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Abstract In this paper the dynamics of a weakly non-
linear elastic string on a Winkler elastic foundation
is studied. The foundation may be spatially heteroge-
neous. At one end of the string a mass-spring system
is attached, and the other end of the string is fixed.
The string is assumed to be long, and the lower part
of the spectrum of the string is prescribed. It is shown
that localized modes exist and that the dynamics of
the string for large times is determined by these local-
ized modes. The frequencies of these localized modes
can be controlled by special choices for the spatial het-
erogeneities in the elastic foundation. Analytical and
numerical results are presented to illustrate the find-
ings.

Keywords Nonlinear string · InhomogeneousWinkler
foundation · Prescribed spectrum

1 Introduction

In many engineering applications it is useful to con-
struct a structure with a given (lower part of the) spec-
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trum for the natural eigenfrequencies. One example
is the problem to determine the structure parameters
(for instance, the mass and stiffness parameters) such
that undesirable resonances can be avoided (see [1]).
Another example is determining the mass and stiffness
parameters in a numerical model for a mechanical sys-
tem such that the first natural eigenfrequencies coincide
with experimental data for these frequencies (see [2–
6]). Similar examples can be mentioned in the field of
identification of structural damage from frequency data
(see [7–10]), and in the field of determination of loads
acting on elastic beams or plates during vibrations or
impact of objects on surfaces of the structure [11,12].
All problems mentioned above are inverse problems
in vibration theory, and in this paper, we consider one
of these problems for a weakly nonlinear elastic string
on a Winkler foundation. Particular types of flexible
structures, like tall suspension bridges, or iced over-
head transmission lines, can be subjected to oscillations
due to various causes. Simple models which describe
these oscillations are given in the form of nonlinear
second-order partial differential equations, as can be
seen for example in [13,14]. This motivate us to inves-
tigate the spectrum for strings with large lengths. In
this paper it will be shown that the spectrum includes
modes corresponding to localized string excitations,
and non-localized modes. The localized oscillations of
infinite-length strings on the weakly nonlinear founda-
tion were considered in [15,16]. The last mentioned
studies for the case of a weak cubic nonlinear elas-
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tic foundation demonstrate that introducing a nonlin-
earity destroys trapped modes. The resonant oscilla-
tions in linear infinite-length strings were considered
in [17]. The localization phenomena for spatially inho-
mogeneous infinite-length strings were considered in
[18,19]. The effect of a structure symmetry on the for-
mation of high-frequency trapped modes was studied
in [20]. It was shown that some natural frequencies of
the finite structures are equal to discrete frequencies of
a similar infinite structures.

A resonance analysis in our paper will show that the
large time behaviour of the weakly nonlinear and long
string is mainly determined by the localized modes,
because the resonances where the non-localized modes
are involved are much weaker than the resonances
between localizedmodes. By using classical ideas from
Schrödinger operator theory we show that the frequen-
cies of the localized modes are controllable by varying
the Winkler foundation. Note that the problem on the
control of the first N eigenvalues was considered in
[21]. In that paper it is shown, by using a Darboux
transformation [22], how to construct longitudinally
vibrating rods having prescribed values for the first N
natural frequencies, under a given set of boundary con-
ditions. The rods and their normal modes can be con-
structed explicitly by analytical expressions. However,
these formulas become complicated for a large num-
ber N of discrete modes. The author of [23] suggested
an analytical, exact procedure for the reconstruction of
simply supported vibrating beams having given values
for the first N natural frequencies. The author men-
tioned that “the results hold for beams in which the
product between the bending stiffness and the linear
mass density is constant, and the analysis is based on
the fact that this class of beams is spectrally equivalent
to a family of strings fixed at the ends”. Further, the
author of [23] uses recent results on the exact con-
struction of second-order Sturm–Liouville operators
with prescribed natural frequencies. Another approach
is proposed recently in [24] for Schrödinger opera-
tors, where singular potentials are used to control a
part of the discrete spectrum of a rod. In this paper,
we consider a more complicated situation; namely, we
consider boundary conditions, which are not very well
studied. The boundary condition at the right string edge
is the standard zero Dirichlet condition while at the left
edge we have a boundary condition corresponding to
an oscillator coupled to the string. We use an asymp-
totic approach for such strings on aWinkler foundation,

which gives amore transparent procedure to control the
string’s discrete spectrum. This approach allows us to
precisely control part of the string spectrum. Further-
more, we show that if the string is under a weak non-
linear perturbation, then these controlled modes deter-
mine the dynamics of the weakly nonlinear string for
large times. It should be noted, that our approach can
be considered as a generalization of the method sug-
gested in [24]. The paper is organized as follows. First
we state an a priori estimate to prove existence of solu-
tions. After that we consider a linear operator which
determines the linearized problem. Then we show how
one can define the type ofWinkler foundation to control
the discrete spectrum of the linearized operator. In the
last section we qualitatively investigate possible reso-
nances induced by a weak nonlinearity, and show that
only resonances between localized modes are essen-
tial. On the basis of the obtained results we conclude
that it is possible to control the large time dynamics of
weakly nonlinear and long strings via localized mode
frequencies.

