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A B S T R A C T

In quasi-brittle materials, such as reinforced concrete, localisation of initially diffuse crack-
ing evolving in localised cracking patterns consists of a numerically challenging task. With
conventional iterative methods, convergence of the numerical solution scheme to model crack
localisation is often difficult to obtain. On the other hand, conventional total approaches, such as
the Sequentially Linear Approach, although robust, fail to approximate properly the underlying
material law. In the present work, a new model is introduced, designated the Total Iterative
Approach, in which the internal damage variables are updated iteratively. It is found that this
approach is robust, allows for the correct approximation of the material law and is a powerful
tool for the analysis of softening behaviour. Some examples are presented to illustrate the
performance of the model.

. Introduction

Softening materials, namely concrete, masonry and glass, exhibit unstable behaviour. This is due to the loss of ellipticity in the
overning set of equations as well as the loss of positive definiteness of the material tangent operator, which leads to non-uniqueness
r bifurcation of the numerical solution [1–4]. In continuum modelling, softening is known to give rise to pathological mesh
ependence. Here, a discrete crack approach is adopted, in which the pathological mesh dependence problem is implicitly overcome.
owever, non-uniqueness and instability remain a major challenge for the numerical modelling of quasi-brittle materials. Iterative

echniques based on the Newton–Raphson method, with or without the use of an Arc Length algorithm are usually adopted [5–8],
ut convergence is often difficult to achieve. Moreover, these materials exhibit several other nonlinearities, such as compressive
rushing in concrete and masonry, bond–slip between substrate and internal or external reinforcement and plastic behaviour of
teel reinforcement. Furthermore, in reinforced concrete, masonry and glass, a large number of cracks develop, which may lead to
on-convergence with these traditional iterative techniques.

Different strategies have been studied using non-iterative methods, in the scope of both purely total and mixed incremental/total
pproaches. In all these strategies, based on the Sequentially Linear Approach (SLA) [9–18], the evolution of the material response is
ased on the enforcement of the damage state. In [19], two additional non-iterative proposals were presented, namely an Improved
otal Analysis for Non-proportional Loading, as well as a Secant-incremental Approach. Both schemes were shown to overcome
roblems related to non-proportional loading which are associated with purely total approaches. Nevertheless, in all these Non-
terative methods, the correct stiffness update is not obtained since the enforcement of increasing damage is done in a heuristic
anner: damage is updated in one material point only, leading to saw-tooth load–displacement responses, as well as to possible

iolation of the consistency condition [19].
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List of acronyms and symbols

IA Incremental Approach
TA Total Approach
TIA Total Iterative Approach
NIEM Non-Iterative Energy Based Method
DSDA Discrete Strong Discontinuity Approach
MC Mohr–Coulomb
𝐅 Applied force vector
𝛥 increment
|.| the norm of (.)
𝜆 loading factor
𝜎 n stress component
𝝈 stress tensor
𝑑 scalar damage variable
𝐝 second order damage tensor
𝑑𝑛 normal damage variable component
𝑑𝑠 shear damage variable component
𝜺 strain tensor
𝐰 displacement jump vector
𝑤𝑛 normal component of the jump displacement vector
𝑤𝑠 shear component of the jump displacement vector
𝐭 traction vector acting at the discontinuity
𝑡𝑛 normal component of the traction vector
𝑡𝑛 normal traction corresponding to the maximum shear strength
𝑡𝑠 shear component of the traction vector
𝐃𝑒𝑙𝛤𝑑 second order elastic constitutive tensor corresponding to discontinuity 𝛤𝑑
𝐷𝑒𝑙
𝑛𝑛 normal diagonal component of tensor 𝐃𝑒𝑙𝛤𝑑

𝐷𝑒𝑙
𝑠𝑠 shear diagonal component of tensor 𝐃𝑒𝑙𝛤𝑑

𝑓 loading surface defined in the traction space
𝑓1, 𝑓2 limit surfaces defined in the traction space
𝑓𝑡0 initial tensile strength
𝑓𝑡 tensile strength
𝑐0 initial cohesion: shear strength under the absence of normal traction
𝑐 cohesion
𝐺𝐹 fracture energy
𝐺𝐼𝐼𝐹 fracture energy under mode-II fracture
𝜅 monotonic increasing function of the displacement jump components
𝑔 loading function defined in the displacement jump space
𝑔𝑛 normal damage evolution law
𝑔𝑠 shear damage evolution law
𝜙 internal friction angle; diameter of reinforcement bar
𝜉𝑛 𝑤𝑛∕𝜅𝑛
𝜉𝑠 |𝑤𝑠|∕𝜅𝑠
𝐺 𝑐∕𝑓𝑡
𝜌 𝜅𝑠∕𝜅𝑛
𝐶 control loading function used with the Total Iterative Approach

Alternative iterative methods have been used, such as the LATIN method [20] — LArge Time INcrement method for modelling
uasi-brittle failure, or limiting the number of iterations by means of an implicit/explicit scheme, designated the IMPLEX
ethod [21]. An incremental Sequentially Linear Analysis is also presented in [22–24], in which an iterative procedure is

mplemented. As in all Sequentially Linear approaches, saw-tooth load displacement responses are still obtained as well as local
iolation of consistency condition.
2
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Fig. 1. Limit surface in the traction space.

In this manuscript, a new numerical method is presented, designated the Total Iterative Approach. In this method, a Total
Approach is adopted since: (i) it is robust and (ii) conversely to the Incremental Approach, it allows for the evaluation of damage
increase in time, under constant loading. The latter advantage is important to properly simulate the effect of corrosion, for instance.
An iterative procedure is introduced to correct the stiffness response. This iterative procedure is also damage based, but the
stiffness update is no longer heuristic; instead, the stiffness update is performed iteratively, until the Kuhn–Tucker conditions are
approximately satisfied at all material points.

In the next Section, a mixed-mode strong discontinuity damage model [25] is briefly reviewed, allowing for the description of
the numerical algorithms in a generalised platform. The new proposed numerical model is compared to the Incremental Approach
and to the Total Approach. This is why these two formulations are reviewed in Sections 3 and 4, respectively. The new model is
introduced in Section 6. Several examples are presented to illustrate the performance of the model, involving: bending, bond–slip,
use of both interfaces and embedded discontinuities to model softening, snap-back and reinforced concrete.

2. A mixed-mode damage model for cohesive fracture

All iterative and non-iterative methods presented are based on damage modelling. Thus, the material models used with these
methods should provide the evaluation of damage as a means of following nonlinear behaviour, both under hardening and softening.
In this Section a general mixed-mode damage model presented in [25–27] is briefly reviewed. Both non-dilatant and dilatant cases
are considered.

Similar to the works presented in [28–31], the model is developed within the scope of a discrete crack (or strong discontinuity)
approach, defining the relationship between discontinuity displacement jumps and tractions. The damage evolution law is driven by
the traction field and the limit surface in the traction space shown in Fig. 1 is defined. In a general, non-isotropic, discrete damage
framework, we can write,

𝑡𝑛 = (1 − 𝑑𝑛)𝐷𝑒𝑙
𝑛𝑛𝑤𝑛

𝑡𝑠 = (1 − 𝑑𝑠)𝐷𝑒𝑙
𝑠𝑠𝑤𝑠,

(1)

where 𝑡𝑛 is the traction normal to the discontinuity, 𝑡𝑠 is the traction tangent to the discontinuity, 𝑤𝑛 is the normal jump
displacement, 𝑤𝑠 is the sliding jump displacement, 𝑑𝑛 is the damage variable under normal traction, 𝑑𝑠 is the damage variable
under shear traction and 𝐷𝑒𝑙

𝑛𝑛, 𝐷𝑒𝑙
𝑠𝑠 are the elastic normal and shear stiffness coefficients, respectively.

