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Abstract: Glial tumors grow diffusely in the brain. Survival is correlated to the extent of tumor
removal, but tumor borders are often invisible. Resection beyond the borders as defined by
conventional methods may further improve prognosis. In this proof-of-concept study, we evaluate
diffuse reflectance spectroscopy (DRS) for discrimination between glial tumors and normal brain
ex vivo. DRS spectra and histology were acquired from 22 tumor samples and nine brain tissue
samples retrieved from 30 patients. The content of biological chromophores and scattering
features were estimated by fitting a model derived from diffusion theory to the DRS spectra. DRS
parameters differed significantly between tumor and normal brain tissue. Classification using
random forest yielded a sensitivity and specificity for the detection of low-grade gliomas of 82.0%
and 82.7%, respectively, and the area under curve (AUC) was 0.91. Applied in a hand-held probe
or biopsy needle, DRS has the potential to provide intra-operative tissue analysis.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Gliomas are intra-axial brain tumors with a diffusely invasive growth pattern. They are classified
based on their histological type, such astrocytoma, oligodendroglioma or mixed, and their
malignancy grade according to the world health organization (WHO) classification. Tumors
classified as WHO I-II are considered low-grade gliomas (LGG) and III-IV high-grade gliomas
(HGG). The diffuse transition from tumor to normal parenchyma makes complete surgical
removal very challenging and most tumor relapses occur in the direct vicinity of the resection
cavity where the concentration of tumor cells is the highest. Complete or near complete gross
total resection (GTR) is one of the main predictors of a prolonged overall survival for these
patients [1–3]. A major advance in neurosurgical technique during the last decades has been the
development of fluorescence guided resections, leading to significantly improved GTR rates and
patient outcomes [4,5]. In LGG, however, the accumulation of fluorescent agents is poorer as
the blood-brain barrier is intact, and LGGs are harder to differentiate from normal tissue under
normal light microscopy [6–8]. It is possible that extended resections beyond the tumor border as
defined either by MRI, ultrasound or fluorescence could further improve outcomes [9]. However,
extended resections may compromise the surrounding brain tissue and cause neurological deficits.
Accurate intraoperative sensing techniques that are able to reliably differentiate between tumor
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and healthy tissue within the resection cavity may provide the surgeon with the information
needed to safely achieve GTR. As of today, no such sensing technique is in clinical use.

Frame-based or frameless stereotactic biopsies are performed on brain tumor patients that for
different reasons cannot undergo tumor resection surgery. Despite navigation and that tissue
samples deemed to be relevant are obtained in 90-95% of the biopsies, the diagnostic accuracy
is significantly lower at 57-73% [10]. One reason for this discrepancy is that biopsies may be
performed in less representative parts of the tumor. Intraoperative MRI, ultrasound or fluorescent
tumor agents can be used to verify that a biopsy contains tumor material. However, these methods
are costly, time consuming or applicable only to certain pathologies and may still fail to ensure a
truly representative biopsy. The best way to confirm the representativity of a biopsy is a rapid
histopathological examination of frozen sections. However, the turn-around time of a frozen
section analysis is substantial and entails prolonged procedure time. Technologies able to verify
that a biopsy needle is correctly positioned in a representative part of the target, in real time and
before tissue sampling, would improve the diagnostic accuracy and workflow of these procedures.

