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Abstract
Channel–shoal patterns are often observed in the back–barrier basins of inlet systems and are important from both an
economical and ecological point of view. Focussing on double–inlet systems, the initial formation of these patterns is
investigated using an idealized model. The model is governed by the depth–averaged shallow water equations, a depth–
integrated concentration equation and a tidally–averaged bottom evolution equation. Focussing on rectangular basins and
neglecting the effects of earth rotation, it is found that laterally uniform morphodynamic equilibria can become linearly
unstable, resulting in initial patterns that resemble channels and shoals. When the water motion is only forced by an M2

tidal constituent, the existence of (laterally uniform) morphodynamic equilibria for which both inlets are connected strongly
depends on the relative phase and amplitudes of the tidal forcing. If such equilibria exist, they can be either stable against
small perturbations or linearly unstable. If these equilibria are linearly unstable, two instability mechanisms can be identified,
the first related to the convergences and divergences of diffusive transports, the second mechanism related to a combination
of advective and diffusive transports. In the former case, all eigenvalues are real and the bedforms grow exponentially in time.
In the latter case, the eigenvalues are complex, resulting in bedforms that both migrate and grow in time. In case external
overtides and a time–independent discharge are included, no diffusive instabilities are found anymore for the parameters
considered in this paper. This implies that all instabilities are migrating in time. In all cases considered, the bed perturbations
have only an appreciable amplitude at locations where the underlying laterally uniform equilibrium has a local minimum in
water depth. This is consistent with observations from numerical models and laboratory experiments.

Keywords Double–inlet systems · Morphodynamic equilibria · Linear stabilities · Channels and shoals

1 Introduction

Around 12% of the world’s coastline (Mulhern et al. 2017)
can be characterised as barrier coasts. They consist
of barrier islands, back–barrier basins and tidal inlets
connecting the back–barrier basins to the open sea (De
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Swart and Zimmerman 2009), and have shapes and sizes
changing from place to place (Glaeser 1978; Stutz and
Pilkey 2011). Barrier coasts are very important in terms
of ecology and economy. They provide a habitat for many
aquatic and terrestrial species and other ecosystem services,
and are themselves important elements of biodiversity.
They are attractive areas for economical activities such as
gas–mining, dredging and recreation. Furthermore, these
systems are of importance for coastal safety (Glaeser 1978).
An example of a barrier coast is the Wadden Sea along the
Dutch, German and Danish coast (Oost et al. 2012).

Barrier coasts are highly dynamic because of the complex
interactions among water motion, sediment transport and
bottom evolution and because of external changes like
sea level rise and human interference (McBride et al.
1995; Van der Spek 1997). In these morphologically active
areas, bottom patterns with multiple shoals separated by
meandering deep channels are often observed (Dalrymple
and Rhodes 1995). These channel–shoal patterns have
length scales ranging from several meters to kilometers (De
Swart and Zimmerman 2009). Moreover, these patterns can
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exhibit a cyclic morphodynamic evolution of several years
to decades (Israel and Dunsbergen 2000).

To simulate the morphodynamic development of these
channels and shoals in barrier coasts, complex process–
based models were developed (Marciano et al. 2005;
D’Alpaos et al. 2007; Hibma et al. 2003, 2004). For
example, Van der Wegen and Roelvink (2008) simulated
bottom evolution of a laterally–uniform constantly–sloping
bed profile in a tidal basin. They found that channels and
shoals are initiated in the shallow regions near the landward
end of the tidal basin, after which these patterns branch out
toward the seaward side of the tidal basin. However, the
essential mechanisms that cause these bottom patterns to
develop are difficult to assess from these complex state-of-
the-art models.

To gain insight into the physical mechanisms initializing
channel and shoal development in a single–inlet system,
Schuttelaars and De Swart (1999) analyzed the linear
stability of laterally uniform morphodynamic equilibria
(Schuttelaars and De Swart 1996) in short basins using an
idealized width–averaged model. By assuming that, tidally
averaged, sediment was mainly transported by diffusive
processes, they found that the basic states were unstable if
the bottom friction parameter exceeded a critical value. Van
Leeuwen and De Swart (2001, 2004) extended the model
with internally generated advective transport. They found
that channels and shoals were on the seaward boundary if
the sediment transport is dominated by advective processes.
Ter Brake and Schuttelaars (2011) further discussed the
effect of bottom friction including topographic variations
in the diffusive transport, and showed that channel–shoal
patterns started to grow in the landward shallow regions.

However, these studies of channels and shoals focused
on single–inlet systems, namely tidal basins with one inlet
connecting to the open sea. Recent studies show that there
is a strong water and sediment exchange between adjacent
sub–basins in the Wadden Sea (Duran-Matute et al. 2014;
Sassi et al. 2015). Such interactions are also found in
the Ria Formosa in south Portugal (Salles et al. 2005;
Pacheco et al. 2008) and Venice Lagoon (Seminara et al.
2005; Tambroni and Seminara 2006). This strongly suggests
that to understand, model and predict the morphodynamic
evolution of barrier coasts, back barrier basins should be
considered as multiple–inlet systems.

The present study aims at analyzing the initial formation
of channels and shoals in a double–inlet system, consisting
of a basin with two inlets connecting to the open sea.
Only rectangular planform geometries will be considered
and the effects of earth rotation on the water motion is
neglected. By studying the linear stability (Schuttelaars and
De Swart 1999; Van Leeuwen and De Swart 2001; Ter Brake
and Schuttelaars 2011) of laterally uniform morphodynamic
equilibria in double–inlet systems (Deng et al. 2021), insight

in the 2DH stability of these systems is obtained, thus
extending the 1D stability analysis performed in Deng et al.
(2021). Furthermore, the mechanisms resulting in these
instabilities can be identified. Default parameters used are
characteristic for the Marsdiep–Vlie inlet system in the
Dutch Wadden Sea, even though a direct comparison with
the patterns observed in this system cannot be made because
of the assumption of a rectangular basin. The sensitivity
of the linear stability of the basic state to tidal forcings
will be investigated in detail. The linear stability analysis
is a first step in systematically obtaining morphodynamic
equilibria with a more complex (finite amplitude) channel–
shoal structure.

In Section 2, the equations governing water motion,
transport of sediment and bed evolution are presented. The
scaling of the system of equations and the solution method
are presented in Section 3. In Section 4, morphodynamic
equilibria in double–inlet systems and their linear stability
are studied. In Section 5, the results are discussed and
conclusions presented.

2Model description

We consider a rectangular tidal basin with a prescribed
length L and width B (see Fig. 1a for a top view). This
basin is connected to the open sea by two inlets, located at
x = 0 and x = L, with x the coordinate in the along–basin
(or longitudinal) direction. The landward boundaries of the
rectangular tidal basin are located at y = 0 and y = B,
where y is the coordinate in the cross–basin (or lateral)
direction. The landward boundaries are assumed to be both
impermeable for water and sediments, and non-erodible.

The free surface is located at z = ζ̂ , measured from the
undisturbed free surface found at z = 0 (see Fig. 1b for a
side view). The undisturbed water depth of the tidal basin
at x = 0 is denoted by HI and at x = L by HII , both
are assumed to be laterally uniform. The erodible bottom
consisting of uniform sandy material is found at z = ĥ−HI ,
where ĥ denotes the bed level measured from the reference
depth HI . Hence, the instantaneous local water depth is
given by HI − ĥ + ζ̂ .