2 Statement of the problem

The equation describing the dynamics of a weakly non-
linear elastic string on aWinkler foundation is given by
[25]:

utt − c2uxx + B(x)u = ε f (u), (1)

where u(x, t) is the string transverse displacement, x ∈
[0, L] is the longitudinal coordinate, t > 0 is the time,
c is thewave speed of the transversewaves in the string,
ε > 0 is a small parameter, f (u) is a smooth function,
which defines nonlinear forces acting on the string, and
a bounded function B(x) defines the coefficient of the
elasticWinkler foundation, which depends on x . Initial
conditions have the form

u(x, 0) = u0(x), ut (x, 0) = u1(x), (2)

where u0, u1 are smooth functions.We consider a prob-
lem for a string, which has a length L with an oscil-
lator connected to the left string edge, and a fixed end
condition at the right string edge. Then, the following
boundary conditions hold:

Mutt + Ku = b0ux x = 0, t > 0, b0 > 0, (3)
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where b0ux is the component of force exerted by the
string on the mass of the oscillator for small string dis-
placements, K > 0 is the spring rigidity, M > 0 is the
mass of the oscillator (see [26]), and

u(L , t) = 0. (4)

In order to prove the well-posedness of the prob-
lem and to perform the spectral analysis, we need to
introduce some assumptions on B(x). These assump-
tions follow the standard ideas in quantum mechan-
ics and in spectral theory for Schrödinger operators
[27,28]. For infinite strings we suppose that the deriva-
tive of B is a sufficiently fast decreasing function, for
example, |B ′(x)| < Const(1 + |x |)−s, s > 2. Then
the limit B(+∞) = limx→+∞ B(x) exist, and we can
present that function as B = B(x0)+W (x, x0), where
W (x, x0) = ∫ x

x0
B ′(y)dy and x0 = ∞.

Further we suppose that B(+∞) > 0, and denote
this constant by a2 with a > 0. For strings of large
lengths L , i.e. L � 2cπ

√
M/K (which means that

the string length is much larger than the distance from
the string edge to the point where a wave with speed
c will arrive for the time equal to the period of the
oscillator) we use the same definition for B(x), but
now with x0 = L .

3 The well-posedness of the problem

Weare looking for solutionsu(x, t)of the initial bound-
ary value problem (IBVP) defined by (1)–(4), which
are bounded in L2[0, L]. Under certain conditions on
f , existence of such solutions follows from an a priori
estimate, which gives a limit from above for the string
energy. We use the following standard notation

(u, v) =
∫ L

0
u(x)v(x)dx, ‖u‖ = (u, u)1/2.

Let us introduce the function

�(u) =
∫ u

0
f (s)ds.

Multiplying the left and the right hand sides of (1)
by ut , and by integrating by parts, one obtains

d(Es + Eosc)[u(·, t)]
dt

= 0, (5)

where

Es[u] = 1

2

(
‖ut‖2 + c2‖ux‖2 +

∫ L

0

(
a2 + W

)
u2dx

)

− ε

∫ L

0
�(u)dx

is the string energy, consisting of the kinetic energy, the
potential energy, contribution of the elastic foundation,
and a nonlinear contribution, and

Eosc = c2
(
Mut (0)2 + Ku(0)2

)

2b0

is the oscillator energy. Equation (5) implies that

E[u(x, t)] = Const,where E = Es + Eosc. (6)

Assume that

∫ L

0
�(u(x))dx ≤ C0‖u‖2 (7)

for a positive constant C0 and all continuous functions
u(x).

Lemma I Assume that condition (7) holds and more-
over

a2c2 > ‖W‖21, (8)

where

‖W‖1 =
∫ L

0
|W (x, x0)|dx .

Then for sufficiently small ε > 0 one has

‖ut (·, t)‖, ‖ux (·, t)‖, ‖u(·, t)‖ < C̄ ∀t > 0, (9)

where a positive constant C̄ depends on the norms
‖u0‖, ‖u1‖ of the initial data.

Lemma I gives us a priori estimates of the L2-norms
of u and ut , which show that solutions of (1) exist for
all times t if, the initial data have bounded L2-norms,
that is,

‖u0‖, ‖u1‖ < c0.
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Proof Equation (6) implies

2Eosc + ‖ut‖2 + c2‖ux‖2 +
∫ L

0

(
a2 + W (x, x0)

)
u2dx

= 2ε
∫ L

0
�(u)dx + C, (10)

where the constant C is equal to the energy value at
the initial time t = 0: C = E[u(x, 0)]. The oscillator
energy Eosc is nonnegative; thus, from (7) it follows
that (10) implies

‖ut‖2 + c2‖ux‖2 + a2‖u‖2

− sup
x∈(0,L)

|u(x, t)|2
∫ L

0
|W (x, x0)|dx

≤ 2εC0‖u‖2 + C. (11)

Note that

1

2
|u(x, t)|2 =

∣
∣
∣
∣

∫ L

x
uusds

∣
∣
∣
∣ ≤ ‖u‖‖ux‖.

Let b > 0 be a constant, then

2‖u‖‖ux‖ ≤ b2‖u‖2 + b−2‖ux‖2.

We set b2 = c−2‖W‖1 + δ, where δ > 0 is small
enough. We note that then c2 − b−2‖W‖1 = C1 > 0
and a2 −b2‖W‖1 = C2 > 0. By the last estimates and
(11) we obtain

‖ut‖2 + C1‖ux‖2 + C2‖u‖2 ≤ 2εC0‖u‖2 + C,

which for sufficiently small ε > 0 gives us the result
of Lemma I. ��

4 Operators with prescribed discrete spectrum

Let us introduce a linear operator associated with our
problem:

Lu = −c2D2
xu + (

a2 + W (x, x0)
)
u, (12)

where Dx = d/dx . So, we are dealing with the
Schrödinger operator. However, the boundary condi-
tions are non-standard:

−λMu(0) + Ku(0) = b0ux (0), (13)

u(L) = 0 (14)

and the spectral problem has the form

Lu = λu, (15)

where the function u(x) is defined on [0, L] and satis-
fies (13). We consider the following problem.

Spectrum control problem (SCP) Let λi ∈ (0, a2),
be given different numbers for i = 1, . . . , N . Find
a potential W such that the spectrum Spec(L) of the
operator L includes all λi , for i = 1, . . . , N , and the
remaining spectrum lies in the domain

DN =
{

λ ∈ R : λ < min
1≤i≤N

λi − δ

}

where δ > 0.
The meaning of such a statement for the problem is

that the numbers λi for i = 1, . . . , N define the main
frequencies of the free oscillations of the string.

