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A B S T R A C T   

The theoretical analysis of maritime accidents is a hot topic, but the time characteristics and dynamics of 
maritime accidents time series are still unclear. It is difficult to draw a clear conclusion from the cause analysis, 
so the accident is difficult to be predicted. To bridge this gap, this research analyzes the characteristics and 
evolution mechanism of maritime accidents time series from the perspective of complex network theory. The 
visual graph algorithm is used to model the complex network of maritime accidents data in 22 jurisdictions of the 
Yangtze River, map the time series into a complex network, and reveal the time characteristics and dynamics of 
maritime accidents time series based on the complex system theory. In the empirical analysis, degree distribu-
tion, clustering coefficient and network diameter are used to analyze the characteristics of time series. The results 
show that the degree distribution of maritime accidents time series network presents power-law characteristics in 
the macro and micro levels, which shows that the maritime accidents time series is scale-free. In addition, ac-
cording to the clustering coefficient and network diameter, maritime accidents time series in the Yangtze River 
has the characteristics of small-world and hierarchical structure. The research of this manuscript shows that the 
occurrence of maritime accidents is not random events and does not follow specific patterns but presents the 
characteristics of complex systems, and this phenomenon is common. The analysis of maritime accidents time 
series by complex network theory can provide theoretical support for maritime traffic safety management.   

1. Introduction 

For the Marine Silk Road (MSR) of the twenty-first century to thrive 
and endure, maritime transportation safety is crucial (Zhao et al., 2021; 
Song and Fabinyi, 2022). However, shipping has long been recognized 
as a high dangerous business, and maritime accidents frequently result 
in significant loss of life, cargo, and property, as well as serious envi-
ronmental contamination (Zhang et al., 2021a; Li et al., 2022). So, with 
the arrival of a new round of rapid development in the shipping in-
dustry, the prevention of maritime accidents and the reduction of human 
and property losses as a result of accidents is a matter of national 
importance and livelihood, as well as an essential task of maritime traffic 
safety management (Hänninen, 2014; Fan et al., 2020). As a result, it is 
critical to enhance the prevention of marine traffic accidents to safe-
guard human life and property (Sedova et al., 2018). 

China’s transport industry has been growing in recent years, but it 
has also brought more significant safety hazards, with frequent maritime 
accidents and severe social implications. Yangtze shipping plays a 
crucial part in the valley’s economic development as a vital component 
of the comprehensive transport system of Yangtze valley. But compared 
to the development and use of inland water transport abroad, the 
Yangtze River shipping still lags in technology and management. At 
present, the maritime traffic safety situation in China is still severe, and 
it is necessary to carry out safety hazard investigation and risk control, 
improve safety emergency protection capacity, and improve the risk 
prevention and control system to ensure that the maritime traffic safety 
situation remains sound and stable (Liu et al., 2021). 

Accidents, according to research, are not accidental and random but 
rather the inevitable result of maritime accidents that are not prevented. 
However, whether the occurrence of maritime accidents is purely 
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random in time remains unknown. Furthermore, determining the 
fundamental mechanism driving the incidence of maritime accidents 
and how to explain this process in mathematical and statistical terms has 
proven challenging. The fundamental reason for this is that maritime 
traffic is a temporal dynamic system with complex phenomena and 
chaotic characteristics, which makes analytical representation methods 
difficult to describe (Wen et al., 2015; Sui et al., 2020, 2021). To date, 
time series methods in maritime traffic safety research have largely 
focused on the prevention of maritime accident number or statistical 
characteristics, such as autoregressive integrated moving average 
(ARIMA), vector autoregression (VAR), generalized linear models 
(GLM), structural equation models (SEMs), Markov and GIS-based 
method. But the dynamic and temporal characteristics of the time se-
ries of maritime accidents remain unclear. A comparison between VG 
and other methods can be seen in Table 1. 

