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SUMMARY

Majorana zero modes (MZMs) are a topic of intense research as they constitute the main
building block of topological qubits - a qubit type with potentially enhanced coherence
time. A promising way to create these quantum states is to couple a one-dimensional
(1D) semiconducting segment with spin-orbit interaction to a superconductor, in the
presence of an external magnetic field. Growing the active semiconductor as a 2D layer
and creating 1D structures by top-down processing might allow to realize complex multi-
qubit devices in the future. This thesis explores antimony-based two-dimensional elec-
tron gases (2DEGs), known for their favorable material properties, as platforms for topo-
logical superconductivity.

First, the theoretical background is presented with a focus on Josephson junctions (JJs)
and realizing phase-tunable MZMs therein. Besides, we introduce the materials that are
used in this thesis and describe the main fabrication challenges for each platform.

In the first experimental chapter, we create JJs in high-quality InSb 2DEGs and observe
supercurrents over micrometer-scale lengths. Under the application of an in-plane mag-
netic field, we observe revivals of the supercurrent, associated with 0−π transitions. We
demonstrate that these transitions are tunable with the device length and the electron
density, in quantitative agreement with the theory of ballistic π-JJs.

Then we switch material systems and study InSbAs surface 2DEGs with in-situ grown
Al as the superconductor. We show that the bare semiconductor has strong spin-orbit
coupling, a large g-factor and a small effective mass. Moreover, the clean semiconductor-
superconductor interface leads to a hard induced gap in the semiconductor. Exploiting
the flexibility of this hybrid material system, we realize three different device geometries
that can be used to create MZMs.

The next chapter focuses on tunneling spectroscopy measurements at both ends of
phase-biased JJs made in InSbAs/Al 2DEGs. The spectroscopy maps obtained from the
two sides are strikingly different, consistent with measuring localized Andreev bound
states (ABSs) in the vicinity of the respective tunnel barrier, taking into account the effect
of the local superconducting phase difference that has equal magnitude but opposite
sign at the two ends. The resulting superconducting phase shifts allow to estimate the
relative positions of ABSs in the junctions.

In the last experimental chapter, we complement local spectroscopy measurements
on phase-biased JJs with non-local conductance measurements. At finite in-plane mag-
netic fields, we observe zero-bias peaks in local spectroscopy (typically not end-to-end
correlated), but find no clear evidence of a gap re-opening in the nonlocal conductances.

We conclude this thesis by a summary and discussion of the results. Moreover, we
discuss optimizations for the material stack and provide ideas for future experiments
that can be carried with the already existing InSbAs/Al 2DEGs.

IX





SAMENVATTING

Majorana zero modes (MZM’s) zijn een onderwerp van intensief onderzoek, aangezien
ze de belangrijkste bouwsteen vormen van topologische qubits – een qubittype met een
potentieel verbeterde coherentietijd. Een veelbelovende manier om deze kwantumtoe-
standen te creëren is door een eendimensionaal (1D) halfgeleidend segment met spin-
baan interactie te koppelen aan een supergeleider, in de aanwezigheid van een extern
magnetisch veld. Door de actieve halfgeleider als een 2D-laag te laten groeien en 1D-
structuren te creëren door top-down bewerking kunnen in de toekomst mogelijk com-
plexe multi-qubit-apparaten worden gerealiseerd. Dit proefschrift onderzoekt op anti-
moon gebaseerde tweedimensionale elektronengassen (2DEG’s), bekend om hun gun-
stige materiaaleigenschappen, als platforms voor topologische supergeleiding.

Eerst wordt de theoretische achtergrond gepresenteerd met een focus op Josephson-
juncties (JJ’s) en het realiseren van in fase afstembare MZM’s daarin. Daarnaast intro-
duceren we de materialen die in dit proefschrift worden gebruikt en beschrijven we de
belangrijkste fabricage-uitdagingen voor elk platform.

In het eerste experimentele hoofdstuk creëren we JJ’s in InSb 2DEG’s van hoge kwaliteit
en observeren we superstromen over lengten op micrometerschaal. Als een magneetveld
wordt aangelegd in het vlak zien we herstel van de superstroom, geassocieerd met 0−π-
overgangen. We laten zien dat deze overgangen afstembaar zijn met de apparaatlengte
en de elektronendichtheid, in kwantitatieve overeenstemming met de theorie van bal-
listische π-JJ’s.

Vervolgens veranderen we van materiaalsysteem en bestuderen we InSbAs-oppervlakte-
2DEG’s met in-situ gegroeid Al als supergeleider. We laten zien dat de halfgeleider een
sterke spin-baan koppeling heeft, een grote g-factor en een kleine effectieve massa. Boven-
dien leidt de schone halfgeleider-supergeleider-interface tot een harde geïnduceerde
energiekloof in de halfgeleider. Door gebruik te maken van de flexibiliteit van dit hy-
bride materiaalsysteem realiseren we drie verschillende apparaatgeometrieën die kun-
nen worden gebruikt om MZM’s te maken.

Het volgende hoofdstuk richt zich op tunneling-spectroscopiemetingen aan beide uitein-
den van JJ’s met een fase bias gemaakt in InSbAs/Al 2DEG’s. De spectroscopiekaarten
zijn aan beide zijden opvallend verschillend, consistent met het meten van gelokaliseerde
Andreev-gebonden toestanden (ABS’s) in de buurt van de respectieve tunnelbarrière, en
rekening houdend met het effect van het lokale supergeleidende faseverschil. De resul-
terende supergeleidende faseverschuivingen maken het mogelijk om de relatieve posi-
ties van ABS’en in de juncties in te schatten.

In het laatste experimentele hoofdstuk vullen we lokale spectroscopiemetingen op JJ’s
met een fase bias aan met niet-lokale geleidingsmetingen. Bij eindige in het vlak uit-
gelijnde magnetische velden nemen we nul-bias-pieken waar in lokale spectroscopie
(meestal niet end-to-end gecorreleerd), maar we vinden geen duidelijk bewijs van een

XI
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opening in de niet-lokale geleidingen.
We sluiten dit proefschrift af met een samenvatting en bespreking van de resultaten.

Bovendien bespreken we optimalisaties voor de materiaalstapel en geven we ideeën voor
toekomstige experimenten die kunnen worden uitgevoerd met de reeds bestaande InS-
bAs/Al 2DEG’s.



1
INTRODUCTION

1



1

2 1. INTRODUCTION

Digital electronics have transformed our lives. Thanks to devices such as laptops and
smartphones many people are connected to each other and information is available
non-stop. The fundamental building block of these devices is a transistor that can be
thought of as a switch being in either the on or off state. This allows one to encode a
classical bit of information. Shrinking the size of the transistors has made it possible to
incorporate an increasing number of them in integrated circuits, boosting the perfor-
mance of the electronic devices. As a matter of fact, the scaling followed a prediction
from Gordon Moore originally made in 1965 and adjusted in 1975, stating that the num-
ber of transistors in an integrated circuit would double roughly every two years (’Moore’s
Law’) [1, 2]. However, as the transistor dimensions continue to shrink (now approaching
the atomic scale), the miniaturization becomes increasingly more difficult and expen-
sive. In fact, the advances have slowed somewhat below the pace predicted by Moore’s
Law since about 2010, and an end of the scaling is clearly in sight [3, 4]. Despite the
enormous progress, currently the even most powerful supercomputers in the world are
unable to solve problems with a very high degree of complexity, for example modeling
the behavior of individual atoms in a molecule. Therefore, the end of the transistor scal-
ing is an unsatisfactory situation.

Numerous ideas exist to continue the performance scaling in the absence of Moore’s
Law. One approach is to harness the effects of quantum mechanics and to build a quan-
tum computer. These machines are expected to be capable of solving certain complex
problems that are intractable for classical computers [5–7]. Quantum computers use
quantum bits (qubits) to store and process information [8]. As opposed to their classi-
cal counterparts, qubits can be in a superposition of the two basis states (on and off for
the transistor). They can be implemented in a two-level quantum mechanical system
such as the spin of an electron in a semiconductor or using two discrete energy levels
in a superconducting circuit. One key challenge is that these qubits are susceptible to
noise from the environment (charge or magnetic noise), leading to unwanted interac-
tions and ultimately to a loss of the stored quantum information. This might be pre-
vented by encoding the information redundantly in a block of multiple qubits, called a
logical qubit. In this way, errors can be detected and corrected, provided certain con-
ditions are fulfilled [9–11]. Progress in quantum error correction has sparked hope to
realize a fault-tolerant universal quantum computer, but it comes at the price of a signif-
icantly increased qubit count [12, 13]. The exact overhead depends on the quality of the
hardware and the algorithm to be run, but a recent estimate puts the number of physical
qubits needed to realize a logical qubit above 1000 (with more than 20 million physical
qubits required in total) [13].

An alternative approach attempting to prevent this large overhead is to build qubits that
are intrinsically protected against noise. This is the idea behind the topological qubit,
where quantum information is stored in pairs of spatially separated zero-energy states,
so-called Majorana zero-modes (MZMs). MZMs occur naturally in p-wave supercon-
ductors, but since the existence of these in nature is unclear, they have to be engineered
artificially. This can be done by coupling a one-dimensional semiconducting segment
with spin-orbit interaction to a regular s-wave superconductor (abundant in nature),
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2DEG

Superconductor

a b

Figure 1.1: a, Proposal for a multi-qubit architecture consisting of numerous topological
segments (TS). Each TS hosts two Majorana zero-modes, denoted by the black crosses.
Figure adapted from [19]. b, Schematic of a two-dimensional electron gas (2DEG) cou-
pled to a superconductor, which can be used to fabricate the multi-qubit device on the
left.

in the presence of an external magnetic field [14, 15]. For this it is important that the
semiconductor is nearly defect-free, also having strong spin-orbit coupling and a large
effective g-factor, and that the semiconductor-superconductor interface is as clean as
possible. The first platform that has been explored for proof-of-principle experiments
were semiconducting-superconducting hybrid nanowires (thin, quasi-1D conduction
channels). While important insights have been gained, the ability to create MZMs in
these systems has not been demonstrated conclusively in experiments [16–18]. More-
over, realizing multi-qubit architectures requires complex devices with numerous well-
aligned topological segments (see left panel in Fig. 1.1). Achieving this with single hybrid
nanowires will be extremely challenging. Clearly, a more flexible and scalable platform
is needed.

One such platform is a two-dimensional electron gas (2DEG), realized in a semiconduc-
tor heterostructure, that is coupled to a superconductor (see schematic in the right panel
of Fig. 1.1). Arbitrary shapes can be patterned into the hybrid 2DEG by top-down pro-
cessing. 2DEGs not only hold promise to realize multiple-qubit structures in the future,
but can be used already now to explore alternative and potentially better device geome-
tries to create MZMs. Among these are planar Josephson junctions (JJs), where a thin
strip of superconductor is removed in between two wider superconducting banks [20,
21]. The phase difference between the two superconductors is expected to serve as an
additional knob to tune into and out of the topological regime, and to create MZMs at a
lower external magnetic field, which is beneficial for the operation of the MZM device.
The front cover presents an artistic illustration of a planar phase-tunable JJ.

This thesis aims to explore new hybrid 2DEG platforms with improved material proper-
ties for the development of topological qubits in the future. A special emphasis is placed
on investigating planar Josephson junctions as a potential candidate for the creation of
MZMs.

Chapter 2 introduces the theoretical concepts that are relevant for the experiments, with
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4 1. INTRODUCTION

a focus on creating phase-tunable MZMs in planar Josephson junction. The 2DEG ma-
terials that are used in this thesis (InSb and InSbAs) are described in chapter 3, also
explaining the main challenges for the device fabrication when using these materials.
Chapter 4 explores planar JJs in InSb 2DEGs coupled to the ex-situ deposited supercon-
ductor NbTiN. In particular, we study the supercurrent through these junctions in the
presence of an in-plane magnetic field. In chapter 5 we introduce InSbAs 2DEGs cou-
pled to the in-situ grown superconductor Al, and realize prototypical MZM devices in
this material system. Among these are planar phase-biased JJs, which are studied in
detail in chapter 6, focusing on tunneling spectroscopy measurements at both ends of
the junctions. In chapter 7 we additionally measure the nonlocal conductance in these
junctions, which is expected to give information about the bulk of the junctions. Finally,
in chapter 8, we summarize the important findings and present an outlook for future
experiments.
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2
THEORY

This chapter provides the theoretical background for the upcoming experiments. We start
by reviewing the relevant physical phenomena in a two-dimensional electron gas (2DEG)
realized in a semiconductor heterostructure. Then, superconductivity is discussed with
a focus on Josephson junctions (JJs) and Andreev bound states. Lastly, we see describe
how 2DEG-based JJs can be used to create phase-controllable Majorana zero-modes, and
discuss important extensions for these proposals.

7



2

8 2. THEORY

2.1. TWO-DIMENSIONAL ELECTRON GASES

2.1.1. FROM BULK CRYSTALS TO HETEROSTRUCTURES

In quantum mechanics, a particle is described by a wave function, Ψ, which can be ob-
tained by solving the Schrödinger equation. For a stationary (time-independent) system,
this equation is given by [1]:

H0Ψ= EΨ,

with H0 being the Hamiltonian of the system and E its eigenenergies. Applying this equa-
tion to a semiconductor crystal allows one to calculate the bandstructure of it. For this,
the periodic potential arising from the crystal, V (R), has to be taken into account and
enters the Hamiltonian. Expressing the electron wave function as Bloch functions con-
sisting of a plane wave and a lattice periodic part, and using k · p perturbation theory,
the energy of band n is found to be [2]:

En(K ) = En + ħ2K 2

2me
+ ħ2

m2
e

∑
m,m ̸=n

|K ·P mn |2
En −Em

. (2.1)

Here, En is the band edge energy, ħ is the reduced Planck constant, K = (kx ,ky ,kz ) is
the three-dimensional electron wave vector and me is the free electron mass. For the
conduction band, which is populated by electrons, eq. 2.1 can be approximated by:

Ec (K ) = Ec + ħ2K 2

2m∗ , (2.2)

with m∗ being the effective electron mass. Recall that this is the dispersion relation of a
free electron with a renormalized, material specific effective mass. Holes populate states
in the valence band that is separated from the conduction band by an energy gap (band
gap).

Growing semiconductors with different band gaps on top of each other in a so-called
heterostructure allows to create a spatially varying potential (conduction band edge)
along the growth direction, z. Specifically, a potential well might be realized (see Fig.
2.1a), restricting the motion of electrons in z. This leads to quantized eigenenergies for
the motion in the z-direction, εi , while the free motion in x and y can be described by a
parabolic dispersion relation (cf. eq. 2.2) [3]:

Ei (k) = Ec +εi + ħ2k2

2m∗ ,

with k = (
kx ,ky

)
. Here, we have skipped over complications arising from the interfaces

between the different semiconductor materials forming the barrier and the well, and
have furthermore assumed that the electron wave function predominately resides in the
well, picking up the effective mass of this material only. Such a strict confinement of the
wavefunction can only be realized in an idealized well with infinitely high barriers, in

which case εi = ħ2

2m∗
( iπ

d

)2
, with i being an integer (quantum number) and d being the

thickness of the well. The parabola for each i is called a subband (sketched in Fig. 2.1b),
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Figure 2.1: a, Potential well with infinitely high barriers. The three lowest bound state
energies and the corresponding electron wave functions are indicated. b, Dispersion
relation for the system with restricted motion in z and free motion in x and y . c, Total
density of states (DOS) of the system. Each subband contributes a step of m∗/πħ2.

having a constant density of states of m∗/πħ2 (see Fig. 2.1c).

At zero temperature, the states are filled up to the electrochemical potential, µ. If µ lies
within ε1 and ε2, only the states in the lowest subband are occupied and the electron
motion is two-dimensional. The sheet electron density for one occupied subband can
be calculated by integrating the product of the density of states and the Fermi-Dirac
distribution function from the bottom of the subband, ε1, to µ. In the low-temperature
limit this results in [2]:

n = m∗

πħ2 (µ−ε1) = m∗

πħ2 EF,

with EF being the Fermi energy. The Fermi wave vector is given by: kF =
√

2m∗EF/ħ2 =p
2πn.

2.1.2. ZEEMAN EFFECT

So far we have neglected that the electrons posses a spin degree of freedom. The ac-
tion of an external magnetic field, B , on the electron spin is described by the Zeeman
Hamiltonian [2]:

HZ = 1

2
gµBσ ·B . (2.3)

Here, g is the electron g-factor, µB is the Bohr magneton andσ is a vector containing the
Pauli matrices. The field aligns the spin either parallel or anti-parallel to it, leading to a
Zeeman splitting of each subband into two spin branches with energies

EZ =±1

2
gµBB.
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The separation between the two branches, ∆EZ = gµBB , is called the Zeeman energy.

2.1.3. SPIN-ORBIT COUPLING

The spin of an electron can couple to its orbital motion if the electron moves in an elec-
tric field. Naively, this is because the electron experiences in its own rest frame not only
the electric field but also a magnetic field, which couples to the spin. The more rigor-
ous description of this effect stems from a non-relativistic approximation of the Dirac
equation, resulting in the Hamiltonian [2]:

HSO = ħ
4m2

e c2

(∇V (r )× p̂
) ·σ, (2.4)

where c is the speed of light and p̂ is the momentum operator. The gradient of the peri-
odic crystal potential constitutes the electric field in which the electrons move.

Spin-orbit coupling (SOC) has important consequences for the band structure of bulk
semiconductors, first realized in [4, 5]. Accounting for the SOC Hamiltonian in eq. 2.4
and using the k · p method it can be shown that SOC leads to a splitting of the three-
fold degenerate valence band edge in all diamond and zinc-blende semiconductors. The
branch with conserved total angular momentum j = 1/2 is lowered in energy compared
to the two branches with j = 3/2, forming the so-called spin-orbit split-off band [6].
Furthermore, in crystals without inversion symmetry, an additional SOC effect emerges,
leading to the spin splitting of states at finite wave vector even in the absence of a mag-
netic field [7, 8]. SOC also impacts the Zeeman splitting when a magnetic field is applied.
Due to SOC, the g-factor can differ significantly from the free electron g-factor (g = 2)
and is rather described by an effective g-factor, g∗ [9].

For a two-dimensional electron gas in a semiconductor heterostructure, two different
types of SOC might occur: Rashba and Dresselhaus SOC [2]. The first results from a
spatial asymmetry of the confinement potential (structure inversion asymmetry). The
latter originates (as for bulk semiconductors) from a lack of inversion symmetry of the
crystal lattice (bulk inversion asymmetry). This is, for example, the case in zinc-blende
semiconductors like InAs or InSb. For heterostructures grown in the [001]-direction, the
SOC Hamiltonian containing both contributions is given to the lowest order in k as [10]:

HSO =α(
σx ky −σy kx

)+β(
σx kx −σy ky

)
. (2.5)

Here, α is the Rashba coefficient that depends on an average electric field in the growth
direction, 〈Ez〉: α = α0〈Ez〉, with a material-specific constant α0 [2]. A contribution to
〈Ez〉 comes from the asymmetric confinement potential but it can also by impacted by
an external electric field. The Dresselhaus coefficient is given by β= β0〈k2

z 〉, where 〈k2
z 〉

is on the order of (π/d)2 [2]. Therefore, the Dresselhaus contribution is stronger in thin-
ner quantum wells.
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a b c

Figure 2.2: a, Contours of constant energy and spin orientations at the Fermi energy for
Rashba SOC only. The spins are always aligned perpendicular to k . b, The same as for a
but with Dresselhaus SOC only. c, Fermi contours and spin texture for comparable but
not equal Rashba and Dresselhaus SOC. This figure is taken from [10].

Equation 2.5 leads to a profound modification of the energy dispersion relation. In the
case of Rashba (or Dresselhaus) SOC only, the subband splits into two parabolic spin
branches with shifted minima in all k-directions by kSO = ±m∗α/ħ2 (±m∗β/ħ2). The
energy difference between the bottom of the two branches and the energy at k = 0 is
called ESO. The energy shift at the Fermi level is called ∆SO and is given by 2αkF (2βkF).

The spin orientation can be found by rewriting equation 2.5 in the form HSO =σ·Beff(k).
The effective magnetic field

Beff(k) =
 αky +βkx

−αkx −βky

0


provides the local (k-dependent) spin quantization axis. The contours of constant en-
ergy as well as the spin texture at the Fermi level are shown in Fig. 2.2 for different values
of α and β.

2.2. SUPERCONDUCTIVITY AND JOSEPHSON JUNCTIONS

2.2.1. BASICS OF SUPERCONDUCTIVITY

In the previous section we considered a gas of non-interacting electrons, whose ground
state corresponds to the complete filling of single electron energies up to the Fermi en-
ergy. When turning on a weak attractive interaction between electrons with energies
around EF (mediated by electron-phonon coupling), this state becomes unstable [11].
Electrons with opposite wave vector and spin form Cooper pairs, which are bosons, and
they condense into a new ground state. The single particle excitations occupy states that
are separated by an energy gap (pair potential) ∆ from the condensate at EF. These exci-
tations, called Bogoliubov quasiparticles, have an electron and a hole component, u and
v respectively, and are described by the Bogoliubov-de Gennes (BdG) equation making
use of a mean field approximation [11]:
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HBdG

(
u
v

)
= E

(
u
v

)
, HBdG =

(
H ∆

∆∗ −H∗
)

(2.6)

Here, H is the single-electron Hamiltonian. Equation 2.6 results in a particle-hole sym-
metric excitation spectrum. For every eigenvector with energy E there is a corresponding
eigenvector with energy −E . Together they describe the same quasiparticle excitation.

This summarizes some of the most important findings of the Bardeen, Cooper and Schri-
effer (BCS) theory that succeeded to describe superconductivity at a microscopic level [12].
7 years earlier, Ginzburg and Landau (GL) developed a (macroscopic) theory, introduc-
ing a complex wave function (order parameter), Ψ = |Ψ|exp(iθ), to describe the super-
conducting condensate [13]. In 1959, it was shown that the GL theory emerges as a lim-
iting case from the BCS theory (valid near the critical temperature), and that Ψ is pro-
portional to ∆ [14].

2.2.2. JOSEPHSON TUNNEL JUNCTIONS

The importance of the phase, θ, in the GL wavefunction can be seen when consider-
ing two superconductors separated by a thin insulating layer. In 1962, Brian Josephson
considered the quantum mechanical tunneling of electrons through the insulator and
predicted that a dissipationless current (supercurrent) would flow, driven by the phase
difference between the two superconductors, φ= θL −θR [15]:

I = Icsin(φ), (2.7)

Here, Ic is the maximum supercurrent that is supported by the Josephson junction (JJ),
called critical current. Subsequently, the DC Josephson effect (described by equation
2.7) was confirmed by a large amount of experiments [16]. Nowadays it is clear that the
Josephson effect occurs more generally, whenever two superconductors are connected
by a "weak link". Besides an insulator, this could be a metal or a semiconductor.

