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Abstract. We present recent results in study of a mathematical model of the Sea-Breeze flow, arising from a general model of
the ‘morning glory’ phenomena. Based on analysis of the Dirichlet spectrum of a corresponding Sturm-Liouville problem and
application of the Fredholm alternative, we establish conditions of existence/uniqueness of solutions to the given problem.
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1. Introduction

Sea breeze is a atmospheric flow that develops due to a strong temperature contrast between the land
and sea surfaces [17]. This flow is caused by the heating of the boundary layer over land, that results
in the movement of low-level air from the sea to land (Sea-Breeze) with a return flow called the return
current (see Fig. 1).

A typical Sea-Breeze flow is about 300 - 1000m thick (with the strongest wind speed at 50-200m hight),
whereas the thickness of the return current is about twice that big, leaving for the total vertical dimension
of the Sea-Breeze circulation about 1 to 3 km [17]. The mass of air transported by the Sea-Breeze and
by the return current are almost the same.

The Sea-Breeze flow strongly depends on the season, latitude where it blows and time of the day.
For example, in tropical and subtropical coastal regions it is a regular phenomenon throughout the year,
whereas at higher latitudes it is observed during the spring and summer periods (for more details about
the Sea-Breeze flows we refer the reader to [7,15–17]).

In this paper we analyze a mathematical model of the Sea-Breeze flow in the Gulf of Carpentaria
region (North Australia), that was recently derived from the equations characterizing the “morning
glory” phenomena (for more information we refer to [6,8,11]); see Fig. 2.

A remarkable feature of the Sea-Breeze flow in this particular region, what also makes it so interesting
to study, is its inland penetration for a distance of about 350km, that is significantly larger than the
average distance, typical for these flows (see [3,15]). This is caused by several factors, under which are
the intensity of heating, relative dryness of the land surface (except the summer monsoon periods) and
a small value of the Coriolis parameter at these latitudes [7].

The mathematical model of the Sea-Breeze flow in the North Australian region is written in the form
of the Dirichet boundary value problem, solvability of which we are analysing in this paper. Based on the
Sturm-Liouville (S-L) theory [2,12,13] and the Fredholm alternative [5,14] we make conclusions about
existence and uniqueness of solutions to the original problem.

The presented here results are new and serve as a natural extension to the analyses in [8]. It helps us to
better understand the Sea-Breeze flows in a broader setting, than studied before. Moreover, these results
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Fig. 1. The sea breeze formation, https://brianmejia.wordpress.com/2011/06/01/what-is-a-sea-breeze-shower

Fig. 2. Cloud “Morning Glory” in the Gulf of Carpentaria, Australia, https://www.meteorologiaenred.com/en/
the-cloud-morning-glory-impressive-meteorological-phenomenon.html

complement the earlier research line in analysis of the S-L problems for ocean flows and atmospheric
boundary-layer dynamics [9,10,13,14].

2. Mathematical Model of the Breeze-like Flow

In [8] Constantin, Johnson derived a non-dimensional model of the breeze-like flow, that in terms of a
horizontal velocity V0(z,Φ) reads as:

ρ0σSV0 +
1

Re

∂

∂z

(
m(z)

∂V0

∂z

)
= −

{
cos2(α) +

sin2(α)
C

}
K(z,Φ). (1)

Here
• z corresponds to the thickness of the flow;
• ρ0(z) is the density function;
• S, α, C and σ = 2(sin2 α+C cos2 α)

(1−C) sinα cosα , are the characteristics of the flow in a specific region;
• Re ≈ 105 is the Reynolds number;
• m(z) is the viscosity function;
• Φ is a parameter, corresponding to the direction of the flow propagation and
• K(z,Φ) is the forcing term in the model.

https://brianmejia.wordpress.com/2011/06/01/what-is-a-sea-breeze-shower
https://www.meteorologiaenred.com/en/the-cloud-morning-glory-impressive-meteorological-phenomenon.html
https://www.meteorologiaenred.com/en/the-cloud-morning-glory-impressive-meteorological-phenomenon.html
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Together with the equation (1) one can consider the physically relevant boundary conditions:

V0(0,Φ) = 0 – corresponding to the no-slip condition at the surface of the Earth,
V0(z0,Φ) = 0 – standing for the level where the temperature inversion occurs.

In the Gulf of Carpentaria region, that is under our focus in this paper, one can determine the following
physically relevant parameter values [8]:

C ≈ 0.97, S ≈ −0.24, σ ≈ 133 and α =
5π

4
.

