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Predicting European cities’ climate
mitigation performance using machine
learning

Angel Hsu 1,2,3 , Xuewei Wang1,2,3, Jonas Tan4, Wayne Toh4 & Nihit Goyal 5

Although cities have risen to prominence as climate actors, emissions’ data
scarcity has been the primary challenge to evaluating their performance. Here
wedevelop a scalable, replicablemachine learning approach for evaluating the
mitigation performance for nearly all local administrative areas in Europe from
2001-2018. By combining publicly available, spatially explicit environmental
and socio-economic data with self-reported emissions data from European
cities, we predict annual carbon dioxide emissions to explore trends in city-
scale mitigation performance. We find that European cities participating in
transnational climate initiatives have likely decreased emissions since 2001,
with slightly more than half likely to have achieved their 2020 emissions
reduction target. Cities who report emissions data are more likely to have
achieved greater reductions than those who fail to report any data. Despite its
limitations, our model provides a replicable, scalable starting point for
understanding city-level climate emissions mitigation performance.

Cities have in recent years risen in prominence on the global sustain-
ability policy agenda, as researchers and policy-makers have increasingly
focused on urban jurisdictions as powerful policy actors in their own
right. More than 10,000 of the world’s cities are pledging various forms
of climate mitigation, adaptation, and financing actions, and in many
instances these municipalities participate in multiple voluntary transna-
tional climate initiatives1. As part of these initiatives’ requirements, in
accordance with national government directives2, or on their own voli-
tion, cities articulate strategies and policies to tackle climate change
mitigation and, less frequently, adaptation. Cities predominantly put
forth mitigation strategies centered on greenhouse gas emission reduc-
tion targets, often achieved through policies focused on increasing the
use of sustainable transport, enhancing the efficiency of lighting in public
and municipal buildings, adopting energy efficiency standards, promot-
ing climate awareness to encourage citizen action, and other areas3,4.

There are thousands of current strategies and policies detailing
urbanmitigation efforts, yet, asMilojevic-Dupont&Creutzig5 point out,
there is little understanding of these actions’ effects. These knowledge
gaps cause policymakers to be “disoriented on which measures are

adequate and impactful” in urban areas and uncertain which “everyday
decisions” regarding planning or infrastructure investments should be
made to achieve mitigation targets. Little is known about the emission
reductions from common urban climate policies and strategies, a
missing block of vital information acknowledged in Chapter 12 on
Human Settlements in the Fifth Assessment Report (AR5) of the Inter-
governmental Panel on Climate Change (IPCC)5,6.

Scholars have argued that cities’ involvement in transnational
climate governance “can accelerate their actions to curb GHG emis-
sions under certain conditions”7. The evidence in support of this claim
is scarce, making it hard to predict precisely what conditions would
have this effect. Transnational climate initiatives typically require
reporting of climate action plans and regularmonitoring in the formof
emissions inventories to assess whether mitigation goals are met, yet
in practice only a small fraction of subnational actors meet these
requirements8,9. Hsu et al.10 found that out of more than 9000 cities
that were signatories to the EU Covenant of Mayors for Climate and
Energy (EUCoM) initiative, only ~15% had reported any emissions data,
and even fewer (around 11%) had reported both a baseline emissions
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inventoryand an additional yearof inventory emissions data needed to
track progress towards voluntary reduction targets. When emissions
data are available, they are frequently incomparable due to the limited
availability of datapoints, a general lack of transparency regarding
underlying methodologies, and the lack of standardized accounting
approaches. Ibrahim et al.11 evaluated seven distinct city-scale green-
house gas emissions inventory protocols and methodologies and
concluded that a common reporting standard or approach is needed
for cities. Differences in the various standards’ definitions—e.g., for
emission scopes, particularly in Scope 3 supply chain emissions—must
be addressed so that participants emissions’ data can be appropriately
compared.

Recent advances inmachine learning (ML), a general class of non-
parametric, non-linear statistical modeling approaches and computa-
tional algorithms usually applied to large-scale datasets to simulate
human learning, could help us overcome these tricky emissions data
challenges12. In this study, we employ a ML-driven approach to esti-
mating and evaluating the mitigation performance of nearly all local
and municipal actors in the European Union and the United Kingdom
from 2001 to 2018. Our method develops a process for identifying
spatial boundaries and geospatial predictors for each local and
municipal government participating in the EUCoM, one of the largest
voluntary transnational climate governance initiatives, and then uti-
lizing the self-reported carbon emissions inventory data from ~6000
EUCoM cities as training data in an extreme gradient boosting model.
To our knowledge, our resulting dataset is the most comprehensive
time series dataset used to evaluate city-level carbon emissions and
mitigation performance. We apply these data to evaluate the perfor-
mance of three groups of European cities: “reporting” cities that have
reported at least one year of emissions data; “participating” cities that
have pledged voluntary climate action but have not reported any
emissions data; and last, “external” cities representing local adminis-
trative units (LAUs) that are not participants.

Results
City-level predictors of climate emissions
Figure 1a shows the correlation between the city-level dependent (i.e.,
self-reported “emissions”) and independent variables (i.e., heating

degree days, fossil-fuel CO2, GDP per capita, etc.). We found a strong
positive correlation between reported emissions inventory data and
stationary fossil-fuel CO2 emissions from the Open-Data Inventory for
AnthropogenicCarbondioxide (ODIAC)13 (r2 = 0.81), aswell as between
emissions and population (r2 = 0.89). Population and stationary fossil-
fuel CO2 emissions were also highly correlated (r2 = 0.79), confirming
prior studies that demonstrate through the use of nighttime lights
intensity the relationships between these data and energy consump-
tion, economic activity, and fossil-fuel emissions14. Our analysis did not
show strong relationships between self-reported emissions data and
GDP per capita (r2 = 0.03) or with fine particulate air pollution (PM2.5;
r2 = 0). We determined that stationary fossil-fuel CO2 emissions and
population were the primary predictors of cities’ self-reported emis-
sions data with the highest contribution or importance to our emis-
sionsmodel (Fig. 1b). Figure 1b shows the gain value of the importance
of each of the top six features we considered. The gain values are
determined by the amount each attribute split improves the model’s
performance, weighted by the number of observations for the node.
See Methods for more description about the grid search process and
parameter tuning to determine the final model.