2.2.3. ANDREEV REFLECTION AND ANDREEV BOUND STATES

In a superconductor-semiconductor-superconductor JJ, the supercurrent transport is
typically no longer due to tunneling, and a different mechanism has to be taken into
account. When a right-moving electron in the semiconductor with an energy smaller
than∆ is incident on the right semiconductor-superconductor interface (see Fig. 2.3a) it
cannot enter the superconductor because no quasiparticle states exist below the energy
gap. It also cannot undergo normal reflection assuming the absence of a potential bar-
rier at the interface. However, the electron can combine with another electron to form
a Cooper pair, which is then allowed to enter the superconductor. As a consequence, a
hole with opposite wave vector and spin is left behind in the semiconductor, traveling
back on the same path as the original electron. This process is called Andreev reflec-
tion [17].
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Figure 2.3: a, Schematic representation of Andreev reflection. At the semiconductor (N)-
superconductor (S) interface, the incoming electron is retroreflected as a hole and a
Cooper pair is transferred into the superconductor. b, In a S-N-S JJ, the hole impinging
on the left interface undergoes Andreev reflection again and a so-called Andreev bound
state forms if the phase coherence between the two superconductors is preserved.

Once the hole reaches the left superconductor it will undergo Andreev reflection again
and will be transformed into an electron (see Fig. 2.3b). Then, effectively, a Cooper pair
is transported through the JJ. If, during this process, the phase coherence between the
two superconductors is preserved, a so-called Andreev bound state (ABS) forms. Using
the BdG formalism for a one-dimensional JJ with a step-like pair potential increase and
no barriers at the interfaces yields the following expression for the ABS energies (Andreev
levels), E(φ) [18]:

2
L

ξ

E(φ)

∆
= 2πn +2arccos

(
E(φ)

∆

)
∓φ, (2.8)

where L is the length of the semiconductor, ξ=ħvF/∆ is the superconducting coherence
length, and n = 0,1,2.... We assumed no scattering in the semiconductor region (L < le),
which is referred to as a ballistic JJ. In this case, the Thouless energy is defined as ETh =
ħvF /2L, allowing the left-hand side of equation 2.8 to be expressed as E(φ)/ETh. The JJ
might further be classified by comparing L with ξ. In the short junction limit (L < ξ),
E(φ)/ETh can be neglected, and the Andreev levels are:

E(φ) =±∆cos

(
φ

2

)
(2.9)

Both of these levels are spin-degenerate, amounting to four Andreev levels in total. Equa-
tion 2.9 can be generalized for a JJ with multiple channels and scattering in the semicon-
ductor region (described by transmissions τi ) [19], where each channel i contributes two
spin-degenerate Andreev levels:
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Figure 2.4: a, Andreev levels for a single-channel JJ with different transmissions. τ < 1
leads to an avoided crossing at φ = π. b, Corresponding CPRs. As the transmission is
lowered the CPR changes from skewed to sinusoidal.

Ei (φ) =±∆
√

1−τi sin2
(
φ

2

)
(2.10)

The ground state energy of the JJ is obtained by summing over the negative Andreev
levels:

E0(φ) =−∑
i
|Ei (φ)|. (2.11)

The ABSs carry a supercurrent, at zero temperature given by:

I (φ) = 2e

ħ
dE0(φ)

dφ
=−2e

ħ
∑

i

d|Ei (φ)|
dφ

(2.12)

Inserting equation 2.10 yields:

I (φ) = e∆

2ħ
∑

i

τi sin(φ)√
1−τi sin2(φ/2)

(2.13)

This expression links the supercurrent to the phase difference between the two super-
conductors, and is called current-phase relation (CPR). From the CPR the critical current
can be extracted: Ic = maxφ |I (φ)|. In the limit of low transmissions, the CPR approaches
equation 2.7, with Ic = e∆/(2ħ)

∑
i τi .

The Andreev levels and the corresponding CPR for a single-channel JJ with varying trans-
mission are plotted in Fig. 2.4. Normal scattering leads to the opening of an energy gap
at φ= π with increasing gap size for decreasing transmission. The CPR transitions from
skewed to sinusoidal for increasing scattering (decreasing transmission).
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2.2.4. ANDREEV BOUND STATES IN THE PRESENCE OF A ZEEMAN FIELD

AND SPIN-ORBIT COUPLING

In the previous discussion we assumed ∆ << EF, which is known as the Andreev limit,
and neglected the effects of spin-orbit interaction and a Zeeman field. Once EF is low-
ered and becomes comparable to the spin-orbit energy and the Zeeman energy, these
effects become relevant.

In this regard, we will review the most important findings of the numerical calcula-
tions presented in [20]. The system under investigation is a short, quasi-ballistic and
few-channel JJ based on a semiconductor with Rashba SOC, subject to a Zeeman field
(EZ,∆<< EF). A device schematic is shown in Fig. 2.5a and b. In order to obtain the An-
dreev levels, the BdG equation (equation 2.6) is written in terms of a scattering matrix,
which is obtained from a tight-binding model. The single-electron Hamiltonian in the
BdG Hamiltonian is composed of H = H0 +HSO +HZ, where H0 contains a kinetic term
as well as a confinement and an impurity potential. HSO and HZ are given by equation
2.5 and 2.3, respectively. The magnetic field, By, is applied along the y-axis, mostly par-
allel to the spin quantization axis for Rashba SOC and motion mainly along the x-axis.
It splits the dispersion relation, causing an additional (average) phase shift between the
electrons and holes that form the ABSs, θB = g∗µBByL/(ħvF ), where vF is the inversion
average Fermi velocity.

We consider a single conduction channel and no SOC first. In the absence of a magnetic
field, the two Andreev levels are spin-degenerate as discussed above (see Fig. 2.5c). The
ground-state energy is minimal at φ0 = 0. The application of a magnetic field causes
spin-splitting of the Andreev levels, leading to zero energy crossings as the field is in-
creased. At θB =π/2, the ground-state energy switches to being minimal atφ0 =π, which
is called a 0−π transition. The JJ remains in theπ-state until θB = 3π/2, where it switches
back to the 0-state. Figure 2.5d shows the CPR for different θB . Since the Andreev levels
obey E(−φ) = E(φ) for all θB , the CPR satisfies I (−φ) =−I (φ) and hence I (φ= 0) = 0. The
0−π transitions are accompanied by cusps in the critical current, as shown in Fig. 2.5e.

Next, we review the single-channel case where SOC is present (kSO/kF = 0.15). Without
applied magnetic field, the two Andreev levels are still twofold degenerate despite the
SOC (see Fig. 2.5f), which is attributed to the short junction limit (in long and interme-
diate junctions, an Andreev level splitting is present at φ ̸= 0,π [21, 22]). E(−φ) = E(φ)
holds, and the ground state energy is minimal at φ0 = 0. A magnetic field splits the two
Andreev levels. The invariance of the levels against the φ-inversion is broken, leading to
a finite supercurrent at φ = 0 (anomalous supercurrent) and a ground state energy that
is minimal at a phase φ0 in between 0 and π, shown in Fig. 2.5g and h. φ0 grows linearly
with field until a π-jump happens (0−π transition), followed by another gradual phase
increase. Finally, the JJ transits back to a 0-like state. As before, the 0−π transitions lead
to local minima in the critical current. Note that the 0−π transitions happen at some-
what larger magnetic fields compared to the situation without SOC.
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Figure 2.5: a, Schematic of the JJ. The scattering region inside the semiconductor is in-
dicated in b, having a scattering strength le/L = 1. A magnetic field is applied along the
y-direction, causing a phase shift θB ∝ By . c, Andreev levels for a single-channel JJ in
the absence of SOC. θB = 0, 0.27π, 0.53π and π in the top-left, bottom-left, top-right and
bottom-right image. d, CPRs for θB = 0 (solid), 0.27π (broken), 0.53π (dotted), π (dotted
broken). e, Phase that minimizes the ground state energy (top panel), and critical cur-
rent (bottom panel) as a function of θB . At θB = (n +1/2)π, transitions to the π (0) state
happen, accompanied by minima in the critical current. f, Andreev levels for a single-
channel JJ in the presence of SOC, kSO/kF = 0.15. θB = 0, 0.35π, 0.7π and 1.4π in the
top-left, bottom-left, top-right and bottom-right image. g, CPRs for θB = 0 (solid), 0.35π
(broken), 0.7π (dotted), 1.4π (dotted broken). A finite By leads to an anomalous phase
shift. h, Phase that minimizes the ground state energy (top panel), and critical current
(bottom panel) as a function of θB . Figures adapted from [20].
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Qualitatively similar results are obtained when considering more conduction channels
(two or four), both in the absence and presence of SOC, despite the fact that the chan-
nels mix due to impurity scattering (and SOC). The amount of channels is determined
by the ration between the Fermi wave length and the width of the semiconductor. Cal-
culations for an extended, planar JJ based on a Rashba 2DEG confirm the occurrence of
0−π transitions for multiple-channel systems (using a quasi-classical approximation).
Here, magnetic field rotations are also considered. When SOC is absent, the 0−π transi-
tions happen at the same field values irrespective of the field direction. In the presence
of SOC, the SOC effects are relatively weak when the magnetic field is in the y-direction
(mostly parallel to the SOC field for motion mainly along x), whereas they are stronger
when the magnetic field points in the other two directions [23]. In the following section,
we will also focus on 0−π transitions in planar JJs based on a Rashba 2DEG, and will see
that they are in fact accompanied by a topological phase transition.

2.3. TOPOLOGICAL SUPERCONDUCTIVITY IN A PLANAR

JOSEPHSON JUNCTION

2.3.1. INITIAL PROPOSALS

In 2017 it was realized that Majorana zero modes, that arise as end states in a one-
dimensional topological superconductor, can be created in the normal region of a 2DEG-
based planar JJ [24, 25]. Figure 2.6a shows a schematic of such a device, where a 2DEG
with Rashba SOC is contacted by two s-wave superconductors. The superconductors
have a phase difference of φ, and a magnetic field, B , is applied in the x-direction.

In [25], two experimental configurations are described. In the first one (see Fig. 2.6b),
the phase difference is controlled externally, which can be realized by threading a mag-
netic flux through a loop that connects the two superconductors. Strikingly, at φ=π the
system enters the topological regime (light blue) for small magnetic fields (Zeeman en-
ergies). This is in stark contrast to the more commonly researched hybrid nanowire pro-
posals [26, 27], where a large magnetic field is required to enter the topological regime.
Atφ= 0, the JJ remains in the trivial regime (white) except for isolated magnetic field val-
ues. Therefore, the phase difference serves as a switch that controls the topology of the JJ.

In the second configuration, the in-plane magnetic field is applied without controlling
the phase externally (see Fig. 2.6c). Upon increasing the magnetic field, the phase that
minimizes the ground state energy, φ0, abruptly jumps from 0 to π (0−π transition), and
eventually back to 0. Interestingly, the JJ is in the trivial regime for φ0 = 0, whereas it is
in the topological regime for φ0 = π. Thus, the JJ self-tunes into (and out of) the topo-
logical regime, accompanied by an oscillating critical current with local minima at the
transition points. We will look at these two configurations in more detail now.

PHASE-BIAS

Following [25], the BdG Hamiltonian in the Nambu basis describing the JJ is given by:
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b ca

Figure 2.6: a, Schematic of the planar JJ using a 2DEG (light blue) with Rashba SOC. The
two superconductors (dark blue) have a phase difference of φ. When tuning the mag-
netic field in the x-direction (and φ) to the correct value(s), MZMs emerge at the ends of
the narrow normal region (red circles). b, Phase diagram when controlling φ externally.
At φ = π, the topological regime (light blue) is reached at an extremely small magnetic
field. When considering normal scattering at the semiconductor-superconductor inter-
faces (τ= 0.75), the boundaries separating the trivial and topological regimes change to
the dashed lines. Theφ-dependence weakens and trivial (topological) regions emerge at
φ=π (0). c, Without phase control, the system self-tunes into the topological regime by
minimizing its ground-state energy (top panel). The 0−π transitions are accompanied
by local minima in the critical current (bottom panel). Both quantities are obtained from
a numerical calculation (parameters specified in [25]). All figures are adapted from [25].

HBdG =
ħ2

(
k2

x −∂2
y

)
2m∗ −µ+ m∗α2

2ħ2

τz+α
(
kxσy + i∂yσx

)
τz+EZ(y)σx /2+∆(y)τ++∆∗(y)τ−

(2.14)
A different Zeeman energy, EZ(y), is considered in the 2DEG regions that are covered
with the superconducting leads and in the normal region. We will neglect the Zeeman
effect underneath the leads, assuming a small effective g-factor in these regions, and
only focus on the Zeeman effect in the normal region: EZ(y) = EZ,J = g∗µBB . The super-
conducting pairing in the normal region is given by:

∆(y) =∆exp
[
i {sgn(y)}φ/2

]
Θ(|y |−L/2).

The Pauli matrices σ and τ act on the spin and particle-hole degree of freedom, respec-
tively, and τ± = (τx ± iτy )/2.

The topological invariant, determining whether the JJ is in the trivial or topological regime,
is given by the ground state parity of the BdG Hamiltonian in equation 2.14 at kx = 0. As
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we have seen before, at kx = 0, the spin-orbit field points in the same direction as the
Zeeman field (x-direction), and the Rashba SOC can be gauged away, leading to an ef-
fective Hamiltonian:

Heff =
(
−∂2

y /(2m∗)−µ
)
τz +EZ,J(y)σx /2+∆(y)τ++∆∗(y)τ−

Assuming µ >> ∆, EZ,J and no normal reflection at the semiconductor-superconductor
interfaces, the bound state spectrum can be derived as:

arccos(E/∆) = 1

2

E

ETh
− 1

4

EZ,J

ETh
± φ

2
+nπ, (2.15)

with the ballistic Thouless energy ETh =ħvF/2L. Note that this is the same expression as
in equation 2.8 with an additional phase shift due to the Zeeman field, θB = EZ,J/(2ETh) =
g∗µBBL/(ħvF ).

At zero magnetic field, the Andreev levels are spin-degenerate. Therefore, the ground
state parity is even for all values of φ. A Zeeman field splits the degeneracy and causes
non-degenerate Andreev levels to cross zero energy as the phase is varied (see top panels
in Fig. 2.8 for a plot of the Andreev levels in the short junction limit). At these crossings,
the ground state parity changes. Thus, setting E = 0 in equation 2.15 yields the bound-
aries of the topological phase diagram:

1

4

EZ,J

ETh
± φ

2
= π

2
+πn

This expression causes the alternating trivial and topological regimes with a diamond
shape, plotted in Fig. 2.6 b. Scattering in the semiconductor region or at the semiconductor-
superconductor interfaces leads to deviations from this ideal behavior, where trivial (topo-
logical) regions form at φ=π (0), see dashed lines in the same figure for the new bound-
aries.

Driving the system into the topological regime results in the formation of Majorana zero
modes at the ends of the junction’s normal region and a re-opening of the bulk gap (topo-
logical gap). The size of topological gap determines the localization of the Majorana
wave functions is therefore an important quantity. It is given by the Andreev level with
the lowest energy, taking into account all kx :

∆top(φ) = min
kx

(∣∣E(kx ,φ)
∣∣)

A numerical calculation of the size of the topological gap for a short junction is shown
in Fig. 2.7. The diamond-shaped phase boundaries are visible in dark brown, indicating
the vanishing topological gap. Inside the topological regime, ∆top reaches values up to
0.3∆. As shown in the right panel, the topological gap at φ=π is sizable for a large range
of Zeeman fields, with little dependence on the chemical potential.

The MZMs may be detected by measuring the local density of states at the ends of the
JJ via tunneling spectroscopy, while the topological gap can be extracted from nonlocal
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Figure 2.7: (Left panel) Induced gap as a function of phase and Zeeman energy for
m∗α2/ħ2 = 9∆ and µ/∆= 20. Inside the diamond-shaped topological regime, the topo-
logical gap reaches 0.3∆. (Right panel) Topological gap for varying chemical potential
and Zeeman energy at φ=π. This figure is adapted from [25].

conductance measurements. Chapter 6 deals with tunneling spectroscopy at zero Zee-
man field, while both local and nonlocal conductance measurements at varying Zeeman
fields are presented in chapter 7 (along with technical details about the nonlocal mea-
surements).

SELF-TUNING

When the phase is not controlled externally, the JJ self-tunes into the topological regime
upon increasing the Zeeman field, indicated by a 0−π-transition. This can be under-
stood qualitatively by considering a short, single-channel (with kx = 0) JJ, where the An-
dreev levels are given by (see equation 2.15): E = ±∆cos(EZ,J/(4ETh)±φ/2), with θB =
EZ,J/(2ETh). This is plotted in the top panels of Fig. 2.8 for different EZ,J/ETh. The bottom
panels contain the corresponding ground state energy and CPR, where the former is ob-
tained by summing over both spin species with negative energies E0 =−(|E+|+ |E−|)/2),
and the latter is calculated according to equation 2.12.

At EZ,J/ETh = 0, the Andreev levels are spin-degenerate and the ground-state energy is
minimal at φ0 = 0. At EZ,J/ETh = π, the ground-state energy switches to be minimal at
φ0 = π. Note that this phase lies in the region with switched parity, indicating a topo-
logical phase transition. From the CPR plots it can be seen that the 0−π transition is
accompanied by a minimum in the critical current. A tight-binding calculation of the
phase that minimizes the ground state energy (considering all kx ), together with the crit-
ical current is shown in Fig. 2.6c (in the regime EZ,J ≥αkF).

In chapter 4, 0−π transitions in ballistic JJs formed in an InSb 2DEG are investigated.
Specifically, the expected tunabilty of these transitions with the experimentally control-
lable parameters (JJ length, electron density, applied magnetic field) will be demon-
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Figure 2.8: Andreev levels (top panel) and corresponding ground state energy and CPR
(bottom panel) for a short, single-channel JJ at different EZ,J/ETh. A Zeeman field splits
the two spin species (indicated in red and blue in the top panels). At EZ,J/ETh = π a
transition to the π-state occurs.

strated.

2.3.2. IMPORTANT EXTENSIONS

In the previous section we have already seen how normal scattering in the semiconduc-
tor or at the semiconductor-superconductor interfaces impacts the phase diagram when
φ is controlled externally: it weakens the φ-dependence (see dashed lines in Fig. 2.6b).

An additional, but closely related effect is described in detail in [28]. Here, the same pla-
nar JJ geometry is considered, but with superconducting leads that are shorter than the
superconducting coherence length, see left panel in Fig. 2.9a (previously Lsc →∞ was
assumed). As a result, normal reflections now also occur at the interfaces of the leads
with the vacuum, weakening the φ-dependence further as shown in the right panel of
Fig. 2.9a. Experimentally however, narrow leads are relevant as they increase the Zee-
man field compatibility [29, 30]. Hence, there is a tradeoff between phase tunability and
Zeeman field compatibility.

Another modification of phase diagram arises when also accounting for Dresselhaus
SOC (as opposed to Rashba SOC only). The numerical calculations in [31] show that
in this case, trivial regions appear around φ = π. This is demonstrated in Fig. 2.9b for
α= 14.3meV nm and β= 7.3meV nm. Here, motion parallel to the S-N interfaces is con-
sidered (x-direction), in which case the Rashba SOC field points in the y-direction and
the Dresselhaus SOC field is directed along x. Hence, the total SOC field (denoted by
nSOC in the schematic on the top right) tilts away from the y-direction. This has to be ac-
counted for by rotating the Zeeman field appropriately such that it is still perpendicular
to the total SOC field. Deviations from this condition lead to a reduction of the topolog-
ical gap size with a vanishing topological gap if the Zeeman field is misoriented by more
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Figure 2.9: a, Schematic (left) and phase diagram (right) for a planar JJ with narrow su-
perconducting leads, Lsc < ξ. The light blue regions in the phase diagram correspond to
the topological regimes. Additional normal scattering occurs at the lead-vacuum inter-
faces, weakening the φ-dependence. Figures adapted from [28]. b, Phase diagram for a
planar JJ with Rashba and Dresselhaus SOC (α= 14.3meV nm, β= 7.3meV nm). A trivial
region emerges around φ=π. Figure adapted from [31].

than 10◦.

Finally, we return to the size of the topological gap being the most important quantity
in this system to optimize. While Fig. 2.7 and 2.9b indicate that the topological gap can
reach values of up to a third of the size of the parent superconducting gap, the numeri-
cal calculations in [32] predict a significantly smaller topological gap of only ∼ 0.01∆. It
turns out that the limiting factor is mainly long semi-classical trajectories through the
semiconductor without interruption by the superconductors, resulting in a small gap at
large kx . One way to suppress these trajectories is to introduce disorder into the semi-
conductor, thereby enforcing scattering towards the superconductors. It was shown that
the right amount of disorder leads to an increased topological gap and more confined
Majorana wave functions [33]. However, this is a double-edged sword since too much
disorder reduces the gap size, and scattering is hard to control experimentally. Another
approach is to change the geometry of the JJ to prevent long trajectories naturally, for
example by using a zigzag shape [32]. This leads to an enhancement of the topological
gap by roughly one order of magnitude (to approximately 0.1∆) compared to the straight
junction case.
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3
MATERIALS AND FABRICATION

This chapter introduces the 2DEG materials that are used in this thesis: InSb and InSbAs.
Their material properties are discussed in light of realizing topological superconductivity.
Moreover, the device fabrication using InSb and InSbAs/Al 2DEGs is described, focusing
on the key challenges for both platforms. Detailed fabrication recipes can be found in the
respective chapters.
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3.1. 2DEG GROWTH AND MATERIALS

As we have seen in the previous chapter, realizing MZMs in planar JJs requires a 2DEG
with Rashba spin-orbit interaction coupled to a superconductor. Ideally, the Rashba
SOC should be strong to enhance the size of the topological gap, leading to well sepa-
rated MZMs. Moreover, we have seen that a finite Zeeman field is required to drive the
system in the topological regime. Therefore, the effective g-factor of the 2DEG should
be as as large as possible to reduce the external magnetic field that is needed to induce
the topological phase transition. Lastly, we noticed how scattering in the semiconduc-
tor or at the semiconductor-superconductor interfaces causes deviations from the ideal
behavior, where the JJ enters the topological regime at a low Zeeman field when the
phase difference is tuned to π. Hence, the disorder in the 2DEG should be low and the
semiconductor-superconductor interface as clean as possible. All of this requires a care-
ful choice of materials on the one hand, and the right growth techniques on the other
hand.

High-quality 2DEGs can be grown by molecular beam epitaxy (MBE), where atom beams
(containing the materials of interest) interact with a heated growth substrate in an ultra-
high vacuum chamber. This technique allows to grow single-crystal layers with very
good control over the chemical composition in the layer and the layer thickness (down
to a single atomic layer) [1]. The confinement of electrons to two dimensions is typically
realized by growing the 2DEG material of interest in between layers of larger bandgap
semiconductors (called top and bottom barrier). In order to achieve high mobility 2DEGs,
the different semiconductors must have almost identical lattice constants. Growing semi-
conductors with different lattice constants on top of each other results in strain and
eventually in lattice dislocations when a critical layer thickness is exceeded. Prevent-
ing the dislocations from spreading to the active 2DEG region can be attempted by the
growth of a buffer layer (either a thick strain-relaxed layer or a superlattice).

InAs is a popular 2DEG material that has also been explored quite extensively in the
context of topological superconductivity. It was shown that the superconductor Al can
be grown in situ (without breaking the vacuum) on top of the heterostructure, leading
to a hard induced gap in the 2DEG [2–4]. This is an important achievement as the pres-
ence of subgap states is detrimental for the topological protection. To realize the hard
induced gap, a thin top barrier (10 nm) was used such that the electron wave function
can penetrate into the Al. The proximity to the surface, in turn, limits the electron mobil-
ity with typical values of 20000 cm2/Vs (measured in Hall bars with the Al removed) [4–
7]. The linear Rashba spin-orbit parameter is found to be between 20 and 170 meVÅ [8]
(280 meVÅ in [9]), and an effective g-factor of 10 is measured [9] (with the Al removed).
Using the InAs/Al hybrid system, signatures of MZMs were reported [5–7, 10–14]. Their
true topological origin however remains unclear. The main bottleneck of this material
system is likely the disorder in the semiconductor, causing accidental zero-energy states
and preventing the formation of an extended, uniform topological region.