Therefore, to bridge this gap, this paper aims to gain insight into the 
dynamic characteristics of maritime accidents time series through 
complex network theory and visibility graph (VG) algorithms. The vis-
ibility graph method directly defines the data in the time series as nodes 
in a complex network, and the connections between the nodes are 
determined by the linear visual relationships between the data. There-
fore, the visibility graph method can transform any time series into a 
network, and the statistical properties of a complex network induced by 
a time series can well reflect the characteristic of the time series. For 
example, a periodic time series can be transformed into a regular graph, 
a random time series into a random graph, and a fractal time series into a 
scale-free network. 

Based on ten years of maritime accident data in the Yangtze River 
mainline, complex network theory is combined with accident data to 
reveal the patterns and dynamic features in the accident time series by 
analyzing the changes in network characteristics. The remainder of this 
paper is organized as follows. Section 2 reviews research related to 
maritime accidents analysis, theory, and approach to research the time 
series dynamic. Section 3 is the materials and method, followed by the 
analysis results in Section 4. Empirical analysis of maritime accident 
data for ten years in the Yangtze River is developed, and network to-
pological changes for maritime accidents in different years and juris-
dictions are analyzed and discussed in detail. Finally, the discussion and 
conclusions are summarized in Section 5 and 6 respectively. 

2. Literature review 

Many regulations and rules are being conducted to improve marine 
transportation safety and prevent maritime accidents. Nonetheless, 
maritime transportation safety level has not yet reached its peak, and 
accidents continue to be a serious concern for the maritime safety 
management (Fu et al., 2021). Maritime accidents can lead to injuries, 
loss of life and property, environmental pollution and other common 
and serious consequences (Hansen, et al., 2002; Wang, 2002). Analysis 
of maritime accidents cases in water areas is widely considered an 
effective approach by many researchers. 

2.1. Accident causation analysis in the maritime domain 

To prevent maritime transportation accidents, accident causation 
theory have become highly discussed topics, these methods are used to 
study the mechanism and influencing factors of maritime accidents. The 
850 severe maritime accidents in Turkish Straits between 2001 and 
2010 have been systematically analyzed by the Analytic Hierarchy 
Process (AHP) method. Human error was the most common cause of 
maritime accidents in Turkish Straits (Ugurlu et al., 2016). A fuzzy ev-
idence model was constructed based on the fuzzy logic and evidence 
theory used to evaluate maritime accident risk (Yang et al., 2009). And 
then the fuzzy theory has been introduced to evaluate maritime risks 
applicable to maritime pollution risk (Balmat et al., 2011). The systems 
theoretic accident model and processes (STAMP) and the system- 
theoretic process analysis (STPA) are well-established approaches to 
system safety analysis (Ceylan et al., 2021, 2022). And some method-
ology for accident analysis based on a system perspective is presented 
(Zhang et al., 2021b; Patriarca et al., 2022). The regression model was 
widely applied in maritime accidents analysis. The regression method is 
a statistical inference approach used to investigate the relevant rela-
tionship between events. A negative binomial regression model has been 
developed based on historical maritime accident records to identify 
significant risk factors in Hong Kong port (Yip, 2008). And the human 
and organizational framework was proposed to analyze the accident 
cause factor from a comprehensive perspective (Chen et al., 2013). Bye 
and Aalberg (2018) identified the relationships between some factors 
and maritime accidents in Norwegian waters using a logistic regression 
analysis method. The regression approach has the benefit of synthesiz-
ing numerous elements of the vessel traffic system, but it requires a 
considerable quantity of data. Furthermore, researchers used several 
risk modeling methodologies to analyze maritime accident risk, espe-
cially Bayesian networks. The application of Bayesian Networks has 
attracted many researchers, and they found that Bayesian networks are 
an effective tool for maritime safety management (Sakar et al., 2021; Wu 
et al., 2021; Chen et al., 2022). This method has been used to analyze the 
risk factors of ship collision in the Gulf of Finland (Hanninen and Kujala, 
2012; Hanninen, 2014). In the research of inland water traffic safety, 
using the Yangtze River as a case study, Zhang et al. (2014) proposed an 
accident data-based method to evaluate the risk of congestion on inland 
waterways. At the early design stage, Bolbot et al. (2021) merged the 
operational and functional hazard identification methodologies to 
thoroughly evaluate an autonomous inland waterways ship’s safety. 
Using fault tree analysis as a method, Awal et al. (2014) published a 
research on contact type accidents of inland water transport in 
Bangladesh. Uddin et al. (2017) examined data on accidents that 
occurred in Bangladesh’s inland waterways from 2005 to 2015 in rela-
tion to several factors, including vessel types, accident sites, accident 
timing, final vessel conditions following accidents, and others. The 
analysis revealed that the major causes of waterway accidents are 
collision. 