The tidal basins we consider have a water depth much
smaller than both the length and width. Hence, the water
motion can be described by the depth–averaged shallow
water equations for a homogeneous fluid (Csanady 1982).
Assuming the basin width to be much smaller than the
Rossby deformation radius allows for the neglect of earth
rotation effects, resulting in the following equations:

∇ · [(HI − ĥ + ζ̂ )û] + ζ̂t = 0, (1a)

ût + û · ∇û + g∇ζ̂ + r∗û
HI − ĥ + ζ̂

= 0, (1b)
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Fig. 1 A sketch of an idealized tidal basin connected to the open sea at
both ends. (a) A top view of the schematized double–inlet system with
a uniform width B. The longitudinal and lateral velocities are denoted
by û and v̂. (b) A longitudinal cross–section view of the double–inlet

system, with the depth at inlet I denoted by HI and the depth at inlet
II denoted by HII . The bed profile (red line) is denoted by ĥ(x, y, t),
and the free surface elevation (blue line) by ζ̂ (x, y, t)

with Eq. 1a the depth–averaged continuity equation and
Eq. 1b the depth–averaged momentum equation. In these
equations, the horizontal velocity is denoted by û =
(û, v̂), with û the velocity in the longitudinal and v̂ the
velocity in lateral direction. Time is denoted by t and g

denotes the gravitational acceleration. Subscripts indicate a
derivative with respect to that variable, and the horizontal
derivative operator is denoted as ∇ = (∂x, ∂y). The inner
product is denoted by a dot. Following Lorentz (1922) and
Zimmerman (1992), bottom friction is linearized using the
bottom friction coefficient defined as r∗ = 8Ucd/3π , with
U a characteristic velocity scale (which will be defined in
Section 3.1) and cd a drag coefficient.

The variables ζ̂ and û are decomposed into a tidally–

averaged and a time–varying contribution as ζ̂ =<ζ̂> +¯̂
ζ

and û =< û > +¯̂u, where the angular brackets < · >=∫ T

0 · dt/T denote the tidally averaged contribution, with
T the M2 tidal period, and an overbar ·̄ the instantaneous
deviation from this tidal average such that < ·̄>= 0.

The time-varying parts of the sea surface elevations at the
two seaward sides of the inlets are assumed to be forced by
prescribed M2 and M4 tidal constituents,

¯̂
ζ =AI

M2
cos(σ t−φI

M2
)+AI

M4
cos(2σ t−φI

M4
) at x = 0, (2a)

¯̂
ζ =AII

M2
cos(σ t−φII

M2
)+AII

M4
cos(2σ t−φII

M4
) at x = L. (2b)

The constants AI
M2

(AI
M4

) and AII
M2

(AII
M4

) denote the
amplitudes of the M2 (M4) tidal constituents at inlet I and
II , while the corresponding phases are denoted by φI

M2

(φI
M4

) and φII
M2

(φII
M4

). Even though these amplitudes and
phases may in principle depend on the lateral coordinate
y, we assume them to be uniform in the lateral direction.

The angular frequency of the M2 tidal signal is given by
σ = 2π/T .

Furthermore, the tidally averaged mean sea surface
elevation at inlet I is required to be zero and a tidally
averaged discharge is prescribed at inlet II :

<ζ̂>= 0 at x = 0, y ∈ [0, B], (3a)

<(H − ĥ − ζ̂ )û>= Q∗/B at x = L, y ∈ [0, B], (3b)

with Q∗ the residual water transport at inlet II . A positive
(negative) Q∗ represents a residual water transport out of
(into) the system at inlet II . For an extensive discussion of
these boundary conditions, see Deng et al. (2021).

The condition of impermeability at the landward
boundaries of the back–barrier islands reads

(H − ĥ + ζ̂ )û · n = 0 at y = 0 and B, (4)

in which n denotes the outward pointing unit vector normal
to the coastline.

The sediment in the tidal basin consists of fine sand with
a uniform grain size that is mainly transported as suspended
load (see the scaling analysis in Section 3, the bedload
transport contribution is given in Eq. 10). The associated
depth–integrated concentration equation (Ter Brake and
Schuttelaars 2010, 2011) reads

Ĉt +∇ ·[ûĈ−kh∗
(

∇Ĉ + ws

kv∗
βĈ∇ĥ

)

] = αû · û− w2
s

kv∗
βĈ,

(5)

where Ĉ is the depth–integrated suspended sediment
concentration. The horizontal diffusivity kh∗, the vertical
diffusivity kv∗, the settling velocity ws and the erosion
parameter α (with units kgsm−4) related to sediment
properties (Dyer 1986) are assumed to be constant in space
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and time. The deposition parameter β is defined by (see Ter
Brake and Schuttelaars (2010) for details, also for the
explicit expression of the settling term)

β = 1

1 − exp(− ws

kv∗ (HI − ĥ + ζ̂ ))
. (6)

The boundary conditions at the two inlets read (Schuttelaars
and De Swart 2000; Ter Brake and Schuttelaars 2010)

lim
kh∗→0

Ĉ(x, t, kh∗) = Ĉ(x, t, kh∗ = 0) at x = 0 and L, (7)

which, based on Eq. 5, can be rewritten as

Ĉt + ∇ · (ûĈ) = αû · û − w2
s

kv∗
βĈ at x = 0 and L. (8)

At the lateral boundaries we require that there is no
suspended load transport through these boundaries,
[

ûĈ − kh∗
(

∇Ĉ + ws

kv∗
βĈ∇ĥ

)]

· n = 0 at y = 0 and B,

(9)

with n defined above.
The bed evolution equation (Meerman et al. 2019) is

derived from the mass balance in the sediment layer and
reads

ρs(1 − p)
(
ĥt − λ∇2ĥ

)
= −

(

αû · û − w2
s

kv∗
βĈ

)

. (10)

Here, ρs is the sediment density and p denotes the bed
porosity. The first and second term on the right–hand
side of Eq. 10 model the local erosion and deposition
of sediment, respectively. The first term on the left–
hand side models the temporal bed changes, whereas
the second term models the effects of the gravitational
transport present in the bedload transport, using a highly
simplified parameterisation with constant λ ∼ O(10−6 −
10−4)m2 s−1, see Schuttelaars and De Swart (1996) for a
detailed discussion. Following Falqués et al. (1996) and
Schuttelaars and De Swart (1999) this latter term is retained
because, even though bedload transport is typically small
in the systems we consider, the stabilizing effects of the
slope terms may play an important role when considering
the stability properties of morphodynamic equilibria.

Substituting Eq. 5 into Eq. 10 allows for rewriting the bed
evolution equation as

ρs(1 − p)ĥt + Ĉt = −∇ · F, (11)

with

F = −kh∗∇Ĉ
︸ ︷︷ ︸

Fdiff

−kh∗
ws

kv∗
βĈ∇ĥ

︸ ︷︷ ︸
Ftopo

+ ûĈ︸︷︷︸
Fadv

−ρs(1 − p)λ∇ĥ
︸ ︷︷ ︸

Fbed

(12)

being the total depth–integrated sediment transport. This
transport consists of four terms, that is a classical diffusive
contribution (Fdiff), a topographically induced diffusive
contribution (Ftopo), an advective contribution (Fadv), and a
bedload contribution (Fbed).