In this thesis, two different Sb-based 2DEG materials are investigated: the binary semi-
conductor InSb and the ternary semiconductor InSbAs. A schematic of the InSb and InS-
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Figure 3.1: a, Layer stack of the InSb heterostructure. From bottom to top it consists of a
semi-insulating GaAs substrate, a GaAs buffer layer, an AlSb nucleation layer, an InAlSb
buffer layer that also serves as the bottom barrier for the quantum well, a 30 nm thick
InSb layer and an InAlSb top barrier. A Si δ-doping layer is introduced 20nm above the
InSb layer to provide charge carriers. These 2DEGs can be proximitized by the ex situ
deposited superconductor NbTiN as shown in chapter 4. b, Layer stack of the hybrid
Al/InSbAs heterostructure used in chapter 5, 6 and 7. The thin Al layer is grown in situ
(without breaking the vacuum) on top of the ternary semiconductor. The two monolay-
ers (ML) of InAs are introduced to avoid an intermixing between Al and Sb [15].

bAs heterostructure, grown by MBE in the group of Prof. Michael Manfra at Purdue Uni-
versity, is shown in Fig. 3.1a and b, respectively. Compared to InAs, bulk InSb is known to
have a larger electron mobility, stronger spin-orbit interaction and a significantly larger
g-factor [16]. Measurements on buried 2DEGs (40− 180 nm below the surface) report
mobilities up to 300000cm2/Vs [17], Rashba parameters between 30 meVÅ [18, 19] and
130−150 meVÅ [20, 21] (similar to InAs 2DEGs), and an effective g-factor of 25−50 [17,
19, 20, 22]. A disadvantage of InSb is that the device fabrication is more challenging
(see chapter 3.2.1 for details). Particularly, there exist no systematic studies of induced
superconductivity. In chapter 4, we overcome these issues and reliably induce super-
conductivity in InSb 2DEGs by coupling them to the ex situ deposited superconductor
NbTiN.

Moving towards the realization of MZMs requires not only good semiconducting proper-
ties but also a clean semiconductor-superconductor interface. To this end, in situ grown
Al on top of InSb 2DEGs is of great interest, similar to the achievements with InAs 2DEGs.
Growing these hybrid 2DEGs, we find however that in situ grown Al does not proximitize
InSb, even when grown directly on top of InSb (without top barrier). One possible rea-
son for this is the band offset at the Al-InSb interface [23]. On the other hand, when
incorporating small amounts of As in the semiconductor and thus forming the ternary
semiconductor InSbAs, a strong proximity effect is observed as demonstrated in chapter
5.

Besides the feasibility of induced superconductivity, the ternary semiconductor InSbAs
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has other advantageous properties. In fact, it has been realized a long time ago that
the bandgap of InSbAs is tunable with the As concentration and that it can become the
smallest direct gap among all III-V semiconductors, leading to applications in infrared
emission and detection devices [24, 25]. The non-linear variation of the bandgap is often
described by the bowing parameter (which assumes a perfectly random alloy), and dif-
ferent values for it are reported in literature. This spread might originate from strain ef-
fects that are believed to result in inaccuracies in determining the As concentration and
in the formation of alloy ordering [25]. Interestingly, it was shown that in ordered InSbAs
(particularly for CuPt ordering), the spin-orbit coupling can be enhanced significantly
compared to InSb and InAs [26]. Furthermore, also in a randomly disordered alloy, such
an enhancement remains in nanoscale devices (quantum dots or nanowires) [26]. Exper-
imental evidence of increased spin-orbit coupling was found in InSbAs nanowires [27].
Calculations for InSbAs 2DEGs also predict such a tunabilty and further show that the
effective g-factor for intermediate concentrations might be larger than the one for its bi-
nary constituents [28]. The material properties of ternary InSbAs/Al 2DEGs are studied
chapter 5, while chapter 6 and 7 focus on planar JJs made in this material system.

Below we outline the device fabrication using InSb or InSbAs/Al 2DEGs, focusing on the
key challenges for both of these material systems.

3.2. FABRICATION

3.2.1. PROCESSING OF INSB 2DEGS

The main challenge when processing InSb 2DEGs is to obtain good electrical contacts.
It is well known that a Schottky barrier forms when contacting InSb with metals [29, 30].
Moreover, native oxides arise when exposing InSb to air [31]. The interface quality is par-
ticularly important when trying to induce superconductivity into InSb.

In order to contact InSb 2DEGs we tried several pre-treatment methods that aim to re-
move any oxides and locally dope the semiconductor. Among these were sulfur passiva-
tion and hydrofluoric acid dips. The downside of these methods is that they are ex situ
and therefore oxides can grow back before the contact deposition. Using these methods
we were not able to fabricate contacts reliably. In contrast, performing an in situ argon
milling prior to the deposition of NbTiN in an ATC 1800-V sputtering system allowed
us to create good contacts and even induce superconductivity into these 2DEGs. For
optimizing the argon milling recipe, we monitored the contact resistivity extracted via
the transmission line measurement technique for varying argon milling parameters (RF
power, chamber pressure and milling time). We arrived at milling for 3 min using a power
of 100 W and a pressure of 5 mTorr, resulting in contact resistivities below 100Ω ·µm.

Another consideration is the PMMA resist baking temperature. We found that the peak
mobility, extracted from Hall bar measurements, drops by about 25 % when baking the
samples at an elevated temperature of 175◦C compared to baking at 100◦C, see Fig. 3.2.
The total baking time for the 175◦C device was 8 min, and 20 min for the 100◦C device.
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Figure 3.2: a, Electron density vs. gate voltage obtained from two gated Hall bars that
were fabricated using different resist baking temperatures. Both devices were fabricated
on chips from the same wafer (M06-13-17.1). b, Electron mobility vs. electron density.
The peak mobility drops by about 25% when using a baking temperature of 175◦C.

The full fabrication flow of devices such as Josephson junctions is described in detail in
chapter 4. We will now turn to the processing of InSbAs/Al 2DEGs.

3.2.2. PROCESSING OF INSBAS/AL 2DEGS

The processing of InSbAs 2DEGs with in situ grown Al is challenging and requires several
unconventional fabrication steps. This is because the Al can diffuse into the semicon-
ductor through an exchange reaction, substituting In for Al, leading to a degradation of
the interface and eventually to the consumption of the entire Al film. In order to avoid
this as much as possible, two monolayers (ML) of InAs are grown between the Al and the
InSbAs layer (see Fig. 3.1b) [15]. Figure 3.3 compares the surface evolution of an InSb/Al
structure with and without InAs screening layer, demonstrating the enhanced durabil-
ity when incorporating 2 ML of InAs. To minimize the interface degradation further, we
perform most fabrication steps at room temperature (RT) since the exchange reaction
is driven by temperature. Rather than baking the electron beam lithography resist on a
hotplate to remove the solvent, we put the chip in a vacuum system for two hours. More-
over, we use cold acetone for metal liftoffs.

An important element for the intended planar JJ devices is to be able to perform tun-
neling spectroscopy at the junction’s ends, which requires a stable dielectric. For this,
a dedicated low-temperature atomic layer deposition (ALD) process in a new machine
(Anric AT410) is developed. We optimize two recipes to deposit AlOx at a temperature
of 40 ◦C, one using water and the other one using ozone as the oxygen source. We ad-
just the parameters (amount of TMA and water/ozone precursor pulses, trapping time of
precursors in the chamber, purge times) such that we are in the ALD saturation regime
and have a complete removal of the precursor residues. We aim for a constant growth
rate (GPC) around 1.0 Å/cycle and a uniform film thickness, measured across a 4-inch Si
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Figure 3.3: a, Optical images of an InSb/Al 2DEG, taken after the specified days after the
growth. The wafer was stored in a nitrogen atmosphere at room temperature. Almost
all Al is gone after 40 days. b, Surface evolution for a different wafer with 2 monolayers
of InAs between the InSb and the Al. The Al is still intact after 47 days (same storage
conditions). All images provided by Candice Thomas.

wafer. For the water recipe we arrive at a GPC very close to 1.0 Å/cycle with a thickness
variation below 1 %, and for the ozone recipe we get a GPC of approximately 1.2 Å/cycle
with a thickness variation below 5 %.

In Fig. 3.4 we compare the performance of the low-temperature ALD dielectric with a
sputtered SiNx dielectric (deposited at RT) when deposited on InSbAs devices. First, we
check that the peak mobility of the 2DEG (extracted from gated Hall bars) remains unaf-
fected, and find that this is indeed the case, see panel b. Note however that the nominal
density decreases when using the AlOx dielectric (panel a), suggesting a different band
bending at the dielectric-semiconductor interface. Next, we confirm that the induced
superconductivity remains in the 2DEG by measuring the supercurrent interference pat-
tern in JJs. These JJs also have tunnel probes at the end of the junction (see schematic in
panel c), allowing to measure the induced gap in the normal region of the JJ (panel d).
Crucially, we obtain extremely clean tunneling spectroscopy maps when using the AlOx

dielectric, which is usually not the case for the SiNx dielectric (cf. panel c). For more
details about these measurements, we refer the reader to chapter 5, 6 and 7.



3.2. FABRICATION

3

33

Gate Gate

S N S

B .

Figure 3.4: a, Electron density vs. gate voltage measured on two different gated Hall bars,
one with a sputtered SiNx dielectric and one with an ALD AlOx dielectric. Both Hall bars
were fabricated on a 2DEG with an As concentration of 13 %. b, Corresponding electron
mobility vs. electron density. The peak mobilities are similar. c, Typical tunneling spec-
troscopy map obtained at the end of a Josephson junction when using sputtered SiNx as
the dielectric. When using the AlOx dielectric instead, the spectroscopy maps are signif-
icantly cleaner, as shown in d.
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BALLISTIC SUPERCONDUCTIVITY
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Planar Josephson junctions (JJs) made in semiconductor quantum wells with large spin-
orbit coupling are capable of hosting topological superconductivity. Indium antimonide
(InSb) two-dimensional electron gases (2DEGs) are particularly suited for this due to their
large Landé g-factor and high carrier mobility, however superconducting hybrids in these
2DEGs remain unexplored. Here we create JJs in high quality InSb 2DEGs and provide ev-
idence of ballistic superconductivity over micron-scale lengths. A Zeeman field produces
distinct revivals of the supercurrent in the junction, associated with a 0−π transition. We
show that these transitions can be controlled by device design, and tuned in-situ using
gates. A comparison between experiments and the theory of ballistic π-Josephson junc-
tions gives excellent quantitative agreement. Our results therefore establish InSb quantum
wells as a promising new material platform to study the interplay between superconduc-
tivity, spin-orbit interaction and magnetism.

This chapter has been published in Nature Communications 10, 3764 (2019).
∗These authors contributed equally to this work.
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4.1. INTRODUCTION
Two-dimensional electron gases (2DEGs) coupled to superconductors offer the oppor-
tunity to explore a variety of quantum phenomena. These include the study of novel
Josephson effects [1], superconducting correlations in quantum (spin) Hall systems [2–
7], hybrid superconducting qubits [8, 9] and emergent topological states in semicon-
ductors with strong spin-orbit interaction (SOI) [10–13]. Topological superconductivity
in such 2DEGs can be realized using planar Josephson junctions (JJs), where the com-
bined effect of SOI and a Zeeman field is known to significantly alter the current-phase
relation [14–16]. In particular, one expects a complete reversal of the supercurrent (i.e., a
π-JJ) [17–19] when the Zeeman and Thouless energy of the system become comparable.
It was shown recently that such a 0−π transition in a 2D system is in fact accompanied by
a topological phase transition [12, 13, 20, 21]. This, combined with the promise of creat-
ing scalable topological networks [22–24], provides a strong motivation to study induced
superconductivity in 2DEGs.

Key requirements for the semiconductor include low disorder, large SOI and a sizable
Landé g-factor, combined with the ability to grow it on the wafer scale. InSb satisfies all
of these requirements [25–28] and has emerged as a prime material candidate for en-
gineering topological superconductivity, as evident from nanowire-based systems [29,
30]. However, despite significant progress in the growth of InSb 2DEGs [31, 32], material
challenges have prevented a systematic study of the superconducting proximity effect in
these systems.

Here, we overcome these issues and reliably create JJs, thus providing evidence of in-
duced superconductivity in high quality InSb quantum wells. The JJs support supercur-
rent transport over several microns and display clear signatures of ballistic supercon-
ductivity. Furthermore, we exploit the large g -factor and gate tunability of the junctions
to control the current-phase relation, and drive transitions between the 0 and π-states.
This control over the free energy landscape allows us to construct a phase diagram iden-
tifying these 0 and π-regions, in agreement with theory.

4.2. INDUCED SUPERCONDUCTIVITY IN INSB 2DEGS
The JJs are fabricated in an InSb 2DEG wafer grown by molecular beam epitaxy, with a
nominal electron density n = 2.7·1011 cm−2 and mobilityµ≈ 150,000 cm2V−1s−1, which
corresponds to a mean free path le ≈ 1.3µm. Figure 4.1a shows a cross-sectional illustra-
tion and scanning electron micrograph of a typical JJ. Following a wet etch of the 2DEG
in selected areas, NbTiN is deposited to create side-contacts to the 2DEG, thus defining a
JJ of width W and length L. Prior to sputtering NbTiN, an in-situ argon plasma cleaning
of the exposed quantum well is performed in order to obtain good electrical contacts. A
metal top-gate, deposited on a thin dielectric layer is used to modify the electron density
in the JJ. Details of the device fabrication and wafer growth can be found in the Methods
section.
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Figure 4.1: Ballistic superconductivity in InSb 2DEGs. a, Cross-sectional schematic and
false-colored scanning electron micrograph (along with a measurement schematic) of a
top-gated JJ of width W and length L. b, Differential resistance, dV /dI , versus perpen-
dicular magnetic field, Bz, and current bias, I , displaying a Fraunhofer-like interference
pattern for a JJ with W = 9.7 µm, L = 1.1 µm. White line indicates the magnitude of the
switching current, Is, at zero magnetic field. c, dV /dI as a function of I and gate volt-
age, Vg, for the same JJ, showing gate control of Is. d, Length dependence of IsRn for JJs
on a high mobility (black dots) and low mobility (red dots) wafer, obtained at Vg = 0 V.
Dashed lines are 1/L and 1/L2 fits to the data, indicating ballistic and diffusive transport,
respectively.

The junctions are measured using a quasi-four terminal current-biased circuit (Fig. 4.1a)
at a temperature of 50 mK. We observe a clear supercurrent branch with zero differential
resistance, dV /dI , followed by a jump to the resistive branch at switching current, Is. In
small perpendicular magnetic fields, Bz, Fraunhofer-like interference patterns are ob-
served, as seen in Fig. 4.1b. The magnitude of supercurrent is controlled using the gate
(Fig. 4.1c). Lowering the gate voltage, Vg, leads to a reduction of the electron density in
the 2DEG and therefore to a suppression of Is and an increase in the normal state resis-
tance, Rn. In addition, we observe multiple Andreev reflections indicating an induced
superconducting gap of 0.9 meV, and excess current measurements allow us to estimate
transparencies in the range of 0.6-0.7 (representative data is provided in the Supplemen-
tary Note 2).

4.3. BALLISTIC SUPERCONDUCTIVITY
Studying JJs of varying lengths (L = 0.7 − 4.7 µm), we gain insight into the transport
regime. These devices fall in the long junction limit, since their lengths exceed the in-
duced superconducting coherence length of around 500 nm (see Supplementary Note
2). In this limit the product of the critical current, Ic, and Rn is proportional to the Thou-
less energy [33], ETh = ħvFle/2L2, where vF is the Fermi velocity in the 2DEG. Thus, for
ballistic (diffusive) transport where le = L (le < L), we expect IcRn to scale as 1/L (1/L2).
Figure 4.1d shows IsRn [34] for a set of JJs. We find a 1/L scaling (black dots) indicative
of ballistic superconductivity, with deviations only for the longer (L ≥ 2.7 µm) junctions.
Such a 1/L dependence was predicted decades ago [35] but has only recently been ex-
perimentally observed over micron-scale lengths in clean graphene-based JJs [36, 37].
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To confirm the scaling arguments we also include data from a lower mobility wafer (see
Supplementary Note 1) with le ≈ 0.5 µm (red dots) and find a 1/L2 scaling, consistent
with diffusive behavior. In the remainder of this work we focus on JJs fabricated on the
high mobility wafer.

4.4. 0−π TRANSITIONS IN JOSEPHSON JUNCTIONS

Using these ballistic junctions, we now explore their response to a Zeeman field. The the-
ory of JJs with large SOI subjected to a magnetic field has been discussed extensively [14,
17, 20]. Below we briefly describe the essential elements of the physical picture. At zero
B the Fermi surfaces are split due to the Rashba SOI (solid lines of Fig. 4.2a inset). The
magnetic field then splits the bands by the Zeeman energy, EZ = gµBB , leading to a
shift in the Fermi surfaces by ±δk/2. The depicted shift of the Fermi surfaces assumes
that the spin-orbit energy dominates over the Zeeman energy, which is indeed the case
for the measured JJs (see Supplementary Note 3 for a detailed discussion). Therefore,
Cooper pairs (electrons with opposite momentum and spin) now possess a finite mo-
mentum, given by kF ·δk = EZ(m∗/ħ2), where kF is the Fermi momentum and m∗ the
effective mass. This translates to a phase acquired by the superconducting order param-
eter along the direction of current flow, Ψ(r) ∝ cos(δk · r) [38–40]. Depending on the
length of the Cooper pair trajectories, |r|, the order parameter is either positive or nega-
tive, corresponding to the ground state of the JJ being at 0 or π superconducting phase
difference, respectively. This oscillation of the order parameter results in a modulation
of the critical current Ic ∝ |Ψ|, where a minimum of Ic is expected whenever the order
parameter switches sign [14, 15]. Taking only trajectories perpendicular to the contacts
(δk = δkx̂, kF = kFx̂), a JJ with length L will display minima in Ic when Lδk = (2N+1)π/2,
with N = 0,1,2... The condition for the first minimum (N = 0) can be expressed as a res-
onance condition in terms of the Zeeman and ballistic Thouless energy as EZ = πETh

giving:

gµBB =πħ
2
p

2πn

m∗2L
. (4.1)

The 0−π transition therefore depends on three experimentally accessible parameters:
1) applied magnetic field, 2) length of the JJ and 3) carrier density. In the following, we
demonstrate independent control of each of these parameters, allowing for a complete
study of the free energy landscape of the junctions.

4.5. MAGNETIC FIELD-DRIVEN 0−π TRANSITIONS

We start by varying By, while n (controllable by Vg) and L remain fixed. The orientation
of the magnetic field reflects the Fermi surfaces described, and avoids unwanted geo-
metric effects [41]. Figure 4.2a shows the expected oscillation of Is with increasing By,
displaying two distinct minima at By = 470 mT and By = 1250 mT (see Supplementary
Note 4 for details about magnetic field alignment). This behavior is consistent with a
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Figure 4.2: Magnetic field-driven 0−π transitions. a, Variation of the switching current, Is,
with in-plane magnetic field, By, at Vg = 0 V for the same JJ as in Fig. 4.1b,c. Two distinct
revivals of Is are visible at By = 470 mT and 1250 mT, associated with 0−π transitions. The
data is from two cool downs (CDs). The momentum shift, δk/2, of the Fermi surfaces due
to the Zeeman field is sketched in the inset. The solid (dashed) lines depict the situation
at zero (finite) magnetic field, and the arrows represent the spin orientation. b, Is as a
function of By at Vg = 0 V for four JJs with different lengths. For better visibility, Is is
normalized with respect to Is at By = 0 T. Dashed lines indicate B0−π, the field at which
the transition occcurs for each length. The inset shows a linear dependence of B0−π on
1/L, in agreement with ballistic transport. c, Is vs. By at three different Vg for the JJ with
L = 1.1 µm. B0−π shifts to lower values of By with more negative gate voltages. Is vs. Vg at
By = 400 mT shows a non-monotonic behavior as displayed in the inset. The length and
gate dependence of panel b and c are in qualitative agreement with Eq. 4.1.

magnetic field driven 0−π transition, as discussed above, where the first (second) mini-
mum corresponds to a transition of the JJ state from 0 to π (π to 0). This interpretation is
corroborated by the occurrence of the second minimum at a field value which is approx-
imately three times larger than the first. Note that this is incompatible with a Fraunhofer
interference pattern that might arise from the finite thickness of the 2DEG. Furthermore,
taking into account the gate dependence of the transition and other geometric consid-
erations (discussed in detail in the Supplementary Note 5) allows us to conclusively rule
out such a mechanism for the supercurrent modulation.

Next, we investigate how the length of the JJ influences B0−π, the magnetic field at which
the transition occurs. Figure 4.2b presents the Is oscillation for JJs with four different
lengths, showing that B0−π is systematically reduced for increasing L. Plotting B0−π with
respect to 1/L (inset of Fig. 4.2b), we find a linear dependence as expected from Eq. 4.1.
The transition points are therefore determined by the ballistic ETh, consistent with the
conclusions from Fig. 4.1d. Finally, we check the dependence of the transition on the
electron density. In Fig. 4.2c, we plot Is versus By for different gate voltages using a JJ
with L = 1.1 µm. As Vg is lowered, B0−π shifts to smaller values, again in qualitative agree-
ment with Eq. 4.1. Interestingly, above a certain magnetic field the state of the JJ (0 or π)
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Figure 4.3: Gate-driven 0−π transitions. a-d, dV /dI as a function of I and Vg for sev-
eral By as indicated. From By = 325 mT onward, a gate-driven 0−π transition becomes
evident, characterized by a re-emergence of Is with decreasing Vg. As expected, the tran-
sition shifts to higher gate voltages with increasing By (see SI for sweeps at additional val-
ues of the magnetic field). e, Line-cuts through panel d at I = 50 nA (black) and I = 0 nA
(red). The low bias trace reveals the 0−π transition whereas the high bias trace shows a
monotonic behavior.

becomes gate-dependent. For example at By = 400 mT, the junction changes from a 0-
JJ (Vg = 0 V) to a π-JJ (Vg = −0.4 V), with a transition at Vg = −0.2 V. This indicates the
feasibility of tuning the JJ into the π-state using gate voltages, while the magnetic field
remains fixed.

4.6. GATE-DRIVEN 0−π TRANSITIONS
These gate-driven transitions are demonstrated in Fig. 4.3a-d, which show a sequence
of I −Vg plots for increasing in-plane magnetic fields. At By = 250 mT, Is displays a
monotonic reduction with decreasing Vg. At a higher magnetic field, By = 325 mT, Is



4.7. CONSTRUCTION OF THE 0−π PHASE DIAGRAM

4

45

reveals a markedly different behavior, whereby the supercurrent first decreases and then
(at Vg =−0.32 V) shows a clear revival, indicative of a gate-driven 0−π transition, where
the resonance condition (EZ =πETh) is achieved by tuning the electron density. Increas-
ing By further, continuously moves the transition point to higher gate voltages (larger
density), perfectly in line with expectations for a 0−π transition. Figure 4.3e shows two
line-cuts from Fig. 4.3d. At zero current bias, dV /dI shows a clear peak, indicative of a re-
entrance of the supercurrent due to the the 0−π transition. However, at high bias, dV /dI
increases monotonically, similar to the response at zero magnetic field. This eliminates
trivial interference effects as an explanation for the supercurrent modulation, where one
would expect a correlation between the two curves [36, 42, 43].