The limit surface (Fig. 1) is dependent on material strength parameters, namely:

𝑓𝑡 = 𝑓𝑡(𝑔𝑛(𝜅𝑛)) = 𝑔𝑛(𝜅𝑛)𝐷𝑒𝑙
𝑛𝑛𝜅𝑛, (2)

𝑐 = 𝑐(𝑔𝑠(𝜅𝑠)) = 𝑔𝑠(𝜅𝑠)𝐷𝑒𝑙
𝑠𝑠𝜅𝑠, (3)

where 𝑓𝑡 is the tensile strength, which is dependent on a scalar variable 𝜅𝑛, 𝑐 is the cohesion, which is dependent on a scalar variable
𝜅𝑠 and 𝑔𝑛 and 𝑔𝑠 are damage evolution laws under mode-I and mode-II fracture, respectively:

𝑔𝑛(𝜅𝑛) = 1 − 𝑑𝑛 =
𝑓𝑡

𝐷𝑒𝑙
𝑛𝑛𝜅𝑛

, under mode-I fracture, (4)

𝑔𝑠(𝜅𝑠) = 1 − 𝑑𝑠 =
𝑐
𝑒𝑙 , under mode-II fracture. (5)
3
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For example, if exponential softening is adopted, the following damage evolution laws are obtained:

𝑔𝑛 = 1 − 𝑑𝑛 =
𝜅𝑛0
𝜅𝑛

exp
[

−𝑓𝑡0
𝐺𝐹

(𝜅𝑛 − 𝜅𝑛0)
]

, (6)

𝑔𝑠 = 1 − 𝑑𝑠 =
𝜅𝑠0
𝜅𝑠

exp

[

−𝑐0
𝐺𝐼𝐼𝐹

(𝜅𝑠 − 𝜅𝑠0)

]

, (7)

where 𝐺𝐹 and 𝐺𝐼𝐼𝐹 are the fracture energy and the fracture energy under mode-II fracture, respectively. The scalar variables 𝜅𝑛 and
𝜅𝑠 are such that: 𝜅𝑛 = 𝑤𝑛 under pure mode-I fracture and 𝜅𝑠 = |𝑤𝑠| under pure mode-II fracture. In Eqs. (6) and (7), 𝜅𝑛0 = 𝑓𝑡0∕𝐷𝑒𝑙

𝑛𝑛
and 𝜅𝑠0 = 𝑐0∕𝐷𝑒𝑙

𝑠𝑠, where 𝑓𝑡0 and 𝑐0 are the initial tensile strength and initial cohesion, respectively (see Fig. 1). For mode-I fracture
and mode-II fracture we obtain, respectively,

𝑓𝑡 = 𝑓𝑡0 exp
[

−𝑓𝑡0
𝐺𝐹

(𝜅𝑛 − 𝜅𝑛0)
]

, (8)

𝑐 = 𝑐0 exp

[

−𝑐0
𝐺𝐼𝐼𝐹

(𝜅𝑠 − 𝜅𝑠0)

]

. (9)

Mixed-mode fracture is defined if 𝑤𝑛 > 0, whereas mode-II fracture under compressive states is defined if 𝑤𝑛 = 0 ∧ 𝑡𝑛 < 0. The
limit surface in the traction space is defined by two functions: 𝑓1 and 𝑓2, in which 𝑓1 is valid for 𝑡𝑛 ≥ 0 and 𝑓2 is valid under
compressive tractions (𝑡𝑛 < 0), respectively (see Fig. 1). Function 𝑓1 is given by:

𝑓1 = 0 ⇔ |𝑡𝑠| =
𝑓𝑡𝑡𝑎𝑛(𝜙) − 𝑐

𝑓 2
𝑡

𝑡2𝑛 − 𝑡𝑎𝑛(𝜙)𝑡𝑛 + 𝑐, (𝑡𝑛 > 0). (10)

For 𝑓2, a modified Mohr–Coulomb surface is adopted:

𝑓2 = 0 ⇔

{

|𝑡𝑠| =
𝑡𝑎𝑛(𝜙)
2𝑡𝑛,𝑙𝑖𝑚

𝑡2𝑛 − 𝑡𝑎𝑛(𝜙)𝑡𝑛 + 𝑐, if 𝑡𝑛,𝑙𝑖𝑚 ≤ 𝑡𝑛 ≤ 0 (i)
|𝑡𝑠| = 𝑡𝑠(𝑡𝑛,𝑙𝑖𝑚) = 𝑡𝑠,𝑚𝑎𝑥, if 𝑡𝑛 < 𝑡𝑛,𝑙𝑖𝑚 (ii),

(11)

n Eqs. (10) to (11), 𝜙 is the internal friction angle of the discontinuity and in (11) 𝑡𝑛,𝑙𝑖𝑚 is the normal traction corresponding to the
aximum shear traction (such that 𝜕𝑓2∕𝜕𝑡𝑛 = 0, see Fig. 1). From (10) to (11), it is clear that the transition between functions 𝑓1

nd 𝑓2 is continuous, with continuous derivative:
𝜕𝑓1
𝜕𝑡𝑛 |𝑡𝑛=0

=
𝜕𝑓2
𝜕𝑡𝑛 |𝑡𝑛=0

= 𝑡𝑎𝑛(𝜙). (12)

Damage initiation is defined according to:

𝑓1(𝑓𝑡0, 𝑐0) = 0 ∨ 𝑓2(𝑐0, 𝑡𝑛,𝑙𝑖𝑚) = 0, (13)

where dependence on 𝑡𝑛,𝑙𝑖𝑚 is only relevant for (11). Note that either 𝑓1 or 𝑓2 can be adopted under mixed-mode fracture since it
is possible to obtain simultaneously 𝑤𝑛 > 0 and 𝑡𝑛 < 0, as shown below. Conversely, only surface 𝑓2 is adopted for mode-II fracture
under compression.

Generalisation of the model to take into account dilatancy can be done introducing an equivalent normal jump, 𝑤𝑛,𝑑𝑖𝑙:

𝑤𝑛,𝑑𝑖𝑙 = 𝑤𝑛 − tan𝜓 sgn(𝑤𝑠)𝑤𝑠 = 𝑤𝑛 − tan𝜓|𝑤𝑠|, (14)

in which 𝜓 is the dilatancy angle. The total traction–jump relation becomes:

𝐭 =
[

(1 − 𝑑𝑛)𝐷𝑒𝑙
𝑛𝑛 −𝑠𝑔𝑛(𝑤𝑠) tan𝜓(1 − 𝑑𝑛)𝐷𝑒𝑙

𝑛𝑛
0 (1 − 𝑑𝑠)𝐷𝑒𝑙

𝑠𝑠

]

𝐰 (15)

Surface 𝑓1 is given by:

𝐺𝜉𝑠 = (tan(𝜙) − 𝐺)𝜉2𝑛,𝑑𝑖𝑙 − tan(𝜙)𝜉𝑛,𝑑𝑖𝑙 + 𝐺, (16)

where 𝜉𝑛 = 𝑤𝑛∕𝜅𝑛, 𝜉𝑠 = |𝑤𝑠|∕𝜅𝑠,

𝐺 = 𝑐
𝑓𝑡

=
1 − 𝑑𝑠
1 − 𝑑𝑛

𝐷𝑒𝑙
𝑠𝑠

𝐷𝑒𝑙
𝑛𝑛

𝜅𝑠
𝜅𝑛

=
𝑔𝑠
𝑔𝑛

𝐷𝑒𝑙
𝑠𝑠

𝐷𝑒𝑙
𝑛𝑛
𝜌 (17)

nd 𝜌 = 𝜅𝑛∕𝜅𝑠.
Under compression, a distinction between tensile and compressive damage normal variables is made (𝑑+𝑛 (𝜅𝑛), 𝑑