Various applications of biomedical optics [11], including Raman spectroscopy [12], laser
Doppler flowmetry [13] and confocal microscopy [14], have been investigated for the purpose
of intra-operative tissue diagnostics in neurosurgery. Optical methods have several advantages,
as they may provide real-time objective data and are easily integrated in surgical instruments
[13,15]. Also, by including wavelengths outside the visual spectra, differences between tumor
and normal brain that is not visible to the human eye may be captured. This study focuses on the
optical method diffuse reflectance spectroscopy (DRS), where light is emitted into tissues via
an optic fiber, and the back-scattered light is collected and analyzed spectroscopically. Since
a specific tissue type has a unique composition of chromophores, the collected spectra act as
an “optical fingerprint” for that specific tissue. DRS has been used successfully for tissue
identification in experimental spinal surgery [16], interventional stroke research [17,18] and in
studies on cancer diagnostics [19,20]. A previous feasibility study in a porcine model showed
that DRS in combination with an automated classification algorithm could differentiate between
white and grey matter in the CNS [21]. Attempts to use the technique to differentiate between
gliomas and normal brain parenchyma or between different brain tissue types have shown promise,
but no application for clinical use has been developed [22–29,30]. In previous studies, DRS
was combined with fluorescence or auto-fluorescence spectroscopy and evaluated for glioma
discrimination in the wavelength range of 300-800 nm. It has however proven hard to use DRS
alone for accurate discrimination of glioma tissue. [26–29]

In this ex-vivo proof-of-concept study, DRS is evaluated for the development of a clinical
tool for brain tumor identification discriminating between LGG and HGG and healthy brain
tissue respectively. By including a broader wavelength spectrum (450-1600 nm), discriminative
features for glioma detection in the near infrared spectrum are examined. Measurements are
performed on glial tumor samples and compared to normal brain tissue samples from epilepsy
surgery or healthy peritumoral tissue. The DRS data is analyzed, and its discriminative features
are studied by the application of a machine learning classification algorithm. The model is able
to discriminate LGG and HGG respectively from normal white and gray matter, based on DRS
as a single modality.

2. Material and methods

The study hospital is a publicly funded and owned tertiary care center serving a region of roughly
2.3 million inhabitants, and the only neurosurgical center in the region. All patients undergoing
surgery for brain tumor or epilepsy at the study center were eligible for inclusion. Those operated
when a DRS operator (Burström G., Skyrman S.) was available were included in the study.
Tumor tissue was acquired from neurosurgical operations of patients with intracranial tumors
and healthy brain samples were collected from patients undergoing epilepsy surgery or from
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normal peritumoral tissue in tumor patients. All surgeries were conducted according to the
standard protocols of the department. Patients with suspected glial tumors were administered
5-ALA orally 1 h before surgery. Signed informed consent was obtained from all participants or
their legal guardians. The study was approved by the National Ethical Review Authority (Dnr
2018/794-32, 2018/2670-31/1, and 2019-00100).

The general principles of DRS, instrumentation and calibration have been described previously
[31]. In short, light from a tungsten halogen broadband light source (360 to 2500 nm) is coupled
to an optical multimode fiber (200 micron core diameter) integrated in a handheld probe. The
light exits the fiber at the tip of the probe and reflected light from the examined tissue is collected
by another optical fiber (Fig. 1). The distance between the fibers at the probe tip is 0.45 mm.
The collecting fiber is split by a Y-junction into two separate fibers that are coupled to two
spectrometers, of which one resolves light in the visible and near-infrared wavelength range of
450 to 1100 nm (OceanOptics Maya 2000PRO, Ocean Insight, Orlando, FL, USA), while another
covers the infrared wavelengths from 900 to 1600 nm(OceanOptics NIRQuest512, Ocean Insight,
Orlando, FL, USA). The measurements were acquired simultaneously from the same position
for the two spectrometers. For the overlapping wavelengths obtained from both spectrometers
(900-1100 nm), a matching factor was calculated to create a continuous spectrum from 450 and
1600 nm. For data acquisition and controlling of the spectrometers, a custom software developed
in-house was used (Labview).