At the seaward boundaries the depths are assumed to be
fixed:

ĥ = 0 at x = 0, (13a)

ĥ = HI − HII at x = L. (13b)

Using Eq. 9, the requirement of no sediment transport
through the lateral boundaries reduces to

∇ĥ · n = 0 at y = 0 and B, (14)

implying no bedload transport due to slope effects is
allowed through these side walls.

3 Solutionmethod

3.1 Scaling and expansion

To assess the dominant balances in the system of equations,
the equations are made dimensionless by using the
following scaling:

(x, y) = L(x̌, y̌), t = σ−1 ť , û = U ǔ, (15a)

ζ̂ = AI
M2

ζ̌ , ĥ = HI ȟ, Ĉ = αU2kv∗
w2

s

Č, (15b)

where the dimensionless variables are indicated by a check
·̌. The longitudinal x and lateral coordinate y are made
dimensionless by the length L of the double–inlet system
(implying that 0 ≤ y̌ ≤ B/L), time is made dimensionless
using the M2 angular frequency σ , the surface elevation
with the M2 amplitude at the seaward side of inlet I,
denoted by AI

M2
, and the bed level is made dimensionless

using the depth HI at inlet I. The typical scale for the
velocity is given by U = AI

M2
σL/HI (see Deng et al.

(2021) for a motivation of this velocity scale). Assuming an
approximate balance between erosion and deposition, the
suspended sediment concentration is made dimensionless
using αU2kv∗/ω2

s .
Substituting these dimensionless variables in the equa-

tions and suppressing the checks, the system of equations
reads (see Table 1 for a definition of the various dimension-
less constants)

ζt + ∇ · [(1 − h + εζ )u] = 0, (16a)

ut + εu · ∇u + λ−2
L ∇ζ + ru

1 − h + εζ
= 0, (16b)

a[Ct +∇ · (εuC− kh∇C − khλdβ∇hC)] = u · u − βC, (16c)

ht + aδsCt = −δsa∇ · [εuC − kh∇C − khλdβ∇hC] − δb∇h,

(16d)
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Table 1 Definition of the dimensionless parameters

Parameters & Definition

ε = AI
M2

HI = U
σL

λL = σL√
HI g

r = r∗
HI σ

a = kv∗σ

w2
s

kh = kh∗
L2σ

Q = Q∗
BHI U

δs = αU2

ρs (1−p)HI σ
δb = λ

σHI L

λd = HI ws

kv∗ γ = AI
M4

AI
M2

AII
r2 = AII

M2
AI

M2

AII
r4 = AII

M4
AI

M4

�φM2 = φII
M2

− φI
M2

φI
r4 = φI

M4
− 2φI

M2

φII
r4 = φII

M4
− 2φI

M2

with the dimensionless deposition parameter β now defined
as

β = 1

1 − exp(−λd(1 − h + εζ ))
. (17)

The parameter ε = AI
M2

/HI is the ratio of the M2 tidal
amplitude to the water depth at inlet I . The parameter λL =
kgL is the product of the frictionless tidal wavenumber

kg = σ/
√

HIg and the length of the inlet system. The
dimensionless friction parameter is denoted by r and is
defined as r = r∗/HIσ . The ratio of the deposition
timescale to the tidal period is denoted by a = kv∗σ/w2

s ,
and the sediment Peclet number λd = HIws/kv∗ is the
ratio of the typical time it takes for a particle to settle in
the water column to the typical time needed to mix particles
through the water column. The dimensionless diffusion
parameter is denoted by kh = kh∗/L2σ . The parameter
δs = αU2/(ρs(1−p)HIσ) denotes the ratio of tidal period
T over the time scale related to suspended load, and δb =
λ/σHIL the ratio of the tidal period T and the time scale
related to the gravitational term in the bedload transport. For
a definition of all parameters, see Table 1.

Both morphodynamic timescales are small: δs 	 1
and δb 	 1. Therefore, using Eq. 16d it follows that the
bed changes on the tidal timescale are very small. Using
a multiple timescale approach (Sanders and Verhulst 1985;
Krol 1991), the evolution can be accurately approximated
by considering the tidally averaged bed evolution equation:

hτ = −∇· <F>, (18)

with F = −akh∇C
︸ ︷︷ ︸

Fdiff

−akhλdβC∇h
︸ ︷︷ ︸

Ftopo

+ aεuC︸ ︷︷ ︸
Fadv

−δb

δs

∇h

︸ ︷︷ ︸
Fbed

,

with τ = δst the long (morphodynamic) timescale, i.e., the
timescale at which the bed changes are significant.

The associated dimensionless boundary conditions read

ζ = cos t + γ cos(2t − φI
r4) at x = 0, (19a)

ζ̄ =AII
r2 cos(t−�φM2)+ γAII

r4 cos(2t− φII
r4) at x = 1, (19b)

<(1 − h + εζ )u>= Q at x = 1, (19c)

(1 − h + εζ )u · n = 0 at y = 0, B/L,

(19d)

<u · u − βC>= 0 at x = 0, 1,

(19e)

lim
kh→0

C̄(x, t, kh) = C̄(x, t, kh = 0) at x = 0, 1

(19f)

(εuC − kh∇C − khλdC∇h) · n = 0 at y = 0, B/L,

(19g)

h = 0 at x = 0, (19h)

h = 1 − HII

HI
at x = 1, (19i)

∇h · n = 0 at y = 0, B/L.

(19j)

Here, the parameter γ is the ratio of the amplitudes of theM4

and M2 tidal constituents at inlet I , and AII
r2 = AII

M2
/AI

M2

(AII
r4 = AII

M4
/AI

M4
) the ratio of the amplitudes of the M2

(M4) tide at inlet II and at inlet I . The parameter �φM2 =
φII

M2
− φI

M2
is the phase difference between the M2 tide at

inlet II and at inlet I . The relative phases at inlets I and II

are defined as φI
r4 = φI

M4
− 2φI

M2
and φII

r4 = φII
M4

− 2φI
M2

.
The dimensionless residual water transport at inlet II is
denoted by Q = Q∗/(BHIU) and is assumed to be of
order ε.

For the systems we consider, the parameters ε and γ are
much smaller than 1 (see Table 2 for a typical example),
allowing for the introduction of an asymptotic expansion in
ε and γ of the physical variables � ∈ {ζ, u, v, C},
� = �00 + ε�10 + γ�01 + h.o.t., (20)

where the first superscript denotes the order in ε while
the second one denotes the order in γ . Substituting this
asymptotic expansion in Eqs. 16a–16c, 18 and the boundary
conditions (3.1), these equations are ordered with respect
to the small parameters ε and γ . For the leading order
morphodynamic balance, it turns out that only the leading
order and first order contributions of the water motion and
concentration equation in ε and γ have to be solved for.
The time dependency of the various physical variables can
be written as an (infinite) sum of tidal constituents and a
residual component,

�ij (x, y, t) = �
ij
res(x, y) +

∞∑

k=1

�
ij
ck(x, y) cos kt

+
∞∑

k=1

�
ij
sk(x, y) sin kt, (21)
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Table 2 Characteristic values representative for the Marsdiep-Vlie
inlet system (Ridderinkhof 1988; Duran-Matute et al. 2014). In the
experiments in this paper, the depth at inlet II is taken to be 11.7 m,
a rectangular inlet system is used with a uniform width of 6 km. This
results in ln = 30.9n

