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Abstract: An integrated energy system consisted of PV 
panels, EV (electric vehicle), BES (battery energy storage), and 
a HP (heat pump) coupled with thermal storage tanks (TES) has 
been studied. The research aimed to minimize the total energy 
costs by scheduling the optimal power consumption of each 
device as response to two external signals as part of a demand 
response program. One of the signals corresponded to a selling 
electricity price tariff or feed-in tariff (FIT) to account for the 
ability of the system to sell energy towards the grid. On the other 
hand, the second signal corresponded to the buying electricity 
price tariff to account for the system’s energy consumption from 
the grid. This control scheme allowed to determine the optimal 
energy consumption of the HP and its flexibility potential to shift 
its load towards times of low electricity prices. It was concluded 
that the proposed integrated system will produce a 50 % total 
energy cost reduction while the operation of the HP for one week 
in winter will reduce the gas consumption in 53 m3 in a 
traditional Dutch house. 

Keywords— Demand response program, heat pump (HP), 
thermal energy storage (TES), energy systems optimization, 
integrated energy systems. 

I. INTRODUCTION 
Following the international climate change agreement, the 
Netherlands has delimited its road to reduce drastically its 
greenhouse gases emissions to reach the climate neutrality 
goal by the second half of the 21st century. To accomplish 
this, a restructuring of the energy systems into more 
sustainable forms will be required by distinguishing how the 
energy is used in four main functions: space heating, 
industrial process heat, power and light, and transport [1]. 
Traditionally, the Dutch energy system has relied mainly on 
natural gas and fossil fuels while a small proportion of 
renewable energies has been included. It was demonstrated 
by [2] that only 7% of the total energy produced in the 
country comes from wind and solar technologies while the 
remaining corresponded to fossil-fuelled power plants. Fossil 
systems are characterized by a stable electricity production 
where the power output can be controlled to match the daily 
demand. However, this does not occur with renewable energy 
sources because their intermittent nature results in a 
fluctuating electricity production causing major problems in 
the supply-demand balance within the energy market [3]. As 
more electricity will be produced by using renewable sources, 
it is important to integrate systems and programs to address 
such mismatch problem. In this context, different approaches, 
technologies, and strategies have been investigated to 
manage the variable renewable electricity from wind and 
solar. All these tactics have as main characteristic the study 
of the “flexibility potential” that new energy systems can 
offer to attenuate these intermittency effects to keep the grid  

 
stable. On the demand side, the main approach is to address 
the problem towards demand response programs (DRP) such 
that the customer’s energy consumption can be modified by 
using smart technologies that respond to some external 
signals. Here, the consumer performs his daily activities 
under an optimized energy scheduling framework that 
assures the satisfaction of his needs while consuming the least 
amount of energy at the lowest cost.  
 

A. Energy systems optimization review 
Steen, Stadler [4] proposes a MILP model for the design of 
thermal storage systems (TES) to determine the feasibility of 
investing in TES in combination with DER. The model 
describes a linearization of the TES with calculation of 
thermal losses based on the energy contained in the storage 
tank and allows the use of heat pumps only for low 
temperature storage charging. Terlouw, AlSkaif [5] have 
proposed an optimal demand response model for all-electric 
residential systems with heat and electricity storage through 
a battery and an electric vehicle. This model includes surface 
heating (SH) and domestic hot water (DHW) provision 
through an ASHP capable of providing both SH and DHW 
simultaneously. In Wolf [6] a model-based assessment of 
heat pump flexibility was performed by simulating a pool of 
heat pumps and creating different thermal load profiles for 
space heating and domestic hot water. The author states that 
two different heat pumps, a back-up electric heater, and a 
DWH storage tank have been used to model the entire system. 
Hedegaard and Balyk [7] established a model to determine 
the effects on investment of energy systems incorporating 
heat pumps with thermal storage in buildings and buffer tanks 
in a Danish case. This model analyzes individual heat pumps 
and storage systems to optimize investments and operation, 
and it incorporates the thermal building dynamics and covers 
the use of passive heat storage by using the thermal inertia of 
the building, active heat storage by heating floor systems, and 
storage tanks for space heating and domestic hot water. 