Immediately after removal, tumor samples were rinsed using saline and DRS measurements
were performed in a dark room with the samples positioned on a black sheet of paper. Before each
measurement session, the system was calibrated on a white reference (Spectralon), as previously
described [31]. To avoid potential influence from probe positioning, measurements were obtained
with the probe both perpendicular and parallel to the underlying black surface. The number of
measurement positions per sample was determined by tissue size, with a minimum distance of
2 mm between each measurement position. Ten measurements were acquired at each position,
and the total acquisition time for each position was 4.5 seconds. Measurement positions were
documented on photographs of the samples, and each position was annotated as tumor tissue,
healthy white matter or healthy grey matter as defined by the operating neurosurgeon (Fig. 1). The
data were averaged using the median of the 10 measurements from each measurement position.
For the classification, each measurement position was treated as an independent data point, i.e.
data was not averaged per sample or patient.

After DRS-measurements, the tumor samples were immediately placed in 10% formalin
and transferred to the pathology department, where histopathological analyses were performed
according to the standard routine at the department. Tumor histology was reported according to
the WHO classification. WHO grade I and II were classified as LGG and WHO grade III and IV
as HGG.

DRS data acquired from the ex-vivo measurements were analyzed in the wavelength range of
450 to 1600 nm with a custom software using MATLAB (MathWorks Inc., Natick, MA). The DRS
spectra were fitted with a previously described model derived from diffusion theory [31]. The
model estimates the tissues’ scattering features and concentrations of tissue chromophores, i.e.
tissue constituents with strong light absorbing properties such as hemoglobin, water or fat. This
requires knowledge of the wavelength-dependent absorption coefficients of the chromophores of
interest, and the fiber distance between the emitting and collecting fibers. Due to the small fiber
separation of the probe used in this study, the mathematical assumptions behind diffusion theory
are no longer valid. As a result, values of> 100% were achieved for some fitted parameters.
However, since the measurements in the study are performed with the same probe and under
the exact same conditions for both normal and tumor tissue samples, the model can be assumed
to be valid for discrimination between the samples based on the estimated relative content of
different chromophores and scattering properties. Chromophores included in the analysis were
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Fig. 1. Study design and the DRS system. Overview of the study design and DRS system.
In short, 30 patients were included in the study, from which 31 tissue samples were acquired,
22 tumor and 9 normal brain samples. Samples were examined with DRS light from a
tungsten halogen broadband light source (360 to 2500 nm) coupled to an optical multimode
fiber (200 micron core diameter) integrated in a handheld probe. The light exits the fiber at
the tip of the probe and reflected light from the examined tissue is collected by an identical
optical fiber and lead to two spectrometers, one of which resolves light in the visible and
near-infrared wavelength range of 450 to 1100 nm, and the other in the infrared wavelengths
from 900 to 1600 nm. The distance between the fibers at the probe tip is 0.45 mm. A
previously published optical model derived from diffusion theory was used for spectral
analysis (fitting) of the DRS data. Finally, random forest classification based on the fitted
DRS parameters was performed to examine the ability of DRS to predict the samples’
histology.
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oxygenated hemoglobin (wavelength peak 450-600 nm), deoxygenated hemoglobin (450-600 and
≈760 nm), fat (930 and 1210 nm) and water (972, 1200 and 1400 nm) [32]. The hemoglobin
oxygen saturation (StO2) was estimated. Since strong absorbers like hemoglobin tend to aggregate
in distinct regions of biological tissue, a correction factor (Rves) corresponding to regional
clustering of strong absorbers was analyzed, as previously described [33]. Estimates of the
wavelength-dependent scattering contributions from Mie and Rayleigh scattering were calculated
as described previously [31]. The reduced scattering coefficient (µ’s(λ)) was estimated using an
empirical model

µ′s(λ) = µ′s(λ0)

(︄
Fmie

(︃
λ

λ0

)︃−b
+ (1 − Fmie)

(︃
λ

λ0

)︃−4
)︄

.

A reference wavelength (λ0) of 800 nm was used, where the scaling factor µ’s(λ0) corresponds
to the reduced scattering amplitude at the specific wavelength, Fmie represents the Mie-to-
Rayleigh fraction of scattering:, assuming that Mie and Rayleigh are the dominant forms of tissue
scattering, and b corresponds to the Mie scattering slope.