Quantities in the dimensional model

System Sediment & Bed

L = 59 km kh∗ = 102 m2 s−1

g = 9.81m s−2 α = 0.5 · 10−2 kg sm−4

cd = 0.0025 λ ∼ 10−6 − 10−4 m2 s−1

σ = 1.4 · 10−4 s−1 kv∗ = 0.1m2 s−1

T = 44.9 · 103 s d50 = 2 · 10−4 m

Q∗ = −900m3s−1 ρs = 2650 kgm−3

p = 0.4

ws = 0.015m s−1

Inlet specific parameters

Marsdiep Inlet Vlie Inlet

HI = 11.7m HII = 11.9m

AI
M2

= 0.62m AII
M2

= 0.77m

φI
M2

= 148◦ φII
M2

= −158◦

BI = 5.954 km BII = 5.619 km

AI
M4

= 0.11m AII
M4

= 0.06m

φI
M4

= 155◦ φII
M4

= −121◦

Quantities in the non–dimensional model

ε = 5.30 · 10−2 λL = 0.77

r = 5.67 · 10−1 a = 6.22 · 10−2

kh = 2.05 · 10−4 Q = −2.95 · 10−2

δs = 3.68 · 10−4 δb ∼ 10−8 − 10−6

λd = 1.75 γ = 1.83 · 10−1

AII
r2 = 1.25 AII

r4 = 0.535

�φM2 = 54◦ φI
r4 = −141◦

φII
r4 = −57◦

where the subscript ‘res’ denotes the tidally–averaged
contribution to the variable �(x, y, t), and the contributions
that temporally vary as cosines (sines) with frequency k are
denoted with the subscript ck (sk). The superscript i denotes
the order in ε and the second superscript j the order in γ .

By using the specific forcing of the water motion
prescribed at the inlets, it follows that the temporal
variations of the physical variables are restricted to only
a few tidal constituents. This can be seen by substituting
the Fourier expansion Eq. 21 in the system of equations
(16). Next collecting terms of the same order in ε and γ

and of same tidal constituent, using the prescribed boundary
conditions, it is found that the water motion consists in
leading order of an M2 tidal constituent only, at order ε

a residual and M4 contributions are generated, while M4

contributions are found at order γ :

u(x, y, t)

= u00c1(x, y) cos(t) + u00s1(x, y) sin(t)

+ε
[
u10res(x, y) + u10c2(x, y) cos(2t) + u10s2(x, y) sin(2t)

]

+γ
[
u01c2(x, y) cos(2t) + u01s2(x, y) sin(2t)

]
. (22)

This expansion is the same for the sea surface elevation
ζ(x, y, t). These water motion components are found
as forcing terms in the ordered concentration equation.
At leading order, a residual and M4 concentrations are
generated. At order ε and γ only the M2 concentrations are
calculated, as the concentration that varies with the M6 tidal
frequency does not result in residual sediment transport at
leading order. The expansion of C(x, y, t) reads

C(x, y, t)

= C00
res(x, y) + C00

c2 (x, y) cos(2t) + C00
s2 (x, y) sin(2t)

+ε
[
C10

c (x, y) cos(t) + C10
s (x, y) sin(t)

]

+γ
[
C01

c (x, y) cos(t) + C01
s (x, y) sin(t)

]
. (23)

Using these expressions, the leading order tidally–averaged
sediment transport contributions are given by

<F00
diff>= −akh∇C00

res, (24)

<F00
topo>= −akhβλdC00

res∇h, (25)

<F20
adv>= 1

2
aε2(u00c1C

10
c1 + u00s1C

10
s1 + 2u10resC

00
res

+ u10c2C
00
c2 + u10s2C

00
s2 ), (26)

<F11
adv>= 1

2
aεγ (u00c1C

01
c1 + u00s1C

01
s1 + u01c2C

00
c2

+ u01s2C
00
s2 ), (27)

<Fbed>= −δb

δs

∇h, (28)

in which F00
diff is the classical diffusive contribution and

F00
topo is the topographically induced diffusive contribution.

The advective transport is decomposed in two contributions,
the internally generated advection denoted as F20

adv and
the externally generated advection denoted as F11

adv. The
transport due to the gravitational effect of bedload is
denoted by Fbed. This term is always much smaller than the
topographically induced diffusive contribution (Hepkema
et al. 2019) and will be added to the topographically induced
diffusive transport when plotting the various contributions.
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3.2 Basic state and linear stability

The resulting system of morphodynamic equations, ordered
in terms of the small parameters and expanded in tidal
constituents, can be written as

K�τ = G(�), (29)

where � is a 29–dimensional vector of the amplitudes
of all physical variables considered. Namely, � =
(ζ 00

c1 , ζ 00
s1 , ζ 10

res, ζ 10
c2 , ζ 10

s2 , ζ 01
c2 , ζ 01

s2 , ..., h), where the dots
indicate the amplitudes of the longitudinal velocity u, lateral
velocity v and concentration C. The matrix K is a diagonal
matrix, with a non–zero element (equal to one) only at the
row associated with the bed evolution equation and G is a
nonlinear operator working on the vector �.

For a double inlet system with a rectangular geometry
and in which the forcing due to the earth rotation
is neglected, the system of equations (29) allows for
morphodynamic equilibria �e = �e(x) that are laterally
uniform and satisfy

G(�e) = 0. (30)

These morphodynamic equilibria do not depend on the
lateral coordinate y and the amplitudes of the lateral
velocities considered are zero. To obtain these basic states
�e, the system of equations is first discretized using a
finite element method with continuous Langrange elements.
The number of elements used in the longitudinal direction
is 800 (increasing the number of elements resulting in
small relative changes, typically smaller than 0.01 in the
amplitudes, not shown) with the degree of each element 2,
resulting in a total number of degrees of freedom of 46429.
Next, a Newton–Raphson iterative method is employed to
numerically find the solution of Eq. 30, see Deng et al.
(2021) for a detailed discussion.

These laterally uniform morphodynamic equilibria can
be unstable against both one dimensional (laterally uniform)
and two–dimensional perturbations (perturbations with lat-
eral structure). To assess this stability for small perturba-
tions, an infinitesimally small two–dimensional perturba-
tion is added to the basic state �e,

�(x, y, τ ) = �e(x) + � ′(x, y, τ ), (31)

which is then inserted into Eq. 29. Since the perturbations
are small, only terms linear in these perturbations are
retained. The resulting linearized equations allow for a
solution using the ansatz

� ′ = 
[
�̂

′
(x, y) exp(ωτ)

]
,

with (ω) giving the real part of ω, indicating the
exponential growth rate. The imaginary part of ω, given by

�(ω), gives the frequency. Substituting this ansatz results in
the following eigenvalue problem

ωK�̂
′ = L(�e)�̂

′
, (32)

with L the Jacobian matrix associated with the operator
G, evaluated at �e (The associated eigenvalue problem
is discretized using the same method as used in the
equilibrium problem). Note that the linear stability analysis
only gives information of the patterns that might start
to develop on the laterally uniform equilibrium, no
information concerning the final bathymetry can be
directly inferred from this analysis. In the system we
consider, the lateral structure of the various components
of the eigenvector �̂

′
can be inferred from the boundary

conditions, resulting in:

û′(x, y) = u′
n(x) cos(lny), v̂′(x, y) = v′

n(x) sin(lny),

ζ̂ ′(x, y) = ζ ′
n(x) cos(lny), Ĉ′(x, y) = C′

n(x) cos(lny),

ĥ′(x, y) = h′
n(x) cos(lny).