4.7. CONSTRUCTION OF THE 0−π PHASE DIAGRAM

In contrast to the field-driven measurements (Fig. 4.2), controlling the transition with
a gate avoids the need for time-consuming field alignment procedures, thus allowing
us to efficiently explore a large parameter space in magnetic field and gate voltage. We
now combine these results to construct a 0−π phase diagram of the JJ. The combina-
tion of a high quality 2DEG and relatively long devices results in well defined magneto-
resistance oscillations, allowing us to directly extract the electron density in the junction.
Figure 4.4a shows the Landau fan diagram in perpendicular magnetic fields, Bz, from
which we identify the filling factors, ν= nh/eBz (Fig. 4.4b), and thereby obtain the n vs.
Vg curve (Fig. 4.4c). We then plot all the transition points in Fig. 4.4d. The axes repre-
sent the two important energy scales in the system (By ∝ EZ and

p
n ∝ ETh), thereby

highlighting the 0 and π regions in the phase space. Finally, we compare our results with
the theory of ballistic JJs represented by Eq. 1. To do so, we independently extract the
effective mass (see Supplementary Note 7), m∗ = (0.022±0.002)me, and fit the data to
a single free parameter, g y (the in-plane g-factor), giving g y = 25±3 in good agreement
with previous measurements on similar InSb quantum wells [28].

4.8. CONCLUSION

Our work provides the first evidence of induced superconductivity in high quality InSb
2DEGs and demonstrates the creation of robust, gate-tunable π-Josephson junctions.
We show that the 0−π transition can be driven both by magnetic fields and gate voltages.
The significant region of phase space where the π-JJ is stable could prove advantageous
in the study of topological superconductivity in planar JJs [12, 13, 20, 21]. Moreover,
these large SOI 2DEGs, in conjunction with our magnetic field compatible supercon-
ducting electrodes and clear Landau quantization, would also be excellent candidates to
realize topological junctions in the quantum Hall regime [7]. Finally, the ability to control
the ground state between 0 and π states using gates is analogous to recent experimen-
tal results in ferromagnetic JJs [44], and could possibly serve as a semiconductor-based
platform for novel superconducting logic applications [45]. We therefore establish InSb
2DEGs as a new, scalable platform for developing hybrid superconductor-semiconductor
technologies.
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Figure 4.4: 0−π phase diagram. a, Landau fan diagram for the JJ with L = 1.1µm, showing
the transresistance (dR/dVg) as a function of Bz and Vg. The symbols indicate positions
of integer filling factors ν at specific values of Vg. b, Dependence of ν on 1/Bz along with
linear fits used to extract the electron density, n(Vg), presented in c. d, Phase diagram
of the 0−π transition as a function of By ∝ EZ and

p
n ∝ ETh, containing all data points

obtained from both field-driven (red) and gate-driven (black) 0−π transitions. For the
error analysis, see SI. We fit the data to Eq. 4.1 (blue line) with g y as a fitting parameter.

4.9. METHODS

4.9.1. WAFER GROWTH

InSb-based 2DEGs were grown on semi-insulating GaAs (100) substrates by molecular
beam epitaxy in a Veeco Gen 930 using ultra-high purity techniques and methods as de-
scribed in Ref. [46]. The layer stack of the heterostructure is shown in Supplementary
Fig. 1a. The growth has been initiated with a 100nm thick GaAs buffer followed by a
1µm thick AlSb nucleation layer. The metamorphic buffer is composed of a superlattice
of 300nm thick In0.91Al0.09Sb and 200nm thick In0.75Al0.25Sb layers, repeated 3 times,
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and directly followed by a 2µm thick In0.91Al0.09Sb layer. The active region consists of
a 30nm thick InSb quantum well and a 40nm thick In0.91Al0.09Sb top barrier. The Si δ-
doping layer has been introduced at 20nm from the quantum well and the surface. The
InxAl1−xSb buffer, the InSb quantum well and the InxAl1−xSb setback were grown at a
temperature of 440 °C under a p(1x3) surface reconstruction. The growth temperature
was lowered to 340 °C, where the surface reconstruction changed to c(4x4), just before
the δ-doping layer, to facilitate Si incorporation [47]. The scanning transmission elec-
tron micrograph of Supplementary Fig. 1b reveals the efficiency of the metamorphic
buffer to filter the dislocations.

4.9.2. DEVICE FABRICATION

The devices are fabricated using electron beam lithography. First, mesa structures are
defined by etching the InSb 2DEG in selected areas. We use a wet etch solution con-
sisting of 560 ml deionized water, 9.6 g citric acid powder, 5 ml H2O2 and 7 ml H3PO4,
and etch for 5 min, which results in an etch depth around 150 nm. This is followed by
the deposition of superconducting contacts in an ATC 1800-V sputtering system. Before
the deposition, we clean the InSb interfaces in an Ar plasma for 3 min (using a power of
100 W and a pressure of 5 mTorr). Subsequently, without breaking the vacuum, we sput-
ter NbTi (30 s) and NbTiN (330 s) at a pressure of 2.5 mTorr, resulting in a layer thickness
of approximately 200 nm. Next, a 45 nm thick layer of AlOx dielectric is added by atomic
layer deposition at 105 °C, followed by a top-gate consisting of 10 nm/170 nm of Ti/Au.
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4.10. SUPPLEMENTARY MATERIAL

4.10.1. WAFER GROWTH AND CHARACTERIZATION

b
b

a

b

a

Figure 4.5: InSb quantum well. a, Layer stack of the InSb/GaAs heterostructure, where
the layer constituents and thicknesses are indicated. b, Scanning transmission electron
micrograph of the structure of Supplementary Fig. 1a obtained in High Angle Annular
Dark Field Mode along the [110] zone axis.

The wafer is characterized by measuring the (quantum) Hall effect in a Hall bar geometry
at T = 300 mK. From a linear fit to the transversal resistance in a magnetic field range up
to 1 T, we extract an electron density n = 2.71 ·1011 cm−2, and by using the longitudinal
resistivity at zero field, we obtain a mobility µ= 146,400 cm2V−1s−1 (see Supplementary
Table I). We calculate the corresponding mean free path to be le = 1.26 µm. In Supple-
mentary Table 1, we also include n, µ and le for the low mobility wafer, obtained from a
quantum Hall measurement on this wafer. Data from the low mobility wafer is shown in
Fig. 1d of the main text.
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High mobility wafer Low mobility wafer

n (cm−2) 2.71 ·1011 2.71 ·1011

µ (cm2/Vs) 146,400 61,500
le (µm) 1.26 0.53

Table 4.1: Electron density, mobility and mean free path for the high and low mobility
wafer, obtained from quantum Hall measurements at T = 300 mK.

4.10.2. MULTIPLE ANDREEV REFLECTIONS AND EXCESS CURRENT
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Figure 4.6: Josephson junction characterization. a, Differential resistance, dV /dI , as a
function of bias voltage, V , showing multiple Andreev reflections. Three dips at V =
2∆, 2∆/2 and 2∆/3 are highlighted. b, Voltage measured as a function of bias current.
The excess current, Iexc, and V = 2∆ are indicated.

To further characterize the superconductivity in our JJs, we study multiple Andreev re-
flections (MAR) in a representative JJ, by measuring its differential resistance, dV /dI , as
a function of applied bias voltage, V . In Supplementary Fig. 4.6a, we observe three dips
in dV /dI , the first, at 2∆, corresponding to the coherence peaks of the superconducting
density of states, and two MAR peaks at 2∆/2 and 2∆/3. From these peaks we extract an
induced superconducting gap∆= 0.9 meV. In addition, we estimate the transparancy of
the same JJ by measuring its excess current, Iexc, and normal state resistance, Rn. This
measurement is shown in Supplementary Fig. 4.6b, where we perform a linear fit in the
high bias region of the I −V curve (V > 2∆) and obtain Iexc = 9 µA and Rn = 50Ω. Using
the OBTK model [48], we find a value of 0.62 for the transparency of the JJ. These trans-
parencies are moderate compared to, for example, hybrid devices made with epitaxial
interfaces between Aluminum and InAs 2DEGs [49]. In fact, recent work has shown that
high quality interfaces can even be made between Aluminum and InSb wires [30, 50, 51].
We expect that similar materials developments with InSb 2DEGs would enable strong



4

50 4. TUNABLE π-JUNCTIONS IN INSB QUANTUM WELLS

proximity coupling, an important requirement for exploring topological superconduc-
tivity in these systems.

4.10.3. WEAK ANTI-LOCALIZATION AND SPIN-ORBIT INTERACTION

ENERGY
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Figure 4.7: Weak anti-localization analysis. Measured longitudinal conductivity differ-
ence, ∆σ, as a function of magnetic field, B , displaying a weak anti-localization peak
around zero field. We fit (red) the data (cyan) using the ILP model and extract the SOI
energy at the Fermi energy,∆SO, from which we calculate the Rashba spin-orbit parame-
terα. The inset shows a schematic of the Hall bar device, indicating its length and width,
and the magnetic field direction.

To obtain an estimate of the typical energy scale associated with the spin-orbit inter-
action, we performed weak anti-localization (WAL) measurements. We use a Hall bar
device (inset Supplementary Fig. 4.7) fabricated on the high mobility wafer (Supple-
mentary Fig. 4.5), and apply magnetic field perpendicular to the Hall bar. The mea-
surement in Supplementary Fig. 4.7 reveals the typical WAL peak around zero field. This
peak is caused by suppression of coherent backscattering at small magnetic fields due
to the spin-orbit interaction. As we expect the Dyakonov Perel scattering mechanism to
be dominating in our high mobility wafer, we use the theory developed by Iordanskii,
Lyanda-Geller and Pikus [52] to fit the data:

∆σ(B)

e2/2πh
= − 1

a
− 2a0 +1+Hs

a1(a0 +Hs −2Hs)
−2ln Htr −Ψ

(
1/2+Hφ

)−3C

+
∞∑

n=1

[
3

n
− 3a2

n +2anHs −1−2(2n +1)Hs

(an +Hs)an-1an+1 −2Hs[(2n +1)an −1]

]
,

whereΨ is the Digamma function, C the Euler constant, and

an = n + 1

2
+Hφ+Hs Htr,φ,s = ħ

4eDBτtr,φ,s
∆SO =

√
2ħ2

τtrτs
,
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with D = vFle /2, and τtr,φ,s the scattering times for elastic, inelastic and spin-orbit scat-
tering, respectively. We find a spin-orbit energy splitting at the Fermi level (∆SO) of
0.93 meV. The Rashba spin-orbit parameter of α = 36 meVÅ is calculated following α =
∆SO/kF, where kF is deduced from a classical Hall measurement. Finally, we compare
∆SO to the Zeeman energy. For a Landé g-factor of 25, ∆SO > EZ up to 640 mT. We are
therefore in the spin-orbit dominated regime for the 0−π transition.

4.10.4. MAGNETIC FIELD ALIGNMENT
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Figure 4.8: Field alignment. a, Differential resistance, dV /dI maps as a function of cur-
rent bias, I , and out-of-plane magnetic field, B ′

z, with increasing in-plane magnetic field,
B ′

y, in steps of 20 mT. We track the central lobe of the interference pattern, labeled by
white dash lines, to obtain Bz,max. b, The B ′

z,max vs. B ′
y dependence showing the small

perpendicular component of B ′
y.

To ensure we are sweeping the magnetic field in the plane of the JJs only, we characterize
the misalignment of our vector magnet axes, B ′

y and B ′
z, used to apply the magnetic field

in-plane and out-of-plane of the JJ, By and Bz. In Supplementary Fig. 4.8a we present a
systematic measurement of the Fraunhofer interference pattern induced by B ′

z with in-
creasing B ′

y. We track the magnetic field at which the central lobe reaches its maximum
Is, B ′

z,max and plot this for all B ′
y in Supplementary Fig. 4.8b. The linear dependence

observed, represents a small misalignment angle of θ = 1.4◦. We take this angle into ac-
count when sweeping the in-plane field, By = cos(θ)B ′

y+sin(θ)B ′
z, and disregard it for the
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out-of-plane direction, Bz = B ′
z.

At larger magnetic fields the patterns become asymmetric. This asymmetry has two pos-
sible origins which we expect to coexist in our samples. The first is the effect of magnetic
vortices which nucleate in our type II superconductor (NbTiN) at moderate magnetic
fields. The second has to do with terms in the Hamiltonian that break mirror symmetry
of the potential in the JJ (e.g., small amounts of disorder at the interface) [53]. To en-
sure that these asymmetries do not influence our extraction of Is or the magnetic field
at which it revives, we performed two separate cooldowns (Fig. 2a in the main text) and
confirmed that the results are in agreement. The large offset observed at zero in-plane
magnetic field is a trivial offset from the magnet power supply which we have corrected
for in Fig. 1c of the main text.

4.10.5. IN-PLANE INTERFERENCE CONSIDERATIONS

Figure 4.9: Schematic of quantum well. Cross-sectional illustration of the InSb quantum
well for a JJ with L = 1.1 µm and d = 30 nm. The image is drawn to scale and the in-plane
magnetic field direction, By is indicated.

We observe a switching current, Is modulation in a JJ with L = 1.1 µm, with minima
at 470 mT and 1250 mT, which are attributed to Zeeman induced 0−π transitions. One
might be inclined to believe that this modulation is caused by an in-plane Fraunhofer in-
terference effect, due to the finite thickness (d = 30nm) of the InSb quantum well. The Is

minima of such a Fraunhofer pattern are expected to occur at Bnode = NΦ0/A, whereΦ0

is the magnetic flux quantum, A = d ·L is the cross-sectional 2DEG area and N = 1,2,3, ....
The second minimum should thus occur at twice the value of the first, which is not the
case here. Moreover, based on the estimated cross-sectional area of the JJ (see Supple-
mentary Fig. 4.9), one would expect the first node to be at 60 mT, inconsistent with the
observation. In fact, it has been shown [54, 55] that a oscillatory interference pattern
is not expected at all in such an SNS junction with L ≫ d . Finally, for an in-plane in-
terference effect one expects the B value at which the Is minima occur to increase for
more negative gate voltages, since the wavefunction is then squeezed and d effectively
reduced. However, we observe the opposite behavior (i.e., the minima move to lower B),
as expected for Zeeman-induced 0−π transitions. To conclude, we rule out an in-plane
interference effect as a possible explanation for the supercurrent modulation.

We also performed measurements of the normal state resistance (Rn) as a function of in-
plane magnetic field By to rule out possible magnetoresistance (MR) effects as a cause
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Figure 4.10: In-plane magnetoresistance. a, Normal state resistance (Rn) of JJ (L =
1.1 µm) as a function of By at two different gate voltages. b, Calculated MR (in %).

for the observed modulation in supercurrent (see Supplementary Fig. 4.10). To elimi-
nate any remnant effects of superconductivity, the measurements are performed at high
temperature (4 K) and high DC current bias (90 µA). We see a small MR (a few %) only
at the highest density (Vg = 0 V), however there is no correlation with the supercurrent
modulation (see Fig. 2 in main text), which changes by almost two orders of magnitude
in the same magnetic field range.

4.10.6. ADDITIONAL GATE-DRIVEN 0−π TRANSITIONS AND ERROR

ANALYSIS

Here, we present additional data of the gate-driven 0−π transitions in the JJ with L =
1.1 µm. The gate voltages of the 0−π transitions presented in the phase diagram are
extracted from the plots in Supplementary Fig. 4.11. To systematically extract the value
where gate-driven 0−π transition occurs and its error, we use a fit of the linetraces from
Supplementary Fig. 4.11, at zero I . At the transition point, a peak in dV /dI indicates the
0−π transition. As an example, we show a single linetrace at 310 mT in Supplementary
Fig. 4.12a, and extract the standard deviation, σ, based on a Gaussian fit of the peak.
Subsequently, we used the gate to density mapping to convert σ to the error bar shown
in the phase diagram. This fitting procedure is used for all magnetic fields (Supplemen-
tary Fig. 4.12b).
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Figure 4.11: Additional gate-driven 0−π transitions. Differential resistance, dV /dI , as a
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By, indicated.
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Figure 4.12: Transition point extraction and error analysis. a-b, Linetraces of the differ-
ential resistance, dV /dI , in the JJ with L = 1.1 µm as a function of gate voltage, Vg, for
magnetic fields, By of 310 mT for a, and as indicated for b, respectively. The peaks ob-
served are fitted with a Gaussian curve, to obtain the standard deviation, σ. In b the
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4.10.7. EFFECTIVE MASS MEASUREMENT

To extract the effective mass of the electrons in the InSb 2DEG, the temperature depen-
dence of the Shubnikov-de Haas (SdH) oscillation amplitude is measured in a Hall bar
geometry. Supplementary Figure 4.13a shows the magnetoresistance oscillations after
the subtraction of a polynomial background, ∆ρxx, as a function of filling factor, ν, for
temperatures ranging from T = 1.73 K to T = 10 K. At a fixed filling factor, the effective
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Figure 4.13: Temperature dependence of Shubnikov-de Haas oscillations and fitting
for effective mass. a, Shubnikov-de Haas oscillation amplitude after polynomial back-
ground subtraction as a function of filling factor for temperatures T = 1.73−10 K. The
symbols denote points that are used to extract the effective mass. b, Temperature depen-
dence of the oscillation amplitude (symbols). The solid lines are fits to the data (using
Eq. 4.2) in order to obtain the effective mass.

mass, m∗, can be obtained from a fit to the damping of the SdH oscillation amplitude
with increasing temperature, using the expression

∆ρxx(T )

ρxx,0(T )
∝ αT

sinh(αT )
, (4.2)

whereρxx,0(T ) is the temperature-dependent low-field resistivity andα=πkBm∗ν/(ħ2n).
Supplementary Figure 4.13b shows such fits to the oscillation minima and maxima of
ν= 10 and ν= 12, resulting in a mean effective mass of m∗ = (0.022±0.002)·me , with me

being the free electron mass.
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Topological superconductivity can be engineered in semiconductors with strong spin-orbit
interaction coupled to a superconductor. Experimental advances in this field have often
been triggered by the development of new hybrid material systems. Among these, two-
dimensional electron gases (2DEGs) are of particular interest due to their inherent design
flexibility and scalability. Here we discuss results on a 2D platform based on a ternary
2DEG (InSbAs) coupled to in-situ grown Aluminum. The spin-orbit coupling in these
2DEGs can be tuned with the As concentration, reaching values up to 400 meVÅ, thus ex-
ceeding typical values measured in its binary constituents. In addition to a large Landé
g-factor∼ 55 (comparable to InSb), we show that the clean superconductor-semiconductor
interface leads to a hard induced superconducting gap. Using this new platform we demon-
strate the basic operation of phase-controllable Josephson junctions, superconducting is-
lands and quasi-1D systems, prototypical device geometries used to study Majorana zero
modes.
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5.1. INTRODUCTION
Topological phases of matter are currently a subject of intense research. Following early
theoretical proposals [1, 2], materials with large spin-orbit interaction (such as InAs
and InSb) coupled to superconductors have emerged as a promising platform to engi-
neer topological superconductivity in the form of Majorana zero modes (MZMs). In this
context, one-dimensional nanowires have been studied extensively over the years [3–5].
More recently, several efforts have been focused on engineering MZMs in two-dimensional
electron gases (2DEGs). Not only do 2DEGs provide a scalable platform for future devel-
opment of topological qubits, but their inherent flexibility allows for the realization of
more complex devices. The versatility of the 2DEG platform can be seen in the vari-
ety of experiments performed on quasi-1D structures [6], superconducting islands [7],
multi-terminal Josephson junctions (JJs) [8], and phase-biased JJs [9, 10], all of which
are promising architectures to create topological systems. Many of these studies have
been performed on InAs 2DEGs where it is possible to create a pristine interface between
the superconductor Aluminum (Al) and the 2DEG allowing for a strong superconducting
proximity effect [11, 12].

The InSb 2DEG is another appealing platform, primarily due to its significantly larger
g-factor and spin-orbit coupling. Whereas the former allows the hybrid system to enter
the topological regime at a lower magnetic field, the latter is crucial in determining the
topological gap that protects the MZMs. These 2DEGs have recently been proximitized
by ex-situ superconductors [13], however there exist no reports of InSb-based hybrid
systems with in-situ grown superconductors. This could be related to the band offset at
the InSb-Al interface, which (unlike InAs) prevents an efficient accumulation of charge
carriers and hence induced superconductivity [14]. It would thus be ideal to have a ma-
terial system with the desirable properties of both InAs and InSb.

In this work we explore such a new hybrid material: ternary (InSbAs) 2DEGs coupled
to in-situ grown Al. Using magneto-transport experiments we demonstrate a large g-
factor (∼ 55) and exceptionally strong spin-orbit coupling exceeding the values of either
InAs or InSb. In addition, the pristine semiconductor-superconductor interface leads
to a hard induced superconducting gap that is revealed by spectroscopy measurements.
Furthermore, using these ternary 2DEGs we demonstrate the stable operation of proto-
typical devices studied in the context of MZMs: phase-controllable JJs, superconducting
islands, and quasi-1D structures. Our results show that InSbAs/Al 2DEGs offer the com-
bined advantages of their binary constituents and are therefore a promising platform to
realize topological superconductivity.

5.2. MATERIAL GROWTH
InSb1−x Asx 2DEGs with varying As concentration, x, are grown by molecular beam epi-
taxy (MBE) on undoped, semi-insulating GaAs (100) substrates (see Fig. 5.1a for a schematic
of the layer stack). The growth starts with a 100 nm GaAs buffer layer, directly followed
by a 1µm thick AlSb nucleation layer [15] and a 4µm thick Al0.1In0.9Sb layer. The lat-
ter forms a closely matched pseudo-substrate for the InSb1−x Asx growth and the bottom
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Figure 5.1: Hybrid Al/InSbAs heterostructures. a, Layer stack of the Al-InSb1−x Asx hy-
brid heterostructures. b, Bright-field scanning transmission electron micrograph of the
Al-InSb0.870As0.130 interface along the [110] zone axis of the semiconductor. Red lines in-
dicate the boundaries of the Aluminum. c, Schematic of a Hall bar that is used to extract
the 2DEG properties.

barrier of the quantum well [16]. The As concentration in the InSb1−x Asx is controlled by
the growth temperature and the As flux. In this study, heterostructures with x = 0, 0.053,
0.080, 0.130, 0.140 and 0.240 are grown. The semiconductor growth is terminated by the
deposition of 2 monolayers (ML) InAs, serving as a screening layer to prevent intermix-
ing between the semiconductor structure and the superconducting Al layer [17]. After
the semiconductor growth, the heterostructures are transferred under ultra-high vac-
uum to a second MBE chamber to deposit 7 nm of Al, using methods described in [17].
Figure 5.1b displays a bright field scanning transmission electron micrograph focusing
on the Al/InSb1−x Asx interface for x = 0.130. The interface appears sharp with a slight
change of atomic contrast that is attributed to the relaxed InAs screening layer [17]. Fur-
ther details about the growth process can be found in the Supplementary Information
(SI).
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5.3. SEMICONDUCTING PROPERTIES

We characterize the semiconducting properties of the InSbAs 2DEGs by removing the Al
in the active device area to fabricate Hall bars. After the Al removal, the 2DEG is etched
in unwanted areas, followed by the deposition of a SiNx dielectric layer. Lastly, a Ti/Au
top-gate is evaporated and used to control the electron density in the 2DEG (see Fig. 5.1c
for a schematic). We find peak mobilities of 20000−28000cm2/Vs (see SI for mobility-
density curves, and further details about the device fabrication).

