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Abstract
An application of inverse force identification of wind loads on bridges is presented. This contribution ex-
plores the extension of latent force models (LFMs) in Kalman filters. Specifically, it is shown how LFMs
can be enriched with environmental information from wind data in order to realistically reflect the underly-
ing physics behind the wind loads. This is demonstrated in a case study of a long-span suspension bridge
equipped with a structural monitoring system, where an extensive data set of 103 time series of 30-minute
events is used. The results show that the estimation of modal wind loads and modal response states is stable.
Moreover, optimization of LFMs with maximum likelihood methods shows that optimized solutions match
well with the actual (measured) wind load conditions. The work elevates the prospects of physics-informed
LFMs with interpretable hyperparameters.

1 Introduction

One of the most engineering important tasks in the design of large civil structures is to validate the structural
resistance to environmental loads. A considerable challenge is that the environmental loading has inherent
uncertainties due to the stochastic behavior of natural processes such as wind and waves. Reducing the
environmental load uncertainties is important in order to attain better estimates of the dynamic responses of
bridges, tall buildings, and wind turbines.

As the deployment of structural health monitoring systems on critical civil structures is becoming more
frequent, measured structural responses are available to engineers and researchers. In previous research,
it has been widely studied the use of Kalman filter-based techniques for state and input estimation [1, 2,
3, 4, 5] , wherein the measured responses are used to inversely reconstruct the unknown loads and global
response states of the structure. In more recent developments, the use of latent force models (LFMs) in input
estimation was proposed [6]. This entails modeling the dynamic evolution of the unknown loads as random
Gaussian processes that are characterized by tunable covariance (kernel) functions. This extension enables
the encoding of prior information about the loading, such as load magnitude, smoothness, or frequency
content. However, the choice of suitable covariance functions and tuning of LFM hyperparameters remains
to be scrutinized.

This paper considers the encoding of physical information in the design of LFMs, with a focus on wind
loading on bridges. It is recognized that state and input estimation is an intricate problem when confronted
with limited data, sensor noise, model inaccuracies, and numerical instabilities in the system inversion. Thus,
it could be advantageous to enrich the filters with environmental information in order to tune the solutions
towards more realistic physical estimates. Such environmental information may consist of wind data, wave
data, temperatures, load mechanisms, or any other prior information that pertains to the loads for the specific
case.

It is shown how the LFMs can be designed based on realistic prior beliefs on the characteristics of the
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Figure 1: Strip model for buffeting loads acting on the bridge deck from incident wind. Wind velocities,
loads, and responses all refer to a hypothetical center point of the bridge deck.

wind loads. An example implementation is presented using monitoring data from a long-span suspension
bridge. The conjoined framework merges information from wind measurements, response (acceleration)
measurements, numerical (finite elements) models, and wind tunnel tests in order to produce better data-
based estimates of wind loads and modal response states of long-span bridges.

2 Theoretical framework

2.1 Linear models for turbulent wind loads on bridge decks

For non-extreme wind states, the wind loading on bridges is commonly modeled with linearized theory.
In the following, a brief review of state-of-the-art theory for wind-induced buffeting response in bridges is
presented. For more comprehensive explanations, we refer to books on the subject [7, 8]. The linear equation
of motion for the structural response r(t) reads as follows:

M0r̈(t) + (C0 −Cae)ṙ(t) + (K0 −Kae)r(t) = fb(t) (1)

Here, M0, C0, and K0 are still-air structural matrices, while Cae and Kae are matrices accounting for
aeroelastic effects (e.g. added aerodynamic damping in the presence of wind). The load vector fb(t) contains
the buffeting (fluctuating) forces which are distributed on the entire bridge span. Since the spectral power of
turbulent wind is concentrated in the lower frequency range, wind-induced global responses in bridges are
dominated by a limited number of vibration modes. This makes reduced-order modal models accurate for
representing the observed response behavior. The reduction r(t) ≈ Φz(t) is therefore introduced to Eq. (1),
where the mode shape matrix Φ containing nm modes is calculated from the undamped eigenvalue problem
considering still-air properties (i.e. M0 and K0). The generalized equation of motion then reads:

M̃0z̈(t) + (C̃0 − C̃ae)ż(t) + (K̃0 − K̃ae)z(t) = ΦTfb(t) (2)

where the notation (̃·) denotes the generalized system matrices:

M̃0 = I, C̃0 = 2Ξ0Ω0, K̃0 = Ω2
0 (3)

where Ω0 is diagonal with natural frequencies and Ξ0 is assumed diagonal with still-air damping ratios. To
convert to state-space form, the modal state vector x(t) = [z(t)T ż(t)T]T is introduced:

ẋ(t) = Acx(t) +Bcp(t) (4)

Ac =

[
0 I

−M̃−1(K̃0 − K̃ae) −M̃−1(C̃0 − C̃ae)

]
, Bc =

[
0

M̃−1

]
(5)

In Eq. (4), we define p(t) = ΦTfb(t) as the modal buffeting loads, which are discussed next. We refer to
Fig. 1 for a concept illustration. In the well-established linearized models of wind loads due to turbulence,



the distributed buffeting forces acting on the bridge deck are given by [8]:qb,y(x, t)
qb,z(x, t)
qb,θ(x, t)

 =
1

2
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In compact matrix form, Eq. (6) reads:

qb(x, t) = Bq(x)v(x, t) (7)

Thus, the loads are linear with respect to the alongwind and vertical turbulence components called u(x, t)
and w(x, t). The other symbols are: the air density ρ; the mean alongwind velocity Ū(x, t); the mean
vertical velocity W̄ (x, t); the height D and width B of the bridge deck; the aerodynamic coefficients
{C̄D, C

′
D, C̄L, C

′
L, C̄M , C ′

M} for drag, lift, and pitching moment. These six aerodynamic coefficients are
specific for the bridge deck geometry (shape) and can be obtained from section model tests in wind tunnels.

The wind velocity along the entire bridge is a stationary stochastic field characterized by a two-point statis-
tical description using the following cross-spectral density format:

Svv(ω, x1, x2) =

[
Suu(ω, x1, x2) Suw(ω, x1, x2)
Swu(ω, x1, x2) Sww(ω, x1, x2)

]
(8)

where the diagonal matrix element is defined as:

Smm(ω, x1, x2) =
√
Sm(ω, x1)Sm(ω, x2)Cmm(ω,∆x), m ∈ {u,w} (9)

where Su(ω) and Sw(ω) are single-point spectral densities, for which a Kaimal [9] (one-sided) spectral
model is adopted:

Sm(f)f

σ2
u

=
Am

fz
Ū

(1 + 1.5Am
fz
Ū
)5/3

, m ∈ {u,w} (10)

Cuu(ω,∆x) and Cww(ω,∆x) are span-wise coherence functions where ∆x = |x1 − x2| is the span-wise
distance between the two points. Here, the Davenport exponential model is used:

Cmm(ω,∆x) = exp
(
−Km

ω ∆x

2πŪ

)
, m ∈ {u,w} (11)

The cross-correlation between u and w is neglected: Suw(ω, x1, x2) = 0. In general, many other alternative
spectral and coherence models could be used. However, the introduced Kaimal spectrum fits well with the
wind conditions from the bridge in the case study presented later. This wind field model relies on spectral
parameters Au and Aw and coherence parameters Ku and Kw, which commonly are fitted from wind data
or given assumed values when location-specific data is unavailable. The spectral density matrix for modal
buffeting loads is obtained by integrating the buffeting forces along the whole span:

Spp(ω) =

∫ L

0

∫ L

0
Φae(x1)

TBq(x1) Svv(ω, x1, x2)Bq(x2)
T Φae(x2) dx1 dx2 (12)

where Φae(x) is a matrix containing the modal values in the lateral (y), vertical (z), and pitching (θ) degrees
of freedom (DOFs) of the box girder:

Φae(x) =

ϕ
(1)
y (x) . . . ϕ

(nm)
y (x)

ϕ
(1)
z (x) . . . ϕ

(nm))
z (x)

ϕ
(1)
θ (x) . . . ϕ

(nm))
θ (x)