The well-studied situation arises when x ∈
(−∞,+∞). In this case we suppose that

W (x, x0) = 0 |x | > L0, (16)

i.e. the spatial heterogeneities are localized.
To describe an asymptotical approach to the SCP

problem, we first consider the Schrödinger operator

Hψ = −D2
xψ + V (x)ψ, (17)

and the spectral problem

Hψ = λ̃ψ,

assuming that the potential V (x) is a smooth well-
localized function (in certain cases it may be a piece-
wise constant function).

For the operator H the SCP problem can be refor-
mulated as

Discrete spectrumcontrol problem (DSCP)Let λ̃i <

0, be different numbers for i = 1, . . . , N . Find a fast
in x decreasing potential V (x) such that the discrete
spectrum Spec(H) of the operator H consists of the
eigenvalues λ̃i .

This problem is well studied, and we state different
approaches in the coming subsections. The potentials
W , V , and the corresponding eigenvalues are related as
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follows

a2 + W = c2V, λi = λ̃i + a2. (18)

4.1 Spectrum structure of the Schrödinger operatorsH

To simplify the statement, we first consider the case of
the Schrödinger operator for x ∈ (−∞,+∞) ( case
I) and then we consider ( in Sect. 5) the Schrödinger
operator on x ∈ (0, L) for large L � 2cπ

√
M/K

(case II)).

4.1.1 General facts

In case I the spectrum consists of a discrete part and
of a continuous part. All discrete eigenvalues λi , i =
1, 2, . . . , N have multiplicity one, and the correspond-
ing eigenfunctions ψi have bounded norms ‖ψi‖. The
continuous spectrum lies in (0,+∞), and the eigen-
functions of the continuous spectrum are not localized
(that is, do not belong to L2(R)). So, we have a discrete
set of well-localized eigenfunctions, and a continuous
set of densely located eigenvalues which corresponds
to non-localized eigenfunctions. Under our assump-
tions onW the spectrum of the non-localized functions
always lies below a part of the spectrum which corre-
sponds to the localized eigenfunctions.

4.1.2 Bargmann potentials and KdV

The problemDSCP can be solved analytically by using
so-called Bargmann potentials, which are connected to
multi-soliton solutions of the famous KdV equation:

Vτ − 6VVx + Vxxx = 0. (19)

The Bargmann potentials V can be found as follows.
For N = 1 our DSCP problem on (−∞,+∞) can be
solved by a one-soliton solution of (19). So, we obtain

V (x, x0) = −2κ2 cosh−2(κ(x − x0)). (20)

We can take any x0, since x0 is a free parameter . For
each x0 the operator H has a single eigenvalue in the
discrete spectrum that equals λ = −κ2. The corre-
sponding eigenfunction has the form

ψ(x, τ ) = √
κ/2 cosh−1(κ(x − x0)). (21)

For κ → +∞we obtain that V/κ → δ(x− x0), where
δ is the Dirac delta-function that leads to a particu-
lar case of potentials as considered in [24]. The corre-
spondingWinkler foundationW for the operator L has
the form

W = −2c2κ2 cosh−2(κ(x − x0)) − a2. (22)

Further, N -soliton solutions of (19) and the corre-
sponding V = VN can be found by the following alge-
braic algorithm.

Let λ j = −κ2
j . Let us take the square N × N matrix

M with entries depending on x and τ :

Mi j (x, τ ) = δi j +
c2j (0)

κi + κ j
exp

(−(κ j −κi )x−8κ3
j τ

)
,

where c j (0) are arbitrary parameters, and where δi j is
the Kronecker delta symbol(that is, δi j = 1 for i = j
and else 0). Then,

VN (x, τ ) = 2D2
x ln detM

gives us the needed potential for any choice of c j (0)
and τ .

Note that when τ → +∞, this potential transforms
into a chain of solitons separated by large intervals.
This means that for large t the potential Vn is a sum of
well-separated and well-localized potentials. This fact
inspires an asymptotic approach as stated in the coming
subsections. Note that the formulas for the Bargmann
potentials can be obtained by the Darboux transforma-
tion [22], and they are complicated for large n (under a
general choice for the parameters κ j , τ, c j ). This shows
that in general the method of [21] leads to complicated
formulas when N � 1. We thus need an asymptoti-
cal approach to have more transparent formulas and to
handle more complicated boundary conditions such as
(3).

4.1.3 Asymptotic approach: potentials with many
localized wells

Let V be a sum of well-localized and separated poten-
tial wells V̄ j :

V = VN =
N∑

j=1

V̄ j (x − x̄ j ),
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where each V̄ j (x) is a well-localized function, for
example, satisfying the inequality

|V̄ j (x)| < C exp(−c|x |).

It is clear that, for example, functions V̄ j of the form
(20) satisfy this inequality. Suppose that for each j the
spectral problem (17) has a single eigenvalue λ̄ j for the
discrete spectrum . Note that according to the results of
the previous section for functions V̄ j defined by (20)
this assumption holds; however, there are also possibly
other variants; for example, we can take a rectangular
potential well of an appropriate width and height (see
[27]). Let us define the distance between the centres of
the potential wells as

Dist (x̄) = min
i = j

|xi − x j |.