To study the spin-orbit coupling in these 2DEGs, we measure the longitudinal conduc-
tivity, σxx, in perpendicular magnetic fields, B⊥, at 300mK using standard lock-in tech-
niques. The simultaneously measured transversal Hall resistance allows us to deduce
the density, n, in the 2DEG at every gate voltage, Vg. Figure 5.2a shows the magneto-
conductivity correction, ∆σxx(B⊥) = σxx(B⊥)−σxx(0), at Vg = 0V for x = 0, 0.053, 0.130
and 0.240, where the individual curves are offsetted for clarity. We observe clear weak
anti-localization (WAL) peaks that are caused by the suppression of coherent backscat-
tering due to spin-orbit coupling. Since we expect the linear Rashba term to be the domi-
nating spin-orbit contribution in these asymmetric quantum wells, we fit the WAL peaks
with the Rashba-dominated Iordanskii, Lyanda-Geller, and Pikus (ILP) model [18, 19]
(grey curves in Fig. 5.2a). This allows us to extract the spin-orbit length, lso = p

Dτso,
where D = vFle/2 is the diffusion constant. Here, τso is the spin-orbit scattering time, vF

the Fermi velocity and le the mean free path. The linear Rashba parameter is given by
α=∆so/2kF, where ∆so =

√
2ħ2/τsoτe is the spin-split energy, kF the Fermi wave vector,

and τe the elastic scattering time.

As shown in Fig. 5.2a, the ILP model fits the experimental data well. The resulting linear
Rashba parameter for the four different As concentrations is plotted in the inset. It is
striking that α increases monotonically with increasing As concentration. Compared to
the value for pure InSb (α ≈ 100meVÅ), it is noteworthy that for the higher As concen-
trations, the linear Rashba parameter is 3-4 times larger (300−400 meVÅ). We proceed
by measuring WAL as a function of gate voltage (Vg) for the different As concentrations.
In Fig. 5.2b and 5.2c we show lso and α plotted against Vg (see SI for the same plots as a
function of electron density). The trend of decreasing (increasing) lso (α) with increasing
As concentration persists also when comparing at other gate voltages. We note, however,
that specifically for x = 0.240, the spin-orbit coupling becomes so large that lso is smaller
than le. This might lead to inaccuracies in the extracted fit parameters as the ILP model
is valid when le is the smallest length scale.

The systematic increase in spin-orbit coupling with As concentration can arise from a
combination of several effects. Firstly, bandstructure calculations of InSb1−x Asx show
that the Rashba parameter is strongly influenced by the As concentration [20, 21], which
has been observed in experiments on ternary nanowires [22]. Secondly, electric fields
across the 2DEG can also influence the spin-orbit interaction. We note that even at
Vg = 0V, α increases monotonically with x, suggesting that the external electric field
from the applied gate voltage is not the primary source of the enhancement. However
the internal field (generated at the 2DEG-gate dielectric interface) could be a strong
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Figure 5.2: Large and tunable spin-orbit coupling. a, Magneto-conductivity correction
at Vg = 0V for the different InSb1−x Asx 2DEGs. The x = 0 curve is measured at Vg =
0.2V due to a high resistance at Vg = 0V. The gray lines are ILP fits to the weak anti-
localization data. In the inset the extracted linear Rashba coefficient is plotted for the
four As concentrations, showing a monotonic increase with increasing As concentration.
For the higher As concentrations, α is 3-4 times larger as compared to the value for pure
InSb (x = 0). b, Spin-orbit length plotted against Vg. c, α as a function of Vg. lso (α)
decreases (increases) with increasing As concentration when comparing at a fixed gate
voltage.

function of the As concentration. We indeed observe that the nominal density in the
2DEG (density at Vg = 0V) increases systematically with As concentration (see SI), in-
dicating a stronger downward band bending at the dielectric-semiconductor interface
resulting in an increased electric field. While from these studies it is difficult to disen-
tangle the effects of the bulk semiconductor from the interfaces, similar experiments on
deep InSbAs quantum wells would shed more light on the origins of the enhanced spin-
orbit interaction.

Having established strong spin-orbit coupling in InSb1−x Asx 2DEGs, we proceed by mea-
suring the perpendicular g-factor, g∗. By comparing the temperature dependence of
Shubnikov-de Haas oscillations for an odd-even filling factor couple, an expression for
g∗ can be obtained [23]. For x = 0 we find g∗ = 47.8± 2.8. The same analysis is done
for x = 0.130, where we obtain g∗ = 54.6±3.1 (see SI for details about the data analysis,
as well as effective mass measurements for the two As concentrations). This shows that
besides strong spin-orbit coupling, InSbAs 2DEGs also possess a large g-factor that is
comparable to the one of pure InSb.

5.4. INDUCED SUPERCONDUCTIVITY

Given that the semiconducting properties of InSbAs 2DEGs are favorable to realize topo-
logical phases, we now demonstrate that these 2DEGs also have excellent coupling to Al.
To do so, we use devices as shown in the false-colored scanning electron micrograph
(SEM) in Fig. 5.3a. This device can either be operated as a gate-tunable JJ (gray circuit)
or a spectroscopy device (black circuit) to measure the local density of states. All devices
are measured at a temperature of 30 mK.
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Figure 5.3: Hard induced superconducting gap. a, False-colored SEM of a combined JJ
and tunneling spectroscopy device. A cross-sectional schematic the JJ part is shown in
the bottom. All devices have a fixed JJ length of L ≈ 150nm. b, Differential resistance
as a function of applied current bias and perpendicular magnetic field for the x = 0.053
JJ. The Fraunhofer interference pattern signifies a uniform current distribution in the JJ.
c, Differential resistance as a function of applied current bias and gate voltage for the
same JJ, showing that the switching current, Is, can be fully suppressed. d, Differential
conductance as a function of splitgate voltage and applied voltage bias for x = 0.053 and
x = 0.130. The color scale has been saturated to increase the visibility of the tunneling
regime. For both As concentrations, the induced superconducting gap is visible (region
of suppressed conductance), stable over a large range in Vg,S. e, Linecuts at the indicated
positions (gray markers) on linear and logarithmic scale. The size of the induced gap is
similar for both As concentrations. The in-gap conductance is suppressed by 2-3 orders
of magnitude as compared to the out-of gap conductance, indicating a hard induced
gap.

It is important to note that we do not see any induced superconductivity for pure InSb,
presumably due to an unfavorable band alignment at the Al-InSb interface. In stark con-
trast, all the InSbAs 2DEGs (irrespective of As concentration) have excellent coupling to
the superconductor, where all JJs display supercurrents and pronounced multiple An-
dreev reflections (see SI). In Fig. 5.3b we show a representative Fraunhofer interference
pattern for the JJ with x = 0.053, where the black regions correspond to zero resistance.
The size of the switching current, Is, can be controlled by the gate voltage, as demon-
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strated in Fig. 5.3c for the same As concentration. Upon lowering Vg, Is shrinks and
correspondingly, the normal-state resistance of the JJ, Rn, increases.

Clean and transparent interfaces are crucial for the realization of MZMs as they allow
the proximitized semiconductor to obtain a hard induced superconducting gap with a
vanishing in-gap density of states. It is therefore important to measure the density of
states in the proximitized 2DEG directly. To this end, we operate the devices shown in
Fig. 5.3a as spectroscopy devices. We apply a voltage bias to the left normal contact, and
measure the current flowing through the Al lead, while energizing the splitgates with a
negative voltage, Vg,S, to create a barrier. In the tunneling regime the measured con-
ductance is proportional to the density of states in the proximitized 2DEG. In Fig. 5.3d
we present tunneling spectroscopy maps for x = 0.053 and x = 0.130. In both measure-
ments we note the emergence of a region with suppressed conductance, reflecting the
induced superconducting gap. The gaps persist over an extended range in Vg,S with a
slight dependence of the gap size on the out-of-gap conductance. In Fig. 5.3e we show
two representative linecuts in the tunneling regime. We find that the size of the induced
gap is similar for both As concentrations (∆∗ ≈ 220µeV). Turning to the linecuts on the
logarithmic scale and comparing the out-of-gap conductance with the in-gap conduc-
tance, we see that the in-gap conductance is suppressed by 2-3 orders of magnitude for
both As concentrations. This confirms the excellent Al-2DEG interface.

5.5. PROTOTYPICAL MAJORANA DEVICES
Using the InSbAs/Al hybrid platform we realize three prototypical device architectures
used to study MZMs: phase-controllable JJs, superconducting islands and quasi-1D su-
perconducting strips. Figure 5.4a shows false-colored SEMs of a JJ embedded in a su-
perconducting loop. A perpendicular magnetic field, B⊥, penetrating through the loop
can be used to tune the phase difference across the JJ. Split gates are positioned at the
top and bottom edge of the JJ to perform tunneling spectroscopy at both ends of the
phase-controllable JJ. In Fig. 5.4b we show spectroscopy maps at the top (top panel)
and bottom (bottom panel) of the JJ, with representative linecuts shown in Fig. 5.4c. In
both cases we observe a clear flux-dependent modulation of the gap, consistent with the
phase modulation expected for Andreev bound states. Such three-terminal devices are
important to check for correlations between the two ends of the JJ, when tuned into the
topological regime.
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Figure 5.4: Prototypical Majorana devices. a, False-colored SEMs of a phase-biased JJ
before (left) and after (right) gate deposition. The split gates at the top and bottom
edge of the JJ are used to perform tunneling spectroscopy at both ends of the JJ. This
device is fabricated on a 2DEG with x = 0.080. b, Differential conductance as a function
of voltage bias applied to the top contact and perpendicular magnetic field while the
bottom tunneling contact is floating (top panel). The bottom panel shows the tunnel-
ing spectroscopy map as a function of bottom voltage bias and perpendicular magnetic
field (top tunneling contact floating). For both measurements the splitgates are fixed at
Vg,S1 = −2.36V, Vg,S2 = −1.36V and Vg,S3 = Vg,S4 = −1.48V. c, Linecuts from b at the in-
dicated positions. d, SEMs of a superconducting island before (top) and after (bottom)
gate deposition, fabricated on a 2DEG with x = 0.140. The two tunnel gates are used to
tune the transmission between the leads and the island. The central gate depletes the
surrounding 2DEG and changes the charge occupancy of the island. e, Differential con-
ductance at fixed tunnel gate voltages (Vg,T1 =−2.157V, Vg,T2 =−2.052V) as a function of
applied voltage bias and central gate voltage. 2e-periodic Coulomb oscillations are visi-
ble at V = 0mV and 1e-periodic Coulomb oscillations at high biases. f, Linecuts from e
at the indicated positions. g, SEMs of a quasi-1D grounded superconducting strip before
(top) and after (bottom) gate deposition. The left gate is used to create a tunnel barrier
between the bulk Al contact and the superconducting strip, and the central gate depletes
the surrounding 2DEG. This device is fabricated on a 2DEG with x = 0.140. h, Differen-
tial conductance at fixed gate voltages (Vg,T = −3.96V, Vg,C = −4.40V) as a function of
applied voltage bias and parallel magnetic field. i, Linecuts from h at the indicated posi-
tions.
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A second approach to create MZMs is based on a floating narrow strip of superconduc-
tor, a superconducting island (see Fig. 5.4d). Here two tunnel gates are used to tune the
transmission between the bulk Al contacts and the island. The central gate depletes the
2DEG in areas that are not covered with Al, and changes the charge occupancy on the
island. In Fig. 5.4e we show a differential conductance map at fixed tunnel gate voltages,
Vg,T, varying the applied voltage bias, V , and the central gate voltage, Vg,C. At V = 0mV
(see also gray linecut in Fig. 5.4f) we observe Coulomb peaks that have twice the spac-
ing as compared to the Coulomb peaks at high biases (black linecut in Fig. 5.4f). The
Coulomb peaks at V = 0mV reflect 2e-periodic Cooper pair transport through the su-
perconducting island, while at high biases, quasiparticles with 1e charge are allowed to
tunnel through the island.

Another strategy to study MZMs employs a grounded narrow strip of superconductor
(see Fig. 5.4g). The narrow gate is used to define a tunnel barrier between the bulk
Al contact and the quasi-1D strip, and the central gate depletes the remaining exposed
2DEG. In Fig. 5.4h we present a tunneling spectroscopy map at fixed gate voltages as
a function of applied voltage bias, V , and magnetic field, B∥. B∥ is oriented along the
superconducting finger. Two representative linecuts are shown in Fig. 5.4i. Whereas at
B∥ = 0T we observe a hard induced superconducting gap (note that the gap size is dou-
bled due to the superconducting contact), a zero energy state emerges around B∥ = 0.7T.
While these results are promising, further experiments are required to comment on the
origin of these states.

5.6. CONCLUSION

In conclusion, we have shown that InSbAs 2DEGs offer the combined advantages of the
more commonly studied binary materials. In addition to a large g-factor, they have ex-
cellent coupling to in-situ grown Aluminum. Furthermore, the spin-orbit coupling in
these ternary 2DEGs is significantly stronger than in either InAs or InSb. Using this hy-
brid system, we realize distinct device architectures that can be used to study topological
superconductivity.
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5.7. SUPPLEMENTARY MATERIAL

5.7.1. WAFER GROWTH

InSbAs quantum well heterostructures are grown in a Veeco Gen 930 molecular beam
epitaxy (MBE) system equipped with valved crackers for As and Sb, and effusion cells for
Ga, In, and Al. The growths are performed on GaAs (100) substrates with a 0.5◦ miscut
toward the (111)B crystalline direction to minimize surface roughness [24]. The growth
is initiated with a 100 nm thick GaAs buffer layer, directly followed by a 1µm thick AlSb
layer and a 4µm thick Al0.1In0.9Sb layer that also serves as bottom barrier for the InSbAs
quantum wells. The AlSb and AlInSb layers help accommodate the large lattice mis-
match between the GaAs substrate and InSbAs by forming a pseudo-substrate on which
InSbAs can be coherently strained.

The growth rate for all the semiconducting layers is kept at roughly 0.5 ML/s, under
group V element rich conditions. The incorporation of As and the resulting alloy content
of the InSbAs quantum well is controlled by the growth temperature and the Sb/As flux
ratio. The growth temperature is monitored by a BandiT spectrometer through black-
body radiation fitting. For the x = 0.053, 0.130 and 0.240 samples, the growth temper-
atures were 445 ◦C, 477 ◦C and 483 ◦C, respectively. While the Sb flux was kept around
4.2×10−7 Torr for all three samples to maintain group V overpressure, the As flux changed
from 4.2×10−6 Torr (x = 0.053 and 0.130) to 1.1×10−5 Torr (x = 0.240). The semiconduc-
tor growth terminates under As rich conditions with the epitaxy of 2 ML InAs to prevent
interdiffusion between the quantum well and the superconducting layer on top [17].

The heterostructures are then transferred under ultra-high vacuum to a Veeco 620 MBE
system equipped with an Al effusion cell, and a quartz crystal monitor to determine the
growth rate. Inside this MBE chamber, a moveable cryocooler is used to contact and cool
the wafers down to liquid nitrogen temperature within a few hours [17]. After 6 hours of
cooling, a 7 nm thin layer of Al is deposited on the semiconductor heterostructure with a
typical growth rate of 0.3 Å/s. Immediately after the Al deposition, the samples are trans-
ferred into another chamber where they are oxidized for 15 min under an O2 pressure of
5×10−5 Torr to stabilize the Al films [25].

High-resolution X-ray diffraction (HRXRD) measurements were performed to evaluate
the As concentration, x, of the InSb1−x Asx quantum wells and reciprocal space maps
were acquired to assess the strain of these layers. These measurements were performed
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Figure 5.5: a, Asymmetric (115) reciprocal space map for the InSb0.760As0.240 quantum
well heterostructure. b, High-resolution x-ray diffraction 2θ−ω scans obtained along
(004) for the InSb1−x Asx quantum well heterostructures with different As concentra-
tions.

using a X’pert PANalytical diffractometer with a copper X-ray tube operating at a wave-
length λ= 1.5406Å. Asymmetric (115) reciprocal space maps (averaged at 2 opposite az-
imuth anglesφ= 0◦ and 180◦) confirm that the InSb1−x Asx layers are coherently strained
for the largest investigated composition x = 0.240, as shown in Fig. 5.5a, where the InS-
bAs peak is along the same red dashed vertical line as the 100 % relaxed AlInSb peak.
Similar reciprocal space maps were obtained for the heterostructures with x = 0.053 and
0.130, confirming that InSbAs quantum wells are coherently and fully strained in the in-
vestigated composition range. 2θ−ω scans are presented in 5.5b. The peak positions
of the coherently strained InSb1−x Asx layers give the As concentration for each sample,
using the 4 micron fully relaxed Al0.1In0.9Sb layer as the substrate in the analysis.

5.7.2. DEVICE FABRICATION

The processing of Sb-based 2DEGs in proximity to Aluminum is more challenging than
InAs/Al systems. This is due to the potential intermixing of Al and Sb, which becomes
more severe at elevated temperatures. We therefore need to ensure that all the process-
ing steps (as described below) are performed at as low a temperature as possible. This
includes room temperature “baking” of the resist for every lithography step, and low
temperature atomic layer deposition.
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The devices presented in the main text are fabricated using electron beam lithography.
First, the Al and the 2DEG is etched in unwanted areas. The Al etch is performed in
Transene D etchant at a temperature of 48.2 ◦C for 9 s. Subsequently, using the same
PMMA mask, the 2DEG is etched in a wet etch solution consisting of 560 ml deion-
ized water, 9.6 g citric acid powder, 5 ml H2O2 and 4 ml H3PO4. We etch for 2 min, re-
sulting in an etch depth around 100 nm. A second Al etch is performed to define the
normal regions using Transene D etchant at a temperature of 38.2 ◦C for 17 s. Next, a
60 nm thick SiNx dielectric layer is sputtered for the Hall bars and the Josephson junc-
tion/spectroscopy devices. For the superconducting island and the quasi-1D supercon-
ducting strip we use a 40 nm thick AlOx dielectric deposited by atomic layer deposition
at 40 ◦C. Finally, top-gates are deposited by evaporating 10 nm/190 nm of Ti/Au.

5.7.3. MOBILITY AND DENSITY
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Figure 5.6: a, Electron density plotted against the gate voltage for all As concentrations.
At a fixed gate voltage, the electron density increases monotonically with x. b, Electron
mobility as a function of n.

The InSb1−x Asx 2DEGs are characterized by measuring the Hall effect in a gated Hall bar
geometry at T = 300mK. From a linear fit to the transversal resistance in a magnetic
field range up to ±0.5T, we extract the electron density, n, at every gate voltage, Vg. Fig-
ure 5.6a shows n plotted against Vg for all As concentrations, x. At a fixed gate voltage,
the electron density increases systematically with x. The nominal density, n(Vg = 0V),
increases from 0.15×1012 cm−2 for x = 0, to 1.35×1012 cm−2 for x = 0.240. This suggests
that the incorporation of As causes an increasing negative band offset at the dielectric-
2DEG interface.

Using the longitudinal resistivity, we calculate the mobility, µ, at every gate voltage. Fig-
ure 5.6b shows a plot of µ as a function of n for all As concentrations. We observe peak
mobilities between 20000cm2/Vs and 28000cm2/Vs (the peak mobility for x = 0.240
could not be reached because of gate leakage). The peak mobilities occur around n =
0.35 × 1012 cm−2, with a slight trend of moving towards higher densities for higher As
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concentrations. We attribute the peak mobilities to the de-population of the second sub-
band.

5.7.4. EFFECT OF ELECTRON DENSITY ON SPIN-ORBIT COUPLING
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Figure 5.7: a, Spin-orbit length plotted against the electron density for all As concen-
trations. b, Linear Rashba parameter plotted against n. When comparing at the same
density, lso (α) decreases (increases) for increasing As concentration.

In Fig. 2 of the main text we show the spin-orbit length, lso, and the linear Rashba
paramter, α, plotted against the gate voltage for all As concentrations, x. In Fig. 5.7a
and b we show lso andα plotted against the electron density, n, respectively. When com-
paring at the same density, the overall trend of decreasing (increasing) lso (α) with in-
creasing As concentration persists.

5.7.5. EFFECTIVE MASS AND G-FACTOR

We extract the effective mass, m∗, of the electrons in the InSb1−x Asx 2DEGs by measur-
ing the temperature dependence of the Shubnikov-de Haas (SdH) oscillations amplitude
in gated Hall bars. Figure 5.8a shows the longitudinal resistivity, ρxx, as a function of per-
pendicular magnetic field, B , for x = 0.130 at a fixed density of n = 3.41 × 1011 cm−2,
close to peak mobility. The temperature ranges from T = 4 K to 40 K. The same mea-
surement is also done for x = 0 at n = 2.93×1011 cm−2 (for T = 1.7 K to 17.3 K). After a
polynomial background subtraction, the effective mass can be obtained from a fit to the
thermal damping of the SdH oscillation amplitude, ∆ρxx, normalized to the zero-field
magnetoresistance value, ρxx,0(T ), at a fixed filling factor, ν, using [26]:

∆ρxx(T )

ρxx,0(T )
∝ αT

sinh(αT )
,

Here, α = πkBm∗ν/(ħ2n), where kB is the Boltzmann constant and ħ is the Planck con-
stant. Figure 5.8b shows such fits for the ν = 6 minima (circles) and maxima (rhombs)
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Figure 5.8: a, Shubnikov-de Haas oscillations for temperatures ranging from 4 K to 40 K
for the x = 0.130 sample at a fixed density of n = 3.41×1011 cm−2 close to peak mobility.
b, Temperature dependence of the oscillation amplitude for the ν = 6 minima (circles)
and maxima (rhombs) for x = 0 and x = 0.130. The solid lines are fits to the data in order
to obtain the effective mass. c, g-factor, g∗, for x = 0 and x = 0.130 considering the even-
odd filling factor couple ν= 4−3 and ν= 6−3. The fits are performed in a high and low
temperature range.

for x = 0 and x = 0.130. The resulting effective mass is lower for the ternary sample, with
a weighted mean value of m∗ = (0.0162±0.0004)m0, where m0 is the free electron mass.
The x = 0 sample shows a heavier effective mass of m∗ = (0.0180±0.0002)m0.

We proceed by extracting the g-factor, g∗, from the temperature dependence of the SdH
oscillations, extending the temperature range from T = 1.7 K to 44.7 K. Using the method
reported in [23], an expression for g∗ can be obtained by combining the equations for
the thermal activation energy of an even-odd filling factor couple. We consider the filling
factor couples ν= 4−3 and ν= 6−3. Since we find different activation energies from the
linear fit of ln(ρxx ) vs. 1/T depending on the temperature range, we report in Fig. 5.8c
the extracted values for the low- and high-temperature ranges. The m∗ values we found
earlier are used in the g∗ calculation. We find an average g-factor of g∗ = 47.8±2.8 for
x = 0, and g∗ = 54.6±3.1 for x = 0.130.