 , x ∈ [0, L] (13)



The corresponding cross-covariance matrix is calculated by the inverse Fourier transform:

κpp(τ) =

∫ ∞

−∞
Spp(ω) exp(iωτ) dω (14)

This completes the description of classic linear models for wind loading. We emphasize that the models pre-
sented in this section are based on assumed physical phenomena and empirical formulas. These models serve
as a nominal basis for the loads in e.g. design and forward simulations. However, it is rarely expected that
the models perfectly represent the real-life conditions due to their simplifications, linearizations, unmodelled
physics, uncertain parameters, topographical influence, etc. In the next section, the inverse modeling of the
load is introduced. This is, in contrast to the forward problem, a situation where the loads are treated as an
unknown quantity that is eventually inversely estimated from response data.

2.2 Latent force models for inverse force identification

Latent force models (LFMs) in inverse force identification were proposed in [6]. LFMs has its foundation in
the popular machine-learning tool Gaussian process (GP) regression [10], in which probabilistic inference
is used on data-driven problems. In the context of force identification, the evolution of the input p(t) is
modelled as a random GP which is an output from a differential equation. Consider the following simple
first-order differential equation LFM for a force component pj(t) (j = 1, . . . , nm):

ṡj(t) = −λjsj(t) + w̃j(t) (15)

pj(t) = sj(t) (16)

The characteristics of the latent state sj(t) is dependent the time-scale (smoothness) parameter λj , as well as
the variance of the white noise GP w̃j(t), denoted σ2

w̃,j . The output pj(t) is a zero mean GP with a stationary
autocovariance function, which for the LFM in Eqs. (15)-(16) simply becomes becomes an exponential:

κp,j(τ) = E[pj(t)pj(t+ τ)] = σ2
p,j exp(−λj |τ |) (17)

where the process variance is σ2
p,j = σ2

w̃,j/(2λj). Eq. (17) is the well-known ν = 1/2-Matérn kernel in GP
regression. The spectral density of pj(t) is given by the Fourier transform:

Sp,j(ω) =
1

2π

∫ ∞

−∞
κp,j(τ) exp(−iωτ) dω =

σ2
w̃,j

2π(λ2
j + ω2)

(18)

Since multiple modal loads are present, the most straightforward option is to consider each modal load
independently (neglecting cross-correlations). The LFM can then be constructed as a block-diagonal system: ṡ1(t)

...
ṡnm(t)

 =

Fc,1
. . .

Fc,nm


 s1(t)

...
snm(t)

+

Lc,1
. . .

Lc,nm


 w̃1(t)

...
w̃nm(t)

 (19)

 p1(t)
...

pnm(t)

 =

Hc,1
. . .

Hc,nm


 s1(t)

...
snm(t)

 (20)

where Fc,j = −λj , Lc,j = 1, Hc,j = 1, and the subscript c denotes system matrices in continuous time. In
compact matrix format, the total LFM is defined as:

ṡ(t) = Fcs(t) + Lcw̃(t) (21)

p(t) = Hcs(t) (22)



The state-space format of the LFM allows it to be seamlessly fused together with vibration state-space models
(Eq. 4), as shown in Section 2.3. The design of the LFMs and their hyperparameters is discussed in Sec. 3.

2.3 Augmented system formulation

The augmented state-space model is constructed by combining the vibration system in Eq. (4) and the LFM
in Eqs. (21) and (22): [

ẋ(t)
ṡ(t)

]
=

[
Ac BcHc
0 Fc

] [
x(t)
s(t)

]
+

[
0

Lcw̃(t)

]
(23)

or simply:
ẋa

c(t) = Facx
a
c(t) + w̃a

c(t) (24)

The linear response output vector y(t), consisting of accelerations and/or displacements, is constructed as
follows:

y(t) = Saccr̈(t) + Sdispr(t) (25)

The corresponding state-space format reads:

y(t) = Gcx(t) + Jcp(t) =
[
Gc JcHc

] [x(t)
s(t)

]
= Hacx

a
c(t) (26)

where the following matrices are defined:

Gc =
[
SdispΦ− SaccΦM̃−1(K̃0 − K̃ae) −SaccΦM̃−1(C̃0 − C̃ae)

]
, Jc =

[
SaccΦ

]
(27)

The system is discretized in time (tk = k∆t). When stochastic noise is added both the state and output
equation, Eqs. (23) and (26) now read as follows:

xa
k+1 = Fadx

a
k +wa

k, xa
k = [x(tk)

T s(tk)
T]T (28)

yk = Hadx
a
k + vk (29)

Here, the subscript d denotes system matrices in discrete time, and the system matrices are defined as:

Fad = exp(Fac∆t), Had = Hac (30)

The covariances of the noise processes are given as follows [11]:

E[vkv
T
k ] = R (31)

E[wa
kw

a
k] = Qad =

∫ ∆t

0
exp

(
Fac(∆t− τ)

)
Qac exp

(
Fac(∆t− τ)T) dτ +

[
Qxd 0
0 0

]
(32)

where we define:

Qac =

[
0 0
0 LcQw̃cL

T
c

]
, Qw̃c = diag(σ2

w̃1
, σ2

w̃2
, . . . , σ2

w̃nm
) (33)

The integration term in Eq. (32) is related to the input dictated by the LFM. In order to account for a small
amount of unmodelled dynamics or other noise on the states, there is also an added term Qxd, which is
typically considered a tuning parameter in Kalman filtering applications.

After the augmented state-space model is constructed, the sequence of measured response data {y1,y2, . . . ,yN}
is used in a classic Kalman filter (KF) [12] and subsequently a backward Rauch-Tung-Striebel (RTS) smoother
[13] (see Eqs. (36)-(45) in the Appendix). After the filtering and smoothing, the augmented state x̂a

k con-
tains the modal state estimate x̂(t) and modal load estimate p̂(t) = Hcŝ(t). This can be used to estimate
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Figure 2: Covariance function of modal wind loads from wind load theory (Eq. (14)) and the LFM (Eq. (17)).
Typical example shown for six modes.
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Figure 3: Spectral density of modal wind loads from wind load theory (Eq. (12)) and the LFM (Eq. (18)).
Typical example shown for six modes.

responses in locations where there are no sensors (aka. virtual sensing):

ŷ(t) =
[
G′

c J′
c
] [x̂(t)

p̂(t)

]
(34)

where G′
c and J′

c needs to be constructed from Eq. (27) for the desired location and type of output.

3 Design of latent force models for wind loading

In principle, many other kernel types than Eq. (17) could be used to form the matrices Fc, Lc, and Hc. Popu-
lar examples are higher-order Matérn kernels, periodic kernels, squared exponential kernels, or combinations
of these [14, 15, 16, 17]. The kernel type and its hyperparameters should ideally be adapted to the specific
case based on evidence support or engineering beliefs on the underlying structure of the output process under
consideration. This work is limited to considering the exponential kernel in Eq. (17) due to its simplicity and
prospects for representing buffeting loads. This is because the atmospheric turbulence, on the scales relevant
for wind loading on bridges, is reasonably characterized by a slowly decaying covariance function (Fig. 2).

Next, the hyperparameters λj and σp,j respectively controlling the smoothness and load magnitude must be
quantified. The idea is to assign realistic values reflecting the underlying physics of the wind loading. This
is accomplished by using the theoretical wind load model described in Sec. 2.1, which is utilized as a best
initial guess for the wind load. Specifically, the LFM exponential kernel in Eq. (17) is fitted to the theoretical
covariance function in Eq. (14). Here, a simple fitting procedure based on method of moments is performed
to obtain λj and σp,j , see [18] for details. Representative examples for the case study presented later are
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is available for the Hardanger bridge, although this can be combined with displacements or strains.

Table 1: Four different models used in the identification. The parameter optimization is based on Eq. (35).

