+} 5d centroid energy (eV)	5.08	4.97	5.12
Ce^{3+} 5d CFS (eV)	2.40	2.02	1.97
Ce ³⁺ emission (eV)	3.34, 3.59	3.44, 3.69	3.73, 4.00
Ce ³⁺ Stokes shift (eV)	0.21	0.31	0.17
Ce^{3+} decay time (ns)	27.2	25	19.2

 $\label{eq:stable_stab$

been used to interpret the various lifetimes of the Ce³⁺ 4f–5d emissions in different media with the following formulas:²⁸

$$\frac{1}{\tau_{\rm r}} = 4.34 \times 10^{17} \times |\langle 5d|r|4f \rangle_{\rm eff}|^2 \chi \times \frac{1}{\lambda^3} \tag{4}$$


$$\chi = n \left[\frac{(n^2 + 2)}{3} \right]^2 \tag{5}$$

where τ_r is the radiative lifetime (s), λ is the emission wavelength of Ce³⁺, $\langle 5d|r|4f \rangle_{eff}$ is the effective radial integral with a best-fit value of 0.0281 nm for Ce³⁺, χ is the enhancement factor in the virtual cavity model and *n* is the refractive index of the compound. Due to the good $\lambda^3 - \tau$ linear relationship, we assume that the refractive indexes of the three pyrosilicate compounds are almost the same. Accordingly, the (average) χ value is fitted to be about 4.44. The (average) refractive index of these pyrosilicates is further estimated to be 1.69, which is slightly smaller than that (1.71) of those pyrosilicates mentioned in ref. 29.

3.4. Photoluminescence of Eu²⁺ in Sr₂MgSi₂O₇

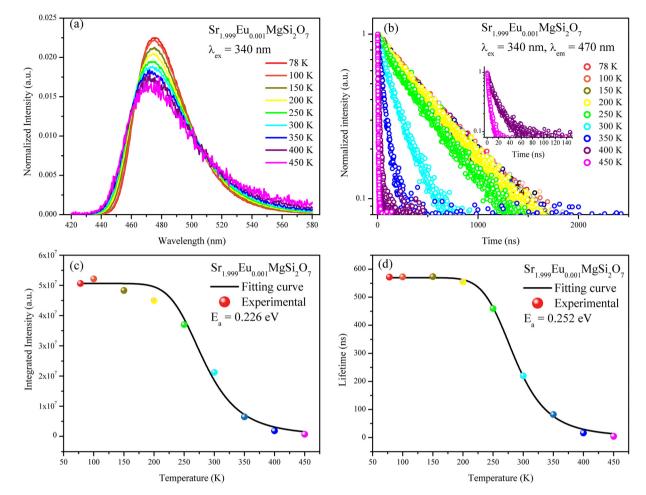
Fig. 5 depicts the synchrotron radiation VUV-UV excitation (λ_{em} = 470 nm, red dashed line) and emission (λ_{ex} = 355 nm, black solid line) spectra at 11 K, and the lab UV-vis excitation spectrum (λ_{em} = 470 nm, blue dash dotted line) of the sample Sr_{1.999}Eu_{0.001}MgSi₂O₇ at 78 K, respectively. The two spectra are in line in the 320–345 nm region. The bands in the 200–450 nm range are attributed to the 4f–5d transitions of Eu²⁺, and those above this region are attributed to host-related absorption as mentioned in Fig. 1. The host exciton creation peak at about 172 nm is in good agreement with that observed in Fig. 1.

The sample exhibits intense cyan emission peaking at ~470 nm (2.64 eV), and its FWHM is ~1.69 × 10^3 cm⁻¹ (0.209 eV). The energy of transition from the ground 4f multiplet to

Fig. 5 The synchrotron radiation VUV-UV excitation (red dashed line, $\lambda_{em} = 470$ nm) and emission (black solid line, $\lambda_{ex} = 355$ nm) spectra at 11 K and UV-vis excitation spectra (blue dashed dot line, $\lambda_{em} = 470$ nm) at 78 K of the Sr_{1.999}Eu_{0.001}MgSi₂O₇ sample. The inset shows the lumine-scence decay curve ($\lambda_{ex} = 340$ nm, $\lambda_{em} = 470$ nm) at 78 K.

the first 5d level (5d₁) of Eu²⁺ is empirically estimated to be ~435 nm (2.85 eV) in terms of the wavelength at 15 to 20% of the maximum excitation intensity on the long-wavelength side.³⁰ Accordingly, the Stokes shift of Eu²⁺ emission was found to be ~0.21 eV, which will be used later to discuss the luminescence thermal-quenching channels. The decay curve in the inset is exponential with a decay time of ~572 ns.