−
𝑛 = 0). Surface 𝑓2

s given by:

𝑓2 = 0 =

⎧

⎪

⎪

⎨

⎪

⎪

𝜅𝑠 − |𝑤𝑠| −
tan(𝜙) 𝐷

𝑒𝑙
𝑛𝑛

𝐷𝑒𝑙𝑠𝑠
𝑤𝑛,𝑑𝑖𝑙−

tan(𝜙)
2𝑡𝑛,𝑙𝑖𝑚

(

𝐷𝑒𝑙𝑛𝑛
)2

𝐷𝑒𝑙𝑠𝑠
𝑤2
𝑛,𝑑𝑖𝑙

(1−𝑑𝑠)
, if 𝑤𝑛,𝑑𝑖𝑙 > 𝑤𝑛,𝑙𝑖𝑚

𝜅𝑠 − |𝑤𝑠| −
tan(𝜙)𝑡𝑛,𝑙𝑖𝑚
2(1−𝑑 )𝐷𝑒𝑙

, otherwise.
(18)
4
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Fig. 2. (a) Multilinear mode-I fracture law, (b) corresponding function 𝑔𝑛 = 1 − 𝑑𝑛.

In Eqs. (18), 𝑤𝑛,𝑙𝑖𝑚 corresponds to 𝑡𝑛,𝑙𝑖𝑚, 𝑤𝑛,𝑙𝑖𝑚 = 𝑡𝑛,𝑙𝑖𝑚∕𝐷𝑒𝑙
𝑛𝑛.

Note that, in all cases, although both internal variables 𝜅𝑛, 𝜅𝑠 remain functions of 𝐰, i.e. 𝜅𝑛 = 𝜅𝑛(𝐰), 𝜅𝑠 = 𝜅𝑠(𝐰), they do not
vary if the material point remains on the limit surface: 𝑓1 = 0 ⇒ (�̇�𝑛 = 0 ∧ �̇�𝑠 = 0), 𝑓2 = 0 ⇒ �̇�𝑠 = 0. Furthermore, if variables 𝜅𝑛
and 𝜅𝑠 increase, the stress state must remain on the surface:

�̇�𝑛 > 0 ⇒ �̇�1 = 0, �̇�𝑠 > 0 ⇒ (�̇�1 = 0 ∧ �̇�2 = 0). (19)

As a consequence, the Kuhn–Tucker conditions as well as the consistency condition are satisfied:

�̇�𝑛 ≥ 0, �̇�𝑠 ≥ 0, 𝑓 ≤ 0, �̇�𝑛𝑓 = 0, �̇�𝑠𝑓 = 0, �̇� ̇𝑓 = 0. (20)

3. The incremental approach

The Incremental Approach is a non-iterative approach and was introduced in the works presented in [32–34], with both a
continuum hypoelastic model and a discrete crack model. In the work presented in [35], use of a similar procedure was adopted
for particle systems.

3.1. Trial step

In the incremental approach, stepwise linear constitutive relations are adopted. The structural response is obtained incrementally
and the load factor is adjusted to reach the end of each linear interval. Two possibilities must be distinguished: (i) either the material
point lies below the limit surface (𝑓 < 0) or (ii) the material point lies on the limit surface (𝑓 = 0). In the former case, the procedure
described in Section 4.1 is adopted, with non-zero displacement jumps (𝐰 ≠ 𝟎). In case (ii), the following two possibilities can occur:

1. 𝑓 = 0 ∧ ̇𝑓 ≥ 0;
2. 𝑓 = 0 ∧ ̇𝑓 < 0;

In case 1., since the material point already lies on the surface, the new step size factor 𝜆 = 𝜆∗ must be found such that a
material point on the new surface is reached. It is assumed that mode-I fracture evolution can be defined according to the multilinear
relationship depicted in Fig. 2(a), which approximates an exponential law. In Fig. 2(b), the corresponding 𝑔𝑛 = 1 − 𝑑𝑛 function is
hown. The step factor 𝜆∗ is such that the closest endpoint 𝜅∗𝑛 of each linear branch where the material point lies is reached (see
ig. 2(a)):

𝜆∗ ⇐ 𝜅∗𝑛 = {𝜅𝑛,𝑖+1}∗. (21)

In case 2., unloading should take place. Since in the previous true step the constitutive tensor was updated as the tangent,
orresponding to a loading situation, an incompatible material response is obtained which may not lead to an admissible solution.
he following procedure is adopted in this case:

i. enforce a null step size
ii. update the stiffness matrix to unloading
5

iii. check conditions 1. and 2. once more
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iv. if the incompatible situation prevails, stop.

A similar procedure applies when the material point reaches the surface with the secant matrix and needs to be updated to
the tangent stiffness. In these cases, the numerical test can only proceed by switching to a non-incremental approach, as done
in [14,19,36].

3.2. True step

In the true step, two situations may occur:

1. the material point lies below the surface;
2. the material point lies on the surface and it is critical.

n case 1., there is no damage update necessary. In case 2., the new value of 𝜅𝑛∗ is evaluated and therefore all remaining variables
(𝜅𝑠, 𝑑𝑛, 𝑑𝑠) can be updated accordingly.

4. The Total Approach

The Total Approach is inspired by firstly, the Sequential Linear Approach introduced by Jan Rots and coworkers [9–13,37] and,
secondly, the Lattice Models, introduced in [38,39]. For more detailed information on the use of the Total Approach the reader may
also be referred to the works presented in [14,30,36,40–46].

Departing from an equilibrium state, damage is forced to increase at some material point, according to a pre-defined scheme.
First, a trial step is adopted such that the limit surface is reached at one material point, closest to the surface. Next, the true step is
performed and the damage is increased at this critical material point.

4.1. Trial step

Consider the limit surface given in (16). At the end of the previous true step, new values for 𝜿∗, 𝜌∗, 𝐝∗ and 𝐺∗ are enforced
through the increase of 𝜅𝑛. In the next trial step, the new total jump displacements are defined as 𝐰 + 𝜆𝑑𝐰, where 𝜆 is a step size
factor. Note that 𝐰 is usually 𝟎, unless an initial stress state is present, such as in [41].

It is required that:

𝑓 ∗(𝐰∗,𝜿∗, 𝜌∗, 𝐺∗) = 0, (22)

with factor 𝜆 such that 𝐰∗ = 𝐰 + 𝜆𝑑𝐰. From Eq. (14), we get:

𝐺
𝜅𝑠
|𝑤𝑠 + 𝜆𝑑𝑤𝑠| =

(tan(𝜙)−𝐺)(𝑤𝑛,𝑑𝑖𝑙+𝜆𝑑𝑤𝑛,𝑑𝑖𝑙 )2

𝜅2𝑛
−

tan(𝜙)(𝑤𝑛,𝑑𝑖𝑙+𝜆𝑑𝑤𝑛,𝑑𝑖𝑙 )
𝜅𝑛

+ 𝐺
, (23)

hich can be solved for 𝜆. A minimum 𝜆 value corresponds to the material point closest to the surface, the critical point. Due to the
bsolute value |𝑤𝑠 + 𝜆𝑑𝑤𝑠|, and taking into account that, considering dilatancy, this term is also present in 𝑤𝑛,𝑑𝑖𝑙 + 𝜆𝑑𝑤𝑛,𝑑𝑖𝑙,

𝑤𝑛,𝑑𝑖𝑙 + 𝜆𝑑𝑤𝑛,𝑑𝑖𝑙 = 𝑤𝑛 + 𝜆𝑑𝑤𝑛 − tan𝜓|𝑤𝑠 + 𝜆𝑑𝑤𝑠|, (24)

three situations are identified: (i) 𝑤𝑠 ≈ 0, (ii) 𝑤𝑠𝑑𝑤𝑠 > 0 and (iii) (𝑤𝑠𝑑𝑤𝑠 < 0) ∧ (|𝑤𝑠| < 𝜆|𝑑𝑤𝑠|). The following strategies are
adopted [19]:

(i) in case |𝑤𝑠| ≈ 0, take |𝑤𝑠 + 𝜆𝑑𝑤𝑠| = |𝜆𝑑𝑤𝑠| and evaluate 𝜆 from (23);
(ii) otherwise, take |𝑤𝑠 + 𝜆𝑑𝑤𝑠| = |𝑤𝑠| + 𝜆 sgn(𝑤𝑠)𝑑𝑤𝑠 and evaluate 𝜆 from (23);

(iii) if 𝑤𝑠𝑑𝑤𝑠 < 0 ∧ |𝑤𝑠| < 𝜆|𝑑𝑤𝑠|, take 𝜆 ≤ −𝑤𝑠
𝑑𝑤𝑠

.