It is well known that if the distance Dist (x̄) between
the wells is large, we have N eigenvalues λ j in the
discrete spectrum of the operator H with the potential
VN , which are exponentially close to λ̄ j , that is,

λ j = λ̄ j + O
(
exp(−c Dist(x̄))

)
, (23)

where c > 0 is a constant which is independent of L .
This shows that, to control the N values of the discrete
spectrum with an exponential accuracy, we can use the
formula:

VN = −2
N∑

j=1

κ2
j cosh

−2(κ j (x − x̄ j )), κ j = √−λ j

(24)

under the condition that Dist(x̄) � 1.
Note that we can also use other potentials instead of

hyperbolic cosines, for example,

V rec
N =

N∑

j=1

Vrec(x − x̄ j , a j ,Uj )), (25)

where we can take rectangular potential wells

Vrec(x, a,U ) = 0, (|x | > a),

Vrec(x, a,U ) = U, (|x | < a). (26)

Each well depends on two parameters, the width a, and
the height U . Let us introduce two important auxiliary

quantities, γ = 2a−1U−1/2 and ξ = ka/2. For even
eigenfunctions we have

cos(ξ) = ±γ ξ, tan ξ > 0,

and for odd eigenfunctions

sin(ξ) = ±γ ξ, tan ξ < 0

(see [27]). The eigenvalue is defined by the relation
λ = k2. The eigenfunction has the form

ψ = C1 cos(kx), (|x | > a),

ψ = C2 cosh(
√
k +Ux), (|x | < a). (27)

The number of corresponding eigenvalues is deter-
mined by γ . For shallow wells, where γ > 0 is large,
we have a single even eigenfunction with an eigenvalue
close to zero: ξ ≈ γ −1 + O(γ −3). In the opposite
case, where U0a2 is large and γ is small, we obtain a
number of even and odd eigenfunctions, and this num-
ber is Constγ −1. Note that for shallow wells V we
always have a single localized eigenfunction with a
small eigenvalue (not depending on the well form) .

5 A string of a finite but large length

In Sect. 4.1 we considered infinitely long strings.
In this section, we consider a string of large length
L � 2cπ

√
M/K subject to the boundary condition

(3) and (4). The concept of localized modes makes
sense for infinite strings where a mode ψ(x) is local-
ized if ‖ψ‖2 < ∞ . This concept is standard and
it was developed in quantum mechanics [27,28]. For
a finite length string we suggest the following inter-
pretation. Intuitively, for large lengths L a normalized
eigenfunctionψ(x) ( such that ‖ψ‖ = 1) is localized if
max |ψ(x)| = O(1). For example, for harmonicmodes
ψ ∝ sin(kx) we have then max |ψ(x)| = O(L−1/2)

whereas for ψ ∝ exp(−b|x |) with b > 0 one has
max |ψ(x)| = O(b−1/2).

One can propose the following formal definition. Let
us consider the family of strings for different lengths
L , L ∈ (1,+∞). Consider the corresponding family
of normalized eigenfunctions ψ(x, L) which contin-
uously depend on L . The eigenfunctions ψ(x, L) are
called localized modes if max |ψ(x, L)| = O(1) as
L → +∞.
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5.1 Scalar product and self-adjoint operator

The linear dynamic string equation under the bound-
ary conditions (3) and (4) also leads to a self-adjoint
spectral problem, if we modify the standard L2-scalar
product.

In order to see this, let us consider two solutions
exp(iω j t)ψ j (x), j = 1, 2 for different frequenciesω j .
Then, we have

−c2
d2ψ j

dx2
+ W (x, x0)ψ j = −

(
ω2

j + a2
)

ψ j .

We multiply both sides of this equation for j = 1
with ψ2, and similarly the equation for j = 2 with
ψ1. Adding the equations, integrating the so-obtained
equation from x = 0 to x = L , and taking into account
the conditions (3) and (4), we find that

(ω2
1 − ω2

2)

(

bψ1(0)ψ2(0) +
∫ L

0
ψ1ψ2dx

)

= 0,

where b = b0/(c2M). So, we observe that the eigen-
functions ψ1, ψ2 are orthogonal if we introduce the
following scalar product in an appropriate function
space consisting of functions u with bounded norm
‖u‖b = (u, u)

1/2
b , where

(u, v)b =
∫ L

0
u(x)v(x)dx + b−1u(0)v(0).

The corresponding spectral problem is associated
with a self-adjoint operator, and we can use the
usual Galerkin procedure since the eigenfunctions are
orthogonal. We can now use the results for case I (see
Sect. 4.1) to achieve an asymptotical control of the dis-
crete spectrum for L � 2cπ

√
M/K .

5.2 Perturbation of the discrete spectrum by boundary
effects for a finite length string

Assume L � 2cπ
√
M/K . Let us consider a chain

of localized wells located at the points x̄ j such that
0 < x̄1 < · · · < x̄N . We suppose as in the previous
section that Dist (x̄) � 2cπ

√
M/K , andwe introduce

the additional conditions

x̄1 � 2cπ
√
M/K , L − x̄N � 2cπ

√
M/K .

Let us introduce d = min{Dist(x̄), x̄1, L − x̄N }. Then,
we can estimate the influence of the boundary condi-
tions and the finite size of a string as follows. Let us for
simplicity take N = 1, i.e. we are dealing with a single
potential well. Then, we have a single eigenfunction
ψ . Let us denote by ψ∞ the localized eigenfunction
for case I, i.e. for x ∈ (−∞,+∞), and let λ(∞) be the
corresponding eigenvalue. We denote by λ̃1 the pertur-
bation of this eigenvalue, and thusλ1 = λ(∞)+λ̃1 is the
eigenvalue for our finite but long string. Then, we con-
struct ψ with the help of the following representation:

ψ = ψ(∞) + ψb + ψ̃, (28)

where ψb = C1 exp(−ax) + C2 exp(−a(L − x)) and
ψ̃ is a correction satisfying the boundary conditions (3)
and (4) such that

〈ψ̃, ψ(∞)〉b = 0. (29)

We adjust the constants C1,C2 from the condition that
the function φ = ψ(∞) + ψb satisfies the boundary
conditions (3) and ( 4). Then, for those constants we
obtain the estimate

|Ci | < cmax{exp(−ax̄1), exp(−a(L − x̄1)}, i = 1, 2.