After fitting of the spectra, the fitted data were tested for normality using Shapiro-Wilk test.
Non-normal distributed data were log-transformed. The median of ten measurements at each
measurement position was used for analysis. DRS data for the tissue were plotted in box plots
and the independent t-test was used for calculation of statistically significant differences in mean
values between the normal tissues and tumor types. Finally, a random forest classification model
was applied for discrimination between the tissue types [34]. For training the random forest
model, RStudio (RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston,
USA) and the randomForest package was used [35]. A leave-one-out cross-validation method for
training and testing the classification models was employed to avoid overfitting. In each round of
training, an individual patient was chosen as the validation set, and the rest of the patient data was
used for training by generating 500 decision trees. This was repeated until all patients’ data had
acted as a validation set. All classification models were trained using the same input parameters
(500 decision trees, 2 variables randomly sampled at each split, tree grown until terminal node
size of 1) and the same fit parameters (all nine parameters from the fit model described above).
No hyperparameter tuning was performed. Receiver operating characteristic (ROC)-curves were
generated using an approximation suitable for random forest data using the pROC package
[36]. Since the implementation of random forests does not provide a true probability output,
sample tree classification votes were used as an approximation of a probability value to generate
ROC-curves. The ROC-curves presented are the combined curves for prediction of LGG and
HGG tumors, respectively, and contain all true values from the random forest models. For each
classifier an averaged ROC-curve was generated, based on 30 approximated ROC-curves from
the leave-one-out-analyses.

All results are presented as median (absolute range).

3. Results

3.1. Patient data

A total of 30 patients were included. Glial tumor samples were retrieved from 22, of which 6
from LGG and 16 from HGG, and normal tissue from 9 patients. The normal tissue was acquired
from epilepsy surgery in 6 cases, and from normal peritumoral brain tissue in patients operated
for brain tumor in 3 cases (Table 1). Median sample length and width were 10 (3-22) and 6
(3-13) mm respectively. Sample thickness was> 3 mm for all samples.
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Table 1. Patient and sample data. Demographic patient data and summary of tissue
samples. Notably, patients in the normal tissue group were significantly younger than

patients in the tumor group (median age 22 vs 48), reflecting the different age
distributions of tumor and epilepsy diagnoses in the population. A total of 30 patients
were included. From three patients, one with a well demarcated glioblastoma and two

with metastases, both tumor and normal tissue were resected.

Glial tumor Normal tissue Significance

Samples (n) 22 9 -

Patient age (median, range) 48 (17-75) 22 (2-67) p= 0.02

Patient sex (% female) 57.1 53.3 p= 0.8
Diagnosis (n) -

Glial tumor 22
Epilepsy 6
Peritumoral tissue 3

Number of samples per tissue diagnosis (n) -
LGG
Diffuse glioma (WHO II) 6
HGG
Anaplastic glioma (WHO III) 3
Glioblastoma (WHO IV) 13
Normal tissue
White 6
Grey 9

Number of measurement positions per tissue
diagnosis (n)

-

LGG
Diffuse glioma (WHO II) 61
HGG
Anaplastic glioma (WHO III) 48
Glioblastoma (WHO IV) 163
Normal tissue
White 36
Grey 61

3.2. DRS measurements and fitting results

Ten consecutive DRS measurements were acquired at each of a total of 369 measurement
positions. Among these, 61 were in grey matter, 36 in white matter and 272 in solid glial tumor
tissue, of which 61 in LGG and 211 in HGG. Median measurement positions per tissue sample
was 11 (4-26). Averaged spectra for white matter, grey matter and glial tumors are shown in
Fig. 2. Spectra form all tissues had notable valleys at 450-600 nm, representing blood content
and/or microscopic blood contamination of the tissues. As expected, white matter spectra were
influenced by high fat content, with valleys at approximately 930 and 1210 nm. White matter
also had the highest scattering coefficient, corresponding to the highly reflective properties of
white matter tracts. For the other tissues, the scattering and mean intensity increased with the
cellularity of the examined tissues, with grey matter and LGG tumor showing lower scattering
coefficients than the cell-rich tumors of higher grades.
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Fig. 2. 2a Averaged DRS spectra with the standard deviation presented as dotted lines. 2b
Averaged reduced scattering coefficient.