The aim of this research is to assess the flexibility potential 
of a heat pump for space heating and domestic hot water 
through an energy cost minimization model of an integrated 
household considering PV panels, a battery energy storage 
system (BES), a heat pump (HP), and an electric vehicle in a 
simulated demand response program driven by variable 
electricity price signals 

 
B. Contribution of the paper. 
This research will intend to provide a model to perform an 
energy cost minimization to encourage the use of renewable 
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energy systems to satisfy residential energy demands. By 
simulating a demand response program, this paper aims to 
achieve a reduction in the energy consumption for residential 
heating by determining the optimal operation of a heat pump. 
In this way, determining how flexible the system becomes 
when heat pumps and thermal storage systems are included is 
vital to know the limits of the proposed solution.  
The goal of this paper is to to determine the extent of the 
flexibility achieved in integrated power systems in 
households, and it can contribute to encourage the inclusion 
of heat pumps as a flexibility service for future energy 
systems. From the results of this project, different parties 
within the energy sector can get insights about the 
possibilities and benefits of using all-electric systems as a 
reliable option to minimize the consumer’s energy bill.  

II. METHODS AND MODELLING 

A.  Description of the system 
The integrated energy system shown in Figure 5 is composed 
by solar panels (PV), a battery energy storage system (BES), 
and electric vehicle (EV-V2G) connected to the DC side of a 
multi-port power converter (MPPC). On the AC side, a heat 
pump (HP) is connected for building heating/cooling, and at 
the same time, the  heat pump is coupled to a thermal energy 
storage tank (TES) to provide extra flexibility to the system, 
satisfy the thermal demand of the building, and reduce the 
electricity consumption of the heat pump. Additionally, a 
smart grid operator (SGO) is considered to provide the 
purchasing and selling electricity price signals under which 
the system will act as part of the demand respond program. 
The model incorporates degradation costs of EV and BES due 
to their charging/discharging cycles to provide a more 
realistic approach. The BES and EV have a bidirectional 
operation, meaning that they can absorb and inject energy to 
the grid if it is needed, providing in this way ancillary 
services to maintain the stability of the grid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic diagram of the general system 

Furthermore, based on the solar irradiation received, it is 
expected that the PV panels will generate as much power as 
possible to feed the entire system and reduce the power intake 
from the grid, and if any excess is present, it will be injected 
to the grid.  

Thermal demand pattern 
Residential demand profiles and ambient temperature 
profiles are required to determine how the system must 
operate to satisfy these energy requirements, and how much 

heat loss the building will face. For this specific problem, a 
typical Dutch house in the city of Delft has been selected. The 
demands for surface heating (SH) and domestic hot water 
(DHW) have been obtained from the Applied Natural Science 
Research (TNO) organization and [8] respectively as seen in 
figure 2 and 3. The data set provided by TNO corresponds to 
a study case for year 1987 where the most extreme winter was 
registered. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Surface heating demand and ambient temperature, Delft 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Domestic hot water demand [8] 

A correlation between the SH demand expressed in [kW] and 
the ambient temperature in [K] was obtained such that the 
model can predict the heat demand by knowing the ambient 
temperature.  

 
 
 
 
 
 

 

 

 

 

Figure 4: Surface heating demand and ambient temperature 
relation. 

A percentile analysis was conducted to determine the best 
fitting correlation. It was found that the percentiles 25 (P25) 
and 35 (P35) have the best fitting correlations. For this 
project, the percentile 25 correlation has been used to 
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interpolate the heat demand data considering Delft’s average 
ambient temperature data as expressed in (1). 