Table 1 
Comparison between VG and other methods.  

Method Research topic 

Statistical characteristics Spatial characteristics Temporal characteristics Dynamic characteristics Prediction 

ARIMA     ×

VAR     ×

GLM     ×

SEM     ×

Markov     ×

GIS-based method × ×

VG × × ×

Z. Sui et al.                                                                                                                                                                                                                                       
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2.2. Analysis on spatial-temporal characteristics of maritime accident 

Analysis of time characteristics of maritime accidents is another 
hotspot issue. From the perspective of data resources, the data sources of 
most studies fall into two categories: raw historical data from public 
resources such as GISIS (Hassel et al., 2011; Zhang et al., 2021a), second- 
hand data from local administration, maritime accident reports (Qud-
dus, 2008; Chai et al., 2020; Feng et al., 2020). However, because of data 
collection and data matching in maritime accident reporting, studying 
maritime accident time series characteristics has been difficult (Psarros 
et al., 2010; Hassel et al., 2011; Luo and Shin, 2019). Researchers put 
forward a series of algorithms to resolve missing data problems. Data 
interpolation methods are more mature, which have been employed in 
maritime accident records and various data sources (Heitjan and Little, 
1991; Staff et al., 2014; Cheliotis et al., 2019; Lukusa and Phoa, 2020). 
By comparing multiple data sources, some research attempted to esti-
mate the reporting frequency and the actual number of shipping in-
cidents that happened (Psarros et al., 2010; Oltedal and McArthur, 2011; 
Hassel et al., 2011; Bye and Aalberg, 2018). And some researchers 
attempt to incorporate multi-scenario underreporting rates in maritime 
traffic (Li et al., 2022). There are some researches aimed to deal with 
similar problems in road and air traffic (Galea et al., 2006; Rose, 2006; 
Amoros et al., 2006, 2008; Yamamoto et al., 2008; Ryan et al., 2010; 
Shinar et al., 2018). 

In recent years, the spatial patterns of maritime accidents have been 
discussed. Exploring the spatial pattern of maritime accidents is vital 
regarding maritime risk management. GIS-based methods have been 
introduced to analyze maritime accidents in the Philippine waters in the 
past ten years, and capsizing was the most prevalent accident, followed 
by foundering and stranding, according to the research (Sigua and 
Aguilar, 2003). Dobbins and Abkowitz (2010), Dobbins and Jenkins 
(2011) visualized the accident locations based on GIS and satellite im-
agery and evaluated the maritime risk in US navigable waterways. 
Huang et al. (2013) developed an accident hotspot analytical method 
based on the global maritime accident spatial distribution between 2002 
and 2011. Acharya et al. (2017) determined the high-risk areas in South 
Korea using geospatial techniques to visualize the distribution of mari-
time accidents between 2007 and 2014. Ugurlu and Yildirim (2013) 
constructed a maritime accident databased containing some informa-
tion, including ship name, ship type, maritime accident type, and so on, 
based on maritime accident data between 2007 and 2011. In addition, 
Kernel Density Estimation, Moran’s I method, network-based statistics, 
and K-means clustering are more often used in maritime accidents 
analysis (Steenberghen et al., 2004; Xie and Yan, 2008; Anderson, 2009; 
Prasannakumar et al., 2011; Hashimoto et al., 2016). Zhang et al. 
(2021a) conducted descriptive analyses using Kernel Density Estimation 
and K-means to obtain the overall profile of global maritime accidents 
based on maritime accident data from 2003 to 2018. 