Fig. 3. Boxplots of the DRS parameters derived from the fit model. Significantly differences
in mean values are indicated with brackets where * p ≤0,05, ** p ≤0,01 and *** p ≤ 0,001.

The physiological differences between the tissues as estimated by fitted DRS parameters
are presented as boxplots in Fig. 3. Most of the parameters showed statistically significant
differences between glial tumor tissue and white and grey matter. Estimated tissue oxygenation
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(StO2) was higher in tumor tissues of all grades than in grey matter, and higher in WHO II
gliomas compared to white matter (Fig. 3(a)). Estimated content of blood (Hb+HbO2) showed
significant differences between tumors of all grades and both white and grey matter (Fig. 3(b)).
Fat (F) and water (W) content as estimated by DRS are presented in Fig. 3(c) and 3d. The
F/(F+W)-ratio differed significantly between tumor and white and grey matter except for grey
matter and WHO III gliomas. Regarding scattering, the contribution of Mie scattering (Fmie,
Fig. 3(e)) only showed a significant difference between white matter and glioblastoma, whereas
the Mie slope parameter b (Fig. 3(f)) displayed larger differences between all tumor types vs
grey and white matter respectively. Alpha, S800 and the clustering correction factor Rves also
displayed potentially discriminative features between tumor and normal brain tissue, as presented
in Fig. 3(g)-(i).

3.3. Random forest classification

A random forest classification based on all nine above-presented DRS fit parameters. A sensitivity
of 82.0% and specificity of 82.7% was achieved for detection of LGG vs normal brain tissue. The
result of the classification is presented as a confusion matrix in Table 2 and as an approximated
ROC curve in Fig. 4(a), where the area under curve (AUC) was 0.91. Classification of HGG
tumor vs normal brain tissue reached a high sensitivity (93.3%) but a low specificity (43.2%), as
shown in the confusion matrix (Table 3) and approximated ROC curve (Fig. 4(b)).

Fig. 4. Result of random forest classification presented as ROC curves. Approximated
receiver operating characteristic (ROC) curves for prediction of a) LGG and b) HGG based
on the nine DRS fit parameters. The curves illustrate the trade-off between sensitivity
(y-axis) and specificity, (x-axis), for every possible cut-off value. AUC was 0.91 and 0.81
respectively.

Table 2. Classification of low-grade glioma vs normal grey and
white matter. Confusion matrices of the results of the random

forest classification for LGG vs normal grey and white matter. The
result of the histological examination is presented in the columns,

and the tissue type prediction by the random forest model is
presented in the rows. Correct predictions are highlighted in white.

Histological tissue diagnosis

LGG Grey matter White matter

DRS
classification
diagnosis

LGG 50 7 4

Grey matter 8 22 5

White matter 3 6 30
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Table 3. Classification of high-grade glioma vs normal grey and
white matter. Confusion matrices of the results of the random forest
classification for HGG vs normal grey and white matter. The result

of the histological examination is presented in the columns, and the
tissue type prediction by the random forest model is presented in

the rows. Correct predictions are highlighted in white.