 
�̇�!"#$%!,'( = 4.588 ∗ 10)*	𝑒+,.,...)∗0!"# 

 

  (1) 

B. HP-TES modelling considerations 
The heating system is constituted by an air source heat pump 
(ASHP), two storage tanks (TES) for SH and DHW, and a 
household. The HP will supply heat for SH and DHW 
individually to the water tanks to meet the total heating 
demand of the household. The main state variables will be the 
water temperature of the SH and DHW tanks (TSH, TDHW), 
and the temperature of the air inside the building (TBUILD) that 
must be maintained within desired limits. The COP was 
estimated by using technical data provided by LG as 
expressed in (2), and it was considered that the HP provided 
a minimum water temperature of 35 ˚C, and the building 
temperature was set to 20˚C as recommended by [9]. 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 5: Schematic diagram of the heating system 

𝐶𝑂𝑃1"$23%4 = 
𝑎, − 𝑎)	(𝑇5 − 𝑇$#6) + 𝑎7(𝑇5 − 𝑇$#6)* (2) 

Table 1: COP model regression coefficients 

Coefficient Value Unit 
a0 7.8276 ----- 
a1 0.1396 K-1 

a2 0.0008 K-2 

a0c 5.5146 ---- 
a1c 0.0604 K-1 

a2c -0.0006 K-2 

 
Continuous-time energy balances were performed in each one 
of the system’s components obtaining the corresponding 
differential equations. However, the approximation of the 
differential equations was accomplished by applying the 
forward finite difference method (FFD) to obtain a numerical 
solution as this is a problem with boundary values. As result, 
the following equations were obtained: 

• Energy balance in the DHW storage tank 
 

𝑇8,9(8	(2<)) =	

𝑇8,9(8	(2) +
�̇�(>,!15	(2) − �̇�6?3@!,!15	(2) − �̇�@ABB,9(8	(2)

𝜌5 ∙ 𝐶𝑝5 ∙ 𝑉5,!15
∆𝑡 

(3) 

 
 

• Energy balance in the SH storage tank 

𝑇8,'(	(2<)) =	

𝑇8,'(	(2) +
�̇�(>,'(	(2) − �̇�6?3@!,'(	(2) − �̇�@ABB,'(	(2)	

𝜌5 ∙ 𝐶𝑝5 ∙ 𝑉5,'(
∗ ∆𝑡 

(4) 

 
• Energy balance in the household 

𝑇CAA#	(2<)) =	

𝑇CAA#	(2) +
�̇�6?3@!,'(	(2) − �̇�@ABB,6?3@!	(2)	
𝐶#	,6?3@! + (𝑉$3C ∙ 𝐶𝑝$3C ∙ 𝜌$3C)

∗ ∆𝑡 
(5) 

 
• HP power consumption 

𝑃(>,'((2) =
�̇�(>,'((2)
𝐶𝑜𝑃'((2)

 
 

(6) 

 

𝑃(>,9(8(2) =
�̇�(>,9(8(2)

𝐶𝑜𝑃9(8(2)
 (7) 

 

𝑃(>	(2) = 𝑃(>,'((2) + 𝑃(>,9(8	(2) (8) 

Equation (8) does not mean that the heat pump will operate 
in SH and DHW mode simultaneously, thus in the 
optimization algorithm the power consumption has been 
integrated as a unique variable. Therefore, if the HP is 
working in SH mode, the PHP,DHW(t) will be equal to zero and 
vice versa. It must be noted that all the variables will be 
restricted to upper and lower boundaries by considering 
technical criteria and recommendations from [9], [5], 
and[10]. 