We apply the standard perturbation theory. It follows
from (29) that the perturbation λ̃ of the eigenvalue can
be estimated as

|λ̃1| < c1 max{exp(−ax̄1), exp(−a(L − x̄1)}. (30)

In fact, let us substitute ψ in the main equation that
defines λ1. Then, we have

−c2
(
ψ∞ + ψb + ψ̃

)
xx + (a2 + W )(

(
ψ∞ + ψb + ψ̃

)

= (λ(∞) + λ̃1)(
(
ψ∞ + ψb + ψ̃

)
. (31)

Part of the terms cancel out, and we obtain

−c2ψ̃xx + (a2 + W )ψ̃

= λ̃1(
(
ψ∞ + ψb + ψ̃

) − Wψb + λ(∞)ψb. (32)

We multiply both sides of this equation by ψ∞ and we
integrate over [0, L]. By taking into account (29), we
obtain the estimate (30).

For the general case with N potential wells and N
eigenvalues λ∞

j we can obtain

|λ̃ j | < c j max{exp(−ax̄1), exp(−a(L − x̄N )}. (33)
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So, if we neglect exponentially small corrections then
the study on long strings ( case II) can be reduced to
the well-studied case for infinitely long strings ( case
I).

5.3 Special modes localized at x = 0

For the boundary condition (3) there is an eigenfunction
ψ0 which is localized at x = 0. To find it, we set

ψ0 = exp(−γ x) λ0 = ω2 = −c2γ 2 + a2. (34)

Then, we obtain

γ = −b0 + (
b20 − 4

(
K − Ma2

)
Mc2

)1/2

2Mc2
, (35)

and the functionψ0 is localized if Reγ > 0. Thismeans
that K < Ma2. Finally, for long strings with L �
2cπ

√
M/K under the condition K < Ma2, we have

Nloc ≥ N + 1 localized modes �n such that

|�n(x)| < Cn exp(−κn|x − x̄n|), (36)

for n = 0, 1, . . . , N and some κn > 0,Cn > 0 , x̄n ∈
(0, L) for n ≥ 1 and x̄0 = 0. If the localized mode at
x = 0 is absent, then Nloc ≥ N . Moreover, there are
non-localized eigenfunctions, which for large |x | and
L have the form

ψk = L−1/2(ak cos(ωk x) + bk sin(ωk x)
)
, (37)

where ak, bk are coefficients, and for the frequencies
ωk for large L we have the asymptotics

ω2
k = (

c2(πk/L)2 + a2
)
(1 + O(L−1)). (38)

The last formula can be obtained by the standard per-
turbation theory (see “Appendix”). For large L the fre-
quencies ωk densely fill the semi-axis (a2,+∞) and
are located in intervals of length of order L−1. We
assume that all functions are normalized: ‖�n‖b = 1
and ‖ωk‖b = 1. In the remaining part of the paper we
will show that for weakly nonlinear, long strings the
localized modes corresponding to the prescribed spec-
trum also determine the large time behaviour.

6 Dynamics of weakly nonlinear strings

6.1 Fourier decomposition

Our plan is as follows. Assuming that nonlinear effects
are small, wewant to construct asymptotic solutions for
the string displacement, and we try to find asymptotic
solutions for u(x, t) by the Galerkin decomposition of
u(x, t). We look for the string displacement u(x, t) in
the form:

u(x, t) =
N∑

n=1

Un(t)�n(x) +
+∞∑

k=0

ûk(t)ψk(x), (39)

whereUn(t) and ûk(t) are unknowncoefficients,�n are
localized eigenfunctions of the corresponding spectral
problem, and ψk(x) are non-localized eigenfunctions,
which correspond to a continuous spectrum in the limit
for L → +∞. For the unknown coefficients Un(t)
and ûk(t) one has the following system of differential
equations :

d2Un

dt2
+ �2

nUn = ε( f (u),�n)b, (40)

where n = 1, . . . , N , and

d2ûk
dt2

+ ω2
k ûk = ε( f (u), ψk)b, (41)

where�2
n = λn andω2

k are frequencies defined by rela-
tion (38). For large L the frequencies ωk densely fill
the semi-axis (a2,+∞) and are located in intervals of
length of order L−1. Equations (40) and (41) describe
the dynamics of the infinite system of coupled oscil-
lators. We can simplify the problem for small ε > 0
using the method as presented in the next subsection.

6.2 Asymptotic solutions for the amplitude
coefficients

We suppose that f (u) is an analytic function such that

f (u) = f2u
2 + f3u

3 + · · ·

where f2, f3, . . . are coefficients. Then, for small dis-
placements, we have to take into account the term f2u2

by following the arguments as given in [29]. Such
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type of force per unit length is the force acting on a
string due to springs which have a different behaviour
for compression and extension (see [29]). The asymp-
totic approach to study equations (40) and (41) is well
known, see [28,30,31]. Let T = εt be a slow time.
Furthermore, it should be observed that the right-hand
sides of (40) and (41) are of order ε . We seek solutions
Un of (40) in the form

Un = Un,0(t, T ) + εUn,1(t, T ) + · · · , (42)

where

Un,0 = An(T ) sin(�nt + φn(T )),

and where the amplitude An(T ) and the phase φn(T )

are unknown (slowly varying in time) functions. Sim-
ilarly,

ûk = ûk,0(t, T ) + εûk,1(t, T ) + · · · , (43)

where

ûk,0 = ak(T ) sin(ωk t + φ̂k(T ))

and where the amplitude ak(T ) and the phase φ̂k(T )

are unknown (slowly varying in time) functions.
From (43) it follows that

∂tUn,0 = (�n + εφnT )An(T ) cos(�nt + φ(T )) +
εAn(T )T sin(�nt + φn(T )), (44)

∂t tUn,0 = −�2
n An sin(�nt + φn(T ))

+2ε�n(AnT cos(�nt + φn(T ))

−2ε�n AnφnT sin(�nt + φn(T )) + O(ε2).