We predicted emissions for around 92,636 cities or local admin-
istrative units (LAUs) where we had underlying spatial data (Supple-
mentary Table 2). Figure 2 presents scatterplots of cities’ self-reported
emissions data compared to our model’s predicted emissions data.
The resulting r2 = 0.91 indicates our model is strongly predictive
overall of cities’ self-reported emissions inventories. We further vali-
datedour predicted emissionswithother studies that report emissions
data for European cities, including Moran et al.15, who estimate 2018
direct (Scope 1) emissions for more than 100,000 European cities and
Nangini et al.16, who combine self-reported inventories with other data
for 343 global cities. We found fair correlation (r2 = 0.57 with Moran
et al.15; r2 = 0.62 with Nangini et al.16) between our predicted data and
these other studies (Supplementary Fig. 7). Figure 2b also shows the
self-reported emissions data vs. predicted emissions data by country,
which allows closer examination of potential eccentricities in our
model or the predicted data. For some countries, such as Ukraine, our
model performs less well (r2 = 0.02), and for some particular cities, the
predicted emissions are higher than what the cities themselves have

Fig. 1 | Predictors of European cities’ emissions. a Correlation matrices showing
the relationship between various predictors of urban climate emissions.
b Importance of various predictor variables to the emissions’ prediction model.

The more an attribute is utilized to make decisions in the XGBoost model, the
higher its feature importance is determined.
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reported. For instance, our model predicts annual emissions nearly
three times higher than Lyon’s self-reported emissions. Further
inspection of one of these outliers, Lyon, a city of 445,000 people
in France, reports an emissions inventory of around 22,000 tons,
translating in per capita emissions of <0.05 tons, far below the national
average of 5.4 tons per person17.

Trends in performance
Utilizing available time series data of underlying predictors, we
generated likely annual emissions ranges for all cities and local
administrative units where data were available from 2001 to 2018.
Illustrating the output of ourmodel, Fig. 3 shows time series for three
selected cities of varying population sizes: Waimes in Belgium
(population: 8932), Tolosa in Spain (population: 17,575), and London
in the United Kingdom (population: 8.9 million). These data were
then analyzed for trends in annual per capita emissions reduction
over the time period from 2001 to 2018 for cities participating in the
EUCoM that report emissions data (reporting cities), those that do
not report (participating cities), and for all LAUs in Europe (external
cities).

Overall, we find that EUCoM cities have on average, likely
reduced annual per capita emissions from 2001 to 2018
(−0.96 ± 1.88%) and from 2005 to 2018 (−0.53 ± 3.3%), compared to
external cities that on average, are likely to have not experienced
much change in emissions (0.18 ± 2.5% from 2001 to 2018 and
0.18 ± 3.2 from 2005 to 2018; Table 1). While 74% of EUCoM cities are
likely to have reduced emissions, only 53% of external cities are likely
to have experienced a negative trend in emissions reductions. We
interpret these emission trend differences betweenEUCoMcities and
external LAUs with caution, however, noting the differences most

notably in population between EUCoM (32,720 ± 181,348 inhabitants
for reporting cities; 35,318 ± 171 for participating cities) and external
LAUs, which tend to be on average much smaller (4433 ± 16,870
inhabitants) (Supplementary Table 2; Supplementary Fig. 6).
Descriptive statistics (Supplementary Table 2) and distributions
(Supplementary Fig. 6) describing the three groups of cities in our
analysis illustrate that EUCoM cities tend to have more sizeable sta-
tionary fossil-fuel carbon dioxide emissions and be larger in popu-
lation and population density than external cities, which could
explain differences in their emissions trends, since larger cities with
higher levels of GDP per capita have been shown to have more
ambitious climate plans2,18.

Within the EUCoM cities, we find that cities self-reporting
emissions inventory data (75% of EUCoM cities) are likely to have
achieved greater average emissions reductions compared to
participating cities that have not reported a baseline or mon-
itoring emissions inventory (−1.3 ± 1.7 vs. 0.2 ± 1.9 annual per
capita emissions reductions between 2001 and 2018; Table 1).
These results suggest that participating EUCoM cities are likely to
have achieved the same mitigation performance as external cities.
EUCoM cities that have pledged relatively more ambitious miti-
gation targets, exceeding the EU’s 2020 mitigation target of 20%
reduction from 1990 levels, are likely to have achieved greater
annualized per capita emissions reductions compared to cities
with a relatively less ambitious mitigation target (−1.4 ± 1.7 vs.
−0.6 ± .20 from 2001 to 2018; Table 1). Finally, EUCoM cities likely
on track (e.g., sufficiently reducing emissions in line with required
emissions to reach their declared 2020 emissions reduction tar-
get, see Methods for further details) to achieve their 2020 emis-
sion reduction targets (52% of EUCoM cities) likely have

Fig. 2 | Predicted emissions compared to self-reportedemissions. Scatterplot of
self-reported emissions (n = 6961 self-reported emissions data-points from cities
reporting to the EUCoM used in the model training) compared to the predicted
median emissions for each actor from the model on a log scale. a All self-reported
emissions inventories (in log tons CO2) of all actors versus the predicted emissions

data (in log tons CO2); b Country-by-country facets of self-reported vs. predicted
emissions where there were more than 1 datapoint. The number of cities listed in
the country panels slightly vary from Supplementary Table 3 since Supplementary
Table 3 includes both cities reporting emissions data and those that do not.
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experienced the greatest emission reductions (−1.8 ± 2.5 vs.
0.5 ± 1.6 from 2001 to 2018; Table 1). EUCoM cities not on track
(48% of EUCoM cities) have likely experienced a slight growth in
annual per capita emissions.

While we lack sufficient controls and data to causally isolate
whether participation in the EUCoM led to these emissions mitigation
trends, an interrupted time series (ITS) analysis,whichmodelswhether
a policy intervention or program may have resulted in a measurable
change in an outcome variable after its implementation19,20, can shed
some light on whether EUCoM cities’ emissions reductions primarily
occurred after they joined the initiative, accounting for differences in
population density, GDP per capita, etc. (see Methods for further

details). We find that each year following a cities’ adhesion to the
EUCoM initiative is associated with a slight −0.164 (standard error, or
se: 0.039) annual percentage change in per capita emissions (Fig. 4).
Confirming our comparison between city groups (Table 1), the ITS
regression further demonstrates the significance of an emissions
inventory (p <0.01), where reporting cities have likely achieved a −1.24
(se: 0.396) annual percentage change in per capita emissions (Table 2).
The level of the 2020 emissions reduction target, although
slightly significant (p <0.05), does not seem to have much of an
additional effect on annual percentage change in per capita emissions
(Table 2).