C. Heat storage sizing 
The sizes of the WST need to be specified, but as DHW and 
SH demands are dependent on the number of people and their 
occupancy behavior, it is difficult to predict the exact demand 
and related it accurately to the size of a thermal storage 
device. According to [11], heuristic techniques must be 
applied to calculate their size and validated models are 
presented to estimate with appropriate accuracy the storage 
level needed considering the number of household’s 
inhabitants. The following equations have been applied to 
size the storage tank’s volumes for both demand 
 

𝑉9(8 = 1.25 · 65 · @𝑁D"AD@"B
,.E (9) 

 

𝑉'( =
�̇�>FGH · 2ℎ
𝜌5 ∙ 𝐶𝑝5 ∙ 	∆𝑇

	 (10) 

 
Equations (12) and (13) represent the heat losses in both SH 
and DHW storage tanks. The surface area of the tanks was 
calculated by (11). As,SH and As,DHW represent the surface 
areas of the SH and DHW tanks respectively, Tw,SH(t) and 
Tw,DHW(t) are the time-dependent water temperatures in the SH 
and DHW tanks, and Troom(t) is the temperature inside the 
building. 
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𝐴B = 2𝜋𝑅 ∙ 𝐻 + 2𝜋𝑅* (11) 

 
�̇�@ABB,'((2) = 𝑈2$%I ∙ 𝐴B,'( ∙ @𝑇5,'((2) − 𝑇CAA#(2)B (12) 

 

�̇�@ABB,9(8(2) = 𝑈2$%I ∙ 𝐴B,9(8 ∙ @𝑇5,9(8(2) − 𝑇CAA#(2)B (13) 
 

The type of building in this study was a terraced house with 
a medium insulation level, and it was identified as B-level 
energy performance building according to [12]. For this 
research, three types of heat losses have been considered: 
convection and conduction heat losses through the walls, and 
heat losses due to natural ventilation. Using information 
available in [13] and [14] heat losses due to ventilation have 
been estimated for a typical Dutch terraced house. These 
losses have been estimated as follows: 

 
�̇�JA%!	(2) = 𝑈6?3@!3%4 ∙ 𝐴6?3@!3%4 ∙ I𝑇CAA#(2) − 𝑇$#6(2)J		 (14) 

 
�̇�K"%2	(2) = 𝜆 ∙ 𝑉6?3@!3%4 ∙ 𝐴𝐶𝐻 ∙ I𝑇CAA#(2) − 𝑇$#6(2)J (15) 

 
Where the factor λ corresponds to the product of the air’s 
density and its heat capacity at an average temperature 
between the room and ambient temperatures, and it has units 
of kWh m-3 K-1. 

D. Optimization model 
The cost minimization can be achieved by reducing the 
energy intake from the grid, selling the excess of electricity 
to the grid, or using as much as possible of the generated PV 
power. The SGO will provide the electricity price signals for 
both buying and selling electricity. The model will try to find 
the optimal points where the operational costs are  minimized 
according to the following objective function: 
 

min
	L$%,L&%,	L'&(,	L*+,-

	 𝐶2A2$@ =	

min@𝐶>M + 𝐶NF' + 𝐶FM + 𝐶4C3!B 
(16) 

 
where CPV corresponds to the installation and investment 
costs of the PV panels, CBES, and CEV correspond to the 
degradation costs of the BES and the EV due to their 
operation, and Cgrid corresponds to the operational costs of the 
grid due to the power exchanges of the studied system with 
the grid. In this way, a non-linear programming (NLP) 
optimization problem was obtained. The degradation costs of 
the stationary battery have been determined by considering a 
loss of value per kWh (€/kWh) and a loss of capacity during 
their lifetime operation as proposed in [15]. The operational 
costs CBES  would be equal to the difference between a new 
and a degraded battery, and they have been calculated using 
the following equations: 
 

𝑉	NF'	*%! = 𝑉NF'	)B2 ∙
𝐸NF'	#$O − ∆𝐸NF',2A2

𝐸NF'	#$O
 (17) 

 
𝐶NF' =	

𝑉NF'	)B2 ∙ 𝐸NF'	#$O − 𝑉	NF'	*%! ∙ @𝐸NF'	#$O − ∆𝐸NF',2A2B 
 (18) 