In (iii), the adopted 𝜆 value enforces 𝑤𝑠 + 𝜆𝑑𝑤𝑠 = 0, which prevents a change in sign from 𝑤𝑠 to 𝑤𝑠 + 𝜆𝑑𝑤𝑠.

4.2. True step

In the true step, once a critical point is found (𝑓1 = 0∨𝑓2 = 0), the corresponding stiffness is updated. First, damage is increased
nd this is achieved by enforcing the increase of 𝜅𝑛 by a certain prescribed amount.

Suppose that the mode-I multilinear relationship depicted in Fig. 2(a) is again considered and that 𝜅𝑛 is forced to evolve from
𝜅𝑛0 ≈ 0 corresponding to 𝑓𝑡 = 𝑓𝑡0 to 𝜅𝑢 corresponding to 𝑓𝑡 = 0, in 𝑛 equally distributed steps, which gives:

𝜅∗𝑛 = 𝜅𝑛 +
𝜅𝑢 − 𝜅𝑛0

𝑛
. (25)

After evaluating 𝜅∗𝑛 , according to the defined damage criterion, it is possible to derive 𝜅∗𝑠 , 𝑑∗𝑛 (𝜅∗𝑛 ), 𝑑∗𝑠 (𝜅∗𝑛 , 𝜅∗𝑠 ) and to obtain the new
otal constitutive relation given by:

𝐭 = (𝟏 − 𝐝∗) ⋅ 𝐃𝑒𝑙 ⋅ 𝐰. (26)
6
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Fig. 3. (a) Abrupt load decay, (b) violation of the consistency condition.

The following increasing function can be adopted:

𝜅∗𝑛 = min
(

𝜅𝑛 +
𝜅𝑢 − 𝜅𝑛0

𝑛
, 𝑚𝜅𝑛

)

, (27)

where 𝑚 can take a value which allows for a better approximation of damage near the onset of cracking, for values of 𝜅𝑛 close to
𝜅𝑛0 (for instance 𝑚 = 2).

Since 𝜅𝑛 is updated each time the point reaches the surface, its value is prescribed and will remain the actual maximum value
until the material point reaches the surface again. Thus, there is no need to evaluate 𝜅𝑛 in each step; this is an advantage from the
numerical point of view given the implicit nature of (16).

5. On the Total Approach

In this Section, some considerations on the conventional Total Approach are presented. The main advantage ot the Total Approach
is robustness, since a positive definite stiffness matrix is adopted. Thus, results are always obtained and numerical instabilities cannot
occur. Moreover, since the response is stepwise elastic, equilibrium is also always satisfied. Some other inherent characteristics and
drawbacks are addressed in the following.

5.1. Decay of the load

In the Total Approach, an abrupt decay in the load often occurs. Since the stiffness update is made at one critical point only, the
structural response may be significantly below the true incremental response due to an incorrect approximation of the global secant
stiffness. In some cases, a large number of steps is then needed to bring the global response again close to the correct envelope
response. An example of a bending test is shown in Fig. 3(a), in which large load drops are marked by an ellipse.

5.2. Consistency condition

With the Total Approach, the material law is not enforced exactly. As a consequence, the predicted increase of damage can lead
to violation of the consistency condition (20). Assume that one material point lies on the limit surface. If this point is not critical
in the next step, it will remain below the surface. If damage increases, conversely to (20), we have:

̇𝑓 < 0 ∧ �̇� > 0 ⇒ ̇𝑓 �̇� ≠ 0. (28)

In Fig. 3(b) this situation is depicted for mode-I fracture. In fact, the material point should lie on the new limit surface (softening
curve), i.e., on the ‘‘correct new position’’ indicated in the figure for the same increase in 𝜅𝑛. This gives rise to the ‘saw-tooth’
response obtained with the SLA and to a sudden decrease of the load described in Section 5.1.
7
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Fig. 4. Non-proportional loading in a pre-stressed beam.

5.3. Non-proportional loading

Implementation of non-proportional loading with a Total Approach has been considered a difficult issue [12,15,17,19,22,47].
Consider a reinforced concrete beam, submitted to three point bending, which is first pre-stressed such that the top surface of the
beam is under tensile stress (see Fig. 4). Next, the vertical load is applied until failure occurs. In a conventional Total Approach,
the loading corresponding to the pre-stress 𝐹1 is first applied, followed by the vertical load 𝐹2. Since the damage in the beam is
increasing under the second loading case, the pre-stress load may lead to cracking starting at the upper surface (𝑑2 in Fig. 4). In an
advanced stage of damage, it might even happen that the beam can no longer withstand the pre-stress and prematurely fail, before
the second load is applied (𝑑3 in Fig. 4). However, in the real test these conditions for the initial pre-stress are never met, since the
top surface of the beam will be simultaneously submitted to compressive stresses due to the vertical load.

The solution proposed in [19] is similar to the one adopted in the present work and consists of, as in the real test, enforcing
at step 𝑚 the full load applied in the previous step 𝑚 − 1: 𝐹𝑚 = 𝐹1 + 𝜆𝑚−1𝐹2. In the trial step (see Section 4.1) the value of 𝜆𝑚 is
evaluated, which can be either larger or smaller than 𝜆𝑚−1. As a consequence, this issue should no longer be considered a drawback
of the Total Approach. Moreover, conversely to the Incremental Approach, the re-evaluation of the stiffness of the whole structure
at each step can be interpreted as an advantage: it can be used to properly simulate the effect of damage evolution in time, under
constant loading, such as in corrosion.

6. The Total Iterative Approach

It should be emphasised that, in the conventional Total Approach as well as in all non-iterative methods presented in [19], the
approximation of the internal variables is not exact, leading to a mismatch regarding the evaluation of the secant stiffness. This
feature is taken into account in the Non-iterative Energy based Method (NIEM) presented in [14], but not entirely corrected. In
fact, it is shown in [19] that, if the right secant stiffness would have been known, the loading response obtained with these secant
methods would lie exactly on top of the incremental solution. This mismatch is due to the fact that only one critical material point
is considered for damage update.

In the work presented in [22], an incremental iterative procedure is used to mitigate this problem. Nevertheless, since one
critical point is still considered, with this method stiffness mismatch is not overcome and saw tooth load–displacement responses
are obtained.

In the present work a new model is introduced, designated the Total Iterative Approach. Conversely to the conventional Total
Approach, in this new model:

(i) the concept of Trial step and True step is not used;
(ii) no heuristic stiffness update is performed at the end of each step;

(iii) no single critical material point is defined for damage update;
(iv) damage is updated on several material points simultaneously.

In fact, instead of adopting a pre-defined damage increase in one critical material point, a pre-defined step size increment is enforced,
according to a control function 𝐶 defined below. Due to this new step size, several material points will be lying outside the limit
surface. As a consequence, an iterative procedure is adopted such that all points end up lying on or inside the limit surface.