(45)

Analogous relations hold for ûk,0.
By substituting these relations into (40), and by tak-

ing together terms of order ε, one obtains the following
equation for Un,1 :

(
Un,1

)
t t + �2

nUn,1 = Sn(A, φ, t, ε), (46)

where

Sn = 2�n

(
− AnT cos(�nt + φn(T ))

+AnφnT sin(�nt + φn(T ))
)

+ Rn(A, φ, t),

(47)

and

Rn(A, â, φ, t) = RLL
n + RLN

n + RNN
n , (48)

and where RLL
n , RLN

n , RNN
n are terms induced by

an interaction between localized mode interactions,
localized and non-localized ones, and between non-
localized ones, respectively. Here A = (A1, A2, . . .)

and φ = (φ1, φ2, . . .) denote infinite sequences of the
functions An(t) and φn(t), respectively. Below, tak-
ing into account that amplitudes An are small, we set
f = f2u2 and neglect terms of higher order. Then we
have

RLL
n =

N∑

m1=1

N∑

m2=1

Am1 Am2 cos(�m1 t + φm1)

× cos(�m2 t + φm2)
(
�m1 , �m2 , �n

)
b, (49)

RLN
n =

N∑

m=1

∞∑

k=0

Amak cos(�mt + φm) cos(ωk t + φk)

× (
�m , ψk , �n

)
b, (50)

RNN
n =

∞∑

k1=0

∞∑

k2=0

ak1ak2 cos(ωk1 t + φk1) cos(ωk2 t + φk)

× (
ψk1ψk2 , �n

)
b. (51)

Let 〈 f 〉T denotes the average of a continuous uni-
formly bounded functions f :

〈 f 〉T = T−1
∫ T

0
f (t)dt.

For large times t = O(ε−1) Eq. (46) has a bounded
solution in t if and only if

〈Sn(A, φ, t, ε) cos(�nt + φn)〉T = 0, (52)

and

〈Sn(A, φ, t, ε) sin(�nt + φn)〉T = 0, (53)

Finally, it follows from (52) and (53) that the system
of equations for the amplitudes A, and for the phases
φ has the form:

�n
dAn

dT
= 〈Rn(A, φ, t) cos(�nt + φn)〉T , (54)
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and

�n An
dφn

dT
= −〈Rn(A, φ, t) sin(�nt + φn)〉T , (55)

and

ωk
dak
dT

= 〈Rn(A, φ, t) cos(ωk t + φ̂k)〉T , (56)

and

ωk
dφk

dT
= −〈Rn(A, φ, t) sin(ωk t + φ̂k)〉T . (57)

We will investigate this system qualitatively in the
next section.

6.3 Resonances

Relations (54), (56), (49), (50) and (51) show that in
our system three types of resonances occur. We have

1. LL resonances between localized modes;
2. LN resonances between localized andnon-localized

modes;
3. NN resonances between non-localized modes.

LL resonances between modes m1,m2 and n can
only occur under the condition that

τ±
m1,m2,n = |�m1 ± �m2 | − �n,n .

where

|τ±
m1,m2,n| = O(ε), (58)

in which τm1,m2,n are detuning parameters.
We can avoid these resonances by adjusting the fre-

quencies�m . Similarly,LN resonances between local-
ized modes m, n and a non-localized mode k are pos-
sible when

|τ̃±
m,n,k | = O(ε), τ̃±

m,n,k = |�m ± ωk | − �n, (59)

where τ̃±
m,n,k are detuning parameters. It is impossible

to avoid the LN or NN resonances because the fre-
quencies ωk are located densely. However, the effects
of these NN and LN resonances are small for large L

and ε → 0. In fact, consider relation (50). We obtain
the following typical sum over all non-localized modes

∑

k=1/L ,2/L ,...

L−1(exp(i(�mn −ωk)τ )−1
)
((�mn −ωk)τ )−1,

(60)

where �mn = �n ± �m , ωk = √
c2k2 + a2, and τ =

O(ε−1) is large. Note that the function (exp(i(�mn −
ωk)τ ) − 1

)
((�mn − ωk)

−1 is correctly defined even
for �mn = ωk (this follows from the Taylor series for
exp(i(�mn −ωk)τ ). However, this function takes large
values for large τ and small |�mn − ωk |, and therefore
we must be careful in estimating the sum (60). The
factor L−1 occurs due to the property that amplitudes
of non-localized modes are proportional to L−1/2 [see
relation (37)]. Themain idea is that in the limit L → ∞
the sum (60) is an approximation of the integral

Ireg =τ−1
∫ +∞

0

(
exp(i(�mn − ωk)τ ) − 1

)

× ((�mn − ωk))
−1dk,

which can be regularized (for example, in a principal
value sense) and is therefore small as ε → 0. Note that
in practical situations L is finite (but possibly large) and
ε → 0. Then one can expect that the set of frequencies
�n for which the sum (60) is not small for large L has
a small measure με,L , which converges to 0 as ε → 0.
These arguments can be confirmed by numerical simu-
lations and by the following lemma. Note that for each
localized mode we have at most 1 resonance with non-
localized modes, and there is possibly a number ofNN
resonances.

To estimate the total contribution of the LN andNN
resonances, we can use the following lemma. We set
T = ε−1 in the equations (54), (55) , (56), (57).

Lemma II Let ε > 0 be small and L � 2cπ
√
M/K.

Then the total contributions of the LN and NN reso-
nances can be estimated by O((ε(ln ε)L1/2).

Remark This lemma shows that the LN and NN res-
onance contributions are small if L/2cπ

√
M/K �

ε−2+s , where s ∈ (0, 1). Thus for the practical situa-
tions, as described before, it can be concluded that the
resonance contributions are small.