We observe differences in performance by country. Figures 5
and 6 compare the performance of participating EUCoM cities
versus all other LAUs by country. In some countries, EUCoM cities,
such as those in Sweden and Denmark, on average have had higher
annual per capita reduction trends than external city counterparts.
In others, such as the Netherlands and the United Kingdom, EUCoM
cities appear to be underperforming compared to other
cities (Fig. 4), as evidenced by comparing the distributions of annual
per capita emissions reductions for both groups of cities. This result
may reflect the fact that the national governments of Denmark and
the United Kingdom require local climate action plans from
municipalities2, suggesting that external cities in these countries
may be reducing emissions to meet national regulations and
requirements. Italy and Spain, where most of the EUCoM cities are
located, appear to have relatively comparable performance for both
groups (Italy = 64%; Spain = 50%; Supplementary Table 3). Scandi-
navian countries lead in terms of countries with the highest pro-
portion of cities on track (80% in Denmark; 53% in Finland and 70%
in Norway). Spain also boasts a large proportion of cities on track,
with 68%. Countries where cities perform similarly are closer to the
diagonal line in Supplementary Fig. 8, suggesting that the mean
annual per capita emissions reduction trends are similar among
EUCoM and external cities. Countries above the diagonal are those

Fig. 3 | Predicted, self-reported emissions, and primary predictor variables for three cities of varying population sizes. Waimes in Belgium, Tolosa in Spain, and
London in the United Kingdom were selected to represent cities of varying population sizes.

Table 1 | Difference in annual per capita emissions reduction
trend between different comparison groups

Mean ± sd
trend (1)

Mean ± sd
trend (2)

Mean
difference

Standard error

(1) EUCoM cities vs. (2) External Cities

2001–2018 trend −0.96 ± 1.88 0.18 ± 2.5 1.14*** 0.0003

2005–2018 trend −0.5 ± 3.3 0.18 ± 3.2 0.68*** 0.0004

(1) Reporting EUCoM cities vs. (2) participating EUCoM cities

2001–2018 trend −1.3 ± 1.7 0.2 ± 1.9 1.55*** 0.001

2005–2018 trend −0.75 ± 3.5 0.3 ± 2.5 1.03*** 0.002

(1) Ambitious EUCoM cities versus (2) unambitious EUCoM cities

2001–2018 trend −1.4 ± 1.7 −0.6 ± 2.0 0.87*** 0.001

2005–2018 trend −0.82 ± 3.5 −0.3 ± 3.0 0.52*** 0.002

(1) On-track EUCoM cities versus (2) Not on-track EUCoM cities

2001–2018 trend −1.8 ± 2.5 0.5 ± 1.6 2.72*** 0.0004

2005–2018 trend −2.2 ± 0.9 0.9 ± 3.5 2.66*** 0.0007

Difference in means were statistically compared using a two-sided t-test.
EUCoM cities include all reporting and participating cities unless otherwise noted.
***p < 0.01.
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where EUCoM cities have achieved greater annual per capita emis-
sions reductions than their non-EUCoM counterparts and include
countries like Finland, Slovakia, France, Germany, Italy among
others.

Discussion
Despite a measurable increase in urban climate governance scholar-
ship over the past decade, gaps in understanding outcomes for
transnational climate initiatives have persisted, particularly for smaller
cities and on a systematic basis21. Part of this gap is due to data avail-
ability and comparability, which limit researchers’ ability to trace
causal impacts or linkages between the processes and institutions of
transnational urban climate governance initiatives to outcomes21,22. To

address this shortcoming, this study has developed amachine learning
(ML)-based framework to predict more than 90,000 European cities’
emissions on an annual basis from 2001 to 2018 to examine likely
mitigation performance trends. By utilizing globally gridded, spatially
explicit predictor variables that are measured consistently and reg-
ularly and available self-reported emissions inventories, our ML-based
model is able to explain 90% of the variation (r2 = 0.90) between self-
reported emissions inventory data from recording EUCoM cities and
predicted emissions values, validated through comparisons with other
studies that have produced city-level carbon emission estimates for a
single year. Not without its limitations (see Limitations), our model
provides a replicable, scalable starting point for understanding city-
level climate emissions mitigation performance. It also provides a
method of evaluating and validating cities’ self-reported emissions.
Since some cities may erroneously report inventories or choose to
selectively report emissions sources, our approach can help to spot
outliers or potential reporting issues.

From our model’s predicted emissions data, we examined annual
per capita emissions trends that revealed insights that warrant further
exploration. First, of the roughly 8000 European cities that participate
in one of the largest voluntary transnational climate initiatives—the EU
Covenant of Mayors for Climate and Energy (EUCoM)—most (74%) are
likely to have reduced emissions from 2001 to 2018, with slightlymore
than half likely to achieved to have achieved their 2020 emission
reduction target. Cities that self-report emissions data are likely to
have reducedmore than cities that have not reported emissions data, a
finding that could bedue to the fact that, asRivas et al.23 found, EUCoM
municipalities that monitor emissions tend to also have started
implementing plans earlier and are typically “frontrunners” with more
climate action experience23. Cities with more ambitious mitigation
targets and those on track to achieving their 2020 mitigation targets

Fig. 4 | Effect of participating in the EU Covenant of Mayors for Climate and
Energy. Annual percentage per capita change in emissions for EUCoM cities
(plotted points) with predicted annual percentage per capita change in emissions

determined by interrupted time series analysis (blue line). Panels include data for
cities that joined the EUCoM in that specific year only, indicated by the red
vertical lines.

Table 2 | Results of interrupted time series analysis

Dependent variable: annual
percentage change

Time 1.416*** (0.342)

Joined 0.286 (0.191)

Time Since Joining EUCoM −0.164*** (0.039)

log(Population density) 1.395*** (0.032)

log(GDP per capita) 2.432*** (0.198)

Predicted emissions per capita 0.076*** (0.007)

2020 reduction target −0.015** (0.006)

Mitigation plan −0.046 (0.400)

Mitigation inventory −1.239*** (0.396)

n 102,787

Standard errors are in parentheses. The regressions include country and year fixed effects.
***p < 0.01.
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have likely achieved the greatest annual per capita emissions reduc-
tions compared to their counterparts. Ourfindings here echo results of
previous studies of EUCoM cities10,23,24. Kona et al.24, for example,
analyzed 315 reporting cities and found that they had reduced emis-
sions by 23% on average, while our results are comparable
(~1% annualized per capita emissions from 2001 to 2018). In our
2020 study of 1066 EUCoM cities reporting at least two emission
inventories, we found60%on track to achieve their emission reduction
targets, while this study found similar results with 52% of EUCoM cities
likely to have achieved their 2020 mitigation targets. Rivas et al.23

suggest that ambition and monitoring may be linked—municipalities
that tend to be more ambitious in their targets tend to not have
reported monitoring inventories, echoing Hsu et al.10 in finding a dis-
connect between ambition and performance.