The most general case of non-proportional loading is considered, in which several external force vectors are applied, 𝐅1,𝐅2,… ,𝐅𝑛,
which lead to the same number of corresponding stresses and tractions, 𝝈1,𝝈2,… ,𝝈𝑛 and 𝐭1, 𝐭2,… 𝐭𝑛, respectively. Assume that the
test is evolving under the second loading case and that a certain load level was attained in step 𝑖 − 1: 𝐅 + 𝜆 𝐅 . In the next step,
8
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Fig. 5. Uniaxial representation of iteration scheme both for softening and hardening.

he same load level is applied, which should lead to local solutions not lying on the surface (𝑓 > 0 or 𝑓 < 0). For instance, for
ixed-mode fracture, departing from the limit surface given in (10) and assuming 𝑓 > 0, it is possible to write [26,27]:

|𝑡𝑠1 + 𝜆𝑖−1𝑡𝑠2| >
𝑓𝑡 tan(𝜙) − 𝑐

𝑓 2
𝑡

(

𝑡𝑛1 + 𝜆𝑖−1𝑡𝑛2
)2 − tan(𝜙)(𝑡𝑛1 + 𝜆𝑖−1𝑡𝑛2) + 𝑐. (29)

n the conventional Total Approach, a new loading factor 𝜆𝑖 in the Trial step is determined such that 𝑓 = 0 in the most critical
material point:

[

|𝑡𝑠1 + 𝜆𝑖𝑡𝑠2| =
𝑓𝑡 tan(𝜙) − 𝑐

𝑓 2
𝑡

(

𝑡𝑛1 + 𝜆𝑖𝑡𝑛2
)2 − tan(𝜙)(𝑡𝑛1 + 𝜆𝑖𝑡𝑛2) + 𝑐

]

𝑐𝑟𝑖𝑡

, (30)

n which the internal variables as well as strength values 𝑓𝑡 and 𝑐 are kept fixed. In the new approach here, an iterative procedure
s introduced such that, for all points lying outside the surface (𝑓 > 0), damage is increased until 𝑓 ≤ 0 in all these points. For all
oints lying outside the surface, Eq. (30) becomes:

|𝑡𝑠1 + 𝜆∗𝑖 𝑡𝑠2| =
𝑓 ∗
𝑡 tan(𝜙) − 𝑐

∗

𝑓 ∗
𝑡
2

(

𝑡𝑛1 + 𝜆∗𝑖 𝑡𝑛2
)2 − tan(𝜙)(𝑡𝑛1 + 𝜆∗𝑖 𝑡𝑛2) + 𝑐

∗, (31)

here 𝑓 ∗
𝑡 and 𝑐∗ denote new tensile and cohesion strength values, respectively, corresponding to increasing damage. The same

rocedure can be applied to further loading if all tractions resulting from previous loading are accumulated in 𝐭1.
In Fig. 5, uniaxial representation of the iterative procedure is depicted at local level, both for softening material and for hardening

aterial. Whenever a material point lies outside the surface (𝑓 > 0), damage is increased at this point, keeping the kinematic
ariables 𝜅 / 𝜖 constant, such that the material point lies on the surface. In next iteration, the same procedure is applied to all
aterial points lying outside the surface. Since damage can only increase in each iteration, the iterative procedure stops when
≤ 0 everywhere.
In the iterative procedure, step 𝜆∗𝑖 is no longer dependent on the condition 𝑓 = 0 at a single critical point; instead, it will be

efined in each iteration, according to a control loading function 𝐶. This function can be dependent on the displacements, forces,
isplacement jumps, as well as internal variables such as damage. Thus, at each step 𝑖 and each interaction 𝑗, step size 𝜆𝑗𝑖 is defined
uch that 𝐶 = 0, where 𝐶 = 𝐶(𝐮1+𝜆

𝑗
𝑖𝐮2,𝐅1+𝜆

𝑗
𝑖𝐅2,𝐰1+𝜆

𝑗
𝑖𝐰2,𝐝1+𝜆

𝑗
𝑖𝐝2,…). Function 𝐶 can correspond to a monotonically increasing

unction of some parameter, taken as an absolute value, similar to the constrained functions used for the arc length method.1 For
nstance, in a structure exhibiting hardening behaviour, function 𝐶 can be given as:

𝐶 = 0 ⇔ 𝐹𝑘,1 + 𝜆
𝑗
𝑖𝐹𝑘,2 − 𝐹𝑖−1,𝑘 = 𝛥𝐹𝑘0, (32)

where 𝑘 is a chosen degree of freedom (dof) and 𝛥𝐹𝑘0 is a prescribed force increment at this degree of freedom. Since 𝐹𝑖−1,𝑘 =
𝐹1,𝑘 + 𝜆𝑖−1𝐹𝑘,2, Eq. (32) can be written as:

𝐶 = 𝜆𝑗𝑖𝐹𝑘,2 − (𝜆𝑖−1𝐹𝑘,2 + 𝛥𝐹𝑘0) = 𝜆𝑗𝑖𝐹𝑘,2 − (𝐹𝑖−1,𝑘,2 + 𝛥𝐹𝑘0), (33)

where 𝑖 − 1 is the previous final step. As a consequence, force 𝐹𝑘 increases monotonically by 𝛥𝐹𝑘0 in each step. The larger this
increment the larger the number of iterations is expected. However, this is a particular advantage with respect to the conventional
Total Approach since, in the latter, there is no control a priori of the step size. Moreover, load decay cannot occur using this control
function. Note that, since the iterative process starts from the previous equilibrium state plus 𝛥𝐅, the structure is never evaluated
under forces 𝐅1 alone and the issue mentioned in Section 5.3 for non-proportional loading is not addressed.

Some examples of 𝐶 functions are given below, where, as above, current loading corresponds to 𝐅2,𝐮2, 𝑒𝑡𝑐.:

1 In fact, this function only needs to be monotonic, but if the absolute value of the control parameter is adopted we get a monotonic increasing function in
9
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(i) monotonic increase of force at dof 𝑘:

𝐶 = 𝜆𝑗𝑖𝐹𝑘,2 − (𝜆𝑖−1𝐹𝑘,2 + 𝛥𝐹𝑘0), (34)

(ii) monotonic increase of displacement at dof 𝑘:

𝐶 = 𝜆𝑗𝑖 𝑢𝑘,2 − (𝜆𝑖−1𝑢𝑘,2 + 𝛥𝑢𝑘0), (35)

(iii) monotonic increase of normal or shear jump displacement 𝑤 at discontinuity 𝑐:

𝐶 = 𝜆𝑗𝑖𝑤𝑐,2 − (𝜆𝑖−1𝑤𝑐,2 + 𝛥𝑤𝑐0), (36)

(iv) monotonic increase of damage at material point 𝑚:

𝐶 = 𝑑𝑗𝑖,𝑚 − (𝑑𝑚,𝑖−1 + 𝛥𝑑𝑚0), (37)

(v) monotonic increase of global displacements:

𝐶 = 𝜆𝑗𝑖 |𝐮2| − (|𝐮𝑖−1,2| + |𝛥𝐮0|), (38)

(vi) monotonic increase of the global solution :

𝐶 = 𝜆𝑗𝑖

(

|𝛥𝐮2|
|𝛥𝐮20|

+ 1
𝜆0

)

− 2.0, (39)

(vii) monotonic increase of the global displacement jumps:

𝐶 = 𝜆𝑗𝑖 |𝐰2| − (|𝐰𝑖−1,2| + |𝛥𝐰0|). (40)

n (38), (39) and (40), |.| represents the norm of the corresponding vector entities (.). In (38), |𝛥𝐮0| is the prescribed increment of the
isplacement norm, in (40), |𝛥𝐰0| is the prescribed increment of the displacement jump norm obtained from all or some pre-defined
iscontinuities. In (39), values |𝛥𝐮20| and 𝜆0 are usually taken as the norm of the incremental displacement and the load factor,
espectively, obtained at the first step of the current loading case 𝐅2. Although control function (34) is adequate for hardening
ehaviour only, functions (35) and (38), can also be used for softening behaviour, whereas functions (37), (39) or (40) are general.
unction (36) is usually adopted in more critical cases, such as snap-back, in which a monotonic increase of the displacement jump
etween the two faces of a discontinuity is known to occur.