Histological tissue diagnosis

HGG Grey matter White matter

DRS
classification
diagnosis

HGG 197 26 16

Grey matter 2 9 0

White matter 12 0 23

4. Discussion

We hypothesized that DRS can be used as an intraoperative sensor for glial tumors. In this
proof-of-concept study the ability of DRS to discriminate between glial tumor tissue of different
grades and normal brain tissue was investigated ex-vivo. Evident differences between the mean
spectra of the different tissue types were seen. These differences may be attributed to structural
changes both at a subcellular level, such as changes of cell membranes and mitochondrial features,
or at tissue level, like neovascularization or the general level of cellularity of the tissue, where the
latter is expected to be the lowest in white matter and the highest in glioblastoma (Fig. 2(a)). The
reduced scattering coefficient (µ′s) (Fig. 2(b)) demonstrated decreasing values with increasing
wavelengths, which has been described as a typical feature in previously published results in
human [23,37] and rat brain [38]. Previous results of µ′s in relation to glioma tumor grade have
been conflicting, where both reports of higher values for higher grade tumors than lower grade
tumors [23] (like the results of this current study) and the opposite [37] have been reported.
Furthermore, significant differences between normal brain and tumor tissue were seen in most of
the fitted DRS parameters (Fig. 3), indicating that the concentration of major tissue constituents
and scattering properties can be estimated by DRS measurements. The results of the fit model
are in line with previous descriptions of chromophore content and optical properties of brain
and glioma tissue. A clear pattern of decreased tissue oxygenation as estimated by DRS with
increasing tumor grade was seen (3a), in line with studies on glioma and hypoxia [39]. DRS
derived estimates of oxygenized and deoxygenized hemoglobin, reflecting the tissue blood content,
were lower in grade II glioma than normal tissue, and clearly higher in grade IV gliomas than in
normal tissue (Fig. 3(b)), as previously reported [40]. This result also corresponds to radiological
measurements of blood flow in glioma tissue. [41]. In accordance with previous studies, the
DRS fat parameter was reduced in gliomas, while DRS estimates of water content were higher
in gliomas than normal tissue (Fig. 3(c) and 3(d)). [42]. Since fat and water have strong
absorption bands in the near infra-red spectrum, the inclusion of wavelengths up to 1600 nm in
the current study may better take advantage of this glioma feature than previous studies where
only wavelengths below 800 nm were included. The high refractive index of white matter, caused
by the multi layered lipid membranes of myelinated nerves, was evident in the DRS scattering
parameters (Fig. 3(e)-(h)), and was decreased in glioma tissue, likely due to invasion of tumor
cells into the white matter tracts.

Based on the fitted parameters, a random forest classification model was trained to discriminate
healthy brain tissue from LGG with a sensitivity and specificity of 82.0% and 82.7% respectively
and an AUC of 0.91, despite the limited clinical material. The model did not perform as well for
classification of HGG vs healthy brain tissue (sensitivity 93.3%, specificity of 43.2%, AUC 0.81).
The skewness of the results may partly be attributed to the uneven number of measurements of
normal tissue (97) vs HGG (211), but could also possibly reflect a higher degree of histological
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heterogenicity; HGG has both highly proliferative cell dense areas and, in the case of glioblastoma,
regions with necrosis.

The results of this study are in line with previous publications and further support the potential
use of DRS for glial tumor detection [23,25–29]. An overview of previously published data
on DRS for brain tumor discrimination is presented in Table 4. The reported sensitivity and
specificity for discrimination of gliomas from normal human brain have varied between 80-100%
and 89-96% respectively [23,25–29,30]. However, these results are not directly comparable to
the current study for several reasons. In all previous studies, DRS was used in combination with
a second modality, either spectroscopic measurements of auto-fluorescence [23,25–28,30] or
5ALA-fluorescence [29]. DRS used alone has in fact not previously been demonstrated to be able
to discriminate between gliomas and healthy brain, possibly due to difficulties in differentiating
tumor from grey matter [25,30]. In the current study, classification based on DRS reached an
accuracy comparable to previous dual modality studies. It is likely that an even higher accuracy
could be reached by adding a second modality to the DRS method described in this study. Several
optical techniques show promising results and could be used for this purpose, including the above
mentioned auto-fluorescence spectroscopy [23,25–28,30] and 5ALA-fluorescence spectroscopy
[29], as well as Raman spectroscopy [43,44] and laser Doppler flowmetry [13].