Proof We consider the LN resonances. Estimates for
theNN resonances are more sophisticated, but they can
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be done in a similar way. From (50) it follows that a
typical sum that defines the resonance contribution has
the form:

Sreso = L−1/2
Nloc∑

n=1

g(kn)
1 − exp((� − ωkn )τ )

(� − ωkn )τ
. (61)

where � is a frequency, kn = √
c2n2/L2 + a2, τ =

O(ε−1) and g(k) is a smooth function depending on k
such that

|g(k)| < C(1 + |k|)−1−s, s > 0. (62)

The factor L−1/2 occurs as a result of the asymptotics
(37) describing non-localized modes for large |x |. Let
ρ be a small parameter, which will be adjusted later.
We decompose the sum (61) into two sums, S̃reso,ρ and
S̄reso,ρ . The sum S̃reso,ρ is a sum over n such that

|� − ωkn | < ρ, (63)

and in S̄reso,ρ we are summing up over all integers n
such that (63) does not hold. The sum S̃reso,ρ includes
the O(ρL) terms, which are bounded as ε → 0. There-
fore, we have

|S̃reso,ρ | < ConstL−1/2ρL < cρL1/2. (64)

Note that S̄reso,ρ contains a logarithmic singularity;
therefore, it can be estimated by (62) as follows:

|S̄reso,ρ | < ConstL−1/2L| ln ρ|τ−1. (65)

So, by (64) and (66) we find that

Sreso < cL1/2(ρ + | ln ρ|τ−1) (66)

where c > 0 is uniform in ε, ρ. We choose a ρ, which
minimizes the right hand side of the last inequality. This
leads to ρ = τ−1 = O(ε). We substitute this value of
ρ into the last estimate and obtain

Sreso < c1L
1/2ε| ln ε|,

where c1 > 0 is uniform in L , ρ, and this proves
the lemma. Note that the contributions of the NN res-
onances also are small under the conditions of our
lemma. ��

6.4 Interaction between localized and non-localized
modes

In [15] for a semi-infinite string with a weak cubic
nonlinearity (that is for f = −u3) and under boundary
conditions similar to (3), an interesting effect is found:
the amplitude A(t) of a localized (at x = 0) mode
slowly decreases on a time scale of O(ε−2). Note that
such a string has a constant energy, and so this effect is
only possible if there is a transfer of energy between the
localized mode and the non-localized modes. Now we
will estimate the impact on non-local mode activation
by localizedmodes.We also consider a large stringwith
L � 2cπ

√
M/K , nonlinearity f = f2u2, and apply

here a simplified approach.
To simplify the statement, let us consider the case of

a single localized mode �(x), which can be localized
at x = 0 or around another point of the string. Let us
represent the string displacement u(x, t) by the Fourier
decomposition:

u(x, t) = Ûloc(t)�(x) +
∞∑

k=1

ûk(t)ψk(x),

where Ûloc, ûk(t) are unknown Fourier coefficients
depending on time. We assume that the amplitudes
of the non-localized modes ûk are small and that the
amplitude of the localized mode Û = Ûloc has order 1.
Then, by neglecting some small terms, we obtain the
following system of equations for the unknown ampli-
tudes:

d2Û

dt2
+ �2Û + c0εÛ

2 = −c0ε
∞∑

k=1

bkÛ ûk, (67)

where the terms of order εûk
2, are neglected, and � is

the frequency of the localized mode, and

d2ûk
dt2

+ ω2
k ûk = −εbkU

2, (68)

where the terms of order εÛ 2(ûk) are neglected andωk

is the frequency of the localized mode. The coefficients
bk are given by

bk = 〈�2, ψk〉.
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The initial conditions are uk(0) = 0, vk(0) = 0 (where
vk(t) = duk/dt), in order to study the excitation of
the non-local modes by the localized mode. The main
idea to simplify the system (67)–(68) is based on using
the asymptotic representation for Û ≈ A(τ ) sin(�t +
φ(τ)), where τ = εt . By using this representation, we
find an asymptotical solution of (68) up to terms of the
order O(ε), where the first two contributions depend
on A, Aτ . Then we can reduce system (67)–(68) to a
single equation for Û . We obtain

ûk = ε
(
αk + βk cos(2(�t + φ)) + ũk + O(ε)

)
, (69)

where

αk = bk A2

4
(
ω2
k − �2

) , βk = − A2

2
(
ω2
k − 4�2

) ,

and

ũk = Ck cos(ωk t), Ck = −αk − βk . (70)

By substituting (69–70) into the right hand side of
(67), and by using the averaging method (according to
(54) ) we obtain the following equation for A:

�
dA

dτ
= − f2εA〈sin(�t + φ) cos(�t + φ)ûk(t)〉T .

(71)

Observe that the right hand side of Eq. (71) has the
order ε and that a NL resonance exists when for some
k = k∗ we have 2� ≈ ωk∗ . Let μ be the corresponding
detuning parameter defined by the relation:

με = 2� − ωk∗ . (72)

We assume that μ = O(1) and that there is a single
resonance k∗ such that (72) holds (this is possible if
L � ε−12cπ

√
M/K ). Then, we obtain

�
dA

dτ
= − f2εb

2
k∗ A cos(μτ). (73)

This equation shows that depending on the sign of the
nonlinearity and on the detuning parameter value, we
can have a decrease or increase of the amplitude A(τ )

for times t of order ε−2. Indeed, we have

A(τ ) = A(0) exp
(
−εμ−1�−1 f2b

2
k∗ sin(μτ)

)
.

The effect of the increase ( or decrease) is bounded,
at least for μ = O(1). For small μ we have
μ−1 sin(μτ) ≈ τ and the resonance effect becomes
stronger. Then, we can observe that the amplitude
increase of A depends on the sign of the coeffi-
cient f2. It is interesting to consider the case when
(2cπ)−1L

√
K/M � ε−1. In this case the period of the

oscillator is much smaller than the time during which a
wave travels from one end to the other end. Wave vec-
tors k are proportional to n/L , where n is an integer,
and the distance between the frequencies is dω(k)/dn=
c/L . Then, we have a resonance set of values for k, and
the analysis for this case is more complicated. How-
ever, to simplify the problem, we observe that for the
caseμ � 1, and for the nonlinearity f = f2u2+ f3u3,
we obtain

�
dA

dτ
= ε(− f2c2A + f3c3A

2), (74)

where c j > 0 are constants. This result coincides with
[15] for the case f2 = 0, f3 < 0 where we observe a
decreasing amplitude. For f2 = 0, f3 < 0 and 0 <

A(0) < A∗ = f2c2/ f3c3 we can have an increasing
amplitude within a time period. This growth, however,
is bounded by the value A∗ for large times since due
to the cubic term the nonlinearity is saturated and the
energy E[u] is bounded from below.