The longitudinal structure of the eigenfunctions is indicated
by ·′ and the dimensionless wave number ln is defined by

ln = nπL/B, n = 0, 1, 2, . . . , (33)

with n the lateral mode number. When n = 0, the eigen-
patterns are laterally uniform and the associated eigenvalues
determine stability against perturbations without any lateral
structure. For n �= 0, the eigenpatterns are laterally varying
and the eigenvalues determine the stability of the laterally
uniform morphodynamic equilibria against laterally varying
perturbations.

4 Results

The linear stability of laterally uniform morphodynamic
equilibria is investigated and the associated instability
mechanisms are discussed. In Section 4.1, the water motion
in the double inlet system is only forced by a prescribed M2

tidal forcing at both inlets. Subsequently, the influence of
prescribed external overtides and discharge are elaborated
upon in Section 4.2. All results are obtained using parameter
values that are representative of the Marsdiep–Vlie inlet
system (see Table 2), unless mentioned otherwise. A
uniform width B of 6 km is considered in all experiments.
Furthermore, since the undisturbed water depths at both
inlets, HI and HII , are very close together, they are for
simplicity both taken to be equal to 11.7 m. Hence, the
dimensionless boundary condition Eq. 19i reduces to h = 0
at x = 1.



Ocean Dynamics

4.1 M2 tidal forcing

In this section, the water motion is only forced by prescribed
M2 tidal amplitudes and phases at inlets I and II , while
the amplitudes of the externally prescribed overtides (AI

M4

and AII
M4

) and the discharge Q at inlet II are assumed to
be zero. With this forcing, the sediment is transported due
to diffusive processes (both the standard diffusive process
and the one related to the topographic variations), advective
transports related to the internally generated overtides
and the bedload transport. Hence, the bottom evolution
equation (18) reduces to

hτ = −∇ ·
(
<F00

diff> + <F00
topo>+ <F20

adv> + <Fbed>
)

,

with the various transport terms defined in Eqs. 24–26
and 28.

To systematically investigate the influence of theM2 tidal
forcing on the linear stability of associated laterally uniform
equilibria, we first have to obtain these underlying equilibria
using the bifurcation approach discussed in Deng et al.
(2021). In this approach, the system of morphodynamic
equations is averaged over the width and morphodynamic
solutions that do not vary on the long timescale are directly
searched for using a continuation procedure (for details,
see Deng et al. (2021)). In Fig. 2a the minimum water
depth WDmin of the resulting equilibrium is shown as a
function of the relative phase between inlet I and II , �φM2 ,
that is varied between −60◦ and 60◦. The distance from
inlet I where WDmin is observed is color coded. In this
experiment, the M2 amplitudes have their prescribed values.

From these results it follows that the number of
morphodynamic equilibria and their linear stability to

one–dimensional perturbations (denoted as 1D–stability)
strongly depend on the relative phase: for �φM2 between
−2◦ and −14◦ (indicated by the labels L2 and L1,
respectively) no morphodynamic equilibrium is found for
which both inlets are connected. For the other phases
considered, there is always one 1D–stable equilibrium
(indicated by the solid line), while for most phases also a
1D–unstable equilibrium exists (dotted line).

The 1D–stable morphodynamic equilibria are not nec-
essarily 2D–stable, i.e. linearly stable against perturbations
with a lateral structure. To illustrate this, we consider
three morphodynamic solutions that are stable against one–
dimensional perturbations, obtained with �φM2 = −11◦,
�φM2 = 15◦ and �φM2 = 19◦ (see the orange, blue
and green crosses in Fig. 2a, with the laterally uniform
equilibrium beds shown in Fig. 2b).

In Fig. 3a (Fig. 3b) the real (imaginary) part of the
eigenvalue of the most unstable eigenfunction is shown as a
function of the lateral wavenumber ln = nπL/B for three
relative phases:

• �φM2 = −11◦ (orange lines in Fig. 3): all eigenvalues
are real. Eigenpatterns associated with ln � 100 and
ln � 1010 are linearly stable, for 100 � ln � 1010
the eigenmodes are linearly unstable. The maximum
growth rate is found for ln ≈ 550. The longitudinal
structure of the most unstable eigenmode is shown
in Fig. 3c, indicating that the bed perturbations are
nonzero within a region of ∼10 km around the location
where the water depth of the underlying equilibrium
is minimal. The spatial structure of the most unstable
bed perturbation superposed on the laterally uniform
underlying morphodynamic equilibrium is illustrated in

Fig. 2 Laterally uniform morphodynamic equilibria when taking dif-
fusive and internally generated advective transport, as well as bedload
transport into account. The water motion is only forced with M2 tidal

constituents. Panel (a) shows WDmin, the minimum water depth of
equilibrium bed profiles, with its location coded with color. Panel (b)
shows the equilibrium bed profiles for three different values of �φM2
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Fig. 3 The dimensionless growth rate (ω) and, if non–zero, associ-
ated imaginary part �(ω) for the most unstable eigenmode (panels (a)
and (b), respectively) for �φM2 = −11◦ (orange), �φM2 = 15◦ (blue)
and �φM2 = 19◦ (green) as a function of wave number ln. The cor-
responding bed patterns (scaled to have a dimensionless amplitude of
one for the real part) of the most unstable eigenmodes for the first two

phases are shown in panel (c), with the orange solid line the bed pat-
tern associated with ln ≈ 550 and �φM2 = −11◦, the blue solid line
the pattern for ln = 0 and �φM2 = 15◦. In panel (d), for �φM2 = 19◦,
the green solid (dotted) line indicates the real (imaginary) part of the
complex bed eigenfunction with mode number ln ≈ 1200. Panel (e)
shows the spatial structure of the bed perturbation for �φ = −11◦
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Fig. 3e. Here, a width of B = 6 km is used, resulting
in n = 18. This results in formation of channels and
shoals close to the middle of the inlet system. Note that,
since only a linear stability analysis is performed, the
amplitude used for the bed perturbation is arbitary.

• �φM2 = 15◦ (blue lines in Fig. 3): all eigenvalues
of the most unstable mode are again real. However,
in contrast to the previous case, all eigenpatterns have
a negative growth rate, indicating that the underlying
laterally uniform equilibrium bed is linearly stable.
The solid blue line in Fig. 3c shows the longitudinal
structure of the bed perturbation associated with the
ln = 0 eigenmode.

• �φM2 = 19◦ (green lines in Fig. 3): for this relative
phase, the eigenvalues of the most unstable eigenmode
are real for 0 ≤ ln � 500. When ln ∼ 500,
two complex–conjugated eigenmodes, characterised by
complex eigenvalues that are complex conjugates of
each other, become the most unstable ones. The real part
of these complex eigenvalues is positive for 850 � ln �
1750, whereas the absolute values of the imaginary
parts increase for increasing ln. In Fig. 3d the real (solid
green) and imaginary (dashed green) parts of the most
unstable bed pattern are shown. The bottom patterns are
found near inlet I , and are very localized: their spatial
extent is ∼2 km, and the associated bed variations have
multiple crests and troughs.