 

where V	"#$	%&'  corresponds to the second-life value of the 
battery, ∆E"#$,)*)  represents the degraded capacity of the 
battery, E"#$	+,-  is the initial capacity, and V	"#$	./)  equals to 
the initial value of the battery. The degradations costs related 
to the EV has followed the same reasoning as for the BES and 
are given in Equation (19)  
 
𝐶FM = 

@𝑉NF'	)B2 − 𝑉NF'*%!B ∙
∆𝐸FM,2A2

0.2	𝐸FM	#$O
∙ @𝐸FM	#$O − ∆𝐸FM,2A2B 

(19) 

 
According to [16], when the battery’s power for charging or 
discharging is mathematically captured in a unique variable 
(PBES), simultaneous charging/discharging of the battery is 
avoided. Besides, the optimization model recognizes that a 
simultaneous operation is not optimal for cost minimization, 
and it will intend to find points where charging and 
discharging occurs separately. Hence, the following 
equations have been used to model the charging/discharging 
operation of the battery, and the energy stored by it: 

𝑃NF'(2) = 𝑛J1 	 ∙ 𝑃NF'	(2)
	DAB −

1
𝑛!3B

𝑃	NF'	(2)
	%"4   (20)  

 
𝑃NF'	(2)
	DAB ≤ 𝑃NF'	#$O (21)  

 
𝑃NF'	(2)
	%"4 ≤ 𝑃NF'	#$O (22)  

 
𝐸NF'	(2) = 𝐸NF'	(2+)) +	𝑃NF'	(2) ∙ ∆𝑡 (23)  

 
The energy stored by the battery at t=1 and t=tfinal have been 
fixed to have a fair comparison in terms of energy/cost. The 
values of the parameters in equations (18) to (23) are 
displayed in Table 2. 
 

Table 2: Parameter values for BES degradation costs. 

Parameter Value Units 
𝑉012.34  500 € 

𝑉012%56 250 € 

Ƞch 0.96 ----- 

Ƞdisch 0.96 ----- 

EBES,ini 5 kWh 
 
The state of charge (SOC) of the battery can be calculated as 
the ratio of the energy stored at time step t to the actual limit 
capacity at the same time step.  
 

𝑆𝑜𝐶NF'	(2) =
𝐸NF'	(2)

𝐸NF',@3#32	(2)
      (24)  

 
𝐸NF',@3#32	(2) = 𝐸NF'	@3#32	(2+)) − ∆𝐸NF'(2) (25)  

 
The capacity lost ΔEBES(t) has been calculated using a Li-ion 
degradation model developed by [17] where the behavior of 
a single cell has been studied. This model investigates the 
effects of temperature, current rate, and the ampere-hours 
processed in the degradation of the cell, however, as the 
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model considers only one cell, the power and voltage of the 
battery must be scaled down to the voltage and current of one 
single cell. To do this, the model in [18] is used to establish 
the relationship between the open circuit voltage (OCV) and 
the SOC of a battery, as shown in equation (26). For this 
study, it has been assumed that the battery is composed of  
𝑁012
7898::;:	𝑥	𝑁0123;9<;3  cells to have an OCV of 425 V at full 

capacity. This way both the OCV(t) as a function of the 
SOC(t) and the current of a single cell can be calculated as  
follows: 

 
The parameters for the BES and EV models to determine the 
OCV and the capacity lost are summarized in the Table 3. 
 