Model Mean wind velocity Covariances Wind field parameters
No. Ū [m/s] {Iu, Iw, Au, Aw,Ku,Kw}
#1 Fixed, from measured wind data R = 10−6I, Q = 10−1I Fixed, from measured wind data
#2 Optimized, ∈ [5, 30] R = 10−6I, Q = 10−1I Fixed, from measured wind data
#3 Optimized, ∈ [5, 30] R = 10−7I, Q = 10−1I Fixed, from measured wind data
#4 Optimized, ∈ [5, 30] R = 10−7I, Q = I Fixed, from measured wind data

shown in Fig. 2 and 3 in the time and frequency domain, respectively. As expected, the fit is not perfect,
but the exponential kernel is seemingly quite suitable for the purpose. Its simple and scalar state-space form
(Eq. (15)) also makes it attractive.

This form of LFM design is a prior belief based on physical wind load models that are enriched with en-
vironmental data (parameters derived from measured wind velocities). However, this belief need not be an
exact stochastic description of the wind load since the estimation of the states and loads in the Kalman filter
heavily relies on the measured response data as well, in which the ”true” wind loading conditions always are
contained. See Fig. 4 for an overview of how the different informative data sources are fused together in the
proposed framework.

In addition to obtaining hyperparameters by fitting them to physical wind load models, we also attempt other
forms of optimization. One popular way to tune a hyperparameters set θ is to maximize the likelihood of
p(y[1:N ]|θ), where the objective function is given by the following expression [19]:

log(L) = −1

2

N∑
k=1

(
log(|Sk|) + eTk S

−1
k ek

)
(35)

where Sk is the covariance matrix of the innovation vector ek in the Kalman filter; see Eqs. (36) and (37).

We explore four different LFM configurations that are summarized in Tab. 1, all with a link to wind load
physics. The first (#1) is a nominal model solely using the wind data, without considering optimization of



Figure 5: The Hardanger Bridge.

Eq. (35). In the remaining three system models (#2, #3, #4), Ū is used as a tunable optimization parameter. In
addition, several values for covariances R and Qxd are used. As will be shown, this choice is made because
the objective function in Eq. (35) is, to some extent, sensitive to the noise magnitudes.

4 Implementation for the Hardanger Bridge

4.1 Monitoring data, structural model, and aeroelastic model

The long-span suspension Hardanger Bridge (Fig. 5, L = 1310 m) is used as a case study. Its monitoring
system consists of 20 triaxial accelerometers and 9 anemometers. For brevity, the monitoring system is
not shown here, and we refer to previous works for details [18, 20, 21]. The measured data is also openly
available in an online repository described in [21].

A total of ny=24 acceleration signals in the lateral and vertical direction are used in the output y(t). The
accelerometers at the mid-span of the bridge are held out for verification purposes. Results in this paper are
shown for a batch of 103 data sets of 30-minute events from 22nd−26th December 2016, a period with strong
winds and winter storms.

The finite element model of the bridge is described in [18, 22]. In this paper, global nm = 15 vibration
modes are included in the reduced-order model. The natural frequencies range from 0.05 Hz to 0.4 Hz, and
the still-air damping ratios are set to 0.5% proportional damping. The aeroelastic model, contributing mainly
to increased aerodynamic damping Cae (and a small aerodynamic stiffness Kae), is described in [18] and is
based on theory from [23].

4.2 Processing of wind data

The wind data is processed in a series of steps in order to establish the parameters in the wind field model.
For each of the 103 data sets, the following is performed:

(i) For each anemometer, the moving mean wind velocity Ū(t) is first found by sliding a 600 s (10 min-
utes) averaging window through the time series. The turbulence u(t) is then defined as the fluctuation
around the moving mean. As a necessary simplification, the mean wind velocity is hereafter adopted
as a stationary constant (Ū ) equal to the average of Ū(t). The same procedure is repeated for the
vertical direction to obtain w(t). Examples are shown in Fig. 6.
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(ii) The standard deviation of u(t) is found directly from the data as σu. The turbulence intensity is
Iu = σu/Ū . When repeated for the vertical direction, one obtains σw and Iw = σw/Ū .

(iii) The auto spectral density of u(t) for all anemometers is estimated by Welch’s method. The Kaimal
spectrum (Eq. (10)) is fitted to the Welch auto spectra to obtain the parameter Au. The same procedure
is repeated for the vertical direction to obtain Aw. Examples are shown in Fig. 7.