Fig. 6 shows the intensity normalized emission spectra (a, λ_{ex} = 355 nm) and luminescence decay curves (b, λ_{ex} = 340 nm, $\lambda_{em} = 470 \text{ nm}$) of the sample $Sr_{1.999}Eu_{0.001}MgSi_2O_7$ at 78–450 K, respectively. The emission bands broaden steadily and the integrated intensities decrease with an increase in temperature (Fig. 6(a and c)), while the emission peaks shift by about 4 nm to the short-wavelength side. Meanwhile, the luminescence decays become rapid and start to deviate from exponential gradually (Fig. 6(b)). The evolution of decay curves implies the occurrence of thermal quenching of Eu²⁺ emission in the temperature range. The curves (c and d) display the dependencies of the integrated emission intensity and lifetime on temperature. The variations of the integrated intensity and lifetime show similar tendencies, which further confirms the earlier result.³¹ According to the single-barrier-quenching model, the thermal quenching activation energy (E_a) of Eu²⁺ luminescence is estimated using eqn (6) and (7), respectively,³²


$$I(T) = \frac{I_0}{1 + \Gamma_0 / \Gamma_v \exp(-E_a/kT)}$$
(6)

$$\tau(T) = \frac{1/\Gamma_{\rm v}}{1 + \Gamma_0/\Gamma_{\rm v} \exp(-E_{\rm a}/kT)}$$
(7)

where I(T) and $\tau(T)$ are the integrated intensity and luminescence lifetime at temperature *T*, respectively, I_0 is the initial integrated intensity, Γ_0 is the thermal-quenching rate at $T = \infty$, Γ_v is the reciprocal of the intrinsic lifetime of Eu²⁺, and *k* is the Boltzmann constant (8.62 × 10⁻⁵ eV K⁻¹). The fitting results derived from the integrated intensity and lifetime are listed in Table S1.† Γ_v values are fitted as 1.73×10^6 and $1.76 \times$ 10^6 s^{-1} , respectively, corresponding to the intrinsic lifetimes of 578 ns and 568 ns, which is consistent with the data (572 ns) obtained from the decay curve at 78 K. Besides, the thermal quenching activation energy (*E*_a) values were evaluated to be 0.226 and 0.252 eV, respectively. So the mean *E*_a value was calculated to be 0.239 ± 0.013 eV.

The thermal quenching mechanism of Eu^{2+} luminescence in Sr₂MgSi₂O₇ can be understood with the help of this activation energy (*E*_a). The luminescence thermal quenching of 4f–5d transitions is thought to be the consequence of one of the following three mechanisms or their combinations:³³ (1) crossover relaxation (CR) caused by electron–phonon coupling, (2) thermally activated concentration quenching, and (3) thermal ionization of 5d electrons into the conduction band.

Firstly, the 4f–5d CR mechanism can be excluded from the present case. The energy barrier for the CR channel ($E_{\rm fd}$) has been estimated to be about 2.14 eV using the first-principles study.³⁴ Such a large difference between the values of $E_{\rm fd}$ (2.14 eV) and $E_{\rm a}$ (0.239 ± 0.013 eV) strongly negates the possibility of

Fig. 6 (a) The intensity normalized emission spectra ($\lambda_{ex} = 355$ nm) and (b) normalized luminescence decay curves ($\lambda_{ex} = 340$ nm, $\lambda_{em} = 470$ nm) of the Sr_{1.999}Eu_{0.001}MgSi₂O₇ sample in the temperature range of 78–450 K. The inset in plot b shows the details of the decay curve at 400 K and 450 K. The dependencies of the integrated emission intensity (c) and lifetime (d) on temperature and the fitting curves using eqn (6) and (7).