Thus, the crucial aspect of the iterative process lies on the choice of the control loading function 𝐶. This is not a closed
ssue: definition of function 𝐶 is and will remain open, allowing to explore new possibilities which lead to a better and swifter
pproximation of the final solution. For instance, other criteria and corresponding control functions for snap-back will be presented
n Section 7.4. A more refined scheme for the increase of damage is also adopted below due to the initial steep functions 𝑔 = (1−𝑑)
4) and (5), such as the one shown in Fig. 2(b) corresponding to exponential softening.

. Numerical examples

In the following, some numerical examples obtained with the Total Iterative Approach are presented. First, comparison with the
otal Approach is made, since it is representative of several non-iterative methods. Whenever possible, the results obtained with
he Incremental Approach are also shown, which are adopted as reference results.

.1. Bending

In this Section, examples of a concrete beam under three point bending are presented. These are usual benchmark tests used to
ssess softening behaviour. Two meshes are used: one rather coarse mesh and another more refined mesh. Both meshes are shown
n Figs. 6(a) and 6(b), respectively. In both cases, cracking is modelled with interface elements located at the centre of the beam.
he beam is 80 mm wide, 12 mm high and 100 mm thick.2 The material is concrete (𝐸 = 32 GPa), with tensile strength 𝑓𝑡0 = 3 MPa,
racture energy 𝐺𝐹 = 0.09 N/mm and compressive strength 𝑓𝑐 = 27.4 MPa. In Figs. 7(a) and 7(b), results obtained with the coarse
esh are shown. For clarity, the vertical load and the vertical displacement are displayed as positive values. Hereafter the results

btained with the Incremental Approach (IA) are coloured in blue, the results obtained with the Total Approach (TA) are coloured
n green and the results obtained with the Total Iterative Approach (TIA) are in brown. In Fig. 7(a), comparison between the
oad–displacement results obtained with both the IA and the TA is shown. In Fig. 7(b), comparison between the load–displacement
esults obtained with both the IA and the TIA is shown. The TIA solution was obtained adopting the control loading function given
n (35), where the degree of freedom 𝑘 corresponds to the vertical displacement under the applied load, at the top of the beam,
ith 𝛥𝑢𝑘0 = −0.002 mm (↓ ). Thus, in each step, the vertical load displacement is enforced to increase 0.002 mm downwards.

The IA solution was obtained with 21 steps, the TA solution with 368 steps and the TIA solution was obtained with 40 steps,
lthough with iterations. In spite of the fact that the TA solution was obtained with small increments the saw tooth response still

2 In fact, the thickness is merely an amplification factor of the solution since a plane stress state is adopted.
10
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c

Fig. 6. Three point bending tests: (a) Coarse mesh, (b) refined mesh.

Fig. 7. Bending tests: load–displacement curves obtained with the coarse mesh: (a) IA and the TA, (b) IA and the TIA.

remains obvious. On the other hand, the TIA solution lies on the IA solution. Note that the IA solution was obtained with each
step adapted to reach every point of the linearised material law. Conversely, the TIA solution is obtained according to the control
function 𝐶 = 0, so the step size is defined differently; in this case, each point of the load–displacement curve is obtained with a
constant increment of the vertical loading displacement. This is why, in Fig. 7(b), the TIA solution jumps over the IA solution into
the next branch twice, although the final position is always on the IA curve (see also Fig. 9(a)). Conversely, the TA solution only
lies on the IA solution on the first elastic step.

In Figs. 8(a) and 8(b), results obtained with the refined mesh are presented. In Fig. 8(a), comparison between the load–
displacement results obtained with both the IA and the TA is shown. In Fig. 8(b), comparison between the load–displacement results
obtained with both the IA and the TIA is shown. Same parameters from the previous test were adopted in the TA and the TIA. The
IA solution was obtained with 64 steps, the TA solution with 544 steps and the TIA solution was obtained with 40 steps, although
with iterations (0.002 mm × 40 steps = 0.08 mm, using both the coarse mesh and the refined mesh). The same observations from the
oarse mesh apply. Note that the high number of steps in the TA must be compared to the total number of steps × the number of

iterations in the TIA, which was 344 in this case. Nevertheless, even if these numbers are similar, the solutions are totally different,
with the TIA solution lying on top of the IA solution. Furthermore, it is important to note that both the IA with the TA or with the
TIA can be used, as done in [14,19] for the former case, which may lead to an important decrease in the number of iterative steps.

It is interesting to note that, even if the step size increment for the TIA increases significantly, all points of the load–displacement
curve still lie on top of the load–displacement curve obtained with the IA. In Fig. 9(a), an increment of −0.01 mm (↓) was adopted
for 𝛥𝑢𝑘0, leading to only 9 steps with 103 iterations (the first step is enforced such that the tensile strength is obtained at the crack
mouth and does not depend on 𝛥𝑢𝑘0). In Fig. 9(b), only the points of the same load–displacement curve are shown, which all lie
on top of the IA solution. From these figures it is clear that a large number of steps is not necessary to properly approximate the
solution with the TIA, although a variable increment 𝛥𝑢𝑘0 may be preferable, as discussed in the following. However, a small number
of steps gives rise to a non-conservative evaluation of the energy dissipation as can be seen in Fig. 9(a).

7.2. Prestress

As mentioned in Section 5.3, prestress consists of an example of non-proportional loading. The same concrete beam used in
the previous Section is considered, with the refined mesh presented in Fig. 6(b). First, a horizontal force of 𝐹 = −1800 𝑁 (←),
11
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s

Fig. 8. Bending tests: load–displacement curves obtained with refined mesh: (a) IA and the TA, (b) IA and the TIA.

Fig. 9. (a) Bending tests: load–displacement curves with the IA and the TIA, (b) load–displacement points obtained with the TIA on top of the IA solution.

imulating the prestress, is applied at the node adjacent to the right support. Next, a vertical load 𝐹2 is applied until the maximum
vertical displacement at the top of the beam reaches −0.08 mm (↓).

In Fig. 10(a), comparison between the load–displacement results obtained with both the IA and the TA is shown. In Fig. 10(b),
comparison between the load–displacement results obtained with both the IA and the TIA is shown. The prestress force is first
applied using the IA in all cases. In the TA, the Improved Non-proportional Analysis introduced in [19] was adopted. In the TIA,
the vertical displacement increment adopted in Fig. 10(b) is 𝛥𝑢𝑘0 = −0.002 mm (↓). In the load–displacement curves a horizontal
negative displacement (upwards) is first obtained with 𝐹2 = 0 corresponding to the application of the prestress force 𝐹1. An increase
in load capacity from around 700 𝑁 (see Section 7.1) to 1500 𝑁 is observed, due to the prestress.

Several crack modelling techniques have been used in the literature, namely embedded discontinuity approaches [48–50] as well
as the extended finite element method, XFEM [51,52]. In Fig. 11(a), the TIA solution is obtained with the vertical displacement
increment of 𝛥𝑢𝑘0 = −0.002 mm (↓), using the Discrete Strong Discontinuity Approach (DSDA) [53,54]. Since in this formulation
each discontinuity is embedded as if it were an interface, the adopted iterative process is exactly the same as the one adopted for
interfaces. In Fig. 11(b), the primary and secondary cracking distribution obtained from the same test is presented. Even with plain
concrete, secondary cracks develop, although the major dissipation of energy occurs at the central discontinuity.