While our study does not speak to causal mechanisms of the
predicted emission trends, nor whether there are endogenous condi-
tions that may explain why EUCoM cities have experienced on average
slightly greater annual per capita reductions than their external non-
EUCoM counterparts, it does suggest some insights relevant for urban
climate governance and transnational climate initiatives. First, since
emissions inventories and monitoring protocols are considered hall-
marks of effective local governments’ climate mitigation plans25, the
ability tomonitor and report emissions are likely indicators of capacity
and achievement. We measured significant differences in annualized
per capita emissions reductions between reporting cities and partici-
pating cities that fail to report any emissions data,which are likely to be
more similar to external EU cities in their emissions trajectories com-
pared to reporting cities. Second, while assessing emissions trends as
an outcome variable does not provide a “measure of effort”26 nor
describe the myriad inputs and factors that have led to a particular
outcome, monitoring and reporting emissions inventories indicates a
“means of implementation”26 for evaluating an entity’s progress
towards a policy outcome like climate mitigation. These findings
regarding linkages between monitoring and performance have impli-
cations for driving improvements in subnational climate mitigation,
suggesting investments in monitoring are one likely predictor of suc-
cess. Rivas et al.23 found that the odds of emissionsmonitoring are 2.24
times higher when a local authority provides financial support for a
climate plan’s implementation.

Data describing mitigation outcomes then allow for identifi-
cation of “general conditions of successful implementation” and
reverse engineering of causal pathways that led to the emissions
reductions. Our dataset and replicable, scalable ML-framework can
subsequently provide a first step towards disentangling which
specific measures, or none at all, led to the observed emissions
reductions. Since wewere limited to data on cities’ population, GDP,
air pollution, and fossil-fuel CO2 emissions, our analysis cannot
account for other underlying structural differences (e.g., variation
in governance institutions, etc.) that may further elucidate differ-
ences in emissions outcomes, since climate change action and
policies are “deeply entwined with other policy agendas.”27,28 In
addition, our model produces one of many possible emissions
pathways cities may have experienced, based on the limited, avail-
able predictors we used.

Future research
Since the availability of self-reported emissions inventory data at the
subnational level is primarily constrained to Europe, future studies
must broaden the search for relevant datasets and proxies that can fill
this gap, particularly for capacity- and resource-constrained entities in
the Global South29–31. Actors in these countries face limitations (e.g.,
expertise, lack of clearly designated roles in relevant government
agencies for producing inventories, insufficient documentation and
archival systems) and technical issues (e.g., incomplete or non-existent
activity data or lack of experimental data for developing countries or
technology-specific emission factors) for producing emissions
inventories10,32. Our next step is to expand our approach to a set of
subnational jurisdictions outsideof Europe toproducea global dataset
for cities participating in transnational climate initiatives, as recorded
in Hsu et al.’s1 dataset of more than 10,000 cities and regional gov-
ernments. We find compelling evidence that large-scale, geospatial
datasets can be applied to estimate city-level carbon dioxide emis-
sions, even for small city actors that comprise the majority of partici-
pants in the EUCoM, although more data and an expanded scope can
better stress test the applicability of the model beyond Europe. Our
method bridges the gap between these globally available, remote-
sensing derived geospatial datasets to city-scale actors, a shortcoming
Pan et al.33 note in fossil-fuel CO2 datasets like the ODIAC inventory,

Fig. 5 |Mapsof European cities’ emissions trends.Annual per capita emissions reduction trend from2001 to 2018 for cities participating in the EUCoM(left) and all other
external cities (right).
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which primarily distributes national fossil-fuel CO2 emissions spatially
based on satellite measurements of light-output intensity, and which
maynot correctly attribute emissions to subnational actors. Last,more
research deeply evaluating the mitigation policies different groups of
cities adopt to achieve emissions reductions andmitigation outcomes
is required to inform urban planning and future climate policy devel-
opment is needed.

Limitations
This study is certainly not without its limitations. There are a few areas
of uncertainty that could affect the validity of our predictions and
results. First, we assume that the self-reported emissions inventories
from the EUCoM actors are a valid source of data to train our model
and predict others’ emissions. We used the “verified” dataset of self-
reported emissions data for 6,200 cities that had reported emissions
inventory data evaluated by the European Commission’s Joint
Research Centre34. Although Kona et al.34 applied a series of statistical
checks to validate these reported emissions inventories, they note
several limitations. Since the focus of the EUCoM is on greenhouse gas
emissions related to sectors where a local authority has power to
influence through sectoral and policy measures, participating cities
only report emissions from selected sources (e.g., energy consump-
tion for buildings, transport and local energy generation, industrial
sources not already covered by the EU Emissions Trading Scheme, and
waste/wastewater35. Kona et al.34 acknowledge that the EUCoM

inventories were “never meant to be a method to create exhaustive
inventories of all emission sources in the territory or to deal with
emissions already included in national-scale control initiatives, such as
the EU Emissions Trading System (ETS) mechanisms.” Therefore a
second limitation is that there are emissions sources and sectors that
could be missing from EUCoM cities’ inventories, particularly if a city
doesn’t have the capacity to measure those emissions or they deem
certain emissions sources to not be of material importance for man-
agement purposes. Third, reporting cities’ use of different emissions
factors, estimation methodologies, and reporting boundaries add
uncertainty to the use of their inventories as training data, and we
found that some prediction “outliers” could be attributed to the fact
that the initial self-reported emissions data could be the result of cal-
culation or reporting error by the city itself23. Rivas et al.23 note this
limitation, particularly with regards to data sometimes reported with
missing emissions factors, which then need to be filledwith national or
regional factors and could affect the accuracy of the final estimation23.
Fourth, we assume that the spatial boundaries of EUCoM and external
cities remain static over the timeperiod,while thesemayhave changed
over time. If the boundaries have changed or are incorrectly identified
or matched with a city, their predictions could be inaccurate. Fifth,
while we observed significant differences between different cities’
emissions, there may be some fundamental differences between these
groups of cities that would account for mitigation performance that
ourmodel is unable to tease out (e.g., whether reporting EUCoM cities

Fig. 6 | Comparing emission reductions between city groups. Distributions of annual per capita emissions reductions between cities in the EUCoM and external cities.
Negative numbers indicate emissions reductions and mean annual per capita emissions trends for each group are designated with vertical lines in each panel.
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are fundamentally different from non-reporting or non-participating
cities in terms of geography, culture, or government that would drive
their emissions trends).