CR as the channel for the luminescence thermal quenching of Eu^{2+} in Sr₂MgSi₂O₇. Besides, we assume that the thermally activated concentration quenching is also not the dominant channel for the thermal quenching of Eu²⁺ luminescence, due to the small overlap between the excitation and emission bands as shown in Fig. 5. Accordingly, the thermal ionization of 5d electrons in the conduction band should play an important role in the thermal quenching of Eu²⁺ luminescence processes. The VRBE scheme shown in Fig. 4 can illustrate the rationality of this viewpoint. The energy barrier between the lowest 5d of Eu²⁺ and the conduction band minimum (E_{dc}) is a vital parameter for thermal ionization processes. It can be found that there is only a small difference between E_{dc} (about -0.14 eV) read from the VRBE scheme in Fig. 4 and the abovementioned $E_{\rm a}$ value (0.239 ± 0.013 eV). This smaller $E_{\rm dc}$ value may be related to the introduction of errors in the processes of measuring luminescence and building the VRBE scheme.³⁵ Besides, the measurement of luminescence and the fitting of the activation energy may also result in some errors. These factors are responsible for the discrepancies between the two estimates. Although there is a difference between the E_{dc} and

 $E_{\rm a}$ values, the VRBE scheme in Fig. 4 gives us a crucial indication that the lowest 5d of Eu²⁺ is close to the conduction band minimum. It is reasonable that thermal ionization is considered to be the most likely major mechanism for thermal quenching of Eu²⁺ luminescence in our case.

3.5. Energy transfer dynamics of Ce^{3+} and Eu^{2+} in $Sr_2MgSi_2O_7$

The discussions in sections 3.2 and 3.3 manifest the spectral overlap between the excitation bands of Ce^{3+} and the emission bands of Eu^{2+} , implying that Ce^{3+} ions can serve as a possible sensitizer to the luminescence of Eu^{2+} ions through energy transfer. To verify the ET from Ce^{3+} to Eu^{2+} , the luminescence properties of a series of Ce^{3+} and Eu^{2+} co-doped samples $Sr_{1.99-x}Ce_{0.005}Eu_xNa_{0.005}MgSi_2O_7$ (x = 0, 0.001, 0.005, 0.01) with a fixed Ce^{3+} concentration were measured and are shown in Fig. 7. With the increase of the Eu^{2+} concentration, the emission intensities of Ce^{3+} drop sharply and the decay curves of Ce^{3+} gradually deviate from the exponential, implying the appearance of energy transfer from Ce^{3+} to Eu^{2+} . To further study the energy transfer dynamics from Ce^{3+} to Eu^{2+} , the

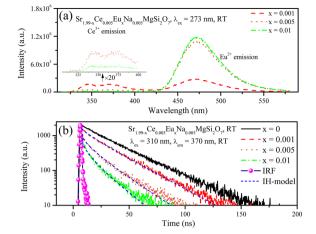
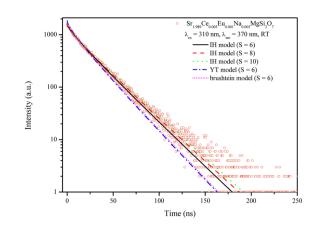



Fig. 7 (a) The emission spectra ($\lambda_{ex} = 273$ nm) of the samples $Sr_{1.99-x}Ce_{0.005}Eu_xNa_{0.005}MgSi_2O_7$ (x = 0, 0.001, 0.005, 0.01) and (b) luminescence decay curves ($\lambda_{ex} = 310$ nm, $\lambda_{em} = 370$ nm) of the samples $Sr_{1.99-x}Ce_{0.005}Eu_xNa_{0.005}MgSi_2O_7$ (x = 0.001, 0.005, 0.01) at RT and the fitting result using the Inokuti–Hirayama (IH) model (S = 6).

decay curve of the sample $\rm Sr_{1.989}Ce_{0.005}Eu_{0.001}Na_{0.005}MgSi_2O_7$ is fitted by three models as follows.

First, we only consider the energy transfer between the donor Ce^{3+} and the acceptor Eu^{2+} when energy migration between the donor Ce^{3+} ions does not exist, and the decay

View Article Online

Dalton Transactions

Fig. 8 The luminescence decay curve ($\lambda_{ex} = 310 \text{ nm}$, $\lambda_{em} = 370 \text{ nm}$) of the Sr_{1.989}Ce_{0.005}Eu_{0.001}Na_{0.005}MgSi₂O₇ sample at RT and the corresponding fitting curves using the Inokuti–Hirayama model (S = 6, 8, 10), Yokota–Tanimoto model (S = 6) and Burshtein model (S = 6).

ship $\tau_0 = R_c^S / C_{DA}^{(S)}$, which implies that the energy transfer from Ce^{3+} to Eu^{2+} is effective.