5.7.6. MULTIPLE ANDREEV REFLECTIONS

In Fig. 3b and c of the main text we show a representative Fraunhofer interference
pattern and a gate dependence of the switching current for a Josephson junction with
x = 0.053. As demonstrated in Fig. 5.9, we observe pronounced subgap conductance
modulations that are due to multiple Andreev reflections (MAR) for all As concentra-
tions. The observation of higher order MAR shows that transport is phase-coherent
across a length scale of several times the junction length.
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Figure 5.9: Differential resistance plotted against the voltage drop between the two Al
leads for the JJs with x = 0.053, 0.130 and 0.240. All measurements are obtained at a JJ
gate voltage of Vg = 0V. The curve for x = 0.130 is offsetted for clarity. MAR up to several
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Tunneling spectroscopy measurements are often used to probe the energy spectrum of An-
dreev bound states (ABSs) in semiconductor-superconductor hybrids. Recently, this spec-
troscopy technique has been incorporated into planar Josephson junctions (JJs) formed in
two-dimensional electron gases, a potential platform to engineer phase-controlled topo-
logical superconductivity. Here, we perform ABS spectroscopy at the two ends of planar JJs
and study the effects of the magnetic vector potential on the ABS spectrum. We show that
the local superconducting phase difference arising from the vector potential is equal in
magnitude and opposite in sign at the two ends, in agreement with a model that assumes
localized ABSs near the tunnel barriers. Complemented with microscopic simulations,
our experiments demonstrate that the local phase difference can be used to estimate the
relative position of localized ABSs separated by a few hundred nanometers.

This chapter has been published in Nano Letters 22, 8601–8607 (2022).
∗These authors contributed equally to this work.
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6.1. INTRODUCTION
Hybrid structures composed of superconductors and normal conductors host Andreev
bound states (ABSs) [1–3]. These states are superpositions of electron-like and hole-like
excitations, with energies lower than the superconducting gap. In recent years, super-
conductor-semiconductor hybrids have emerged as an appealing platform to manipu-
late these bound states. For example, controllable coupling between individual ABSs
has led to the creation of Andreev molecules [4–7], and Josephson junctions (JJs) based
on these hybrids have been combined with superconducting circuits to realize Andreev
qubits [8, 9].

In JJs, the microscopic properties of ABSs determine global properties of the junction,
such as its critical current [2]. The energy of ABSs is dependent on the phase difference
between the superconducting leads, which can be tuned by the application of a mag-
netic flux through a superconducting loop connecting the leads. In planar JJs, the vector
potential of the magnetic field leads to streams of positive and negative current, to the
formation of Josephson vortices, and to the well-known Fraunhofer interference pattern
in critical current [10–12]. It has been proposed that such planar JJs can host Majorana
bound states [13–16], and that the location and coupling of these states can be controlled
via the vector potential [17].

In order to investigate how the vector potential modifies ABSs in a JJ, one needs ex-
perimental techniques that provide information about the spatial extent and location
of ABSs. Studies in junctions that simultaneously probe the spatial distribution and
the energy spectrum of ABSs have mainly been performed using scanning probe tech-
niques [18, 19], and more recently, via local tunnel probes in two-dimensional electron
gases (2DEGs) [20, 21].

Here, we perform tunneling spectroscopy at both ends of planar JJs embedded in a su-
perconducting loop, allowing us to probe the effects of the magnetic vector potential
on the phase-dependence of the ABS energy. We directly show that the local supercon-
ducting phase difference originating from the vector potential has equal magnitude but
opposite sign at the two ends of the JJ. This is manifested by a striking difference in the
spectroscopy maps obtained from each side, in excellent agreement with a model that
assumes tunnel coupling to a single ABS localized at each end. Microscopic numerical
simulations confirm that such a localization of the ABSs is indeed expected, and that the
tunneling current is only sensitive to ABSs located near the ends of the JJ. By modifying
the potential landscape in the vicinity of the tunnel probe, we show that the local phase
difference allows us to resolve multiple ABSs within a spatial extent of a few hundred
nanometers, in qualitative agreement with simulations.

6.2. RESULTS
The JJs are fabricated using an InSb0.92As0.08 2DEG with in-situ grown Al as the super-
conductor (details about the molecular beam epitaxy growth of the heterostructure can
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Figure 6.1: Tunneling spectroscopy at the two ends of a planar phase-biased JJ. a,
Schematic (before the gate deposition) and false-colored SEM of Dev 1. b, Spectroscopy
maps measured at the top (Vg1 =−0.39V, Vg2 =−0.74V, Vg3 = 0V, Vg4 = 0V) and bottom
end of the JJ (Vg1 = 0V, Vg2 = 0V, Vg3 =−1.1V, Vg4 =−0.6V). The three curves in the top
panel correspond to single-channel ABS spectra calculated for different combinations of
transmission (τ) and loop inductance (L) as specified in the legend. c, Line cuts of the
bottom spectroscopy map at the indicated positions in b.

be found in [22]). Figure 6.1a shows a schematic and a false-colored scanning electron
micrograph (SEM) of such a device. To fabricate the devices, we first use a combination
of Al and 2DEG etches to define the JJ and the superconducting loop. The exposed 2DEG
on the top and bottom sides of the JJ is contacted by Ti/Au, and the Al loop is contacted
by NbTiN, resulting in a three-terminal device. A globally deposited layer of AlOx forms
the gate dielectric. Lastly, split gates are evaporated on the top and bottom ends of the JJ,
allowing us to define tunnel barriers, while also depleting the 2DEG around the junction.
A central gate (kept grounded throughout this study) covers the normal section of the JJ.
We study two JJs (Dev 1 and Dev 2), both with length l = 80nm and width w = 5µm. More
details about the device fabrication can be found in section 6.4.1. The devices are mea-
sured in a dilution refrigerator with a base temperature of 30 mK using standard lock-in
techniques.

In Fig. 6.1b (top panel) we present a tunneling spectroscopy map for Dev 1 at the top end
of the JJ. The conductance, Gt = dIt/dVt, is measured as a function of voltage bias, Vt , and
perpendicular magnetic field, B . The bottom panel shows the conductance measured at
the bottom end, Gb = dIb/dVb, with representative line cuts presented in Fig. 6.1c. In
both maps we see a superconducting gap that is modulated by B , with an oscillation
period equal toΦ0/S, whereΦ0 = h/2e is the magnetic flux quantum and S is the area of
the superconducting loop. This modulation indicates the presence of flux-periodic ABSs
in the JJ. For a normal region much shorter than the superconducting coherence length,
the relation between the ABS energy and the gauge-invariant phase difference between
the two superconducting leads, ϕ, is given by [2]:

En(ϕ) =±∆∗
√

1−τnsin2(ϕ/2), (6.1)
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where ∆∗ is the induced gap in the 2DEG regions below the Al leads and τn is the trans-
mission probability of the nth conduction channel. The flux through the loop, Φ = BS,
and ϕ are related via ϕ = 2πΦ/Φ0. The relatively small modulation depth observed in
the experiment might suggest low-transmission ABSs [see the field evolution of a single
ABS with τ= 0.6 (pink) and τ= 0.99 (orange) in Fig. 6.1b]. However, when looking more
closely at the energy minima, we find that they display pronounced cusps, not expected
from Eq. 6.1. These cusps are indicative of phase slips that occur when the supercon-
ducting loop has a sizeable inductance, L, whereby the standard linear flux-phase rela-
tion no longer holds. We independently estimate L = 321pH (see section 6.4.2) and use
the appropriate flux-phase conversion (see section 6.4.6) to find that the measured ABS
spectrum is consistent with a large transparency of τ= 0.99 (light green line in Fig. 6.1b).
We further confirm this by performing spectroscopy at higher B , as will be discussed
later. This highlights the fact that the inductance, which can be significant in thin film
superconductors, strongly affects the ABS spectra observed in experiments.

Thus far we have assumed that the superconducting phase difference is constant along
the width of the JJ (see Fig. 6.2a for a top-view schematic of the junction). However, the
vector potential of the magnetic field creates a phase gradient,φ′(y), and the total gauge-
invariant phase difference is given by ϕ(y) = φ+φ′(y), where φ is the phase difference
that can be tuned by the flux through the loop. The position-dependent local phase
difference can be expressed as [10, 23]:

φ′(y) =−2π
f Bl y

Φ0
, (6.2)

where f is a flux focusing factor that increases the effective magnetic flux in the JJ (see
section 6.4.3 and [24]). This expression for ϕ is valid for JJs with a width much smaller
than the Josephson penetration length, which is the case for our junctions (see sec-
tion 6.4.4). The magnetic vector potential leads to the formation of localized ABSs with a
well defined supercurrent direction (see section 6.4.7 for numerical simulations). Fig. 6.2b
shows a plot of the expected local phase difference for Dev 1 at B = 1mT, demonstrating
that the phase difference experienced by an ABS located at the top and bottom end of the
JJ will be significantly different. Therefore, for localized ABSs (as depicted in Fig. 6.2a),
one expects observable differences in the field evolution of their energies. This is more
clearly illustrated in Fig. 6.2c, where we plot the ABS energy, E , as a function of B . As B
increases, the maxima for the top and bottom ABS shift relative to each other. This is a
direct consequence of Eq. 6.2, whereby ABSs located at opposite ends of the JJ are sensi-
tive to the local phase difference with equal magnitude but opposite sign.

With an understanding of the effect of the magnetic vector potential on the ABS spec-
trum, we now turn to spectroscopy measurements over a significantly larger field range
(Fig. 6.3). Figure 6.3a and b show the top and bottom spectroscopy maps, respectively.
We first look at the high field regime (Fig. 6.3a2 and b2), where the ABS oscillation ampli-
tude has increased significantly (compare to 6.1b). This is caused by the Fraunhofer-like
reduction of the critical current, Ic, thereby reducing the so-called screening parameter,
β∝ LIc. The lower β results in a linear flux-phase relation, making it possible to probe
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Figure 6.2: Effect of the magnetic vector potential. a, Top-view schematic of the JJ in
Dev 1. Two ABSs located at the top and bottom end are indicated. b, Calculated local
phase difference arising from the vector potential at B = 1mT ( f = 6.2). c, Magnetic field
evolution for the ABS located at the top (black) and bottom (grey), showing a relative
shift due to the local phase difference.

the complete phase-dependence of the ABS (see section 6.4.6 for more details). The fact
that the ABS energy reaches very close to zero confirms that the ABSs we are probing
have extremely high transparency.

In the intermediate field range (see Fig. 6.3a1 and b1) we find that the cusps near the ABS
minima develop into sharp jumps, resulting in a highly asymmetric and skewed shape
away from B = 0. The skewness is not only reversed for positive and negative fields, but
also for the top and bottom end of the JJ. Furthermore, we find that the ABS energy max-
ima shift in opposite directions in the top and bottom spectroscopy map, as expected
for bound states localized at the edges. This is a strong indication that each probe is
sensitive only to a region of limited spatial extent in its vicinity, and that it is in general
difficult to reliably estimate bulk junction properties from a local spectroscopy measure-
ment [25].

To explain these findings we introduce a model that takes into account the combined
effects of the inductance and vector potential, and assumes that each tunnel probe cou-
ples only to a single localized ABS with τ = 0.99 (a full description of the model can be
found in section 6.4.6). The resulting ABS spectra are shown as light blue lines plotted on
the spectroscopy maps of Fig. 6.3a and b. We find an excellent agreement between the
model and the experiments in the entire magnetic field range. We show in section 6.4.6
that the observed reversal of the skewness can only occur when both the vector potential
and the loop inductance are taken into account. Therefore, the loop inductance serves
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Figure 6.3: Tunneling spectroscopy over a large magnetic field range. a, Spectroscopy
map at the top end of Dev 1 (Vg1 = −0.39V, Vg2 = −0.74V, Vg3 = 0V, Vg4 = 0V), with
zoomed-in views presented in a1 and a2. b, Spectroscopy map at the bottom end (Vg1 =
0V, Vg2 = 0V, Vg3 = −1.1V, Vg4 = −0.6V) with zoom-in views in b1 and b2. The model
(light blue lines) assumes coupling to a single ABS (τ = 0.99), taking into account the
local phase difference in the JJ and the loop inductance (L = 321pH). c, Model curves
for the top and bottom end plotted together (offsetted vertically for clarity). The ABS
maxima on the top (Bt) and bottom (Bt) are shifted. d-e, ∆B = Bt −Bb as a function of
Bt for Dev 1 and Dev 2 (dark blue circles). We also include the ∆B values from the toy
model with L = 321pH (light blue circles), and L = 0 (red circles). The arrows indicate
the position of the first Fraunhofer node.
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as an extremely useful tool to clearly see the effects of a spatially varying phase difference
along the JJ.

In order to systematically analyze the difference between the energy spectra of the top
and bottom ABS, we introduce the quantity ∆B = Bt −Bb (see Fig. 6.3c). In Fig. 6.3d, we
plot ∆B as a function of Bt for experiment (dark blue circles) and theory (light blue cir-
cles). Both show a non-linear dependence, which can be well accounted for by the vari-
ation of Ic (and hence β). It is interesting to note that while our device geometry makes
it impossible to directly measure Ic of the JJ, the nodes in the Fraunhofer pattern can still
be identified by regions where β ≈ 0 (see arrows), and therefore the experiment/theory
plots with finite L approach the theory curve with L = 0 (red circles). All of these findings
are reproduced in Dev 2 (see spectroscopy maps in section 6.4.5 and the ∆B analysis in
Fig. 6.3e).

Although our toy model is effective in capturing the most important features observed
in experiments, it relies on the assumption that the tunnel probes couple to a single lo-
calized ABS in the vicinity of the barriers. In the following, we use numerical simulations
to show that the tunneling current is indeed dominated by edge-located ABSs, and that
the phase shifts for these states agree with the experiments. For the simulations, we
consider a planar JJ composed of two semi-infinite superconducting leads and a normal
region that is connected to two normal leads through tunneling barriers. We calculate
the conductance from the top (bottom) normal lead, Gt (Gb), by tracing the quasiparti-
cles entering and leaving the top (bottom) lead. In the simulation, we include the effect
of a perpendicular magnetic field and disorder, which results in a finite mean free path,
le . A superconducting phase difference,φ, is imposed between the superconducting ter-
minals (more details about the model can be found in section 6.4.7).

We first consider a ballistic JJ with infinite mean free path. In Fig. 6.4a and b, we show
the conductance calculated from the top and bottom, respectively, at B = 1mT. In both
maps, the main resonance is shifted by an equal amount in φ, but in opposite direc-
tions. This shift agrees very well with our toy model (black lines), where we assumed
tunnel-coupling to a single ABS localized at the top/bottom end of JJ. The presence of
localized ABSs is clearly seen by inspecting the supercurrent distribution calculated at
the energy/phase values denoted by the colored circles in Fig. 6.4a. We find that the top
probe is only sensitive to the ABSs located in the vicinity of the top barrier (see Fig. 6.4c).

To make a connection with the experiments, we also consider a semiconductor with
le = 150nm, a good estimate for the mean free path in our 2DEGs [22]. The top and bot-
tom conductances are shown in 6.4d and e, respectively. As in the ballistic case, we again
find a predominant sensitivity to edge-located ABSs, and a relative shift of the ABS max-
ima. However, we also note two important differences. Firstly, unlike the ballistic case,
the ABS spectra at the top and bottom are now drastically different from each other. This
is not surprising, given the fact that the ABSs can be sensitive to the particular disorder
configuration present at each end. Secondly, the main resonance splits into more clearly
distinguishable ABSs. These ABSs are also localized close to the top/bottom end of JJ,
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Figure 6.4: Numerical simulation of the tunneling conductance for a ballistic and disor-
dered JJ. a-b, Conductance maps at B = 1mT for a ballistic JJ probed from the top and
bottom. The black lines correspond to the phase shifts expected from the toy model. c,
Supercurrent distribution in the normal region of the JJ obtained for the E and φ values
denoted with the circles in a. d-e, Conductance maps at B = 1mT for a disordered JJ
(le = 150nm) probed from the top and bottom. f, Supercurrent distributions for the E
and φ values denoted with the circles in d.

as seen in Fig. 6.4f. The specific location of these states is sensitive to the local potential
landscape. However, we expect them to acquire different relative phase shifts depending
on their precise location in the JJ.

This spatially dependent phase shift in the vicinity of the tunnel probe can also be exper-
imentally observed. Figure 6.5a presents spectroscopy measurements on the top end of
Dev 2, where the split gate settings have been modified to locally alter the disorder land-
scape. At B = 0 (central panel), distinct ABSs are hardly visible (see also black line cut in
Fig. 6.5b). However, when increasing the magnetic field (left and right panel), the local-
ized ABSs acquire different phase shifts making it possible to resolve them more clearly
(see also gray line cut in Fig. 6.5b). Reversing the field direction leads to ABSs shifted
in the opposite direction, as expected for spatially separated ABSs. A similar pattern of
ABSs located at different positions close to the edge of the junction and experiencing
different phase shifts is obtained in the numerical calculation shown in Fig. 6.5c and
d. This demonstrates that the effect of the vector potential (and resulting local phase
difference) can indeed be used to estimate the location of the ABSs in the JJ. Around
B = 2.09mT, the maxima of the two states (indicated by the brown and pink circles) are
shifted by ≈ 5µT. This shift can be translated into an estimate of their spatial separation
by using the spectroscopy results at the two extreme ends of the JJ (Fig. S4 and Fig. 6.3e),
where we find∆B = 106µT at B = 2.09mT for ABSs separated by 5µm. Using this, we can
estimate the spatial separation of the two states indicated by the brown and pink circles
to be approximately 250nm.
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Figure 6.5: Probing spatially separated ABSs. a, Tunneling spectroscopy maps at the top
end of Dev 2 (Vg1 = −1.90V, Vg2 = −1.40V, Vg3 = −2.10V, Vg4 = −1.43V). The ABSs that
are initially hardly resolvable around B = 0 are better resolved at larger B , where localized
ABSs acquire different phase shifts depending on their location in the JJ. b, Line cuts
at two indicated positions in a showing this improvement in resolution. c, Simulated
tunneling conductance map for a disordered JJ (le = 150nm) at B = 10mT probed from
the top. d, Supercurrent distributions for the E and φ values marked by circles in c,
showing how localized ABSs at different positions correspond to ABS spectra that are
shifted in φ.

6.3. CONCLUSION

In conclusion, we employed local tunneling spectroscopy at two ends of planar phase-
biased JJs to study the influence of the magnetic vector potential on the ABS spectrum.
The combined effect of inductance and a spatially varying local phase difference results
in striking differences in the tunneling spectra measured at the two edges of these junc-
tions. Supporting our experiments with a theoretical toy model and microscopic nu-
merical simulations, we showed that our results are consistent with the measurement
of ABSs localized at the ends of the JJ, in the vicinity of the tunnel barriers. Finally, we
showed that the effects of the vector potential are not only observable for ABSs separated
by microns, but can also be used to estimate the relative locations of ABSs separated by a
few hundred nanometers. Our results provide insights into the effects of a spatially vary-
ing phase difference on the ABS spectrum in extended JJs, and are relevant for ongoing
efforts on investigating topological superconductivity in planar JJs.
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Additional Note: During the preparation of this manuscript, we became aware of a re-
lated work on tunneling spectroscopy in planar JJs [26].
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6.4. SUPPLEMENTARY MATERIAL

6.4.1. DEVICE FABRICATION

The two phase-biased JJs (Dev 1, Dev 2) and the DC SQUID are fabricated using electron
beam lithography. Due to a possible intermixing of Al and Sb we perform all fabrica-
tion steps at room temperature unless stated otherwise. The device fabrication starts by
etching the Al and the 2DEG in unwanted areas. The Al etch is performed in Transene D
etchant at a temperature of 48.2 ◦C for 9 s resulting a etching thickness of 100 nm. After-
wards, using the same PMMA mask, the 2DEG is etched in a solution of 560 ml deionized
water, 9.6 g citric acid powder, 5 ml H2O2 and 4 ml H3PO4, using an etching time of 90 s.
To define the JJs, we perform a second Al etch, carried out in 38.2 ◦C Transene D for 16 s.
This is followed by sputtering a 60 nm thick layer of SiNx that partly covers the super-
conducting loop, isolating it from the intended 2DEG contact inside the loop. Next, we
contact the exposed 2DEG region on the top and bottom side of the JJ by Ti/Au. Prior
to the evaporation of 10 nm Ti and 190 nm Au, a gentle Ar etching is performed in the
loadlock of the evaporator to remove any oxides that might have formed on the 2DEG.
Afterwards, we contact the superconducting loop by sputtering 150 nm of NbTiN (before
the sputter process an in-situ Ar etch is performed to remove the oxide on the Al). As the
gate dielectric, we deposit a global layer (40 nm thick) of AlOx by atomic layer deposition
at 40 ◦C. The gates are formed in two steps: First, the fine structures (split gates and cen-
tral gate) are deposited by evaporating 10 nm of Ti and 40 nm of Au. In the second step,
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InSbAs Al Ti/Au gatesTi/Au contacts

a b

2 μm
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40 days
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Figure 6.6: a, SEM of Dev 2 having a zigzag-shaped normal region with a length of l =
80nm and width of w = 5µm. b, SEM of the DC SQUID. The device JJ (on the bottom)
has dimensions l = 120nm and w = 2µm. The reference JJ (on the top) has dimensions
l = 80nm and w = 5µm.

10 nm Ti and 100 nm Au are evaporated to define the gate leads.

A schematic and false-colored SEM of Dev 1 is shown in Fig. 1a of the main text. In Fig.
6.6a we present a SEM of Dev 2, which is similar to Dev 1. The main difference is that the
normal region of the JJ is slightly zigzag-shaped (zx = 0.24µm, zy = 1.43µm). This was
originally introduced into this device to potentially suppress long quasiparticle trajecto-
ries and thereby increase the size of the topological gap [27]. The superconducting leads
of Dev 1 and Dev 2 have a length of 500 nm. Figure 6.6b shows a SEM of the DC SQUID,
consisting of two JJs (device JJ and reference JJ) in the superconducting loop. The device
JJ has a superconducting lead length of 300 nm. Two additional gates are deposited, one
covering the normal region of the reference JJ and one covering the 2DEG region around
this junction (always kept at -2.5 V to deplete the 2DEG there).

6.4.2. ESTIMATION OF LOOP INDUCTANCE

In order to extract the inductance of the SQUID loop, we measure the SQUID interfer-
ence pattern for different reference JJ gate voltages, Vg,ref. Figure 6.7a-l shows the ob-
tained differential resistance maps as a function of applied current bias, I , and perpen-
dicular magnetic field, B . Panel a-l corresponds to Vg,ref = 0, -0.4, -0.8, -0.9, -1, -1.1,
-1.2, -1.25, -1.3, -1.35, -1.4, and -1.45 V, respectively. The device JJ gate is grounded in
all measurements. With the colored circles we mark the positions where the total criti-
cal current is maximum. For a given SQUID oscillation, the field at which the maximum
occurs is different for positive and negative current bias: ∆B = B+−B−. The correspond-
ing flux difference is given by: ∆Φ = 2(LrefIc,ref − LdevIc,dev) [28]. Here, Ic,ref and Ic,dev

are the critical current of the reference and device junction, respectively. The induc-
tances of the two SQUID arms are Lref and Ldev. The above expression can be rewrit-
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Figure 6.7: Differential resistance, dV /dI , as a function of applied current bias, I , and
perpendicular magnetic field, B . Panel a-l corresponds to reference gate voltage Vg,ref =
0, -0.4, -0.8, -0.9, -1, -1.1, -1.2, -1.25, -1.3, -1.35, -1.4, and -1.45 V, respectively. No voltage
is applied to the device junction gate. The colored circles mark the positions of maxi-
mum total critical current. m, ∆Φ plotted against Ic,max for the three oscillations shown
in a-l. The extracted ∆B is normalized with respect to the oscillation period, giving ∆Φ
in units of the magnetic flux quantum, Φ0. The average value of the maximum critical
current on the positive and negative current bias sides gives Ic,max.

ten as: ∆Φ = 2LrefIc,max −2LIc,dev, using the relations for the maximum critical current,
Ic,max = Ic,ref + Ic,dev, and the total loop inductance, L = Lref +Ldev.