(iv) The cross-spectral density of u(t) for all anemometers is estimated by Welch’s method. The exponen-
tial coherence (Eq. (11)) is fitted to the Welch cross spectra to obtain the parameter Ku. The same
procedure is repeated for the vertical direction to obtain Kw. This is not shown here for brevity;
examples can be seen in [18].

(v) Several values for the wind field parameters {Ū , Iu, Iw, Au, Aw,Ku,Kw} are now available since
data from multiple anemometers are used. In order to obtain one uniform value for the entire span,
an averaging operation is performed. This involves first a trim where the largest and smallest value is
discarded to reduce the effect of outliers; then the mean value is taken.

The resulting wind parameter values for the 103 data sets are shown in Fig. 8 and Fig. 9. The figures un-
surprisingly also reveal some variability within one data set. This indicates weak inhomogeneity (e.g. differ-
ences in mean wind velocities between anemometers) or uncertainty related to the processing (e.g. estimation
of wind spectrum), and highlights the complexity in characterizing wind conditions for large structures. Nev-
ertheless, both homogeneity and stationarity are implicitly assumed for the final wind field model. The black
circles in Fig. 8 and Fig. 9 show the adopted (trimmed mean) values used in the final wind field models. Note
that each data set (corresponding to a 30-minute event), is treated with its own wind field model since the
environmental conditions are unique to that event.
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After the wind field parameters are determined, it is straightforward to establish the stochastic the wind
field model (Eq. (8)) and the then stochastic (modal) load model (Eq. (12)). Examples of resulting spectral
densities have already been shown in Fig. 3. The aerodynamic load coefficients pertaining to the bridge deck
of the Hardanger bridge are listed in Tab. 2.

4.3 State and input estimation with optimized parameters

Each data set is processed with its four different configured system models (Tab. 1), including the maximum
likelihood estimation. The optimization results for the parameter Ū is shown in Fig. 10. Some interesting
observations can be made: for system model #3 (red line), the optimized Ū follows the measured mean
wind speeds (black line) very closely. This is an indication that the Kalman filter (fed with acceleration
data) clearly prefers a tuned LFM that is rooted in the real physics of wind loads. The other two system
models #2 and #4 (blue and green lines) generally yield slightly lower and slightly higher values than the
measured wind velocities but generally follow the same trend. Note that the remaining wind field param-
eters {Iu, Iw, Au, Aw,Ku,Kw} are not optimized but kept as fixed values determined from the wind data
processing procedure in Sec. 4.2.

As announced earlier, the optimization results also depend on the noise covariances. These covariances also
regulate the extent to which the excitation load is explained as white noise rather than wind loads controlled
by LFMs. We also point out that our experience is that the noise covariances also need to compensate for
small but non-negligible model errors, for instance on the modal parameters in the system. Despite these
facets, Fig. 10 reveals that the underlying physics of the wind load is reflected in optimized values for Ū
used in the LFMs. Overall, we believe the optimization results are promising for the prospects of physics-
informed LFMs with interpretable parameters. The extent to which it is desired that LFMs strictly represent



Table 2: Bridge deck dimensions in full scale, and linearized load coefficients for drag, lift, and pitching
moment for the Hardanger Bridge wind tunnel tests.

Geometry Value Drag coeff. Value Lift coeff. Value Pitch coeff. Value
B 18.3 m C̄D 0.850 C̄L -0.382 C̄M 0
D 3.25 m C ′

D 1.389 C ′
L 2.929 C ′

M 0.903

10 20 30 40 50 60 70 80 90 100
Data set no.
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20
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Figure 10: Mean wind velocities: measured values and optimized values for different values of magnitude
noise covariances.

one-to-one physics is also debatable since some of their strength lies in flexibility; nevertheless, interpretable
parameters serve as good indicators of realism.