In addition, the energy migration between the donor Ce^{3+} is analyzed and carefully excluded. When the distance between adjacent Ce^{3+} ions is shorter than that between the Ce^{3+} and Eu^{2+} ions, a slow energy migration may come up between Ce^{3+} and the luminescence of donor Ce^{3+} can be described using the Yokota–Tanimoto (YT) model (diffusion model),³⁷

$$I(t) = I(0) \exp\left[-\left(\frac{t}{\tau_0}\right) - \frac{4\pi}{3} C_{\rm A} \Gamma\left(1 - \frac{3}{S}\right) (C_{\rm DA} t)^{\frac{3}{S}} \times \left(\frac{1 + 10.866X + 15.500X^2}{1 + 8.743X}\right)^{\frac{S-3}{S-2}}\right]$$
(9)

curve behavior can be described with the Inokuti–Hirayama (IH) model listed below,³⁶

$$I(t) = I(0) \exp\left[-\left(\frac{t}{\tau_0}\right) - \frac{4\pi}{3}C_{\rm A}\Gamma\left(1 - \frac{3}{S}\right)(C_{\rm DA})^{\frac{3}{S}}t^{\frac{3}{S}}\right]$$
(8)

where I(0) and I(t) are the initial luminescence intensity and the emission intensity of Ce^{3+} at time *t*, respectively; τ_0 is the intrinsic luminescence lifetime of the donor Ce^{3+} (27.2 ns); C_A is the concentration of the acceptor Eu^{2+} (6.067 × 10²⁴ m⁻³); $C_{\rm DA}$ is the energy transfer microparameter; $\Gamma(1 - 3/S)$ is a gamma function; S is the multipolar effect parameter and its values are 6, 8 and 10, corresponding to the dominant mechanism being electric dipole-dipole, electric dipole-quadrupole or electric quadrupole-quadrupole interactions, respectively. To identify the main mechanism of multipolar interaction, the decay curve of the sample $Sr_{1.989}Ce_{0.005}Eu_{0.001}Na_{0.005}MgSi_2O_7$ is fitted using the Inokuti-Hirayama model with different S values, and the results are shown in Fig. 8 and Table S2.† The best fitting result ($R^2 = 0.998$) is obtained when S = 6, suggesting that the main mechanism of energy transfer between Ce³⁺ and Eu²⁺ is the electric dipole–dipole interaction. The $C_{\rm DA}$ value was estimated to be 2.89×10^{-45} m⁶ s⁻¹ and the critical distance R_c was found to be 20.7 Å using the relation-

$$X = D \times C_{\rm DA}^{-\frac{2}{S}} \times t^{\frac{S-2}{S}}$$
(10)

$$D = \frac{C_{\rm DD}}{2(S-5)} \times \left(\frac{4\pi C_{\rm D}}{3}\right)^{\frac{S-2}{S}}$$
(11)

where *D* is the diffusion parameter, $C_{\rm DD}$ is the energy migration parameter, $C_{\rm D}$ is the concentration of donor Ce³⁺ (3.034 × 10²⁵ m⁻³) and other symbols have the same meaning as above. The fitting result is also displayed in Fig. 8 and Table S2.† $C_{\rm DA}$ was fitted to be 2.35 × 10⁻⁴⁶ m⁶ s⁻¹ while $C_{\rm DD}$ was 1.03 × 10⁻⁴⁵ m⁶ s⁻¹. This result does not meet the constraint of the Yokota–Tanimoto model that $C_{\rm DD} \ll C_{\rm DA}$, which reveals that the slow energy migration between Ce³⁺ is invalid.

Finally, the Burshteĭn model (hopping model) is applied to estimate the fast energy migration between Ce³⁺,³⁸

$$I(t) = I(0) \exp\left[-\left(\frac{t}{\tau_0}\right) - \frac{4\pi}{3}C_{\rm A}\Gamma\left(1 - \frac{3}{S}\right)(C_{\rm DA}t)^{\frac{3}{S}} - Wt\right] \quad (12)$$

where $W = \pi \left(\frac{2\pi}{3}\right)^{\frac{5}{2}} C_{\rm A}^2 (C_{\rm DA} C_{\rm DD})^{\frac{1}{2}}$ and other symbols are the same as those mentioned above. The fitting result is presented