In Fig. 6.7m we plot the extracted ∆Φ as a function of Ic,max for the three oscillations
indicated in Fig. 6.7a-l. The linear fits yield Lref = 166 pH as the average value. Since
the width and the thickness of the superconducting loop is the same for all three de-
vices, the inductance should only depend on the length of the superconducting loop.
Under this assumption the loop inductance of the phase-biased JJs can be estimated to
be LreflPBJJ/lref = 321pH, where lref = 15.3µm is the length of SQUID reference arm and
lPBJJ = 29.6µm is the loop length of Dev 1 and 2.
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6.4.3. FLUX FOCUSING IN PLANAR JJ
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Figure 6.8: Differential resistance, dV /dI , as a function of applied current, I , and per-
pendicular magnetic field, B for the device JJ of the DC SQUID.

The Fraunhofer interference pattern periodicity, B0, in a JJ is determined by the geomet-
rical area, A, enclosed between two superconducting leads, i.e. B0 =Φ0/A. However, in
the presence of flux focusing, the periodicity is reduced from the theoretical value [24].
To estimate the effect of flux focusing we measure the differential resistance, dV /dI , as
a function of applied current, I , and perpendicular magnetic field, B , for the device JJ
of the DC SQUID (see Fig. 6.8). For this measurement, the reference JJ is pinched off by
applying a voltage of −2.5V to the top gate. We observe the first node at 2.1mT instead
of the expected Fraunhofer periodicity of B0 = 8.6mT. This gives a dimensionless flux
focusing factor, f , of 4.1 for this junction.

To explain our spectroscopy maps measured at the top and bottom ends of Dev 1 and
Dev 2 we introduce a toy model with flux focusing in Sec. 6.4.6. Although the above ex-
tracted f gives an estimate of the focusing factor, the exact value can vary from junction
to junction. The best agreement between the experimental spectroscopy maps and the
toy model is be achieved with f = 6.2 for Dev 1 and 7.2 for Dev 2 (see Fig. 3 in the main
text as well as Fig. 6.9]. The larger f values (and therefore stronger flux focusing) are in
fact expected due to the shorter JJ length and larger lead length of Dev 1 and Dev 2 com-
pared to the values for the device JJ of the DC SQUID [24].

6.4.4. JOSEPHSON PENETRATION DEPTH

The Josephson penetration depth for a JJ with the thickness of the superconducting elec-
trodes comparable or smaller than the penetration depth is dominated by the kinetic in-
ductance contribution and is given as [29]: λJ = (Φ0w/4πµ0 Jcλ

2)1/2, where w = 5µm is
the junction width, Jc is the critical current density, and λ is the superconducting pene-
tration depth of Al.

For our junctions, the thickness of the Al electrodes (7 nm) is much smaller compared to
the previously reported value of λ = 180 nm for a similar heterostructure [24]. There-
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fore we use the above expression to determine λJ . Since the critical current cannot
be measured for Dev 1 and Dev 2, we estimate it based on values obtained for the DC
SQUID. The critical current of the device JJ with width w = 2µm is Ic = 1.05µA (see
Fig. 6.8) and the thickness of 2DEG is t = 30nm. Using these values we get Jc = Ic /w t =
1.75×107A/m2 andλJ = 34µm, which is much larger than the width of the JJs (w = 5µm).
This ensures that the gauge-invariant phase difference can be expressed asϕ(y) =φ+φ′,
with φ′ =−2π f Bl y

Φ0
.

6.4.5. TUNNELING SPECTROSCOPY FOR DEV 2
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Figure 6.9: a, Spectroscopy map at the top end of Dev 2 with zoom-ins presented in a1
and a2. The bottom spectroscopy map is shown in b with zoom-ins in b1 and b2. Both
measurements were obtained with Vg1 = −1.60V, Vg2 = −1.42V, Vg3 = −2.10V, Vg4 =
−1.43V. The model (light blue line) assumes coupling to a single ABS (τ = 0.99), taking
into account the local phase difference in the JJ and the loop inductance (L = 321pH) for
the field-phase conversion.
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6.4.6. TOY MODEL

This model is used to calculate the Andreev bound states (ABSs) energies of a Josephson
junction embedded in a superconducting loop in the presence of a perpendicular mag-
netic field, as used to substantiate the measurement results shown in Fig. 3 and Fig. S5.
The junction has a length l (the distance between the superconducting contacts) and a
width w (the distance between the edges of the junction where the tunneling probes are
connected).

We assume a homogeneous density of the supercurrent in the junction and that the cur-
rent is carried by M ABSs uniformly distributed across the junction at positions yn =
−w/2+ (n −1) ·w/(M −1) with integer n ∈ [1, M ].

The positive energies of the ABSs in the junction with the transmission coefficient τ are
given by [2]:

En(ϕn) =∆
√

1−τsin2(
ϕn

2
), (6.3)

where, in the presence of the external perpendicular magnetic field,ϕn =φ+ 2π
Φ0

∫ (l ,yn )
(0,yn ) A·

d l is the gauge-invariant phase drop across the junction for an ABS located at position
yn . φ is the superconducting phase difference. For the vector potential in the Landau
gauge A = (−yB ,0,0), the phase drop in the junction at yn is ϕn = φ− (2π/Φ0) · f Bl yn ,
where we included f as the magnetic field focusing factor. The latter equation gives the
phase evolution of the ABS located at the edges of the junction as ϕt/b = φ∓ (π/Φ0) ·
f Bl w [30] with a minus (plus) sign for the upper (bottom) edge.

The zero-temperature supercurrent obtained from the positive-energy ABSs in the junc-
tion is given by:

I (ϕ) = e∆2τ

2ħ
M∑
n

sin(ϕn)

En(ϕn)
. (6.4)

In the experimental setup, the superconducting phase difference φ is induced by a flux
Φ= BπR2 that threads a superconducting loop with radius R. The non-zero loop induc-
tance L results in the following phase-flux relation [20]:

φ= 2π

Φ0
(Φ−LI (ϕ)). (6.5)

We obtain the energies of the ABSs located at the edges of the junction versus B using
the following procedure. In the first step, we solve Eq. 6.5 for a given B and obtain the φ
value that minimizes the total energy of the system E(φ) = LI 2(ϕ)/2−∑M

n En(ϕn) calcu-
lated as the sum of the energy contained in the superconducting loop and the free energy
of the junction (F = const −E j = const −∑

En). An example of a flux-to-phase conver-
sion curve is shown in Fig. 6.10. Finally, we use the phase difference value to calculate En

corresponding to the ABSs located at the outermost edges of the junction using Eq. 6.3.
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Figure 6.10: Superconducting phase difference versus applied magnetic field obtained
for L = 321 pH, l = 80 nm, w = 5000 nm, M = 35, τ= 0.99, R = 4207 nm, ∆= 0.2 meV and
f = 6.2. The black dots show possible phase values for a given B , while the blue curve
shows the superconducting phase difference obtained by minimizing the total energy.
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Figure 6.11: ABS energy versus magnetic field in the presence or absence of the loop
inductance and local phase difference in the JJ as indicated. The top and bottom panels
correspond to an ABS located at the top and bottom end of the JJ, respectively. For all
plots, the following parameters are used: l = 80 nm, w = 5000 nm, M = 35, τ = 0.99,
R = 4207 nm, ∆= 0.2 meV and f = 6.2.

Figure 6.11 shows an ABS located at the top (top panel) and bottom (bottom panel) end
of the JJ in the presence and absence of the loop inductance and the local phase differ-
ence arising from the magnetic vector potential as indicated. The reversal of the skew-
ness can only happen when both the loop inductance and the local phase difference are
present.

Table 6.1 summarizes the parameters that are used for the overlays for Dev 1 (Fig. 3 of
the main text) and Dev 2 (Fig. 6.9).

Parameter Dev 1 Dev 2
l (nm) 80 80

w (µm) 5 5
R (nm) 4207 4190
L (pH) 321 321
∆ (meV) 0.2 0.19

f 6.2 7.2
M 35 45
τ 0.99 0.99

Table 6.1: Toy model parameters used for Dev 1 and Dev 2.
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6.4.7. MICROSCOPIC MODEL

TUNNELING SPECTROSCOPY CALCULATIONS

We consider a four-terminal device, with two vertical superconducting leads separated
by the normal region (which creates the superconductor-normal-superconductor junc-
tion) and two normal leads that are placed horizontally at the top and bottom as shown
in Fig. 6.12. Between the horizontal leads and the normal scattering region, we introduce
tunneling barriers that mimic the behavior of QPCs tuned into the tunneling regime.

b

b

Figure 6.12: Schematic of the system considered for tunneling spectroscopy calculations.
The dots denote the sites of the computational mesh. The black dots correspond to the
scattering region, whereas the pink ones denote the semi-infinite leads. We use l = 80 nm
(the distance between the superconducting contacts) and w = 5000 nm (the distance be-
tween the edges of the junction where the tunneling probes are connected). The barrier
potential at the top and bottom is separated from the normal leads of width wb = 100
nm. The vertical leads are superconducting, while the horizontal leads are normal.

The considered system is described by the Hamiltonian[
H ∆

∆∗ −H

]
, (6.6)

acting on a wave function in the basisΨ= (Ψe ,Ψh)T . Here H is defined as

H =− ħ2

2m∗∇2 +V (r )−µ. (6.7)

µ is the chemical potential, m∗ is the effective electron mass and V (r ) is the rectangular
potential barrier of height Vg placed just above and below the normal region of length
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(l = 80 nm).

In the presence of a magnetic field, the Hamiltonian H becomes

H
′ =− ħ2

2m∗ (∇−qA/ħ)2 +V (r )−µ, (6.8)

with q =−|e| for the electron and q = |e| for the hole part of the Hamiltonian Eq. 6.6. We
choose the vector potential in the Landau gauge with B⃗ = B ẑ, so that A⃗ =−B y x̂.

The superconducting pairing potential ∆ varies spatially and is given by:

∆(x) =


∆0 if x <−l/2

0 if −l/2 ≤ x ≤ l/2

∆0e ιφ if x > l /2

(6.9)

We discretize the Hamiltonian Eq. 6.6 on a square lattice with discretization constant
a = 10 nm. We put the material parameters as m∗ = 0.016me , µ = 5 meV, ∆ = 0.2 meV.
We introduce the anisotropic mass in the superconducting leads with the mass along
the translation symmetry of the superconducting leads equal to 10m∗ as appropriate for
the description of transparent normal-superconductor interfaces in models where the
chemical potential is kept constant [31]. Including a vector potential in this system is
done using Peierls substitution as tnm → tnm exp[−ιeħ

∫
Ad l] [32, 33].

We exclude the magnetic field from the superconducting leads to account for the screen-
ing effect setting A = 0 there. We also put zero vector potential in the top and bottom
leads to maintain the translation invariance. This in turn introduces a delta peak in the
magnetic field where the horizontal leads are attached (as calculated from B =∇×A). We
have, however, verified that for the considered small magnetic fields, this does not affect
our results, as confirmed by replacing the vector potential by a position-dependent su-

perconducting phase as φ→φ− 2πBl y
Φ0

and observing that both results match accurately.

The finite mean free path (le ) is implemented by introducing a random on-site dis-
order potential Vd (x, y) with the amplitude uniformly distributed between −Ud /2 and
Ud /2 [34], where

Ud =µ
√

6λ3
F

π3a2le
. (6.10)

Here a, le ,λF are the lattice constant, mean free path and the Fermi wavelength, respec-
tively.

We calculate the conductance map with respect to the phase difference φ and energy
using the scattering matrix approach implemented in the Kwant package [35], using the
formula:

Gt/b = 2e2

h
(N e

t/b −T ee
t/b +T he

t/b), (6.11)
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Figure 6.13: Conductance versus phase difference and energy calculated for quasiparti-
cles injected from the top lead (upper row) and bottom lead (lower row) at B = 0 (a-b),
B = 0.5 mT (c-d) and B = 1 mT (e-f). The vertical black lines denote the expected phase
shift of the edge modes due to the magnetic field ϕt/b =φ∓ (π/Φ0) · f Bl w .
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Figure 6.14: Conductance versus phase difference and energy calculated for quasiparti-
cles injected from the top lead for B = 1 mT and different mean free paths le = 150 (a),
500 (b) and 1000 nm (c).

where t and b stand for top and bottom lead respectively and N e
t/b is the corresponding

number of the electron modes. The energy dependent transmissions are evaluated as:

Tαβ

t/b = Tr ([Sαβt/b]†Sαβt/b), (6.12)

where Sαβt/b is the block of scattering amplitudes of incident particle of type β in t (b) lead
to a particle of type α in the lead t (b).

ABS CALCULATION

For the numerical calculation of ABSs spectra we consider a Josephson junction treated
as a finite system consisting of a normal scattering region and two long superconducting
segments. The two superconducting regions have a length of lSC = 2000 nm (much larger
than the coherence length ξ= 1091.16 nm, calculated using the formula, ξ= ħvF

∆ where

vF = √
2µ/m∗ ), and they are separated by a normal region of length l = 80 nm. The

width w of the entire system is taken as 1000 nm. The Hamiltonian remains the same as
in equation 6.8 except for the tunneling barrier potentials (here we do not consider the
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Figure 6.15: a, ABS spectrum of a SNS junction with two SC regions (lSC = 2000 nm) sep-
arated by a normal region (l = 80 nm, w = 1000 nm) at B = 2 mT without disorder. The
color curves denote analytically calculated ABS from Eq. 6.3 with τ= 1. b, Supercurrent
in the normal area of the junction calculated for the ABS whose energies are denoted by
the color circles in a.

top and bottom electrode). The anisotropic mass and Peierls phase factor (for magnetic
vector potential) are introduced as described above. We diagonalize the Hamiltonian
and plot the energy with respect to the phase difference φ, and also the probability cur-
rent in Fig. 6.15. In the probability current, we observe that in the presence of the per-
pendicular field each ABSs is localized in a separated region in the junction. The differ-
ent spatial position of the ABSs is reflected by their different phase shifts in the spectrum
plotted in Fig. 6.15 (a).
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7
LOCAL AND NONLOCAL

CONDUCTANCE MEASUREMENTS IN

PLANAR, PHASE-BIASED

JOSEPHSON JUNCTIONS

A topological phase in a one-dimensional semiconductor-superconductor hybrid is char-
acterized by a zero-energy state at each end of the system as well as a gapped bulk. While
many experiments have observed zero-bias peaks in tunneling spectroscopy measurements
performed at one end of the sytem, a more reliable judgment about the realization of a
topological phase can be made by simultaneously probing the ends and the bulk of the hy-
brid. In this chapter, we combine local tunneling spectroscopy at the two ends of planar,
phase biased Josephson junctions (JJs) with nonlocal conductance measurements, which
give information about the bulk of the system. We investigate the conductances as a func-
tion of superconducting phase difference across the JJ and for different Zeeman fields. At
finite Zeeman fields, we observe zero-bias peaks in local spectroscopy, but do not find clear
evidence of a re-opened bulk gap.

109



7

110 7. LOCAL AND NONLOCAL CONDUCTANCE IN PHASE-BIASED JOSEPHSON JUNCTIONS

7.1. INTRODUCTION
Semiconductor-superconductor hybrids have attracted a lot of attention, among others
for creating Majorana zero modes (MZMs) at the ends of a one-dimensional structure [1,
2]. These end modes have been probed most commonly by tunneling spectroscopy,
and the characteristic zero-bias conductance peak (ZBP) was observed in many exper-
iments [3–5]. However, alternative mechanisms such as disorder or a smooth potential
at the ends of the structure can also cause zero-energy states mimicking the MZMs [6,
7]. This makes tunneling spectroscopy measurements hard to interpret, especially when
conducted only at one end.

The nonlocal conductance in a three-terminal device was suggested as an alternative
and by itself more reliable detection method for a topological phase transition [8], spark-
ing additional theoretical investigations [9–12]. While tunneling spectroscopy is sensi-
tive to the edge of the hybrid system, the nonlocal conductance probes the bulk, with
an expected closure and reopening of the induced superconducting gap when the ex-
ternal magnetic field is swept across the topological phase transition. Besides, nonlocal
conductance measurements can be combined with local tunneling spectroscopy at both
ends, improving the reliability of the identification of a topological phase further [13]. So
far, the full conductance matrix was measured on hybrid nanowire devices with no clear
evidence of a gap reopening in the nonlocal signals [14–16].

Here, we use local and nonlocal conductance measurements in planar Josephson junc-
tions (JJs), which can be used to create phase-tunable MZMs [17, 18]. When the phase
difference between the two superconducting leads is tuned to π, the topological regime
may be reached at a low in-plane magnetic field. These devices were previously stud-
ied by means of one-ended [19, 20] or two-ended [21] local spectroscopy. At zero in-
plane magnetic field, we observe Andreev bound states in local spectroscopy and phase-
dependent nonlocal signals. As the magnetic field is increased, ZBPs emerge in local
spectroscopy (mostly at one end), but no gap reopening occurs in the nonlocal signals.
These results show how nonlocal conductance measurements can complement tradi-
tional tunneling spectroscopy in order to differentiate between trivial and topological
regimes.

7.2. BACKGROUND ABOUT NONLOCAL CONDUCTANCE
The nonlocal conductance was originally proposed in [8] as a reliable probe for a topo-
logical phase transition in a semiconductor-superconductor hybrid system. Figure 7.1a
shows a schematic of the considered device, where a central semiconducting region is
contacted by two normal metals (N1, N2) and a grounded superconductor (S). The su-
perconductor induces a gap, ∆∗, in the semiconductor due to the proximity effect.

Different transport processes occur depending on the voltage bias applied to one of the
normal leads (the other one is grounded). This is illustrated in the bottom panel of Fig.
7.1a when N1 is energized. At |E | <∆∗, the quasiparticles propagate as evanescent waves
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Figure 7.1: a, Schematic of the three-terminal hybrid device with two normal leads
(N1,N2) and a grounded superconducting contact (S). The bottom panel illustrates the
allowed transport processes depending on the voltage bias applied to N1. b, Numerical
calculation of the nonlocal conductance in the single-mode regime as a function of en-
ergy and applied magnetic field parallel to the S-N interface for a ballistic device with
l = 100nm and w = 10ξ (see [8] for other parameters). The bulk induced gap closes and
reopens when sweeping the magnetic field across the topological phase transition. c,
Nonlocal conductance for a quasi-ballistic system with mean free path le = 0.2w in the
left panel (l = 100nm, w = 8ξ), and for a diffusive system in the right panel (l = 100nm,
w = 5ξ, le = 0.2w , le = 0.2l ). For the quasi-ballistic and diffusive system, the reopened
gap vanishes for l = 200nm (not shown here). The figures are adapted from [8].

through the central region with the induced coherence length, ξ, as the decay length.
This leads to a suppression of the nonlocal conductance, G21 = dI2/dV1, with increas-
ing width of the semiconductor, w . When the energy exceeds the bulk superconducting
gap, the superconductor increasingly absorbs quasiparticles as w is expanded, and goes
to zero for w >> ξ. Provided that the two normal contacts are sufficiently decoupled
(w ≥ ξ), transport is only possible in the energy window ∆∗ < |E | < ∆. Here, two pro-
cesses can constitute the nonlocal conductance: direct electron transfer of an electron
from N1 to N2 (giving rise to a positive G21), and transmission of an electron from N1 to
a hole in N2 (leading to a negative G21). All in all, this demonstrates that the nonlocal
conductance is sensitive to three global properties of the system: the induced coher-
ence length, the induced superconducting gap and the gap of the parent superconduc-
tor, which also remains valid when accounting for disorder (normal scattering) in the
semiconductor.

Figure 7.1b shows a numerical calculation of the nonlocal conductance for a ballistic
device with l = 100nm when a magnetic field is applied parallel to the S-N interface to
drive the system in the topological regime. In the vicinity of the topological phase tran-
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sition, the bulk induced gap closes and reopens, and G21 is an odd function of bias close
to E = 0. These features can also be observed in the quasi-ballistic and diffusive system
(left and right panel of Fig. 7.1c, respectively), although the reopened gap is less promi-
nent and vanishes when l is increased (the latter is not shown here).

7.3. METHODS
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Figure 7.2: a, SEM of the DC SQUID. The device JJ, studied by the local and nonlocal
conductance measurements, is situated on the bottom. The reference JJ is on the top. b,
SEM of the phase-biased JJ. The circuits used for the three-terminal measurements are
indicated.

We will investigate the local and nonlocal conductance in devices with two supercon-
ducting leads attached to the semiconducting region forming a JJ. Also, we embed the
JJs in a superconducting loop, allowing to phase-bias them. We fabricate a DC SQUID
(consisting of two JJs in the loop) and a phase-biased JJ (single JJ in the loop) using an
InSbAs/Al hybrid two-dimensional electron gas (2DEG) [22] (see chapter 6 for fabrica-
tion details). A false-colored scanning electron micrograph (SEM) of both devices is
shown in Fig. 7.2. The device JJ of the SQUID, which will be studied by the conductance
measurements (bottom JJ in Fig. 7.2a), has a length (separation between the supercon-
ducting contacts) of l = 120nm and a width of w = 2µm. The reference JJ (top JJ) has
a length of 80 nm and a width of 5µm. The phase-biased JJ (Fig. 7.2b) has dimensions
l = 80nm and w = 5µm.

Tuning the phase difference between the superconducting leads,ϕ, is achieved by apply-
ing a perpendicular magnetic field, B⊥, that passes through the superconducting loop.
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For the SQUID, there is also a phase drop across the reference JJ since its switching cur-
rent is not much larger than the one for the device JJ (ratio 2:1, see Fig. 7.7 in the supple-
mentary information (SI)). This complication is absent for the phase-biased JJ.

In order to perform local tunneling spectroscopy and measure the nonlocal conduc-
tances, we energize the splitgates that are deposited on the two ends of the JJ (for the
SQUID on the device JJ) and apply voltages V1 (V2) to the top (bottom) normal lead while
measuring the currents I1 and I2. To obtain the local conductance G11 = dI1/dV1 and the
nonlocal conductance G21 = dI2/dV1 at a fixed B⊥, we vary V1 while measuring I1 and
I2, keeping V2 = 0. Then, to get the nonlocal conductance G12 and and the local con-
ductance G22, we vary V2 and measure I1 and I2, setting V1 = 0. This is repeated for all
perpendicular magnetic fields. The superconducting loop is grounded at all times. Af-
ter the measurements, circuit artifacts are corrected according to [23]. We will study the
local and nonlocal conductances at different in-plane magnetic fields (Zeeman fields),
B∥. In the main text, we focus on results on the DC SQUID, and show data on the phase-
biased JJ in the SI.