Last, there are limitations to machine learning-based approaches
for prediction,whichhavebeen identified and classifiedbyKapoor and
Narayanan36. Since machine learning approaches are inherently
stochastic37, the introduction of randomness to enhance model gen-
eralizability, which is seen as an advantage of ML approaches com-
pared to traditional gaussian regression methods, risks a model’s
potential reproducibility36. Our estimates, therefore only represent a
likely bootstrapped median emissions level using the specific para-
meters tuned on the training subsample and set at a particular seed or
initialization by the computing environment. In particular, our pre-
dictions of LAUs that report no emissions data should be interpreted
with the main caveat that we assume the relationships between
underlying predictions ourmodel has discovered for cities who report
emissions data hold for these other cities. We acknowledge, however,
that this is a major caveat to our results, but that the main goal of our
study is to explore the potential strengths and limitations of an ML
approach to developing a generalizable predictionmodel for city-level
emissions that could be applied outside of Europe, given additional
non-European city emissions data.

Despite these limitations, this research is a first step towards
addressing the “lack of systematic knowledge on global con-
tributions of cities to the Paris Agreement,”25 which acknowledges
the role of “all levels of government”38 and seeks specific infor-
mation regarding their impacts39. Few city actors participating in
transnational climate initiatives report monitoring and inventory
data, and even major cities claiming global climate leadership are
absent from reporting9,10,25,40. Our study provides a consistent
approach and time series data to investigate city-scale mitigation
trends and performance, with potential for broadening the scope
to areas outside of Europe.

Comparable and widespread emissions data are essential to sup-
port the Paris Agreement’s “facilitative and catalytic”41 mode and its
“pledge and review and ratchet”mechanism designed to continuously
evaluate national and subnational actors’ progress and contributions
to global mitigation efforts42. For virtuous, catalytic cycles supporting
this process to occur, emissions data are needed to assess which
actions are effective in driving mitigation and which entities are
achieving reductions.

Methods
Dataset preparation
Self-reported emissions inventory and climate action policy data.
Data for cities participating in the EUCoM were collected from two
sources: Kona et al.34, which provides a “verified and harmonized
version” of the EUCoM data for 6200 member cities as of the end of
2019, and the EUCoM website itself. The Kona et al.34 dataset for
EUCoM cities includes self-reported emissions data (e.g., baseline or
monitoring emissions inventories), as well as other characteristic data
of the cities from the European Statistical Agency. We supplemented
this dataset with more recent data for cities from the EUCoMwebsite,
which was scraped using the Beautiful Soup Python package43 in Feb-
ruary 2021.Weprimarily collected informationoneachcities’ adhesion
date to the EUCoM initiative, baseline emissions year, baseline emis-
sions (in tons of carbon dioxide emissions or tCO2), emissions reduc-
tion target, target year, and any reported inventory emissions (i.e.,
emissions data reported at a later year than a defined baseline year,
fromeachcity’s Progress page).We alsoderived information regarding
the cities’ population and geographic coordinates (latitude/longitude)
from the EUCoM website if available. Since Kona et al.34 apply a series
of statistical techniques to validate their dataset, we prioritized self-
reported emissions data from this source if there were data available
for a city both in Kona et al.34 and the EUCoM website. Supplementary

Fig. 1 shows a scatterplot of the logged emissions data from both the
EUCoMwebsite and Kona et al.34, which illustrates a strong correlation
(r2 = 0.986). In total, our dataset contained names of 7805 cities par-
ticipating in the EUCoM initiative, with 6114 reporting any emissions
information. We also imputed a 20% emissions reduction target by
2020 if no specific emissions reduction target was reported in
Kona et al.34 or on the EUCoMwebsite for the purposes of the tracking
progress analysis described in our previous study10.

Feature selection—predictors of urban climate emissions. An
important first step in building our predictive emissions model was
determining a set of underlying predictors of city-level carbon emis-
sions that would be universally available for all EUCoM cities and LAUs
in Europe. We evaluated several predictors of urban greenhouse gas
emissions to include as predictors in our model, based on existing
literature regarding major sources and drivers of cities’ emission
profiles6,44–46. In terms of emission sources, the energy sector, specifi-
cally conversion of energy to electricity, is the largest source of urban
greenhouse gas emissions, comprising around half upwards to 65% of
total urban emissions, followed by the transportation sector
(15–20%)44. Since stationary sources do not explain city greenhouse
gas emissions in their entirety, we also investigated other proxies for
major emissions sources, including heating and cooling demand, and
air pollution variables such as fine particulate air pollution, which in
cities results primarily from transport (~25%47), dust, and sulfur oxides
(SO2, SO4). We also included population and gross domestic product
(GDP) as relevant socioeconomic drivers of urban climate emissions6,
and evaluated a few country-level predictors, based on our previous
study10 that found national-level emissions reductions were predictors
of city-level climate change performance, including country-level CO2

emissions trend (2000–2018)17 and carbon intensity of electricity-
generation for the European Union48.

Since high-resolution emissions data as a result of electricity
production and consumption are not available for the vast majority of
cities included in our analysis, we relied on the Open-Data Inventory
for Anthropogenic Carbon Dioxide (ODIAC) database, which provides
a globally gridded, annual 1 km× 1 km spatial resolution data of carbon
dioxide emissions from fossil fuel combustion, cement production,
and gas flaring from 2000 to 201949. We selected the ODIAC dataset
based on prior evaluation of its relevance for urban-level carbon
emissions analysis, as described in Hsu et al.10.