in Fig. 8 and Table S2,† but $C_{\rm DA}$ and $C_{\rm DD}$ failed to satisfy the validity rule of the Burshtein model ($C_{\rm DD} \gg C_{\rm DA}$). Therefore, a conclusion can be drawn that the energy transfer between Ce³⁺ and Eu²⁺ is mainly governed by the electric dipole–dipole interaction in the sample Sr_{1.989}Ce_{0.005}Eu_{0.001}Na_{0.005}MgSi₂O₇ and the influence of energy migration between Ce³⁺ in a fast or slow mode is negligible. Besides, when the concentration of Eu²⁺ is further increased to x = 0.005 and 0.01 in the Sr_{1.99-x}Ce_{0.005}Eu_xNa_{0.005}MgSi₂O₇ samples, the luminescence decay curves of Ce³⁺ are also well described using the Inokuti–Hirayama model, as shown in Fig. 7(b).

3.6. X-ray radioluminescence of Ce³⁺ and Eu²⁺ in Sr₂MgSi₂O₇

Fig. 9 shows the X-ray excited luminescence spectra of the $Sr_{1.994}Ce_{0.003}Na_{0.003}MgSi_2O_7$ and $Sr_{1.997}Eu_{0.003}MgSi_2O_7$ samples at RT. To estimate the absolute light yield under X-ray excitation of these samples, a BaF₂ crystal is measured under the same experimental conditions.¹³ The BaF₂ crystal presents typical self-trapped exciton emission with two bands with their maxima at ~300 and 220 nm, respectively, and its integrated intensity is specified as 8.80×10^3 ph MeV⁻¹.

The emission spectrum of the Eu²⁺ doped sample under X-ray excitation is in good agreement with that under VUV-UV excitation, and a series of extremely weak sharp peaks in the range of 550–750 nm are due to incomplete reduction of Eu³⁺ ions, but the XEL spectrum of the Ce³⁺ doped sample is somewhat different from the photoluminescence (PL) spectrum. An additional emission band above 400 nm with a peak at about 450 nm appears in the XEL spectrum but it is not observed in the PL spectrum. This additional band may be related to the emission of Ce³⁺ in impurities not detected by XRD or defects under high-energy X-ray excitation. Its integrated intensity was evaluated to be about 49.2% of the total emission by fitting the XEL spectrum of Ce³⁺ with a sum of three Gaussian functions [Ce³⁺ 5d–²F_I (J = 5/2, 7/2) bands and the additional 450 nm

Fig. 9 The XEL spectra of the samples $Sr_{1.994}Ce_{0.003}Na_{0.003}MgSi_2O_7$, $Sr_{1.997}Eu_{0.003}MgSi_2O_7$ and crystal BaF_2 at RT, and the Gaussian fitting of the XEL spectrum of $Sr_{1.994}Ce_{0.003}Na_{0.003}MgSi_2O_7$.

emission]. According to the measured light output value of 2.81 × 10³ ph MeV⁻¹, the light yield of the $Sr_{1.994}Ce_{0.003}Na_{0.003}MgSi_2O_7$ sample was estimated to be 1.47 × 10³ ph MeV⁻¹ after subtracting the 450 nm emission, and that of the $Sr_{1.997}Eu_{0.003}MgSi_2O_7$ sample was found to be about 5.97 × 10³ ph MeV⁻¹. The low light output implies that these materials are not suitable X-ray detecting phosphors.