7.3. Bond–slip

Bond–slip is an important aspect of the nonlinear reinforced concrete behaviour. A simple example is addressed here, in which
reinforcement is modelled with truss elements. The connection between the reinforcement and the concrete is modelled with
interface elements with initial zero thickness. The material law adopted for bond–slip exhibits softening with 𝐺𝐼𝐼𝐹 = 47 N/mm.
In the TIA, a constant increment of the horizontal displacement of the right edge of the bar is enforced (35), with 𝛥𝑢 = 0.1 mm. In
12
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Fig. 10. Prestress tests: load–displacement curves obtained with: (a) IA and the TA, (b) IA and the TIA.

Fig. 11. (a) Prestress tests: load–displacement curve obtained with the TIA using the DSDA, (b) primary and secondary cracking distribution obtained with the
DSDA.

Fig. 12(a), the load displacement curves obtained with the IA and the TA are shown, whereas in Fig. 12(b), the load displacement
curves obtained with the IA and the TIA are presented

7.4. Snap-back

Snap-back refers to an unstable structural response, difficult to obtain either experimentally or numerically. Since both
displacement and load decrease after the peak, neither displacement control nor load control can be used. Based on experimental
evidence, it is possible in particular cases to enforce the monotonic increase of the displacement jump at a certain discontinuity
location, often the crack mouth opening displacement (CMOD) or the crack mouth sliding displacement (CMSD). With the TIA, this
corresponds to the control function 𝐶 defined in (36).

The first test is a three point bending test with the refined mesh presented in Fig. 6(b), but with a fracture energy much smaller
𝐺𝐹 = 0.0014 N/mm), in order to enforce snap-back of the global solution. Exponential softening (6) is adopted in both the TA and
he TIA, whereas a corresponding multilinear law is adopted incrementally. In this test, a very sharp peak is obtained, where large
oad increments/ decrements and small displacement increments/ decrements are exhibited. A constant increment of the CMOD
constant 𝛥𝑤𝑛0), would lead to a rough estimation of the peak load. If small increments were adopted to better approximate the

solution near the peak, a large number of unnecessary steps would be used to approximate the much softer post-peak region of the
load–displacement response. A non uniform increment 𝑤𝑛 can be adopted in this case, such that small increments are enforced near
the peak and larger increments are adopted in the post-peak region. Here, the adopted jump increment is made to vary between
𝛥𝑤0 = 5 × 10−6 mm and 𝛥𝑤0 = 5 × 10−4 mm (the maximum value adopted in the multilinear law is 𝑤𝑢 = 1.8 × 10−3 mm).

In Fig. 13(a), the load–displacement curves obtained with the IA and the TA are shown. In Fig. 13(b), the load–displacement
curves obtained with the IA and the TIA are presented. The displacement scale is enlarged to allow for an easier comparison between
the solutions (the maximum displacement shown is very small: 0.01 mm).
13
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Fig. 12. Bond–slip tests: load–displacement curves obtained with: (a) IA and the TA, (b) IA and the TIA.

Fig. 13. Snap-back bending tests: load–displacement curves obtained with: (a) IA and the TA, (b) IA and the TIA.

Note that, conversely to the IA, where bifurcations occur and some control of the solution must be given, snap-back is relatively
imple to obtain with the TA. In fact, there are no bifurcations in the Total Approach, only stepwise elastic solutions. Moreover, the
maller the fracture energy - or, equivalently, the larger the dimensions of the structure, the smaller the number of material points
ying on the surface, i.e., the solution tends to be controlled by one critical point in each step, which is the underlying assumption
f the SLA. Thus, simply by increasing the damage at some critical point, it is possible to get a solution. With the TIA, definition
f control function 𝐶 is a central aspect. As with the IA, there is no magic formula: the user must know which function should be

adopted in each case. In [7], it is found that the possibility of convergence increases if the solution corresponding to the maximum
incremental dissipation of energy is adopted. Actually, the solution obtained with the IA is the same using this dissipation energy
criterion.

The second test is academic and consists of the modelling of a severe snap-back behaviour in a cantilever beam shown in Fig. 14.
Dimensions are: width = 50 mm, height = 100 mm, thickness = 1 mm, fracture energy 𝐺𝐹 = 0.001 N/mm and a steep linear softening
law is adopted. The IA solution is obtained by adopting the energy criterion. In this case, snap-back is so severe that one single
material point lies on the surface in each step, which corresponds exactly to the assumption made in the Total Approach. Thus, in
this case the TA solution lies on top of the IA solution. The TIA solution is obtained with two new control functions:

1. in the first case, the displacement jump is increased in each active fictitious crack3 such that a new point in the linearised
material law is reached. A fictitious crack is defined as active if it is dissipating energy, which occurs after reaching the
material tensile strength and before reaching the last point in the material law, beyond which the local stiffness becomes null

3 Definition of fictitious crack is given in [55], and refers to the pre-crack stage, in which dissipation of energy occurs.
14
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Fig. 14. Snap-back tests: double-cantilever beam, boundary conditions and mesh.

Fig. 15. Snap-back cantilever tests with linear softening: load–displacement curves obtained with: (a) IA and the TA, (b) IA and the TIA (1.)

and a real stress free crack is obtained. Function 𝐶 can be written as:

𝐶 = 𝜆𝑗𝑖𝑤
𝑎𝑐𝑡𝑖𝑣𝑒
𝑐,2 −𝑤𝑎𝑐𝑡𝑖𝑣𝑒𝑐,2,𝑚+1, (41)

where 𝑚+1 refers to the next point in the material law. Thus, instead of increasing a fixed amount, in each iteration 𝑗 of step
𝑖, the normal jump of the active fictitious crack is enforced to reach the next point in the multilinear law.

2. in the second case, the usual iterative procedure is applied to all material points lying outside the surface, independently of
belonging to one active crack or not; however, since the new position on the material law is known a priori as in the previous
case (.), the local damage is updated accordingly, at the end of each step. In this manner, less points will lie outside the
surface, which gives rise to a better approximation of the whole dissipation of energy.

In Fig. 15(a), the load–displacement curves obtained with both the IA and the TA are presented. In Fig. 15(b), the load–
displacement curves obtained with both the IA and the TIA with control function (41) are presented. In Fig. 16, the load–
displacement curve obtained with the TIA and the control function described in 2 is compared to the load–displacement curve
obtained with the IA, using a bilinear softening law. In this figure two deformed cantilever meshes are shown: the first is obtained
at one of the lowest points as shown in the figure, corresponding to the threshold of a stress free crack, whereas the second one is
obtained at the last peak, corresponding to reaching the tensile strength at the last discontinuity point, also indicated in the figure.
Thus, in the cantilever tests presented in Figs. 16, 15(a) and 15(b), the CMOD is always increasing and decreasing during the test,
15
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Fig. 16. Snap-back cantilever tests with bilinear softening: load–displacement curves obtained with the IA and the TIA (2.).

Fig. 17. Reinforced concrete beam: boundary conditions and adopted mesh.

7.5. Reinforced concrete

In this Section a reinforced concrete beam is analysed. The beam is simply supported and is 2 𝑚𝑒𝑡𝑟𝑒𝑠 long, 20 cm high and
30 cm thick. In Fig. 17 half of the beam is represented due to symmetry. The load is distributed on all top nodes of the beam in
order to promote a more diffuse cracking distribution. Concrete exhibits the same properties as in Section 7.1, with compressive
behaviour modelled as elasto-plastic. The beam is reinforced with 3 bars of 16 mm (3𝜙16) of steel S400 (𝑓𝑦𝑘 = 400 MPa), modelled
as elastic-perfectly plastic. The bond–slip relationship adopted is given in Table 1, where 𝑤𝑠 is the slip between concrete and steel
and 𝑡𝑠 is the corresponding bond stress.