As proxies for building energy consumption due to heating and
cooling, we downloaded monthly averaged, (0.5 × 0.625 degree or
55.5 × 69.375 km) spatial resolution land surface temperature data
from the NASA MERRA-2 temperature product50 and then calculated
heating and cooling degree days (HDD and CDD, respectively) based
on the number ofmonthly averagedmeasurements thatdeviate froma
baseline temperature, Tbase, which were then multiplied according to
the number of days in each respective month (i.e., assuming the same
HDD or CDD for each day of the month) and then summed across a
year, according to the Eqs. (1–2) below:

HDD =Σm Tbase � Ti

� �
×Daysm

+ ð1Þ

CDD =Σm Ti � Tbase

� �
×Daysm

+ ð2Þ

whereTbase = 15.5 degrees C forHDDand Tbase= 22 degreesC for CDD41

and m is the month. For the EU model, we excluded cooling degree
days since 99% of European cities had 0 cdd.

We included air pollution data extracted from satellite remote
sensing resources. We included annual, gridded (~1 km) exposure to
fine particulate matter pollution (PM2.5) for years 2001–2020

51, since
PM2.5 pollution is generated from sources similar to carbon emissions
in urban areas, mainly fossil fuel combustion from electricity
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generation and transportation52. We also extracted several relevant air
pollution variables from the MERRA-2 sensor, including dust surface
mass concentration (DUSMASS), black carbon surface mass con-
centration (BCSMASS), sulfur dioxide surface mass concentration
(SO2SMASS), and sulfate surface mass concentration (SO4SMASS).

We evaluated a few country-level predictors, based on a previous
study10 that found national-level emissions reductions were predictors
of city-level climate change performance, including country-level CO2

emissions trend (2000–2018)17 and carbon intensity of electricity-
generation for the European Union53, although our final model did not
include these variables, since they did not contribute significantly to
the feature importance for our model (Fig. 1b).

We further accounted for population and gross domestic product
(GDP) as relevant socioeconomic drivers of urban climate emissions6.
For population, we used the Gridded Population of the World (GPW)
dataset54, which provides population estimates at a 1-km spatial reso-
lution for five-year increments from 2000 to 2020. We calculated
annual population estimates by linearly interpolating between these
five-year increments. For GDP, we used a globally, annually gridded
GDP per capita data at a 1-km spatial resolution from Kummu et al.55,
which provides data from 1990 to 2015. We spatially joined each LAU
to its corresponding Nomenclature of Territorial Units for Statistics or
NUTS (Level 3), for the European Union its International Territorial
Unit, to derive a gross regional product (GRP) from the European
Statistical Agency56. Since theNUTS3GRPvalues are slightly broader in
area than an LAU, we used the annual rate of change from2016 to 2018
applied to the KummuGDP data for each LAU tomatch the time series
of the other spatial predictors.

Spatially joining predictor variables with climate action participa-
tion dataset. Since the original format of these predictor variables
(e.g., fossil-fuel CO2 emissions) are all gridded spatial data, wemerged
these datasets to each EUCoM city through spatial joins. We first col-
lected the latitude and longitude of each city’s centroid as provided by
the various data sources. When the city centroids were not available
from Kona et al.34, EU Covenant of Mayors’ website, or we determined
errors in the geographic coordinates from either of these sources, we
extracted the city centroids through Wikipedia’s GeoHack website.

To determine each city’s spatial boundaries, we used distinct
approaches described below. For most of the cities, we collected data
for local administrative units (LAUs), which are defined as “low-level
administrative divisions of a country below that of a province, region
or state,” for all 28 European Union countries from the European
Union’s Statistical Agency57. The LAU data was spatially joined to our
EUCoM city data frame in Python using the geopandas58 package to
associate each city with a LAU boundary for the purposes of matching
additional predictor variables. We implemented a series of quality
checks to ensure that the spatial joins were conducted correctly and to
identify any issues in the geographic coordinates that may have been
incorrectly specifiedon the EUCovenantwebsite. Thesequality checks
include (1) evaluating whether cities have the same geographic coor-
dinates but are identified with distinct names; (2) comparing the
reported population in the Kona et al.34 or EUCoM website for an
individual actor and the interpolated population after the spatial join;
(3) examining any city with self-reported per capita emissions <0.2
tons per person or >40 tons per person; (4) compound annual growth
rate in emissions is >−50% and <50%. These checks allowed us to
determine whether there were any errors in the spatial join or under-
lying data collected for the EUCoM cities from either Kona et al.34 or
the EUCoM website.

Where manual corrections to LAUs also did not result in
correct spatial joins, we utilized OpenStreet Map (OSM)59 to get
the correct boundary, particularly for large cities that may
encompass more than one LAU. Supplementary Fig. 2 illustrates a
few examples of the incorrect spatial join results and the fixed

boundaries with OSM. After we verified the cities’ boundaries, we
then applied zonal statistics using the Python package rasterstats
version 0.15.060, where each predictor variable was summarized
for each city using its spatial boundary. Based on the definition of
the predictor variables, we calculated mean values, except
population, where we calculated the sum of all pixels that inter-
sect with each city or LAU boundary.

Model for predicting emissions and climate change performance.
Cities participating in the EUCoM are required to submit a Sustainable
Energy (and Climate) Action Plan” (SE(C)AP) that includes a baseline
emissions inventory, and a monitoring inventory every two years after
that. Yet, at the time of data collection in February 2021, out of the
nearly 10,000 signatories listed on the website, only 6114 actors had
reported any emissions data, and only 1400 had reported more than
one year of emissions monitoring data. We only included cities’ data
with an interpolated population greater than the 5th percentile (374
inhabitants) of the cities’ population distribution. In total, 329 cities
had populations below this threshold and were not included in the
training or the prediction datasets. Consistent with Hsu et al. (2020),
we also filtered out datapoints that reported <0.2 tons CO2 per person
or >40 tons CO2 per person. The time period for self-reported emis-
sions data ranged from 1990 to 2020, but we only used data >2000
(5880 unique actors with 6961 emissions datapoints) for the model
training since this is the time period available for the predictor
variables.

We further split our data into three subsets: the first subset used
as training data includes all EUCoM cities that have at least one year of
emissions data reported, whether its baseline emissions or a later
inventory-year of data reported (EUCoM, 2021); a second subset are
cities participating in the EUCoM but have not reported any emissions
data; the third subset are cities not participating in the EUCoM. The
first subset of reported emissions data to the EUCoM are used as
training data to predict emissions for the latter two subsets of data.We
applied the model built with the first dataset to these cities and pre-
dicted their likely emission of a given year. Supplementary Fig. 3
provides a flow diagram of the processing steps described above. Our
training and test datasets were generated based on a standard 80/
20 split of the data while preserving the underlying country repre-
sentation (i.e., slightly over half of the available training data are from
cities in Italy (52%), followed by Spain (26%).