4. Conclusions

This paper studies the 4f-5d transitions and the energy transfer of Ce³⁺ and Eu²⁺ in Sr₂MgSi₂O₇ after the preparation of the samples by a traditional high-temperature solid-state reaction method. (1) The synchrotron radiation VUV-UV excitation spectrum of the sample Sr_{1.998}Ce_{0.001}Na_{0.001}MgSi₂O₇ at 10 K reveals that the five $4f-5d_i$ (*i* = 1, 2, ..., 5) transitions of Ce³⁺ in the C₁ low-symmetry [SrO₈] site of Sr₂MgSi₂O₇ are located at about 326, 269, 244, 217 and 200 nm, respectively, and the band intensities can be explained using the vacuum referred binding energy (VRBE) scheme. Typical doublet emission bands of Ce³⁺ are found with their maxima at about 345 and 368 nm, and the luminescence decay time is about 27.2 ns. The electron-vibrational interaction (EVI) analysis shows that the Huang-Rhys factor (S) and the effective phonon energy ($\hbar\omega$) are S = 2.79 and $\hbar\omega$ = 350 cm⁻¹ for the 4f–5d transitions of Ce³⁺ in Sr₂MgSi₂O₇, respectively. The measurements on the luminescence decay behaviours show that concentration quenching does not occur in Sr_{2-2x}Ce_xNa_xMgSi₂O₇ samples for x values within 0.03, and the $Sr_{1.998}Ce_{0.001}Na_{0.001}MgSi_2O_7$ sample does not undergo thermal quenching below 500 K. Comparison of the luminescence properties of Ce³⁺ in a series of host compounds Sr₂MgSi₂O₇, Ba₂MgSi₂O₇ and BaMg₂Si₂O₇ with similar compositions indicates that the crystal field splitting (CFS) of Ce^{3+} 5d increases with the decrease of the site size, while the 5d centroid energy of Ce³⁺ and the Stokes shift are closely associated with the band gap. The third power of the emission wavelength of Ce³⁺ in three compounds shows a good linear relationship with the luminescence decay time, which may be related to similar refractive indexes of these pyro-silicates. (2) The 4f–5d excitation bands of Eu^{2+} covers the 200-450 nm range, the cyan emission peaks at about 470 nm (2.64 eV) with a FWHM of around 1687 cm⁻¹ and the decay time is approximately 572 ns. The thermal quenching activation energy of Eu²⁺ luminescence was estimated to be about 0.239 ± 0.013 eV by the dependencies of the lifetime and intensity on temperature. Accordingly, the thermal ionization mechanism is thought to be the main thermal quenching channel. (3) Systematic studies of the luminescence decay curves with three luminescence dynamic models suggest that the energy transfer from Ce^{3+} to Eu^{2+} is mainly through electric dipole-dipole interactions and the energy migration between Ce^{3+} in a fast or slow mode is negligible. (4) The low light outputs of the Ce³⁺ and Eu²⁺ doped materials under X-ray exciPaper

tation suggest that phosphors are not suitable for X-ray detection.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 22171290, 52161135110) and the Natural Science Foundation of Guangdong Province (2022A1515011376). The vacuum ultraviolet (VUV) and far-infrared (IR) reflection spectral measurements of the samples were carried out with the support of the 4B8 beamline at the Beijing Synchrotron Radiation Facility (BSRF, Beijing, China) and the BL01B beamline at the National Synchrotron Radiation Laboratory (NSRL, Hefei, China), respectively.

References

- P. Dorenbos, Fundamental limitations in the performance of Ce³⁺-, Pr³⁺-, and Eu²⁺- activated scintillators, *IEEE Trans. Nucl. Sci.*, 2010, 57, 1162–1167.
- 2 C. R. Ronda, *Luminescence: from theory to applications*, Wiley, Weinheim, 2007.
- 3 W. Lü, J. S. Huo, Y. Feng, S. Zhao and H. P. You, Photoluminescence, energy transfer and tunable color of Ce³⁺, Tb³⁺ and Eu²⁺ activated oxynitride phosphors with high brightness, *Dalton Trans.*, 2016, **45**, 9676–9683.
- 4 C. Li, H. W. Zheng, H. W. Wei, S. J. Qiu, L. Xu, X. M. Wang and H. Jiao, A color tunable and white light emitting $Ca_2Si_5N_8:Ce^{3+}$, Eu^{2+} phosphor via efficient energy transfer for near-UV white LEDs, *Dalton Trans.*, 2018, 47, 6860– 6867.
- 5 F. Su, B. B. Lou, Y. Y. Ou, Y. L. Yang, W. J. Zhou, C. K. Duan and H. B. Liang, VUV–UV–vis luminescence, energy transfer dynamics, and potential applications of Ce³⁺- and Eu²⁺doped CaMgSi₂O₆, *J. Phys. Chem. C*, 2021, **125**, 5957–5967.
- 6 J. Y. Ding, Q. X. Xu, J. Z. He, W. B. Zhang, J. C. Zhou and Q. S. Wu, Full spectrum light-emitting diodes based on a new efficient zirconium silicate green phosphor for healthy lighting, *Mater. Chem. Front.*, 2021, 5, 7251–7258.
- 7 M. Kimata, The structural properties of synthetic Sråkermanite, Sr₂MgSi₂O₇, *Z. Kristallogr. – Cryst. Mater.*, 1983, 163, 295–304.
- 8 Z. G. Xiao and Z. Q. Xiao, Long persistence luminescent silicate material and its producing method, *CHN Pat*, 98105078.6, 1998.
- 9 Y. Q. Li and Y. H. Wang, Enhancement of long-persistence by Ce³⁺ co-doping in Sr₂MgSi₂O₇:Eu²⁺, Dy³⁺ blue phosphor, *J. Phys.: Conf. Ser.*, 2009, **152**, 012090.