Table 3: : OCV and aging parameters for BES and EV 

 
 Next, the capacity’s degradation of the battery at any time 
step, and the total capacity lost has been calculated using the 
following equations: 
 
s 
 
 

∆𝐸NF'	(2) =	

S𝑐) ∙ 𝑒J.∙Q3'&(
/011 (2)Q 	 ∙ U𝑖NF'	(2)J"@@ U∆𝑡W ∙

𝐸NF',#$O
100  

  (26) 

 

∆𝐸NF',2A2 =X∆𝐸NF'(2)

0

,

   (27) 

 
The degradation of the EV battery has been determined in the 
same way as for the stationary BES, but it has been assumed 
that the EV is not available between the times the EV departs 
from and arrives to the building.  
The power consumed during driving is captured in the 
variable Pdrive (t) for all the time the EV is not in the building. 

Furthermore, it can be established that the EV needs a 
minimum amount of charge at the departure time to ensure 
the EV has enough energy when leaving the building. As in  
the stationary BES, the EV cannot be charged and discharged 
at the same time, for the same principle of capturing the EV 
battery’s (dis)charging in a unique variable  has been applied. 
All these considerations have been modelled in the following 
equations: 

 
𝑃FM(2) = 𝐸𝑉$K(2) ∙ Y𝑛J1 	 ∙ 𝑃FM	(2)

	DAB −
1
𝑛!3B

𝑃	FM	(2)
	%"4 Z    (29)  

 
𝑃FM	(2)
	DAB ≤ 𝑃FM		#$O (30)  

 
𝑃FM	(2)
	%"4 ≤ 𝑃FM		#$O         (31)  

 
𝐸FM	(2) = 𝐸FM	(2+)) +	I@𝑃FM	(2) − 𝑃!C3K"(2)B ∙ ∆𝑡J 

 
∀𝑡, 𝑡 ≤ 𝑡!"D$C2	&	𝑡 > 𝑡$CC3K"	 

  (32)  

  

 

 
The SoC of the EV battery can be determined in the same way 
as for the stationary BES considering the degradation of its 
capacity during the charging/discharging cycles. Equations 
(36) to (38) were used to calculate the SoC of the EV.  
As PV is a renewable energy source, normally its operational 
costs are assumed to be zero, but in this research the model 
has contemplated the investment and installation costs of the 
photovoltaic system. 
 

𝐶>M =X𝜆>M ∙ 𝑃>M(2) ∙ ∆𝑡
0

2R)

  (35) 

 
where PPV(t) represents the power production from the panels, 
λPV is the LCOE (levelized cost of energy) of the panels, and 
Δt is the step time of the optimization. For the system 
represented in figure 1, two power balances in the multi-port 
power converter have been developed for simplicity of the 
modelling. The first one comprehends all the elements 

connected to the DC side of it (PV, BES, and EV), while the 
second corresponds to all the elements on the AC side (grid, 
load, heat pump). Depending on the sign, the variables can 
represent a power output or input, influencing the direction of 
the balance. The following equations have been used to 
calculate these power flows: 
 

𝑃3%K(2) = 𝑃>M(2) − 𝑃FM	(2) − 𝑃NF'(2) (36) 

 

 
𝑂𝐶𝑉NF'	(2) =	𝑁NF'B"C3"B	x	

@𝑎) ∙ 𝑒62∙'AL(2) + 𝑎* ∙ 𝑒6.∙'AL(2) + 𝑎7 ∙ 𝑆𝑜𝐶(2)* B 
 (26)  

𝑖NF'J"@@ =
1000 ∙ 𝑃NF'	(2)
𝑁NF'
D$C$@@"@ ∙ 𝑂𝐶𝑉(2)

 (27)  

Parameter Description Value 
𝒂𝟏 

OCV parameters 

3.679 
𝒂𝟐 -

0.2528 
𝒂𝟑 0.9836 
𝒃𝟏 -

0.1101 
𝒃𝟐 -6.829 
𝒄𝟏 Aging parameters 0.0008 
𝒄𝟐 0.39 

𝑵𝑩𝑬𝑺
𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 Number of cells in parallel in 

BES 
18 

𝑵𝑩𝑬𝑺
𝒔𝒆𝒓𝒊𝒆𝒔 Number of cells in series in 

BES 
100 

𝑵𝑬𝑽
𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 Number of cells in parallel in 