Model selection - XGBoost
We evaluated several regression models including multilinear regres-
sion, random forest, SVM, and extreme gradient boosting (XGBoost).
The multilinear model is from the R base library; random forest and
SVM are from R package caret version 6.0-8661; and XGBoost from
XGBoost R package version 1.3.2.162. We chose root mean square error
(RMSE) and r2 as the model comparison matrix to examine how each
model performs on both the training and test datasets. For random
forest, SVM, and XGBoost models that are controlled by a set of
hyperparameters, we applied grid search with fivefold cross validation
to the models to get the best parameters that result in the lowest
RMSE. Supplementary Table 6 shows the hyperparameters we used in
these three models. Missing values in independent variables are a
common issue in ML-based models, and the models we evaluated
handlemissing values in different ways. The XGBoostmodel is capable
of handlingmissing valueswithout any imputation. Therefore, after we
trained an XGboost model with complete data in all independent
variables (referred as XGBoost-w/o NA), we also trained the XGBoost
model with the data that may have NA values in the independent
variables (referred as XGBoost-w/-NA in the following sections. Note
that all NA values are dropped after we split the data into training and
test sets, so that all train and test dataset are exactly the same for
models besides XGBoost-w/ NA. Supplementary Table 6 shows the
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train and test RMSE and r2 of the best tuned models. Both the random
forest and XGBoost model are tree-based regression models, and our
results suggest that the tree based models perform better than other
models for our dataset (Supplementary Table 6). In addition, the
XGBoost-w/ NA model is trained with 357 more data points with NA
values in the independent variables and achieved: RMSE =
155865.63 and r2 = 0.90.

Based on themodel training results and the capability of handling
missing values, we decided to proceed with XGBoost. XGBoost stands
for “extreme gradient boosting” and has gained popularity due to its
high performance in machine-learning competitions such as Kaggle63.
Gradient boosting models like XGBoost perform supervised regres-
sion tasks through an iterative approach to predict a target variable
(i.e., emissions), optimizing predictive performance by combining
multiple “weak” trees to fit new models that are more accurate pre-
dictors of a response variable64,65. One advantage of gradient-boosting
machine learning models such as XGBoost is that they are robust to
issues that are of concern in typical regression-based techniques,
including multicollinearity issues66,67. A decision-tree consists of splits
—iterative selections of features that separate data into twogroups and
then determine which is the optimal “split” on a feature based on the
score. If two features or variables are correlated, then only one will be
selected and the algorithm will not utilize information from the cor-
related feature since it has already been captured by the first. The
XGBoost gradient-boosting model has been widely used in air quality
monitoring65,68,69 and greenhouse gas (GHG) emissions estimation70 for
its high efficiency, flexibility, and portability. Si and Du65 further note
additional advantages of XGBoost, which requires less data pre-
processing and has fewer hyperparameters, parameters an ML model
uses to control the learning process for tuning71.

We utilized recursive feature elimination (RFE)72, a machine
learning technique that assists with feature selection to identify opti-
mal features for a prediction or classification problem by eliminating
the “weakest” features in a dataset73. Although RFE approachesmay be
more relevant for datasets that include several dozen or hundreds of
variables, we implemented RFE using the FeatureTerminatoR74 pack-
age in R, which suggested the inclusion of heating degree days, fossil-
fuel CO2 emissions (odiac), fine particulate pollution (pm25), gdp per
capita, population, population density, latitude, longitude, dust mass
concentration, and emissions year. We evaluated alternate model
specifications that included additional variables collected (e.g., sulfur
dioxide emission concentrations), but their inclusion did not sig-
nificantly improve the prediction accuracy of our model and we erred
onmodel parsimony in our final model specification75 (Supplementary
Fig. 5 and Supplementary Table 7).

Our implementation of the XGBoost is determined by a set of
hyperparameters, which are parameters the machine learning model
uses to control the learning process71. These included the maximum
depth of the tree, the learning rate, the minimum sum of weight in a
node, minimum loss reduction, and the percent of rows to use in each
tree which are the standard hyperparameters included in the XGBoost
implementation in R76. To obtain the best hyperparameters set for the
model and evaluate how themodel performs, we first split our dataset
with a 80/20 split sampling across countries, meaning we used 80% of
the data as training data to predict the other 20% of the dataset65. We
then conducted a grid search (Supplementary Table 4) on the hyper-
parameters with fivefold cross-validation to determine the model with
the lowest mean root mean squared error. Supplementary Table 4
shows the hyperparameter ranges and the optimized values. Following
thehyperparameter grid search,we trained themodelwith the training
dataset with the best result from the hyperparameter grid search. We
then tested the model accuracy using the test data.

The final model was built with the optimal parameter set from the
grid search, which is the process of building models with all the pos-
sible parameter combinations and finding the best parameter set with

which the model performs the best on training samples. As Supple-
mentary Table 4 describes, the optimum result for the model is
achievedwhenmaxdepth = 13,minimumchildweight = 1, eta (learning
rate) = 0.5, gamma= 1, and trains the model with 40 rounds, which
achieved a mean absolute percentage error between the training and
predicted values of 8%, and r2 = 0.88 for the test data See Supple-
mentary Fig. 4 for scatterplots of model performance. Supplementary
Table 7 shows the results of a few selected alternate model specifica-
tions that were evaluated but ultimately not selected for predictions
for other years and all other LAUs. Supplementary Fig. 4 shows scatter
plots of the self-reported and predicted emissions for the training
and test datasets. We used the XGBoost R package’s built-in
function xgb.importance to determine the final model’s feature
importance (i.e., which predictors have the greatest predictive or
explanatory power)76.

Predicting ‘likely’ emissions levels for all entities 2001–2018
After building the finalmodel with optimal parameters and evaluation,
we applied ourmodel to (1) EUCoM cities that do not report emissions
(i.e., participating cities); and (2) all external LAUs in Europe that do
not participate in the EUCoM. We bootstrapped 1000 predicted
emissions intervals for each year for each actor to ensure robust
median estimates. In addition to the optimum parameters from the
grid search, we used the “subsample” parameter to introduce ran-
domness into the model. This parameter determines the percent of
rows in our dataset to use in each tree.We set this value to 0.90 and, so
themodel is built with 90% of the total dataset. We then calculated the
5th percentile, 95th percentile, mean, and median value for each pre-
dicted emissions estimates for each actor and year.