- 10 H. Homayoni, S. Sahi, L. Ma, J. Y. Zhang, J. Mohapatra, P. Liu, A. P. Sotelo, R. T. Macaluso, T. Davis and W. Chen, X-ray excited luminescence and persistent luminescence of $Sr_2MgSi_2O_7:Eu^{2+}$, Dy^{3+} and their associations with synthesis conditions, *J. Lumin.*, 2018, **198**, 132–137.
- A. A. Coelho, TOPAS-Academic (version 4.1), Coelho Software, Brisbane, Australia, 2007.
- 12 F. Su, W. J. Zhou, Y. L. Yang, Y. Y. Ou, Z. M. Qi, C. K. Duan, M. G. Brik, P. Dorenbos and H. B. Liang, Structure, luminescence of Eu^{2+} and Eu^{3+} in CaMgSi₂O₆ and their co-existence for the excitation-wavelength/temperature driven colour evolution, *Dalton Trans.*, 2021, **50**, 10050–10058.
- 13 Y. L. Yang, B. B. Lou, Y. Y. Ou, F. Su, C. G. Ma, C. K. Duan, P. Dorenbos and H. B. Liang, Experimental and theoretical studies of site occupancy and luminescence of Ce³⁺ in LiSr₄(BO₃)₃ for potential X-ray detecting applications, *Inorg. Chem.*, 2022, **61**, 7654–7662.
- 14 A. A. Setlur and A. M. Srivastava, On the relationship between emission color and Ce³⁺ concentration in garnet phosphors, *Opt. Mater.*, 2007, **29**, 1647–1652.
- 15 L. Y. Zhou, F. W. Liu, R. G. Ye, L. Lei, W. G. Guo, L. Chen, D. G. Deng and S. Q. Xu, Tunable photoluminescence and temperature sensing properties of Ce³⁺, Eu²⁺ co-doped Ca_{2--x}Sr_xMgSi₂O₇ phosphors, *J. Lumin.*, 2021, **240**, 118417.
- 16 P. Dorenbos, Charge transfer bands in optical materials and related defect level location, *Opt. Mater.*, 2017, 69, 8– 22.
- 17 P. Dorenbos, The nephelauxetic effect on the electron binding energy in the 4f^q ground state of lanthanides in compounds, *J. Lumin.*, 2019, 214, 116536.
- 18 L. Pidol, B. Viana, A. K. Harari, A. Galtayries, A. Bessière and P. Dorenbos, Optical properties and energy levels of Ce³⁺ in lutetium pyrosilicate scintillator crystal, *J. Appl. Phys.*, 2004, **95**, 7731–7737.
- 19 P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari and B. Viana, 4f–5d spectroscopy of Ce³⁺ in CaBPO₅, LiCaPO₄ and Li₂CaSiO₄, *J. Phys.: Condens. Matter*, 2003, 15, 511–520.
- 20 Y. Y. Ou, W. J. Zhou, C. M. Liu, L. T. Lin, M. G. Brik, P. Dorenbos, Y. Tao and H. B. Liang, Vacuum referred binding energy scheme, electron–vibrational interaction, and energy transfer dynamics in BaMg₂S_{i2}O₇:Ln (Ce³⁺,Eu²⁺) phosphors, *J. Phys. Chem. C*, 2018, **122**, 2959–2967.
- 21 M. Nazarov, B. Tsukerblat and D. Y. Noh, Vibronic coupling parameters and Stokes shift in thiogallate phosphors, *J. Phys. Chem. Solids*, 2008, **69**, 2605–2612.
- 22 P. Makreski, G. Jovanovski, B. Kaitner, A. Gajović and T. Biljan, Minerals from Macedonia XVIII. Vibrational spectra of some sorosilicates, *Vib. Spectrosc.*, 2007, **44**, 162–170.
- 23 L. T. Lin, R. Shi, R. F. Zhou, Q. Peng, C. M. Liu, Y. Tao, Y. Huang, P. Dorenbos and H. B. Liang, The effect of Sr²⁺ on luminescence of Ce³⁺-doped (Ca,Sr)₂Al₂SiO₇, *Inorg. Chem.*, 2017, **56**, 12476–12484.
- 24 Q. Peng, C. M. Liu, D. J. Hou, W. J. Zhou, C. G. Ma, G. K. Liu, M. G. Brik, Y. Tao and H. B. Liang, Luminescence of Ce^{3+} -doped $MB_2Si_2O_8$ (M = Sr, Ba): a