From the above, it follows that the linear stability of
1D–stable laterally uniform equilibria strongly depends
on the relative phase difference �φM2 . In Fig. 4 this
dependency on the external M2 forcing is further illustrated
by analysing the linear stability as a function of AII

M2
and

�φM2 . In this figure, the region in parameter space where
no laterally uniform morphodynamic equilibrium exists is
indicated by the white color, linearly stable equilibria are
found in the black colored area. In both the dark and light
gray colored areas, the laterally uniform morphodynamic
equilibria are linearly unstable. The mechanisms resulting
in this instability turn out to be diffusively dominated in the
light gray area, whereas advective processes are essential in
the dark gray region.

To illustrate the two instability mechanisms, we again
consider the results obtained with �φM2 = −11◦ and
�φM2 = 19◦ with the default AM2 amplitudes, as the first
parameter setting results in instabilities due to a diffusive
mechanism, while the latter one becomes unstable due to an
advective mechanism.

4.1.1 Diffusively dominated instability mechanism

To illustrate the instability mechanisms, we consider the
divergence of the various transport contributions for the

Fig. 4 Existence and linear stability of stable laterally uniform
morphodynamic equilibria as a function of the M2 tidal amplitude
at inlet II (horizontal axis) and the relative phase (vertical axis).
The white, black, dark–gray and light–gray region indicate where
no, linearly stable, diffusively unstable and advectively unstable
morphodynamic equilibria are found, respectively. If the underlying
equilibrium is unstable, the mechanism resulting in the largest positive
growth rate is used as indicative of the instability mechanism. The
crosses indicate the experiments discussed in detail in the main text

relative phase �φM2 = −11◦ and ln ∼ 550. The
longitudinal bed profile of the most unstable eigenfunction
is shown in Fig. 3c, orange line. The associated divergences
of the classical diffusive flux <F00

diff>, the topographically
induced diffusive flux < F00

topo >, the internally generated

advective flux <F20
adv> and the total flux <F>, evaluated

at y = 0, are shown in Fig. 5a. The classical diffusive
transport is destabilizing, i.e., these transports result in a
convergence near the tops of the bed perturbation, while
the topographically induced diffusive transport is stabilizing
with divergence of the transport at the maxima of the
bed perturbation. These two transport terms are much
bigger than the other two contributions, and they almost
balance. To see the net diffusive effect, the divergence of
the total diffusive transport defined as ∇ · (< F00

diff > +
<F00

topo>) is compared with the divergence of the internally
generated advective and total transport in Fig. 5b. This
illustrates that the combined contribution of the different
diffusive transport terms is still dominant, the advective
contribution only modifies the divergence of the total
transport. Hence the instability mechanism is a diffusive one
(This observation is corroborated by experiments in which
only diffusive transport is considered: similar eigenpatterns,
resulting from the same instability mechanism, are found,
see Appendix A, Fig. 12). The underlying physical
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Fig. 5 Dimensionless divergences of the various transport contributions for �φM2 = −11◦ and ln ∼ 550, together with the associated bed
perturbation (orange line) at y = 0. Panel (a) shows all divergences separately, while in Panel (b) the two diffusive contributions are combined

mechanism is described in detail in Schuttelaars and De
Swart (1999) with the topographically induced diffusive
transport taking over the role of bedload transport (see
also Hepkema et al. (2019) and Appendix A).

Whether a bed perturbation is linearly stable or unstable
strongly depends on the lateral wave number ln considered,
see the linear stability curve in Fig. 3a: for stable (unstable)
eigenfunctions, the stabilizing effects of the divergences of
the topographically induced transports dominate over (are
dominated by) those of the destabilizing classical diffusive
ones.

4.1.2 Advectively dominated instability mechanism

The eigenvalue for the case with �φM2 = 19◦ and ln ∼
1200 is complex, see Fig. 3a and b. This implies that
also the eigenfunction consists of a real and an imaginary
part. The real and imaginary part of the most unstable
bed perturbation is plotted in, respectively, the top and
bottom rows of Fig. 6 as the green solid and green dotted
lines. In Fig. 6a and c the associated divergences of the
various transport terms are shown. As in the previous case,
the convergences of diffusive transports are dominant and
approximately balance each other. The relative importance
of the divergences of the advective and total transports is
larger in this case than in the case discussed in Section 4.1.1.
Again, by taking the diffusive transports together, we
can focus on the relative importance of the diffusive
and advective contributions to the total divergence, see
Fig. 6b and d. From these figures, it follows that the
divergences of the advective transport are larger than those
of the total diffusive transport, and is very similar to the
divergence of the total transport. This suggests that the
instabilities are mainly driven by advective processes, hence

the instability mechanism is advective. This is confirmed
by the experiments discussed in Appendix A: in these
experiments the advective transports were not taken into
account and the instabilities observed in the present section
were not found.

It should also be noted that the divergences associated
with the real and imaginary parts of the eigenfunction are
out of phase with the bed pattern, associated with this
eigenfunction. This is consistent with the fact that these bed
patterns do not only grow in time, but are also periodic in
time, with the period given by �(ω).

The location where the most unstable eigenpatterns have
appreciable amplitudes coincides with a local minimum in
water depth of the underlying width–averaged equilibrium.
In the previous example, the minimum in water depth
was found at inlet I , and the linearly most unstable mode
was also observed close to that inlet. When changing the
parameters to AII

M2
= 0.87 m and �φM2 = −11◦, indicated

by the red cross in Fig. 4, the underlying morphodynamic
equilibrium has a local minimum in water depth at 30 km
from inlet I , see Fig. 7a. This laterally uniform equilibrium
is linearly unstable, see Fig. 7b, with the spatial structure of
the bed pattern associated with the most unstable eigenmode
(ln ∼ 470) shown in Fig. 7c. The instability mechanism is
still dominated by convergences of the internally generated
advective transports (not shown). The largest amplitudes
of the eigenfunctions are also found at 30 km from inlet
I , coinciding with a local minimum in water depth of the
underlying morphodynamic equilibrium.

4.2 All forcings included

In this section, the water motion is forced by both the M2

and M4 tidal constituents, prescribed at each inlet, and a
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Fig. 6 Dimensionless divergences of the various transport contribu-
tions for �φM2 = 19◦ and ln ∼ 1200, together with the associated bed
perturbation (green line) at y = 0. Panels (a) and (c) show the real and

imaginary part of the divergences separately, while in Panels (b) and
(d) the two diffusive contributions are combined

discharge Q at inlet II . Since all forcings are included, all
contributions in the bottom evolution equation (18) have to
be taken into account when calculating the morphodynamic
equilibria and their linear stability.

In this section the influence of the relative M2 phase
�φM2 on the stability of the underlying width–averaged
equilibria is investigated by changing the M2 phase at
inlet II . All other parameters have their default values, see
Table 2. To assess this influence, first the associated laterally
uniform morphodynamic equilibria have to be obtained.
Similar to the experiments in Section 4.1, this is done using
a continuation technique, which results in the bifurcation
diagram shown in Fig. 8a. In this figure, the minimum
water depth of the morphodynamic equilibria is shown as
a function of �φM2 . In the interval 5◦ � �φM2 � 25◦
no morphodynamic equilibria exist for which the two inlets
are connected. For −60◦ ≤ �φM2 � 5◦ and 25◦ ≤
�φM2 ≤ 60◦ two morphodynamic equilibria are found, one

1D–stable (solid line) and the other one 1D–unstable
(dashed line).