Five vertical prescribed cracks are defined across half of the length of the specimen in order to allow for multiple cracking, as
a consequence of the tension-stiffening effect. The steel bar is located at 40 mm from the bottom surface and is modelled using
truss elements. Interface elements are adopted to model the bond–slip behaviour with a dummy normal stiffness. The connection
between the left edge of the bar and the concrete is very stiff in order to simulate the effect of the anchorage length. At the central
line and due to the symmetry boundary conditions, a fictitious crack is prescribed with a fracture energy equal to half the material
fracture energy (𝐺𝐹 ,𝑠𝑦𝑚 = 0.05 N∕mm instead of 𝐺𝐹 = 0.1 N∕mm).

The major issue in this example is crack localisation, which is captured with the Total Iterative Approach using four 𝐶 functions:

1. enforcing monotonic increase of the vertical displacement at midspan (35),
2. enforcing the monotonic increase of the vertical force at midspan (34),
3. enforcing the monotonic increase of the CMOD of the main discontinuity (36) and
16
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Table 1
Multilinear mode-II fracture re-
lationship adopted for bond–slip.
𝑤𝑠 (mm) 𝑡𝑠 (MPa)

0.20 6.371
0.617 8.749
1.5 7.397
2.0 6.547
2.5 5.791
5.0 3.136
15.0 0.270
30.0 0.000

Fig. 18. Reinforced concrete test: deformed mesh with localised cracks at the end of the test (amplification displacement factor = 10).

4. enforcing the monotonic increase of the global solution (39).

The displacement control solution was obtained with a small displacement increment, 𝛥𝑢20 = −0.01 mm (↓), and is taken as
the reference solution which is compared to the others. In Fig. 18, the corresponding deformed mesh is shown. In Fig. 19, the
load–displacement curves obtained with displacement control and force control are presented. In Fig. 20, the load–displacement
curves obtained with displacement control and CMOD control are presented. In Fig. 22, the load–displacement curves obtained
with displacement control and global solution control are presented.

In this test, the tensile strength of concrete (3 MPa) is first reached at the central fictitious crack, at the symmetry line. Next,
fictitious cracks close to the central line also reach the tensile strength and start to propagate and dissipate energy. In the first steps,
4 fictitious cracks are developing simultaneously, the central crack and the three closest ones. Then localisation starts, and effective
propagation of the five discontinuities continues.

Each load drop in the reference load–displacement curve corresponds to crack localisation at some prescribed discontinuity,
which occurs simultaneously with unloading of the other fictitious cracks. Counting the discontinuities starting from the symmetry
line we obtain (see Figs. 18 and 19):

(i) the first drop is due to localisation of the 2nd discontinuity,
(ii) the second drop is due to the 4th discontinuity,

(iii) the third drop is due to the 5th discontinuity,
(iv) the fourth drop is due to the 3rd discontinuity and
(v) the last drop on the plateau is due to the 1st discontinuity which finally reopens to a full stress free crack.

In this case it was not possible to obtain the whole solution with the Incremental Approach. Note that no iterative procedure is
adopted in the IA as detailed in Section 3. A partial incremental solution is shown in Fig. 19, where it can be seen that divergence
takes place when crack localisation occurs at the 4th discontinuity (second peak value).

It is interesting to see that, with force control (2.), snap-through occurs to points in the curve in which the load is again increasing.
Furthermore, the solution stops before localisation at the 1st discontinuity occurs, since the force cannot increase anymore.

The third solution (3.) is obtained by enforcing the monotonically increase of the CMOD at the 2nd discontinuity, defined as
the main crack after running solution 1. In this test, crack localisation is not captured step-wise. Note that, although a progressive
increase of the CMOD is enforced at each step as shown in Fig. 21, a snap-through is also obtained at each load drop in the load–
displacement curve. This is due to the fact that, when crack localisation occurs at the other discontinuities, a decrease of the CMOD
of the control (2nd) crack would be obtained, which is not allowed in this test. These oscillations in the CMOD happen already
in the stress free stage, and are captured with the reference solution. This is why no solution could be obtained with the IA using
17
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Fig. 19. Reinforced concrete tests: load–displacement curves obtained with the TIA with displacement control and force control; partial IA solution.

Fig. 20. Reinforced concrete tests: load–displacement curves obtained with the TIA with displacement control and CMOD control.

CMOD control, since it does not increase monotonically. However, with the TIA, the problem is overcome and a next point is always
obtained on the curve.

Finally, from Fig. 22 it can be seen that the global solution (4.) is obtained with a small number of steps although it still lies on
top of the reference solution.
18
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Fig. 21. Reinforced concrete tests: bond–slip curve obtained at 2th crack with CMOD test.

Fig. 22. Reinforced concrete tests: load–displacement curves obtained with the TIA with displacement control and global control solution.

Thus, in this Section it is shown that localisation, a proper sequence of propagating and closing cracks, is difficult to capture even
n a relatively simple model as the one presented here. A limited number of cracks is allowed in order to better illustrate the crack
ocalisation phenomenon. In more realistic cases, where cracking is more diffuse, difficult convergence behaviour with traditional
terative algorithms may arise. This is why more robust alternative procedures are needed, such as the TIA.

. Final remarks

In this manuscript a new Total Iterative Approach is introduced to solve structural problems involving softening materials.
19
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total approaches such as the ones based on the Sequentially Linear Approach, the Non-Iterative Energy Based Method, the Secant-
Incremental Approach, etc., the secant stiffness is updated heuristically in a single material point, leading to problems described in
Section 5, namely abrupt load decay and violation of the consistency condition. It is shown in [19] that this is due to an incorrect
stiffness update or stiffness mismatch. In fact, incrementally, several points lie simultaneously on the limit surface. All these points
must obey the material law, in particular the Kuhn–Tucker conditions, i.e., if the material point lies on the surface and damage
increases then the material point should remain on the surface.

Departing from an equilibrium state in an incremental analysis and assuming that unloading is defined according to conventional
amage, the correct secant stiffness would be obtained upon unloading. In the Total Iterative Approach, internal variables
orresponding to these damage states are searched iteratively. This is done by enforcing a control loading function 𝐶 which,
onversely to the Total Approach, locally may push some material points outside the limit surface. The iterative process is defined
y increasing damage at these points, such that: (i) function 𝐶 = 0 and (ii) the consistency condition is fulfilled.

In Section 6, the new iterative method is described and definitions of the control loading function 𝐶 are given. In Section 7,
xamples are obtained and compared to the TA and to the IA. It is verified that:

i. for all examples presented, the TIA solution lies on top of the IA solution, except in Section 7.5 where the whole incremental
solution could not be attained for the IA;

ii. use of large global steps can be adopted with the TIA to approximate the solution;
iii. conversely to the Total Approach, the control loading function allows the enforcement of the step size; thus, at the end of

each step, a certain value of displacement, force, displacement jump, etc., is automatically reached;
iv. the most important aspect of the TIA is the control loading function which drives the iterative process;
v. similar to the incremental analysis, this function may have to be adapted to the problem at hand, as in the case of snap-back

behaviour 7.4 although, in usual cases, either force control or displacement control can be adopted;
vi. convergence of the iterative process implemented in the Total Iterative Approach is always obtained: since damage can only

increase in each material point, the algorithm always provides a solution, where all points lie either on or under the limit
surface.

Finally, it is shown that the Total Iterative Approach is a new model where accuracy and robustness perfectly go hand in hand. As
uch, the TIA should be considered a powerful tool to solve structures with quasi-brittle materials. Proportional and non-proportional
oading examples, bond–slip problems, use of embedded discontinuities such as the DSDA, snap-back behaviour and reinforced
oncrete, were all properly tackled with this method.
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