7 Concluding remarks

In some practical applications as mentioned in Intro-
duction, we can encounter the following two cases:

A A single eigenvalue of the structure is located
beneath a dense group of other eigenvalues;

B eigenvalues are grouped in separate areas where
they are densely located.

Let us briefly explain how to get a string with a pre-
scribed spectrum. Consider case A (a typical example
is shown in Fig. 1). Let the first minimal eigenvalue
be a20 and let the remaining and localized spectrum
be in the interval [a1, b1]. In this case we can use the
fact mentioned earlier for a swallow well which con-
tains exactly one eigenfunctions. We choose a < a0
but close to a0, so a − a0 � a0. The plot of W (x)
corresponds to two potential wells separated at a great
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Fig. 1 A typical spectrum for the case, where the single eigen-
value of the structure is located beneath a dense group of other
eigenvalues, a few of the eigenvalues are located inside an inter-
val, and a single one is located far away from this group at λ = 5.
The domains of eigenvalue localization are shown by dark bars

Fig. 2 The formof the elastic foundation function a2+W (x, x0)
and location of potential wells, which gives the spectrum as
shown in Fig. 1. The first potential well is deep and narrow and
produces a single eigenvalue close to λ = 5. The second well
has a larger width and it produces a few localized modes, and the
corresponding eigenvalues are located in the interval [27, 42].
Wells should be separated by a long distance

Fig. 3 A typical spectrum for the case, where the eigenvalues
are grouped in separate areas where they are densely located.
Here we have 3 groups of eigenvalues

distance, for example in the order of the string length.
The first well is a swallow one and the second is a
deep one (see Fig. 2). In case B we suppose that we

Fig. 4 The formof the elastic foundation function a2+W (x, x0)
and the location of the potential wells which create the spectrum,
as shown in Fig. 3

have m groups of eigenvalues with eigenvalue den-
sity dλ. Then we proceed as follows. We take a poten-
tial V consisting of m potential wells Vj (x) separated
by large distances. For each well we adjust its form,
in particular in such a way that the well width a j is

proportional to d−1/2
λ , and the well height is propor-

tional to the number of eigenvalues in the correspond-
ing group. In the general case the algorithm to create
a string of large length L � 1 with a prescribed dis-
crete spectrum is as follows. We first solve the SCP
problem for the operator H. To this end, we define κ j

by κ = √
λ j , j = 1, . . . , N and choose the points x̄ j

such that 0 = x̄0 < x̄1 < x̄2 · · · < x̄N < x̄N+1 = L ,
where x̄i+1 − x̄i > L/2N . Then we define VN (x) by
the relation (24) and W by W = c2VN − a2.

A typical spectrum for the case, where the eigen-
values are grouped in separate areas where they are
densely located, is shown in Fig. 3. The form of the
elastic foundation function a2 + W (x) and the loca-
tion of the potential wells which create the spectrum,
as shown in Fig. 3, are presented in Fig. 4. The mag-
nitude of resonances (defined by relation (61) between
localized and non-localized modes as a function of the
string length is shown in Fig. 5.

We consider the dynamics of strings on an elastic
weakly nonlinear foundation, which have a prescribed
spectrum. The foundation may also be spatially hetero-
geneous. The research has been conducted with bound-
ary conditions which describe an oscillator coupled to
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Fig. 5 The magnitude of resonances [defined by relation (61)]
between localized and non-localized modes as a function of the
string length. The parameters are a2 = 0.5, the minimal string
length Lmin = 100, the maximal string length Lmax = 300, the
speed c = 2, the time T = 500 = ε−1, �n − �m = 0.63 , and
the number of modes is N = 20

the string at one end and the other end is fixed. In this
case the string can have localized modes. We show that
these localized modes determine the dynamics of the
long string for large times. We can control the frequen-
cies of the localized modes for a special choice of the
spatial heterogeneities in the elastic foundation.We use
an asymptotic approach for such strings, which gives
a more transparent procedure to control the string dis-
crete spectrum. This approach allows us to precisely
control a part of the spectrum. Furthermore, we show
that if the string is under a weak nonlinear perturbation,
then these controlled modes determine the dynamics of
the weakly nonlinear string for large times.
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Appendix

In this “Appendix”, we derive formula (38). Let us
consider first the case W (x, x0) = 0. Then the solu-
tion of the spectral problem (15) has the form ψk =
A sin(kx)+B cos(kx),where the boundary conditions
(13) imply that

A sin kL + B cos kL = 0, (75)

(K − λkM)B = b0k A (76)

and λk = a2 − c2k2. This system reduces to the fol-
lowing equation for the unknown wave number k:

tan(kL) = b0k

K + Mc2k2 − Ma2
.

To find an asymptotical solution k for this equation for
large L , we introduce the variable z = kL . Then, one
obtains

tan z = b0z

L(μ + Mc2(z/L)2
, μ = K − Ma2.

For large L one has z = nπ+O(L−1), wheren are non-
negative integers. This relation gives us (38) forW = 0.
To estimate the effect of the localized perturbations to
λk and ωk , we apply the standard perturbation theory.
The perturbation λ̃ of λ is

λ̃ =
∫ L
0 W (x, x0)ψk(x)2dx

∫ L
0 ψk(x)2dx

.

For large L the denominator of this fraction is of order
L , while the numerator has the order 1 (because W is
not zero on part of the interval). Therefore, we conclude
that λ̃ = O(L−1), which finally proves (38).

For a localized mode at x = 0 (induced by the oscil-
lator) one can show, by an analogous estimate, that
λ̃ = O(exp(−cL)), where c > 0 is a constant.
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