7.4. ZERO ZEEMAN FIELD RESULTS

In Fig. 7.3 we present local and nonlocal conductance measurements at B∥ = 0. Fo-
cusing on local spectroscopy (G11 and G22) first, we see a phase-dependent modula-
tion of the superconducting gap, indicating Andreev bound states (ABSs) in the JJ. For
B⊥ > 0.4mT, the oscillations become skewed - in opposite directions for top and bottom
spectroscopy. This is also observed for the phase-biased JJ, and explained in detail in
chapter 6. In brief, it results from the fact that the top and bottom splitgates probe dif-
ferent ABSs localized close to the respective gates, and that the phase difference on the
two sides of the JJ is different due to the perpendicular magnetic field in the junction.
The visibility of this effect is enhanced by the loop inductance, which also causes phase
slips at ϕ∼π, preventing the ABS levels to touch at zero energy.

Turning to the nonlocal conductances (G12 and G21), we see that they are negligibly
small at low energies and when |eV | exceeds the size of the bulk superconducting gap
(∆ ≈ 220µeV). As discussed in section 7.2, in the first case, the injected quasiparticles
travel as evanescent waves in the normal region of the JJ, and transport is suppressed
exponentially with distance. In the second case, the quasiparticles are directly absorbed
by the superconductor. A finite nonlocal conductance emerges when |eV | matches the
ABS energies. The signals are antisymmetric in bias, consistent with the numerical sim-
ulations including disorder (see Fig. 7.1c) and with the nanowire experiments [14–16].
The fact that the nonlocal conductances have a phase-dependence reinforce that they
are carried across the JJ by the ABSs. It is curious that the skewness that is observed in
the local signals at B⊥ > 0.4mT is not so clearly present in the nonlocal conductances.
This is an indication that the nonlocal signals are indeed a measure of the entire bulk
since one expects the skewness to gradually change across the JJ and thus average out.
The same observation is made for the phase-biased JJ (see Fig. 7.11 in the SI). On the
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Figure 7.3: Local and nonlocal conductances at B∥ = 0. A phase-dependent modulation
of the gap is visible in local spectroscopy from the top (a) and the bottom (d), indicating
the presence of ABSs in the JJ. The nonlocal conductances (b-c) show a similar phase
dependence (the skewness that is observed in the local conductances at B⊥ > 0.4mT is
less prominent in G12 and G21).

other hand, it should be pointed out that there are also differences between the two
nonlocal signals, see for example the finite signal in G21 close to V1 =±0.2mV that is sig-
nificantly smaller in G12. This seems to be correlated with the additional discrete states
being present (absent) in G11 (G22). The same effect can also be seen in the phase-biased
JJ, where we observe that the nonlocal gap sizes are slightly different, matching the gap
size measured in local spectroscopy on the current-injecting side (see Fig. 7.11 in the SI).

7.5. FINITE ZEEMAN FIELD RESULTS
Next, we study the local and nonlocal conductances in the presence of an in-plane mag-
netic field. Due to a small sample tilt, the Zeeman field has a perpendicular component
that we correct for by tracing the phase slips (see Fig. 7.8 in the SI). When applying the
Zeeman field, a splitting of the ABS energy levels and a corresponding reduction of the
gap size is expected. Figure 7.4 shows a measurement at B∥ = 250mT, where the gap size
is clearly reduced in the local and nonlocal signals. Also, more discrete levels become
visible. Note that in G22 the lowest levels start to touch at ϕ ∼ π, while in G11 this is not
the case. This might be caused by disorder in the normal region of the JJ, resulting in
spatially varying ABS transparencies. The different Zeeman field evolution of the ABSs
measured by local spectroscopy on both sides becomes especially clear at B∥ = 400mT,
where the gap in G22 is closed in the whole phase range, while it remains open at ϕ ∼ 0
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Figure 7.4: Local and nonlocal conductances at B∥ = 250mT. A gap reduction is visible
in all four measurements, with a phase-dependent gap closure in G22 that is not present
in G11. The nonlocal signals differ in sign and for larger energies, but show a similar gap
size without clear phase-dependent gap closure.

in G11 (see Fig. 7.9 in the SI). A similar phase-independent gap closure occurs in G11

around B∥ = 550mT (bottom gap still closed), at which point the gap in the nonlocal sig-
nals also vanishes (see Fig. 7.10 in the SI).

An interesting situation arises at B∥ = 650mT (see Fig. 7.5). The gap in G22 seems to
have reopened slightly along with the emergence of a zero-energy state that is hardly
phase-tunable. A similar observation can be made in G11, however with a less clear sep-
aration of the zero-energy state from the next highest level. Phase-independent ZBPs
were recently also seen in planar JJs based on an InAs 2DEG using two-ended local spec-
troscopy [21]. In the nonlocal signals there is no obvious gap visible, but a sign inversion
in the phase ranges where the ZBPs occur in local spectroscopy. It would have been in-
sightful to check the stability of these features when changing the splitgate voltages, but
instead we focused on increasing the Zeeman field further.

At B∥ = 700mT (see Fig. 7.6), the ZBP in G22 persists, while the one in G11 splits off from
zero energy for the largest part of the phase range. Also, the sign inversion in the two
nonlocal signals happens at opposing phase ranges now. The fact that the ZBP in G11

is not stable in Zeeman field and loses correlation to the one in G22 makes an interpre-
tation in terms of a uniform topological regime across the JJ unlikely. Besides, no gap is
observed in the nonlocal signals, only sign inversions that also lose correlation with each
other.
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Figure 7.5: Local and nonlocal conductances at B∥ = 650mT. A weak ZBP (hardly phase-
tunable) emerges in G11 and G22. No gap is visible in the nonlocal conductances, but sign
inversions that happen at the phase ranges where the ZBPs occur in local spectrocopy.
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Figure 7.6: Local and nonlocal conductances at B∥ = 700mT. The ZBP in G11 splits off
from zero energy for the largest part of the phase range, while the one in G22 remains
at zero energy. The sign inversions in the two nonlocal signals occur at opposing phase
ranges.
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Similar observations are made for the phase-biased JJ (see section 7.7.4 in the SI). At
intermediate Zeeman fields, top and bottom local spectroscopy look increasingly differ-
ent. After a gap closure, a phase-independent ZBP emerges in G11 but not in G22. No
gap is present in the nonlocal signals. A sign inversion in one of the nonlocal signals
is observed, but cannot be correlated with the emergence of the ZBP. Sign inversions in
the nonlocal signals as a function of gate voltages or Zeeman field have previously been
related to either a change in the charge of an ABS [9, 14–16] or to a change in the charge
preference of tunnel junctions [24].

7.6. CONCLUSION
In summary, we have performed local and nonlocal conductance measurements in pla-
nar, phase-biased JJs made in an InSbAs/Al 2DEG. As the Zeeman field is increased, the
local and nonlocal signals become increasingly dissimilar. After a gap closure in local
spectroscopy, we observe the emergence of phase-independent ZBPs, however mostly
only at one end. Moreover, the nonlocal conductances show no gap reopening, only sign
inversions that either start to appear at different phase ranges or cannot be correlated
with the ZBP in local spectroscopy. The lack of stable, end-to-end correlated ZBPs and a
bulk gap reopening suggest that a uniform topological regime is not reached within the
investigated parameter space, most likely due to disorder in the JJs. Nevertheless, these
measurements demonstrate how nonlocal conductance measurements in combination
with two-ended local spectroscopy can help to distinguish between a trivial and a topo-
logical regime, and indicate a need for further material improvements.

Note added: During the preparation of this chapter, we became aware of a related work
also addressing nonlocal conductance measurements in planar JJs [25].
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7.7. SUPPLEMENTARY MATERIAL

7.7.1. INTERFERENCE PATTERNS FOR JJS IN SQUID
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Figure 7.7: Fraunhofer interference pattern for the device JJ (a) and the reference JJ (b).
In both measurements, the current bias, I , is applied to one of the contacts on the super-
conducting loop while the other is grounded, and the voltage drop between them, V , is
measured. The contacts used for spectroscopy are floating. In a the supercurrent in the
reference JJ is suppressed by applying −2.5 V to the gate covering this JJ, in b there is no
supercurrent flowing through the device JJ by applying −2.0 V to the gate on the device
JJ.

7.7.2. FIELD TRACKING FOR SQUID
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Figure 7.8: Phase slip tracing. The conductance maps up to B∥ = 400mT are obtained by
applying a constant V2 and measuring G22 as a function of B⊥ and B∥, keeping V1 = 0.
The maps for larger in-plane magnetic fields are obtained by applying a constant V1 and
measuring G11 as a function of B⊥ and B∥, keeping V2 = 0. All conductances are normal-
ized to their maximum value within each map. The red line is a fit to the extracted red
maxima points. The effective B⊥ = 0 for B∥ > 100mT is defined as half of an oscillation
period (36.6µT) to the left of the red line.
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7.7.3. ADDITIONAL ZEEMAN FIELDS FOR SQUID
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Figure 7.9: Local and nonlocal conductances at B∥ = 400mT. A phase-independent gap
closure occurs in G22, while a gap remains in G11 and in the nonlocal signals.
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Figure 7.10: Local and nonlocal conductances at B∥ = 550mT. A phase-independent gap
closure happens in G11, the gap in G22 is still closed. The gap vanishes in the nonlocal
signals (weak sign inversions occur in G21).
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7.7.4. LOCAL AND NONLOCAL CONDUCTANCES FOR PHASE-BIASED JJ
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Figure 7.11: Local and nonlocal conductances at B∥ = 0. Local signals show phase-
dependence with a slightly smaller gap in G11. Nonlocal signals display a weak phase
dependence with a smaller gap size in G21 as observed in local spectroscopy on the
current-injecting side (G11).
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Figure 7.12: Local and nonlocal conductances at B∥ = 250mT, no correction for the per-
pendicular component of the Zeeman is applied. The gap sizes shrink and more states
become visible in local spectroscopy.



7.7. SUPPLEMENTARY MATERIAL

7

121

1.55 1.60
B  (mT)

0.2

0.0

0.2

V 1
 (m

V)
0.20 0.32

0.20 0.32
G11 (e2/h)

1.55 1.60
B  (mT)

0.2

0.0

0.2

V 2
 (m

V)

20 20

20 0 20
G21 (10 3e2/h)

1.55 1.60
B  (mT)

0.2

0.0

0.2

V 1
 (m

V)

20 20

20 0 20
G12 (10 3e2/h)

1.55 1.60
B  (mT)

0.2

0.0

0.2

V 2
 (m

V)

0.10 0.36

0.10 0.36
G22 (e2/h)

G11 (e2/h) G12 (10 3e2/h)

G21 (10 3e2/h) G22 (e2/h)

a b

c d

Figure 7.13: Local and nonlocal conductances at B∥ = 400mT, no correction for the per-
pendicular component of the Zeeman is applied. Phase-independent gap closure in G11,
weak gap visible in G22. No gaps in the nonlocal signals.
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Figure 7.14: Local and nonlocal conductances at B∥ = 500mT, no correction for the per-
pendicular component of the Zeeman is applied. Phase-independent ZBP emerges in
G11, but not in G22. No gaps in the nonlocal signals.
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Figure 7.15: Local and nonlocal conductances at B∥ = 600mT, no correction for the per-
pendicular component of the Zeeman is applied. Phase-independent ZBP remains in
G11, no zero-energy state in G22. No gaps in the nonlocal signals, but sign inversions in
G21.
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Figure 7.16: Local and nonlocal conductances at B∥ = 700mT, no correction for the per-
pendicular component of the Zeeman is applied. Zero-energy state in G11 has disap-
peared, however the sign inversions in G21 remain.
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8.1. CONCLUSIONS

CHAPTER 4
In chapter 4, we demonstrated for the first time induced superconductivity in InSb 2DEGs.
This was done by contacting the buried 2DEG, having a peak mobility of more than
150000cm2/Vs, by the ex-situ deposited superconductor NbTiN, forming planar JJs. We
observed supercurrents in devices with a length of up to L = 4.7µm, with signatures of
ballistic superconductivity (i.e., a 1/L scaling of the IsRn product for L < 2.7µm). An in-
plane magnetic field produced revivals of the supercurrent that we associated with 0−π
transitions. We explicitly showed the tunability of the 0−π transition field with the junc-
tion length and the electron density in the semiconductor, in quantitative agreement
with the theory of 0−π transitions in ballistic JJs. The electron density dependence al-
lowed us to rapidly switch between the 0 and π-regime at a fixed magnetic field using
gate voltages.

According to Pientka et al [1], the transition to the π-state in a planar JJ made in a 2DEG
with strong Rashba spin-orbit coupling is accompanied by a topological phase transi-
tion, when the magnetic field is applied along the semiconductor-superconductor in-
terfaces. However, this assumes a fully ballistic junction with Rashba SOC only, while
InSb is known to also have a Dresselhaus contribution. Reaching the topological regime
in the presence of Dresselhaus SOC requires a careful orientation of the magnetic field
depending on the relative strength of the Rashba and Dresselhaus contributions [2]. Be-
sides, making a more conclusive statement about a potential topological phase transi-
tion would require a direct detection mechanism. In this regard, tunneling spectroscopy
can be performed at the two ends of the JJ, where one would expect to measure zero-bias
peaks in the topological regime due to the MZMs. We fabricated new sets of JJs equipped
with tunneling probes, but were unable to perform reliable spectroscopy measurements
because of two main shortcomings: noisy dielectrics, and broken gates due to standing
walls at the edges of the sputtered NbTiN contacts. Another important consideration is
the size of the potential topological gap. For long junctions (ħ2/m∗L2 < ∆), the size of
the topological gap can at most be on the order of ħ2/m∗L2, amounting to ∼ 3µeV for
our 1.1µm long junction (note that the actual value also depends strongly on parameters
such as the strength of the spin-orbit coupling, and the magnitude and direction of the
applied Zeeman field) [1, 3]. Hence, in order to obtain a more sizable topological gap,
one should decrease the junction length, which would however also increase the 0−π
transition field.

This tradeoff can be prevented by using phase-biased JJs instead, where the topological
regime can be reached at a low magnetic field when the superconducting phase differ-
ence is tuned to π, provided that the JJ has a large transparency. Our JJs had only moder-
ate transparencies in the range of 0.6−0.7, so moving forward a better semiconductor-
superconductor interface was required. Inspired by the results on InAs/Al and InSb/Al
nanowires and InAs/Al 2DEGs, we grew a thin layer of the superconductor Al in-situ on
the semiconductor hetereostructure. However, we did not observe induced supercon-
ductivity, even when removing the top-barrier completely and growing the Al directly on
top of the InSb.
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CHAPTER 5
In chapter 5, we demonstrated that in-situ grown Al proximitizes InSbAs surface 2DEGs.
Using tunneling spectroscopy, we showed a hard induced superconducting gap in the
semiconductor, indicative of the clean semiconductor-superconductor interface. Apart
from the feasibility of induced superconductivity, we demonstrated that the bare ternary
semiconductor InSbAs has other beneficial properties for the realization of topological
superconductivity: strong Rashba spin-orbit coupling that is tunable by the As concen-
tration, a large perpendicular effective g-factor (∼ 55), and a low effective electron mass
(∼ 0.016me). However, the absence of the top-barrier comes at the price of a significantly
reduced peak mobility (∼ 25000cm2/Vs) compared to the buried InSb 2DEGs investi-
gated in the previous chapter. Taking advantage of the design flexibility of this material
system, we realized three prototypical device geometries to study MZMs: planar phase-
biased JJs, superconducting islands and superconducting strips.

CHAPTER 6
Chapter 6 focused on tunneling spectroscopy measurements on both ends of planar
phase-biased JJs in the absence of a Zeeman field. We found distinct differences between
the tunneling maps obtained on both ends of the junctions, which could be explained
by taking into account the local superconducting phase difference and the inductance of
the superconducting loop. Numerical simulations confirmed that the tunneling current
is only sensitive to Andreev bound states localized in the vicinity of the respective tun-
neling barrier, and that these states are affected differently by the local superconducting
phase difference having an equal magnitude but opposite sign on the two ends of the
JJs. Moreover, we used the resulting phase shifts to determine the relative positions of
individual ABSs in the junctions.

CHAPTER 7
In chapter 7, we complemented tunneling spectroscopy measurements in planar phase-
biased JJs with nonlocal conductance measurements, and obtained all four conduc-
tances at varying Zeeman fields. As the in-plane magnetic field was increased, the two
local and nonlocal signals became increasingly dissimilar, likely due to disorder in the
junctions. After a gap closure in local spectroscopy, zero-bias peaks emerged (hardly
phase-tunable), however mostly at one end. Moreover, we found no clear evidence of a
gap re-opening in the nonlocal signals. The lack of end-to-end correlated zero-energy
states in local spectroscopy and the absence of a gap re-opening in the nonlocal signals
suggest that further material improvements are required to realize a uniform, extended
topological region.
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8.2. HETEROSTRUCTURE OPTIMIZATIONS

In chapter 7, we encountered that the induced superconducting gap became soft in the
presence of an in-plane magnetic field and that zero-bias peaks were weak and unsta-
ble, without clear end-to-end correlation. Furthermore, we did not find evidence for
a re-opening of the bulk superconducting gap. These features are prevalent in experi-
ments reported in the literature (across various material platforms), and are expected
when disorder plays an important role in the hybrid devices [4]. Therefore, future het-
erostructures should be designed with the aim to reduce disorder as much as possible.
Notably, the disorder may stem from the semiconductor heterostructure itself, the su-
perconductor, the interface, or the device fabrication.

Insights into the cleanliness of the semiconductor heterostructure can be gained by mea-
suring the mobility in a Hall bar geometry with the superconductor removed. In chap-
ter 5, we have already noticed that the peak mobility is similar for all As concentrations,
suggesting that alloy scattering is not the limiting factor at this point. Instead, it is likely
the proximity to the surface (surface roughness scattering) that hampers the mobility.
Therefore, one should incorporate a top-barrier in upcoming heterostructures. Apart
from increasing the mobility, the top-barrier reduces the strength of the Rashba SOC
and the coupling to the superconductor. This has to be taken into account when opti-
mizing the mobility and one has to strike a balance.

In an attempt to improve the mobility, we grew an InSbAs/Al heterostructure with a 5
nm thick InSb top-barrier (see schematic of the layer stack in Fig. 8.1a). We observed an
increase in the peak mobility by approximately a factor of two, to ∼ 43000cm2/Vs (see
Fig. 8.1b), while still being able to induce superconductivity as shown in Fig. 8.1c. To
put this number into context, it corresponds to a level broadening (ħe/2m∗µ) of about
1meV, which is large compared to the expected size of the topological gap (< 0.1meV).
Similarly, reported fits to mobility-density curves for InAs and InSb 2DEGs with peak
mobilities in the range of 12000 cm2/Vs to 45000 cm2/Vs, yield charge impurity densi-
ties between 3.4× 1017 cm−3 and 1.4× 1019 cm−3, well above the limit of 1× 1015 cm−3

that is necessary for the manifestation of topological superconductivity [4, 5]. Achiev-
ing a level broadening of 0.1meV would require a mobility of ∼ 400000cm2/Vs. InSbAs
2DEGs with 40 nm AlInSb top-barrier have recently shown peak mobilities exceeding
200000cm2/Vs, but the ability to induce superconductivity was not demonstrated [6].
As a next step, it should be tested what mobilities can be achieved without sacrificing
induced superconductivity.

Further mobility improvements might also be possible by using a different barrier ma-
terial. One candidate is CdTe as it nearly matches the lattice constant of InSb and re-
sults in a type-I band alignment, with evidence of increased Rashba SOC [7, 8]. Addi-
tionally, one could try different substrate materials. It was for example shown that the
peak mobility of near-surface InAs 2DEGs (20−25 nm deep) reached values in excess of
2000000 cm2/Vs by switching from an InP to a nearly lattice-matched GaSb substrate [9,
10].
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Figure 8.1: a, Schematic of an InSbAs/Al heterostructure with a 5 nm thick InSb top-
barrier. b, Comparison of mobility vs. density curves for heterostructures with and with-
out top-barrier, measured using gated Hall bars. c, V -I curve measured in a Josephson
junction fabricated in the top-barrier wafer. The JJ is 10µm wide with a separation of
500nm between the superconducting contacts.

8.3. KITAEV CHAIN

Heterostructure optimizations are usually time-consuming and it is unclear if sufficient
mobility values can be reached while preserving induced superconductivity. Therefore,
in parallel, one should pursue an alternative approach to create MZMs that is less prone
to disorder. This is the case for the so-called Kitaev chain, which can be realized by con-
necting spin-polarized quantum dots via s-wave superconductors [11, 12]. Under the
appropriate conditions, one MZM forms at each end of the chain. The simplest ver-
sion of this is a double quantum dot connected via a common superconducting lead
(see Fig. 8.2a). The dots are coupled by elastic co-tunneling (ECT) where a single elec-
tron hops from one dot to the other via the superconductor, and by a coherent crossed
Andreev reflection (CAR) process where an incoming electron from the right dot is re-
flected non-locally into a hole in the left dot. It was predicted that by changing the an-
gle between the magnetic fields at the two quantum dots, the normal and supercon-
ducting coupling can be tuned to become equal, leading to the emergence of one poor
man’s Majorana (PMM) on each dot [13]. These states are not protected to the same de-
gree but otherwise share the properties of regular MZMs. A more recent proposal shows
that the couplings can also be mediated by Andreev bound states (ABSs) that reside in
a semiconducting-superconducting hybrid section connecting the two dots. Moreover,
it was predicted that the relative strength of the couplings is tunable by an electrostatic
gate covering the hybrid section and controlling the charge and energy of the ABSs [14].
This eliminates the need for the two tilted fields, making this proposal experimentally
feasible since the only required ingredients are spin-polarized quantum dots and a hy-
brid segment with spin-orbit coupling. In fact, by tuning the relative strength of ECT
and CAR, a Cooper pair splitter with high efficiency and a Kitaev chain of two sites were
realized using hybrid nanowire devices [15, 16].

Building upon this, and the material and fabrication developments in this thesis, one



8

132 8. CONCLUSION AND OUTLOOK

a

SuperconductorDot Dot Semiconductor

B1 B2

b

Figure 8.2: a, Schematic of a device consisting of two spin-polarized quantum dots cou-
pled via an s-wave superconductor. Two tilted magnetic fields are used to change the
spin polarization in different directions in the dots. b, Quantum dots connected via a
phase-biased Josephson junction. The ABSs in the semiconducting region of the JJ me-
diate the normal and superconducting coupling between the dots.

could couple two quantum dots via ABSs hosted in a 2DEG-based phase-biased JJ (see
Fig. 8.2b), where the ABS energy (and therefore the strength of CAR and ECT) can be con-
trolled by the superconducting phase difference, ϕ. At ϕ= π (ABS energy minimal) one
would expect CAR to be the strongest, while at ϕ= 0 (ABS energy maximal) CAR should
be weak. Hence, one can realize a phase-controllable Cooper-pair splitter.
Besides, the flexibility of the 2DEG platform should allow to manufacture more com-
plex chains with a larger number of sites (in a non-phase-biased geometry), therefore
creating MZMs instead of PMMs. While PMMs are not protected against deviations in
the couplings (equal normal and superconducting coupling is strictly required) [13], one
should see a growing tolerance against such fluctuations when increasing the number of
quantum dots [11]. It was argued that 5 sites should already be sufficient for a protected
Kitaev chain [11]. Promising steps towards a 2DEG-based Kitaev chain have recently
been taken [17].
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