Then the differential equation (1) is simplified to

βV0 − ∂

∂s

(
m̂(s)

∂V0

∂s

)
= k0(s,Φ), 0 < s < 1, (2)

with

β = −σSRe > 0, s =
1∫ z0

0
ρ0(ξ)dξ

∫ z

0

ρ0(ξ)dξ,

m̂(s) =
ρ0(z)m(z)(∫ z0

0
ρ0(ξ)dξ

)2 ,

k0(z,Φ) = Re

{
cos2(α) +

sin2(α)
C

}
K(z,Φ)
ρ0(z)

, (3)

where functions ρ0(z) and K(z,Φ) are assumed to be continuous (with Φ being a parameter), while m(z)
is continuously differentiable.

Additionally, for every fixed Φ one can write the physically relevant constraints of the flow in the form
of the homogeneous Dirichlet boundary conditions:

V0(0) = V0(1) = 0. (4)

In the following section we provide the solvability analysis to the problem (2), (4) using the spectral
theory tools.

3. Sturm-Liouville Problem for a Sea-Breeze Flow Model

Let us associate with the BVP (2), (4) the correspondent S-L problem of the form:

βV0 − ∂

∂s

(
m̂(s)

∂V0

∂s

)
= λV0(s), 0 < s < 1, (5)

V0(0) = V0(1) = 0, (4)

where m̂(s) does not change its sign.
In [8] the authors showed that if

S = β − ∂

∂s

(
m̂(s)

∂

∂s

)

is a self-adjoint unbounded linear operator acting in L2(0, 1) with domain the Sobolev space

H0
2 (0, 1) = {V ∈ H2(0, 1) : V (0) = V (1) = 0},

then S has a discrete spectrum with simple eigenvalues λ1 < λ2 < . . . < λn < . . . accumulating at infinity.
Moreover, it was proved that λ1 > β and thus, for β > 0 there are no zero eigenvalues and the BVP (2),
(4) has a unique solution for all functions k0(s,Φ).

However, in some settings β admits a negative sign and thus, there exists such N that λN = 0, which
due to the Fredholm alternative leads to certain restrictions on the right hand-side of (2). This case was
studied in [8] under assumption that the function m̂(s) in the differential equation (2) is constant: m̂(s) ≡
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m0. This leads to a sequence of eigenvalues λk = β + m0π
2k2 with the correspondent eigenfunctions

fn(s) =
√

2 sin(kπs), for k ≥ 1. One can easily see that for a particular value of β the sequence of
eigenvalues λk admits a zero value. This case occurs, for example, in the Calgary region where the
sea-breeze-like flow is landlocked.

In this section we extend the spectral analysis presented in [8] by incorporating additional nonlinear
profiles of m̂(s) in the differential equation (2).

3.1. Equation with Constant Coefficients

Assume that function m(z) in the relation (3) is given by

m(z) =

(∫ z0

0
ρ0(ξ)dξ

)2
(as + b)2

ρ0(z)
,

where as + b > 0, ∀s ∈ (0, 1), a �= 0, b �= 0 and a + b �= 0. Then m̂(s) = (as + b)2 and the differential
equation (2) can be written as

− (as + b)2V ′′
0 (s) − 2a(as + b)V ′

0(s) + βV0(s) = k0(s,Φ), 0 < s < 1. (6)

Consider now the correspondent Sturm-Liouville BVP

−(as + b)2V ′′
0 (s) − 2a(as + b)V ′

0(s) + βV0(s) = λV0(s), 0 < s < 1, (7)

V0(0) = V0(1) = 0, (4)

and let us find the Dirichlet spectrum for this problem.
Note, that the differential equation ( 7) is the Legendre equation admitting its reduction to the equation

with constant coefficients.
By introducing an Ansatz x = ln |as + b| we derive that

V ′
0(s) =

a

as + b
V ′
0(x), V ′′

0 (s) =
a2

(as + b)2
(V ′′

0 (x) − V ′
0(x)),

Then the equation (7) can be written as

a2V ′′
0 (x) + a2V ′

0(x) + (λ − β)V0(x) = 0. (8)

From the characteristic equation

a2μ2 + a2μ + (λ − β) = 0,

corresponding to (8) we obtain that

μ1,2 = −1
2

±
√

a2 − 4(λ − β)
2a

. (9)

Below we provide a detailed analysis of the Sturm-Liouville problem (7), (4) for different values of λ.
Case I. Assume, λ = β. Then μ1,2 = 0,−1 and

V0(x) = c1 + c2e
−x

or, in terms of the s variable,

V0(s) = c1 + c2
1

as + b
. (10)

Substitution of (10) into the boundary conditions (4) leads to

V0(s) ≡ 0

and thus, λ = β cannot be an eigenvalue of the S-L problem (7), (4).
Case II. Assume, D =

√
a2 − 4(λ − β) > 0. Then

V0(x) = c1e
μ1x + c2e

μ2x
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or

V0(s) = c1(as + b)μ1 + c2(as + b)μ2 , (11)

where μ1,2 are defined by (9).
The only possibility for V0(s) in (11) to satisfy the Dirichlet boundary constraints (4) is for c1 = c2 = 0.