Performance metrics
We calculated several performance metrics (e.g., linear trend in pre-
dicted emissions between 2001 and 2018, annual percentage change in
emissions, and annualized percentage reduction in per capita emis-
sions) using the predicted emissions data for each actor and evaluated
them before utilizing the annualized percentage reduction in per
capita emissions (annual per capita emissions trend) as our main
evaluation metric, consistent with Hsu et al.10, as described in Eq. 3.

reductionc = � 100×
predemissionsminðyearÞ � predemissionsmaxðyearÞ

predemissionsminðyearÞ

×
1

yearð Þ �minðyearÞ
ð3Þ

Consistent with Hsu et al.10, we determined whether a city is ‘on
track’ to achieving their stated emission reduction goal or not, we
calculated the ratio of actual (i.e., achieved) per capita emissions
reduction in the inventory year to the targeted per capita emissions
reduction in the inventory year, both in comparison to the baseline
year, assuming that emissions reduction between the baseline year and
the target year arepro-rated linearly (i.e., constant emissions reduction
from one year to the next). More specifically, we define ρ through the
following Eqs. (4–7):

Reductionachieved =PredemissionsminðyearÞ � PredemissionsmaxðyearÞ
ð4Þ

where:
PredemissionsminðyearÞ is predicted emissions per capita of the city

in the minimum year for which predictor data are available. For most
cities this was the year 2001;

PredemissionsmaxðyearÞ is the predicted emissions per capita of the
city in the maximum year for which predictor data are available. For
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most cities this was the year 2018;

Timelapsed = Yearmax � Yearmin

� �� Yeartarget � Yearmin

� �
ð5Þ

where:
Yearmin is the minimum year for which predicted emissions data

are available
Yearmaxis the maximum year for which predicted emissions are

available
Yeartarget is the year by which committed emissions reductions

are to be achieved

Reductionrequired = PredemissionsminðyearÞ ×Target ×Timelapsed ð6Þ

where:
Target is the committed emissions reduction of the city (per-

centage).

ρ=
Reductionachieved

Reductionrequired
ð7Þ

Interrupted Time Series Analysis
To investigate whether participation in the EUCoM is associatedwith a
change in a cities’ emissions, we employed an interrupted time series
(ITS) modeling approach20 to compare trends in EUCoM cities’ annual
per capita emissions prior to and following their adhesion year. ITS
designs evaluate an outcome for a population sample exposed to an
intervention before and after, using repeated observations at regular
intervals19,77. Although there is strong internal validity of an ITS design,
there are limitations in terms of potential weak external validity in that
the results may not be generalizable to other groups due to the fact
that ITS cannot rule out the possibility of unmeasurable or uncon-
trolled factors leading to a change in the outcome variable.

We estimate annual percent changes in per capita emissions
reductions (pct:chg) from 2001 to 2018 for each city (i) in country (c)
for each year (t) with the following Eq. (8):

pct:chgi,c,t = αi +β1Time+β2 Joined +β3TSJ +β4 logðGDPÞi,c,t
+β5 log popdensityi,t,c

� �
+β6predicted emissions per capitai,t,c,

+β7emissions targeti,t,c +β8mitiation plani,t,c

+β9mitigation inventoryi,t,c + γC +δt + ϵi,c,t
ð8Þ

where Time is a variable that indicates the number of years since a city
adhered to the EUCoM initiative; Joined is a dummy variable that
indicates whether the observation refers to before (0) or after (1) the
city adhered; TSJ is the time elapsed since a city joined the EUCoM in
years. We also control for differences between cities’ population
density, GDP per capita, emissions per capita predicted by our
machine learning model, 2020 percentage reduction target, and
whether the city has adopted a mitigation plan or conducted an
emission inventory. We also include country dummies (γC) to control
for unobserved, time-invariant factors common to cities within a
country and year fixed effects (δt) to control for exogenous
characteristics that may influence emissions in a given year.

Software
Data scraping and geospatial data processing were conducted
using python (version 3.68), Beautiful Soup package (version
4.8.2), geopandas (version 0.9.0), rasterio version (1.0.21), and
rasterstats (version 0.15.0) and the R statistical programming
environment (version 3.6.2). The machine learning model
was developed and conducted in R using the XGBoost package
(version 1.6.0.1)76. Figures were made using ggplot278 data

visualization package (version 3.3.6) and maps were made in QGIS
(version 3.16).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the Data-Driven
EnviroLab Dataverse repository (https://doi.org/10.15139/S3/NRJ5ZO).
Raw data collected, processed and utilized for this study include: the
Open-Data Inventory for Anthropogenic Carbon Dioxide (ODIAC) data-
base (https://doi.org/10.17595/20170411.001); NASA MERRA-2 monthly
temperature product (https://doi.org/10.5067/KVIMOMCUO83U); NASA
MERRA-2 monthly mean column mass density of aerosol components
(black carbon, dust, sea salt, sulfate, and organic carbon), surface mass
concentration of aerosol components (https://doi.org/10.5067/
FH9A0MLJPC7N); Surface PM2.5 from the Atmospheric Composition
andAnalysis Group atWashingtonUniversity at St. Louis (https://doi.org/
10.1021/acs.est.1c05309); Gridded Population of the World dataset54

(https://doi.org/10.7927/H4F47M2C) Globally gridded gross domestic
product (GDP) data from Kummu et al.55 (https://doi.org/10.1038/sdata.
2018.4); Eurostat’s Gross domestic product (GDP) at current market
prices by NUTS 2 regions (http://data.europa.eu/88u/dataset/
egT31kJF7IArVLXu1rTkQ); Kona et al.34 Global Covenant of Mayors, a
dataset of greenhouse gas emissions for 6200 cities in Europe and the
Southern Mediterranean countries (https://doi.org/10.5194/essd-13-3551-
2021); other data for the EU Covenant of Mayors cities were collected
from (https://www.covenantofmayors.eu/); Local Administrative Units
from the Eurostat database56 (https://ec.europa.eu/eurostat/web/nuts/
local-administrative-units); administrative boundaries of cities from
OpenStreetMap (https://planet.openstreetmap.org); city centroids were
extracted throughWikipedia’s GeoHackwebsite (https://www.mediawiki.
org/wiki/GeoHack).

Code availability
Code used for this study is available on the Data-Driven EnviroLab
GitHub page (www.github.com/datadrivenenvirolab/citiesML) or
upon reasonable request from the corresponding author.
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