EV 
145 

𝑵𝑬𝑽
𝒔𝒆𝒓𝒊𝒆𝒔 Number of cells in series in EV 100 

𝐸NF'	@3#32	(2R)) = 𝐸NF',#$O    (28) 

𝐸NF'	(2) ≤ 𝐸NF'	@3#32(2) (29)  

𝑃!C3K"(2) =
15	𝑘𝑊ℎ
100	𝑘𝑚 ∙

𝑑CA?%!	2C3D
∆𝑡 ∗ 𝑁B2"DB%A%	$K        

(28)  

𝐸FM	(2R)) = 𝐸FM,3%3     (33)  

𝐸FM	(2R2-03!+4) ≥ 𝐸FM,!"D$C2     (34)  

𝑃4C3!	(2) = 𝑃3%K(2) − 𝑃@A$!	(2) − 𝑃(>(2) (37) 

𝑃4C3!(2) = 𝑛J$6@" 	 ∙ 𝑃4C3!	(2)
	DAB −

1
𝑛J$6@"

𝑃	4C3!	(2)
	%"4  (38)  
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where Pinv(t) is the total power balance on the DC side, 
PEV(t) and PBES(t) represents the power consumption or 
injection of the EV and BES respectively, Pgrid(t) corresponds 
to the power consumption or injection to the grid, Pload(t) is the 
load of the electric appliances of the building, and PHP(t) is the 
power consumption of the HP for SH or DHW. As the system 
can use or inject energy into the grid, a distinction between 
the two events have been considered. A positive grid power 
represents injection of power on the grid at the corresponding 
selling price λsell(t), while a negative grid power holds for the  
power intake from the grid at the buying price λbuy(t). The 
cable’s transmission efficiency has been included to account 
for transmission losses. Besides, to guarantee the grid’s 
stability, the power intake and injection cannot exceed the 
maximum allowed limit the grid can offer, so capacity 
constrains have been added. Therefore, the cost imposed on 
the grid due to these interactions with the system has been 
calculated using the following equations: 
 

III. RESULTS 
These results were obtained by optimizing the operation of 
the system during 5 days in winter under a demand response 
program based on two electricity price signals taken 
from[19]. Additionally, the selling electricity price was 
halved to ascertain its effect on the behavior and operational 
costs of the system, for two scenarios were studied. 

A. HP operation behavior 
Based on the electricity price signals, the cost minimization 
occurs when the devices operate at the lowest prices. Figure 
6 displays the behavior of the heat pump during winter 
season, and it does not operate at times where electricity 
prices are the highest while it shifts its power consumption to 
the lowest prices to fully charge the SH tank. 
 
  
 

 
 
 
 
 
 
 
 
 

Figure 6: Heat pump operation behavior on price signal 

There are times where the heat pump operates at high prices, 
but it does it at a minimum capacity to keep the SH tank at 
the lower boundary temperature. This has to do with the fact 
the model determines that during these times it is not 

necessary nor cost effective to fully charge the tank because 
the prices are relatively high, but a minimum amount of 
energy is still required to keep the thermal comfort of the 
building.  

B. PV-EV-BES-HP system operation 
1) High selling price case 

Figure 7 shows the optimized power profiles of the different 
components of the system for the high selling price case. The 
simulation was carried out for five days, but for the purpose 
of appreciation only two days are displayed. The behavior of 
the system has been split into two parts. The top graph 
represents the power profiles of the components connected to 
the DC side of  the inverter. The bottom graph corresponds to 
the AC side of the power converter where the grid, the 
building’s load, and the heat pump are connected. It can be 
seen there is limited interaction between the BES-EV with the 
HP and the load of the building (see orange circles). Part of 
the discharged energy is consumed by the loads, and the 
excess is sold to the grid. This is result of having high FIT 
because the minimization strategy is more cost effective 
when the discharged energy is sold instead of being used for 
self-consumption of the system. On the PV production side, 
PV electricity was used mainly to charge the battery at times 
of not too high prices. Nevertheless, most of the time the 
system prefers to sell PV energy at the highest FIT to 
minimize the costs even further (see light blue 
circle).Therefore, PV self-consumption is not performed. 
 