2.3. Research gap and contribution 

According to the literature review, studies on maritime accidents 
have mostly concentrated on accident factor analysis, accident proba-
bility prediction, and accident risk assessment. The previous methods 
have exposed the inadequacies of accident analysis, include 

(i) The statistical analysis method allows for mining accident char-
acteristics from several aspects, such as accident type, accident 
time distribution, and spatial distribution of accident-prone 
areas. However, such studies only provide simple statistics on 
historical data, do not consider the temporal correlation charac-
teristics between accidents, and cannot prove the inevitable link 
between accidents and the external environment. 

(ii) Although the number of accidents can be predicted using ma-
chine learning algorithms, there is a strong reliance on historical 

data. And it has been difficult to answer what is the underlying 
mechanism governing the occurrence of maritime accidents.  

(iii) A few research looked at the time series of maritime accidents 
from the perspective of a complex system. Furthermore, these 
studies only looked at the general distribution of maritime acci-
dents at sea rather than going deeper into inland water. 

The goal of this research is to close the gap. In contrast to earlier 
research, the current study employs ten years of maritime accident data 
in the Yangtze River to investigate the characteristics of maritime ac-
cidents time series using complex network theory. The contributions of 
the work are as follows. Firstly, a visibility graph creates a new bridge 
between time series and complex networks, transforming abstract 
numbers into a visual network topology. This approach retains some of 
the original data’s properties in mapping time series to networks. Sec-
ondly, the complex maritime accident time series networks have scale- 
free and small-world features. And the characteristics of the maritime 
accident time series were uncovered based on Visibility Graph. 

3. Materials and method 

3.1. Research data collection 

The maritime accident data used throughout our analyses come from 
the report published by the Ministry of Transport Changjiang Hangwu 
Management Bureau. From January 2011 to December 2020, 3285 ac-
cidents were reported. Each accident is recorded in the format as 
depicted in Table 2. For all accidents, information concerning the time, 
ship name, types of accident, jurisdiction and accident level is always 
displayed in the summaries, including four levels: serious accident, 
major accident, ordinary accident and minor accident. Table 3 presents 
the number of accidents distributed by type of accident and accident 
level. The proportion of contact/collision accidents is the largest type of 
accident. From the statistical results of accident level, maritime acci-
dents have been concentrated in minor accidents. 

From Fig. 1, maritime accidents generally have been declining since 
2011. Fig. 2 depicts the monthly number of 3285 maritime accidents 
between 2011 and 2020. The incidence of maritime accidents varies 
with the weather seasons, and the number of maritime accidents also 
varies by month. The trend of much more maritime accidents in the 
spring and summer is substantially persistent during the ten-year 
analyzed period. In addition, Fig. 3 depicts the overall number of 
maritime accidents and the time of day they happened. The most typical 
times were between 2 am, and 6 am. 

Table 4 presents the number of accidents distributed by type of ac-
cident and jurisdiction. The first five jurisdictions in the number of 
maritime accidents are Nanjing, Nantong, Zhenjiang, Taicang, and 
Taizhou. These jurisdictions are located in the lower reaches of the 
Yangtze River. The proportion of contact/collision accidents is also the 
largest type of accident in most jurisdictions. Because the inland ship-
ping business is becoming increasingly busy, inland maritime accidents 
have repeatedly occurred in the lower reaches of the Yangtze River. 

Table 2 
Maritime accidents information.  