The two–dimensional stability of the 1D–stable equi-
libria depends on �φM2 . For values of �φM2 between
−17◦ and 3◦, the 1D–stable equilibria are also linearly sta-
ble against two–dimensional perturbations (not shown). For
all other �φM2 , the laterally uniform equilibria that were
1D–stable turn out to be linearly unstable against two–
dimensional perturbations (not shown). All instabilities are
advectively dominated, with transport due to both inter-
nally generated and externally prescribed advection being
important. To illustrate this, we consider �φM2 = 31◦.
The associated equilibrium bed profile is shown in Fig. 8b.
The real and imaginary part of the eigenvalues are shown
in Fig. 8c. From this figure it follows that eigenfunctions
with lateral wave number ln between 400 and 2750 have
a positive growth rate, with a maximum growth rate found
for ln ∼ 1100. This maximum growth rate increases very
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Fig. 7 (a) Laterally uniform morphodynamic equilibrium obtained
with AII

M2
= 0.87 m and �φM2 = −11◦, (b) the real and imag-

inary parts of the eigenvalue associated with the most unstable

eigenfunction as a function of the lateral wave number and (c) the bed
pattern of the most unstable eigenfunction

quickly for increasing �φM2 and is associated with ever
increasing lateral mode number (not shown). The real and
imaginary part of the associated eigenfunction is shown in
Fig. 8d, illustrating that the bed perturbation is found close
to inlet I .

In Fig. 9 the various contributions to the real (panels
a and b) and imaginary (panels c and d) part of the
divergence of the suspended sediment transports are shown.
As observed in Section 4.1, the diffusive contributions
dominate when considered separately, but when adding
them together all contributions are of the same order of
magnitude. From Fig. 9b and d it follows that the total
diffusive transports < F00

diff > + < F00
topo > and the

advective transport due to external overtides < F11
adv >

are in phase, except near the entrance where < F11
adv >

dominates the transport. All contributions are of the same

order of magnitude, indicating that the advective transport
mechanism, due to both internally generated and externally
prescribed overtides, is important for these instabilities.

5 Discussion and conclusions

In this paper, we show that stable laterally uniform mor-
phodynamic equilibria of rectangular double inlet systems
can become linearly unstable when two dimensional per-
turbations are considered, resulting in the formation of
channels and shoals as a result of a positive feedback mech-
anism between the tidal flow and the bottom. The water
motion is described by the shallow water equations, neglect-
ing Coriolis terms, and driven by M2 and M4 tidal con-
stituents, prescribed at both connections to the sea, and by a



Ocean Dynamics

Fig. 8 Panel (a) shows WDmin, the minimum water depth of laterally
uniform equilibrium bed profiles, with the location of WDmin color–
coded. Panel (b) shows the laterally uniform equilibrium bed profile
for �φM2 = 31◦, (c) the real and imaginary parts of the eigenvalue

associated with the most unstable eigenfunction as a function of the
lateral wave number and (d) the bed perturbations of the most unstable
eigenfunction

constant discharge, prescribed at one of the inlets. Sediment
is transported both as suspension load due to advective and
diffusive processes and as bedload due to bedslope effects.
Since the tidal time scale is much shorter than the morpho-
dynamic time scale, the method of averaging is applied to
separately describe the dynamics of the water motion and
the bottom. Owing to the assumption of a rectangular inlet
system, no direct comparison can be made with observations
of real world systems. However, valuable insights are gained
in better understanding the various mechanisms resulting in
instabilities in double inlet systems.

When the water motion is only forced by an M2 tidal
constituent, both advective and diffusive processes result
in tidally averaged suspended sediment transports. The
advective transport is the result of nonlinear interactions

of the directly forced signals. Considering the diffusive
suspended sediment transport, two different sediment
transport mechanisms are identified: the classical one
(related to spatial gradients in the depth–integrated tidally–
averaged suspended sediment concentrations) and the
topographically induced suspended sediment transport
(associated with gradients in the bed level). Keeping the
amplitude and phase of the M2 tidal forcing at one
inlet fixed, and varying these parameters for the other
inlet, it is found that there is an area in the amplitude–
phase plane where no laterally uniform morphodynamic
equilibria exist for which both inlets are still connected.
In the parameter space where such equilibria exist,
the equilibrium can be stable against two–dimensional
perturbations, linearly unstable due to convergences of
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Fig. 9 Dimensionless divergences of the various transport contribu-
tions for �φM2 = 31◦ and ln ∼ 1100, together with the associated bed
perturbation (green line) at y = 0. Panels (a) and (c) show the real and

imaginary part of the divergences separately, while in Panels (b) and
(d) the two diffusive contributions are combined

diffusive transport mechanisms, or linearly unstable due to
convergences related to advective processes.

When the morphodynamic equilibrium becomes unstable
due to diffusive processes, the classical diffusive mecha-
nism destabilizes laterally uniform morphodynamic equi-
libria, while the mechanism related to topographic gradi-
ents has a stabilizing effect. The relative importance of
these mechanisms determines whether the laterally uniform
equilibrium is linearly stable or instabilities start to grow.
This instability mechanism is similar to the one described
by Schuttelaars and De Swart (1999) and Ter Brake and
Schuttelaars (2011) for single–inlet systems. The eigenval-
ues are all real, implying an exponential growth in time.
When advective transport mechanisms result in linear insta-
bilities, the eigenvalues are found to be complex–valued.
This implies that bedforms do not only grow in time, but also

migrate. In this case convergences and divergences of both
advective and diffusive transports contribute significantly to
the linear growth of the bed perturbations.

When including external overtides and a residual discharge,
the influence of the relative M2 phase between the M2

forcing at the two inlets is investigated, using default values
for all other parameters. It was found that there are either no
morphodynamic equilibria that connect both inlets or that
these equilibria are unstable due to the convergences and
divergences of both advective and diffusive transports which
are of equal importance. Here, the advective transports are
a result of internally generated overtides and due to the
prescribed external overtide and discharge.

It is found that in all cases the bed perturbations
have their largest amplitudes in the regions where the
water depth of the underlying morphodynamic equilibrium
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has a local mimimum. This observation is in line with
the remark in Schuttelaars and De Swart (1999) that
a necessary condition for instability is the presence of
bottom frictional torques. In the present model, a similar
obervation can be made: when reducing the friction
parameter below a critical value, the underlying laterally
uniform morphodynamic equilibrium is always stable (not
shown). Only by introducing the effects of bottom friction,
the underlying equilibria become unstable, both when the
convergence of the sediment transport is dominated by
diffusive and advective mechanisms.

The linear instabilities found in this paper result in the
initial formation of channels and shoals in the shallower
regions of the tidal basin system. The location of initial
formation coincides with results obtained in numerical
models and laboratory experiments (Hibma et al. 2003;
Van der Wegen and Roelvink 2008; Leuven and Kleinhans
2019). To compare results beyond the initial stage of
channel–shoal formation, a nonlinear analysis has to be
performed, which is the topic of a subsequent study.

AppendixA: Diffusively dominated transport

The influence of the relative M2 phase, �φM2 , on
the diffusively dominated morphodynamic equilibria is
investigated. For simplicity, the undisturbed water depth at
inlet II is taken to be equal to 11.7 m, the same water depth
as inlet I . All other parameter values are taken from Table 2.