Table 4. Publications on DRS for glioma detection. Overview of previous publications of DRS
for glioma detection.

Publication In/ex
vivo

Tissue
types

DRS
range
(nm)

Sample
size
(patients/
positions)

Modality Analysis Sensitivity
/specificity
normal
brain vs
solid glioma
(%)

Lin et al
2000 [25]

ex Normal
Glioma
Metastasis

400-800 20/120 DRS+
autofluorescence

Empirical
discrimination
algorithm

97/96

Lin et al
2001 [26]

in Normal
Glioma
Metastasis

400-800 26/120 DRS+
autofluorescence

Empirical
discrimination
algorithm

84/NR

Toms et al
2005 [28]

in Normal
Glioma

400-800 35/230 DRS+
autofluorescence

Empirical
discrimination
algorithm

80/89

Valdés et al
2011 [29]

in Normal
Glioma

450-720 10/264 DRS+ 5ALA-
fluorescence

Model derived
fit parame-
ters+SVMa

94/94

Majumder
et al 2007
[27]

in Normal
Glioma

400-800 24/184 DRS+
autofluorescence

MRDF+ SMLRb NR

Du Le et al
2017 [23]

ex Glioma 430-700 7/22 DRS+
autofluorescence

Empirical
discrimination
algorithm

NR

Lu et al 2021
[30]

ex Normal
Glioma

300-700 5/180 DRS+
autofluorescence

PLS-
LDA+LOOCVc

89.3/92.5

Skyrman et
al 2022
(Current
study)

ex Normal
Glioma

450-
1600

30/369 DRS only Model derived
fit parame-
ters+RFd

82.0/82.7

aSupport vector machine,
bMaximum representation and discrimination feature+ sparse multinomial logistic regression,
cPartial least square-linear discriminant analysis+ leave-one-out cross validation
dRandom forest classification. NR= not reported.
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Moreover, most of the previous studies employed empirical classifications models, where
cutoff values at a single or a few selected wavelengths were chosen to maximize discrimination in
the specifically studied data set [24–26,28,30]. Such classification models have several drawbacks
including creating a bias towards the specific study population, as well as excluding possibly
important information from other parts of the spectra than the specific wavelengths chosen.
Two previous studies have applied more advanced algorithms based on Bayesian probability
algorithms [27] or machine learning [29] with promising results. In the current study, a previously
validated model based on diffusion theory was fitted to the spectra to derive estimates of tissue
constituents, and a standard machine-learning method (random forest) was used for classification.
Thus, there were no specific adaptions of the method to the specific data set, and thereby less risk
of bias.

While previous studies have examined the visible spectrum and the lower end of the near
infrared spectrum, wavelengths above 850 nm were not included. To the best of our knowledge,
the current study is the first where a larger spectral range of 450–1600 nm has been used for
human glial tumor detection. Including a larger portion of the near infrared spectrum may have
several benefits. Firstly, it may detect differences between tumor and normal brain that is not
visible to the human eye in an operating microscope. This is supported by the results in the current
study, where several features that contributed to the discrimination between tissue types were seen
in the spectrum above 1000 nm, including water and fat content. Secondly, tissue penetration
depth in the near infrared spectrum is higher than in the visible range [45]. Based on the optic
properties of normal brain and glioma tissue, probe design and the investigated wavelength
spectrum, the measurement depth/probing volume for this DRS application is estimated to be
approximately half of the fiber distance of 0.45 mm. This relatively short source to detector
distance limits the measurement depth when measuring on the surface, however it allows for
miniaturization and fitting of the application into a handheld probe that can be inserted into
the tissue for measurements at different depths of the surgical field. This possibility enables
acquisition of sub surface measurements, going beyond what can be achieved with an ordinary
surgical microscope. Combined with image guided surgery systems or intraoperative ultrasound,
these DRS measurements could provide a clinically valuable tool for the surgeon to optimize
tumor resection, especially in the clinically challenging task of discriminating non-fluorescent
LGGs from normal brain tissue. The minimally detectable tumor volume needed to yield a
positive signal requires further investigation. This must be fine-tuned with cut-off values for the
DRS signal, a topic outside the scope of this proof-of-concept study.