deeper insight into the effects of electronic structure and Stokes shift, *J. Phys. Chem. C*, 2016, **120**, 569–580.

- 25 J. Yan, C. M. Liu, J. Vlieland, J. B. Zhou, P. Dorenbos, Y. Huang, Y. Tao and H. B. Liang, Intense emission of Ba₂MgSi₂O₇:Eu²⁺ under X-ray excitation for potential detecting applications, *J. Lumin.*, 2017, **183**, 97–101.
- 26 J. Yan, L. X. Ning, Y. C. Huang, C. M. Liu, D. J. Hou, B. B. Zhang, Y. Huang, Y. Tao and H. B. Liang, Luminescence and electronic properties of Ba₂MgSi₂O₇: Eu²⁺: a combined experimental and hybrid density functional theory study, *J. Mater. Chem. C*, 2014, *2*, 8328–8332.
- 27 J. Hölsäa, T. Laamanena, M. Lastusaaria and P. Novák, Isolated defects in Sr₂MgSi₂O₇: a DFT study, *Phys. Procedia*, 2012, **29**, 76–85.
- 28 C. K. Duan and M. F. Reid, Local field effects on the radiative lifetimes of Ce³⁺ in different hosts, *Curr. Appl. Phys.*, 2006, 6, 348–350.
- 29 I. Petousis, D. Mrdjenovich, E. Ballouz, M. Liu, D. Winston, W. Chen, T. Graf, T. D. Schladt, K. A. Persson and F. B. Prinz, Data descriptor: High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials, *Sci. Data*, 2017, 4, 160134.
- 30 P. Dorenbos, Relation between Eu^{2+} and $Ce^{3+} f \leftrightarrow d$ -transition energies in inorganic compounds, *J. Phys.: Condens. Matter*, 2003, **15**, 4797–4807.
- 31 A. A. Setlur, A. M. Srivastava, L. Pham, M. Hannah and U. Happek, Charge creation, trapping, and long phosphor-

escence in Sr₂MgSi₂O₇:Eu²⁺, RE³⁺, *J. Appl. Phys.*, 2008, **103**, 053513.

- 32 M. D. Birowosuto, P. Dorenbos, C. W. E. van Eijk, K. W. Kramer and H. U. Güdel, Thermal quenching of Ce³⁺ emission in PrX₃ (X = Cl, Br) by intervalence charge transfer, *J. Phys.: Condens. Matter*, 2007, **19**, 256209.
- 33 Y. C. Lin, M. Bettinelli and M. Karlsson, Unraveling the mechanisms of thermal quenching of luminescence in Ce³⁺-doped garnet phosphors, *Chem. Mater.*, 2019, 31, 3851–3862.
- 34 Y. C. Jia, A. Miglio, S. Poncé, M. Mikami and X. Gonze, First-principles study of the luminescence of Eu²⁺-doped phosphors, *Phys. Rev. B*, 2017, 96, 125132.
- 35 P. Dorenbos, Mechanism of persistent luminescence in Sr₂MgSi₂O₇:Eu²⁺; Dy³⁺, *Phys. Status Solidi B*, 2005, 242, R7– R9.
- 36 M. Inokuti and F. Hirayama, Influence of energy transfer by the exchange mechanism on donor luminescence, *J. Chem. Phys.*, 1965, 43, 1978–1989.
- 37 I. R. Martin, V. D. Rodríguez, U. R. Rodríguez-Mendoza and V. Lavin, Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction, *J. Chem. Phys.*, 1999, **111**, 1191–1194.
- 38 A. I. Burshteĭn, The influence of the migration mechanism of approaching particles on the energy transfer between them, *J. Lumin.*, 1980, **21**, 317–321.