 
Figure 7: System power profiles for high selling prices 

2) Halved selling price case 
When the FIT is halved, no selling of energy towards the grid 
occurs, so the only way for the system to minimize the 
operational costs is to enhance self-consumption and reduce 
the energy intake from the grid. The battery and the EV 
regulate its energy consumption by decreasing the time 
needed for charging (see orange circles). Besides, the cycles 
for charging and discharging are decreased, thus the energy 
is stored for longer periods. On the other hand, the 
discharging process is done gradually to feed the load and the 
HP. In the halved FIT, self-consumption is enhanced to 
minimize the energy costs because there is no injection of 
energy towards the grid, thus no revenues are obtained. 
Consequently, the operational strategy of the system has 
changed towards reducing the energy intake from the grid by 
using the BES and EV stored energy. This confirms the 
hypothesis stated at the beginning that decreasing the FIT will 
enhance self-consumption and reduce the power exchanges 
with the grid.  

𝐶4C3! =X𝑃4C3!	(2)
%"4 ∙ 𝜆6?S(2) ∙ ∆𝑡 − 𝑃4C3!	(2)

DAB ∙ 𝜆B"@@(2) ∙ ∆𝑡
0

2R)

 (39) 

𝑃4C3!	(2)
%"4 ≤ 𝑃4C3!#$O					; 					𝑃4C3!	(2)

DAB ≤ 𝑃4C3!#$O (40) 
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Figure 8: System power profiles for halved selling prices (2 days) 

 
3) Uncontrolled system operation case 

Under an uncontrolled scheme where no optimization is 
performed, the energy consumption takes place at low and 
high prices. Furthermore, the battery charges using the PV 
energy available, while the excess is fed mainly to the load 
and the HP. The discharge of the BES in the evening is used 
by the load and the HP. Besides, the charge and discharge 
cycles of the battery are considerably lower than in the 
optimized cases. Additionally, the HP power profile is 
continuous because it is used to directly satisfy the heat 
demand of the building, so its operation scheme changes 
radically when compared to the optimized cases. This is 
depicted in the following figure. 
 
  

 
 
 
 
 
 
 

Figure 9: Uncontrolled system power profiles (no optimization) 

 

IV. CONCLUSIONS 
The results of the optimization for winter evidenced that high 
costs reduction could be achieved with the proposed system. 
It was demonstrated that the FIT signal had a significant 
influence on the system’s cost minimization strategy. A high 
FIT resulted in a cost minimization through selling high 
amounts of energy to the grid while with the reduced FIT the 
minimization was performed by enhancing self-consumption 
of the PV produced energy and by using the energy stored in 
the BES/EV. During winter, the minimized costs between the 
high and reduced FIT cases differed approximately by 10%. 
In average, the optimization resulted in a minimized cost of 
8.58 €/day. By assuming that this cost would be the same per 
each day of the whole season, this would represent a total 
energy cost of 755 €. When compared to a system where 
demand response is not performed, the system costs rose to 

17.04 €/day, meaning a seasonal energy cost of 1500 €. 
Therefore, it can be concluded that during winter the 
proposed system could generate around 50% energy cost 
reduction when acting under a demand response program. 
The minimized costs were also compared to a non-optimized 
case where no minimization was performed. The results are 
showed in the following tables. 
 

Table 4: Optimized (high FIT) and Non-Optimized System’s cost 
comparison 

 
 

 

 

 
 
Table 5: Optimized (halved FIT) and Non-Optimized System’s 
cost comparison 
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