When the sediment transport is dominated by diffusion, the
morphodynamic equilibrium condition reduces to

∇ ·
(
<F00

diff> + <F00
topo> + <Fbed>

)
= 0. (A1)

In a rectangular geometry, morphodynamic equilibria
which are laterally uniform can be found using the
bifurcation approach discussed in Deng et al. (2021). As
an example, Fig. 10a shows the minimum water depths
WDmin of these morphodynamic equilibria as a function
of �φM2 varying from −60◦ to 60◦. It demonstrates that
the existence of morphodynamic equilibria depends on
the relative M2 phase: for �φM2 between 10◦ to 16◦, no
morphodynamic equilibrium is found for which both inlets
are connected. For other relative M2 phases considered,
there is always a 1D–stable equilibrium.

To investigate the linear stability of these 1D–stable
morphodynamic equilibria to the perturbations with lat-
eral structure, morphodynamic equilibria obtained with
�φM2 = 19◦ (orange), �φM2 = 20◦ (green) and �φM2 =
25◦ (red) are examined. Their bed profiles are shown in
Fig. 10b. These three equilibrium bed profiles correspond
to WDmin indicated by crosses (with colors associated to
their bed profiles) in Fig. 10a. The largest dimensionless
growth rate (ω) of these three morphodynamic equilibria
as a function of dimensionless wave number ln is shown
in Fig. 11a. It shows that at ln = 0 the largest dimen-
sionless growth rate (ω) is negative for all three selected
�φM2 , which shows these three morphodynamic equilibria

Fig. 10 Laterally uniform morphodynamic equilibria for diffusively
dominated transport. Panel (a) showsWDmin the minimumwater depth
of equilibrium bed profiles, with its location coded with color. Panel

(b) shows the equilibrium bed profiles for three different values of
�φM2 . The minimum water depths in the cases shown in panel(b) are
indicated by cross-shaped markers in panel (a)
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Fig. 11 The dimensionless growth rate (ω) for three different �φM2 (Panel (a)). The corresponding bottom patterns hn for mode number
n = 0 (ln = 0) are shown in panel (b), while those for mode number n = 18 (ln = 555.9) are shown in panel (c)

are 1D–stable. Increasing the dimensionless wave number
ln from 0 to 1200, the largest dimensionless growth rate
(ω) for �φM2 = 19◦ first increases, till a maximum is
obtained at approximately ln = 560, and then decreases
to become negative for ln ∼ 1200. Positive (ω) indi-
cates that the laterally uniform morphodynamic equilibrium
for �φM2 = 19◦ is unstable against perturbations with a
lateral structure. Unlike �φM2 = 19◦, the largest dimen-
sionless growth rate (ω) for �φM2 = 25◦ is negative for
all ln considered, which indicates the corresponding equi-
librium is stable against perturbations with lateral structure.
The critical value of the relative M2 phase, �φM2 , that
seperates stable and unstable morphodynamic equilibrium

against perturbations with lateral structure, is �φM2 = 20◦
(see also Fig. 14).

When using width B = 6 km, the dimensionless wave
number ln = 555.9, at which (ω) for �φM2 = 19◦
reaching a maximum, corresponds to a mode number n =
18. The bed patterns hn for n = 18 (ln = 555.9) are
shown in Fig. 11c. Compared with the bed patterns for
n = 0 shown in Fig. 11b, the bed patterns for n = 18
are more localized, i.e., the bed patterns for n = 18 are
nonzero within a region of approximately 15km, while the
bed patterns for n = 0 are nonzero everywhere between
the two inlets. Figure 11c also shows that the bed patterns
for n = 18 are close to where WDmin is found. The
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Fig. 12 Bottom patterns of
laterally uniform
morphodynamic equilibria for
diffusively dominated transport.
Panels (a), (c) and (e) show the
bottom patterns for
�φM2 = 19◦ and n = 0, with
white areas representing crests
and dark areas representing
troughs. The arrows indicate the
direction and relative magnitude
of classical diffusive flux
<F00

diff>, the topographically
induced diffusive flux <F00

topo>

and the total flux <F>. Panels
(b), (d) and (f) show the same
but for �φM2 = 19◦ and n = 18
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Fig. 13 Divergences of sediment fluxes. Panel (a) shows the divergences of the sediment fluxes for �φM2 = 19◦ and mode number n = 0 at
y = 0, together with the corresponding bottom pattern. Panel (b) shows the same but for �φM2 = 19◦ and mode number n = 18

morphodynamic equilibrium for �φM2 = 19◦ is called
diffusively unstable, since only diffusive transport plays a
role.

To study the instability mechanism in detail, the classical
diffusive transport < F00

diff >, the topographically induced
diffusive transport <F00

topo > and the total transport <F>

of the first 1 km in lateral direction for �φM2 = 19◦ and
mode number n = 0 are shown in Fig. 12a, c and e, while
those for �φM2 = 19◦ and mode number n = 18 are shown
in Fig. 12b, d and f, respectively. These figures show that
the topographically induced diffusive transport < F00

topo >

is directed from crests to troughs and stablizes the bottom
pattern, while the classical diffusive transport <F00

diff > is
generally directed from troughs to crests and destablizes the
bottom patterns. These two diffusive transport result in a
total transport < F >, which can be either directed from
crests to troughs (n = 0) or from troughs to crests (n = 18),
depending on the mode number n, as well as the relative
M2 phase. When mode number n = 0, these three sediment
transports flow in a longitudinal direction, since there is no
lateral structure, while these transports flow laterally when
mode number n = 18.

The instability mechanism can also be studied using the
divergences of these three sediment fluxes, which have the
same lateral structure as their corresponding bottom pattern.
Figure 13a shows these divergences in the longitudinal
direction at y = 0 for �φM2 = 19◦ and mode number
n = 0, together with the corresponding bottom pattern,
while the ones for �φM2 = 19◦ and mode number n =
18 are shown in Fig. 13b. From these figures it follows
that the divergence of the classical diffusive transport <

F00
diff > enhances perturbations of bottom patterns, and the

divergence of topographically induced diffusive transport

<F00
topo> reduces the amplitudes of the perturbations. These

two sediment transports almost balance each other, resulting
in a divergence of the total transport < F > with smaller
magnitude. When mode number n = 0 is considered, <F>

transports sediment from troughs to crests, while for mode

Fig. 14 Existence and linear stability of stable laterally uniform
morphodynamic as a function of the M2 tidal amplitude at inlet II
and the raltive phases when dominated by diffusive transport. The
white, black, dark region indicate where no, linearly stable, diffusively
unstable morphodynamic equilibria are found. If the underlying
equilibrium is unstable, the mechanism resulting in the largest positive
growth rate is used as indicateive of the instability mechanism. The
crosses indicate the experiments discussed in detail in this Appendix A
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number n = 18, <F> transports sediment from crests to
troughs.

The existence and stability of laterally uniform morpho-
dynamic equilibria depends not only on the relative M2

phase but also on the M2 amplitude at inlet II , which is
shown in Fig. 14. In this figure, the region in parameter
space where no laterally uniform morphodynamic equilib-
rium exists, is indicated by the white color. Linearly stable
equilibria are found in the black colored area, while linearly
unstable equilibria (resulting from the diffusive mechanism)
in the light gray colored area.
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