Thus, V0(s) ≡ 0 and there are no eigenvalues for
√

a2 − 4(λ − β) > 0.
Case III. Assume, D =

√
a2 − 4(λ − β) < 0. Then

μ1,2 = −1
2

± i

√
4(λ − β) − a2

2a
.

Let us denote by ν = Im(μ1,2). Then the general solution of (8) will be written as

V0(x) = e−x/2

{
c1 cos(νx) + c1 sin(νx)

}
(12)

or

V0(s) =
1√

as + b

{
c1 cos(ν ln |as + b|) + c2 sin(ν ln |as + b|)

}
. (13)

From the boundary conditions (4) we get a linear homogeneous algebraic system in terms of c1, c2
variables: {

c1 cos(ν ln |b|) + c2 sin(ν ln |b|) = 0,
c1 cos(ν ln |a + b|) + c2 sin(ν ln |a + b|) = 0.

(14)

Now, system (14) and thus, the S-L problem, will have a non-trivial solution iff

Δ = | cos(ν ln |b|) sin(ν ln |b|)
cos(ν ln |a + b|) sin(ν ln |a + b|) | = 0. (15)

Let’s find such values of λ, for which (15) holds. We get:

cos(ν ln |b|) sin(ν ln |a + b|) − sin(ν ln |b|) cos(ν ln |a + b|) = sin
(

ν ln |a + b| − ν ln |b|
)

= 0.

From the last expression we get:

sin
(

ν ln |a + b

b
|
)

= 0

and thus,

ν =
πn

ln |a+b
b | , n = Z0.

Since ν =
√

4(λ−β)−a2

2a , we conclude that the Dirichlet spectrum is defined by

λn =
1
4

(
(2aπn)2

ln2 |a+b
b | + a2

)
+ β, n = N0. (16)

The eigenfunctions in this case are given by:

V
(1)
0n (s) =

1√
as + b

cos

(
πn ln |as + b|

ln |a+b
b |

)
,

V
(2)
0n (s) =

1√
as + b

sin

(
πn ln |as + b|

ln |a+b
b |

)
,

n ∈ N0. (17)

From (16) follows that for all β ≥ 0 all eigenvalues λn > 0 and accumulate at +∞. Thus, zero is not
an eigenvalue of the S-L BVP (7), (4), and by the Fredholm alternative the original BVP (6), (4) has a
unique solution [5].
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However, if β < 0, then there might exist such N , for which λN = 0. Then, the BVP (6), (4) has a
unique solution iff

< k0(s,Φ), f(s) >= 0,

where

f(s) = c1V
(1)
0n (s) + c2V

(2)
0n (s).

3.2. Legendre Equation

Consider the Sturm-Liouville problem (5), (4) and let us introduce an Ansatz:

x = 2s − 1, x ∈ (−1, 1). (18)

Then (5), (4) is written as

−4(m̂(x)V ′
0(x))′ + βV0(x) = λV0. (19)

V0(−1) = V0(1) = 0, (20)

where we assume that function m̂(x)( is given by a relation:

m̂(x) = 1 − x2. (21)

In this case the model equation (19) has the form

((1 − x2)V ′
0(x))′ +

1
4
(λ − β)V0(x) = 0 (22)

and is coupled with the boundary constraints (20).
Based on the analysis of the S-L BVPs for Legendre equations (see [2]), it is easy to check that

λn = β + 4n(n + 1), n ∈ N0

are the eigenvalues of the problem (22), (20) with the corresponding eigenfunctions being the Legendre
orthogonal polynomials [1,4]:

Pn(x) =
(−1)n

2nn!
Dn[(1 − x2)n], n ∈ N0.

Additionally, if β > 0 then all λn > 0 and thus, due to the Fredholm alternative, the original BVP
(2), (4) under substitutions (18), (21) has a unique solution. On the other hand, if β ≤ 0 (in particular
for β = −4n(n + 1)), then there exists such N that λN = 0, and we cannot guarantee uniqueness in this
case. For a solution to be unique, function k0(z,Φ) should satisfy the orthogonality condition:

< k0(z,Φ), Pn(z) > 0, ∀n ∈ N0.

Note, that this analysis can be extended towards more complex forms of the viscosity function m̂(s)
that leads to S-L problems, for which their discrete spectrum can be explicitly found.
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