In summary, we have demonstrated that a standalone DRS probe using a spectral range of
450–1600 nm, shows promising results for discrimination between low- and high-grade glioma
and healthy brain tissue in an ex vivo set-up.

5. Limitations

This study was performed on ex-vivo samples from a limited number of patients treated according
to the normal clinical routine of a neurosurgical department. In order not to interfere with the
department’s tissue handling and diagnostic routine, no detailed correlation of the exact DRS
measurement position with histology at the exact same position were made. Instead, samples
were treated as larger volumes of homogenous tumor or normal tissue and labeled as such. Since
glioma tissue is heterogenous in nature, this method does not likely reflect the maximal potential
accuracy of DRS for tumor detection. On the other hand, it represents well the conditions met in
a real-life scenario during tumor surgery, where larger volumes of tissue need to be examined
and resected.

For the classification model, measurements at different positions of the same samples were
treated as independent data points, i.e. data was not averaged per sample or patient. This
was considered justified since a leave-one-out methodology was used in the random forest
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classification, where data from patients in the validation set was excluded from the training
set. Also, a high intra-individual variation was noted for each sample, while samples of the
same tissue type (diagnosis) but from different patients exposed extensive overlaps of the DRS
parameter values.

The fit model did not include the exogenic fluorescent agent and 5-ALA precursor PPIX, which
was administered to patients with gliomas pre-operatively. Even though the main absorption
band for PPIX (around 410 nm) is below the spectrum analyzed in this manuscript, absorption
overlap that of hemoglobin and its derivates to some extent, and emission peaks from PPIX at
approximately 630 nm and 700 nm respectively might have affected the spectra acquired from
HGG in particular. In a future application, adding PPIX as a DRS fit parameter may further
sharpen the analysis.

Except for one patient from which both tumor and normal tissue were extracted, in this study
normal brain and tumor samples were retrieved from different individuals. Hence, variations
of tissue composition between individual patients may have affected the results. To eliminate
inter-individual variation and increase discrimination power in a future clinical application,
the surgeon may first make a reference measurement on the patient’s normal brain tissue for
probe calibration, after which deviation from this normal measurement can be used for tumor
identification in the same patient.

In this ex-vivo study, blood content may not represent the true conditions in vivo, and tissue
oxygen saturation may have been affected by the period of air exposure between removal and DRS
acquisition. Also, the sample size of especially normal brain tissue was limited, which reduces
the generalizability of the results. The skewness of the data may to some extent have affected the
classification. Adding a weight factor, or sub-sampling, could possibly have improved the results
further.

6. Future development

This proof-of-concept study support the use of DRS for glial tumor detection. To translate the
results into a clinically useful tool, further investigations are needed. In-vivo animal studies
are planned for precise correlation of DRS measurements and histology in blood perfused
tissue. An investigational device for use in clinical studies with larger sample sizes will be
developed, possibly with integration of a second modality as discussed above. The goal will
be to create a tissue bank with correlating DRS measurements. Based on data from a large
sample size, more robust tissue classification algorithms could be developed. Finally, automated
diagnostic evaluation and an interface for real-time feedback to the operating neurosurgeon must
be developed.

7. Conclusion

In this proof-of-concept study the ability of DRS to discriminate between glial tumor tissue of
different grades and normal brain tissue was investigated ex-vivo. Significant differences in the
recorded DRS parameters were seen between normal brain and tumor tissue. Despite the limited
sample size, a classification model based on DRS parameters could discriminate between low
grade glioma and normal brain tissue. Further studies are warranted to evaluate the potential role
of the technique as an intra-operative tissue sensing tool for tumor recognition in glioma surgery.
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