While results from all 103 data sets cannot be shown here, typical results for the state estimate are shown in
Fig. 11. It is clearly noted that the state estimates are very similar for the four models, except for differences
related to quasi-static behavior. Quasi-static responses are definitely present for wind-sensitive bridges, how-
ever, they are not well characterized by accelerometer data. The effect of this is visible for the displacement
estimate at the bridge mid-span obtained from Eq. (34), which is shown in Fig. 12. The lateral displace-
ments are prone to slow drift; a simple high-pass filter post-processing would remove this effect, but it is not
performed here. For the vertical displacement and torsional pitching rotation, all models yield similar and,
importantly, stable estimates.

Examples of time histories and spectral densities for selected modal loads are shown in Fig. 13 and Fig. 14.
In general, there are greater differences in modal forces between system models than for the modal states,
highlighting the complexities in the inverse identification of forces. Well-educated choices of covariance
matrices are also a relevant topic but not studied in greater detail here. Although direct verification of the
estimated loads is not feasible, it is promising that the spectral densities in Fig. 14 are largely similar to the
nominal prediction from wind load models. The frequency-decaying nature in the spectral densities is clearly
visible, except for the lower frequency range of the loads, which is not well characterized with acceleration
output only.

5 Conclusions

In this paper, a framework for inverse wind load estimation on bridges was presented. It was proposed
to use physics-designed LFMs in Kalman filters that are enriched with environmental wind data. Using a
data set from the Hardanger bridge, the application was tested for a large data set. Through optimization,
it was shown that the LFMs clearly reflect specific wind loading conditions, increasing the prospects of
interpretable LFMs.

The methodology can join engineering information from wind tunnel tests, monitoring systems with wind
and acceleration sensors, and finite element models to contribute to better estimates of global dynamic load-
ing and responses of long-span bridges.



Figure 11: Estimated modal states for six modes.
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Figure 12: Estimated displacements at the mid-span compared to displacements obtained from integrated
accelerations.



Figure 13: Estimated modal loads for six modes.

101

104

107

101

104

107

101

103

105

102

104

106

100
102
104

100

103

106

10-1

102

105

10-4

10-1

102

10-4

100

104

0 0.2 0.4
10-2

101

104

0 0.2 0.4
10-3

100

103

0 0.2 0.4
10-2

101

104

Figure 14: Spectral density of estimated modal loads by Welch’s method for twelve modes shown together
with the spectral density of the wind load model (Eq. (12)) and the LFM (Eq. (18)) (prior to optimization).
The pink vertical lines indicate the respective modal natural frequencies.
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Appendix: Equations for Kalman filter and RTS smoother

The equations for the Kalman filter and RTS smoother are given below. Here, the notation x̂a
k|l is the es-

timated augmented state at time step k using output data up to time step l; the associated error covariance
matrix is P̂a

k|l. The estimate of the initial state in the first step, x̂a
1|0, is set to zero.

Kalman filter, measurement update (k = 1, 2, . . . , N ):

ek = yk −Hadx̂
a
k|k−1 (36)

Sk = HadP
a
k|k−1H

T
ad +R (37)

Kk = Pk|k−1H
T
adS

−1
k (38)

x̂a
k|k = x̂a

k|k−1 +Kkek (39)

Pa
k|k = Pa

k|k−1 −KkSkK
T
k (40)

Kalman filter, time update:
x̂a
k+1|k = Fadx̂

a
k|k (41)

Pa
k+1|k = FadP

a
k|kF

T
ad +Qad (42)

Rauch-Tung-Striebel smoother, backward pass (k = N,N − 1, . . . , 1):

Nk = Pa
k|kF

T
ad(P

a
k+1|k)

−1 (43)

x̂a
k|N = x̂a

k|k +Nk(x̂
a
k+1|N − x̂a

k+1|k) (44)

Pa
k|N = Pa

k|k +Nk(P
a
k+1|N −Pa

k+1|k)N
T
k (45)


	Introduction
	Theoretical framework
	Linear models for turbulent wind loads on bridge decks
	Latent force models for inverse force identification
	Augmented system formulation

	Design of latent force models for wind loading
	Implementation for the Hardanger Bridge
	Monitoring data, structural model, and aeroelastic model
	Processing of wind data
	State and input estimation with optimized parameters

	Conclusions