Time Ship name Type of 
accident 

Jurisdiction Accident 
level 

2011/1/1 
15:30 

Gan Nan De 
Hua 021 

Contact/ 
Collison 

Zhenjiang Minor 
accident 

2011/1/1 
21:35 

Xiang An Xiang 
Huo 290 

Capsize/ 
Foundering 

Chongqing Major 
accident 

…… …… …… …… …… 
2020/12/ 

28 4:05 
Qi Xiang 1 Grounding Chongqing Minor 

accident 
2020/12/ 

30 17:57 
Zhe Jia Shan 
Huo 03928 

Capsize/ 
Foundering 

Changshu Ordinary 
accident  
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3.2. Visibility graph modeling 

In 2008, Spain researcher Lacasa popularized the term ‘Visibility 
graph (VG)’ to describe the characteristics of time series based on 
complex network theory (Lacasa et al., 2008). Based on the VG, with the 

continuous increase of time series data, the generation process of a 
complex network is similar to the dynamic generation of Barabasi-Albert 
scale-free network (Barabási, 2009), and the hub node in a complex 
network corresponds to the data with a particularly large value. The VG 
can transform any time series into a network, which is a fully connected 

Table 3 
The number of accidents distributed by type of accident and accident level.  

Level Type of maritime accidents 

Contact/Collision Grounding Capsize/Foundering Fire/Exploded Other Total 

Minor accident 2004 493 142 148 115 2902 
Ordinary accident 128 10 45 10 14 207 
Major accident 70 1 53 4 11 139 
Serious accident 22 0 14 1 0 37 
Total 2224 504 254 163 140 3285  

Fig. 1. Changes of maritime accidents from 2011 to 2020.  

Fig. 2. Changes of maritime accidents in 2011–2020 by month.  
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network and does not depend on the threshold. As shown in Fig. 4, 
periodic time series can be transformed into regular graphs, random 
time series can be transformed into random graphs, and fractal time 

series can be transformed into scale-free networks. 
The visibility criteria of VG has been established: Two arbitrary data 

(ta, ya) and (tb, yb) will have visibility, and consequently will become two 

Fig. 3. Time of occurrence of maritime accidents in the Yangtze River.  

Table 4 
The number of accidents distributed by type of accident and jurisdiction.  

Jurisdiction Type of maritime accidents 

Contact/Collision Grounding Capsize/Foundering Fire/Exploded Other Total 

Nanjing 298 22 12 10 8 350 
Nantong 268 26 15 8 29 346 
Zhenjiang 214 7 19 7 6 253 
Taicang 148 2 20 7 21 198 
Taizhou 155 5 14 2 15 191 
Chongqing 50 88 22 18 11 189 
Huangshi 122 34 9 7 7 179 
Yichang 36 83 9 23 6 157 
Zhangjiagang 127 3 13 6 7 156 
Wuhu 83 27 18 21 6 155 
Yangzhou 130 2 6 6 7 151 
Wuhan 69 38 16 14 4 141 
Jiujiang 86 23 7 7 3 126 
Jiangyin 77 0 21 1 3 102 
Yueyang 56 29 9 4 3 101 
Jingzhou 39 36 5 7 2 89 
Anqing 54 12 9 8 5 88 
Changzhou 74 2 4 4 4 88 
Changshu 54 5 18 4 3 84 
Sanxia 19 6 0 1 2 28 
Yibin 2 2 1 0 1 6 
Luzhou 0 5 0 0 0 5  

Fig. 4. Regular network, Small-world network and Random network.  
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connected nodes of the associated graph, if any other data (ti, yi) placed 
between them fulfills (Lacasa et al., 2008): 

y(ti) < y(ta)+
ti − ta

tb − ta
[y(tb) − y(ta)] (1) 

The associated graph extracted from a time series is always: (i) 
Connected: each node sees at least its nearest neighbors (left and right). 
(ii) Undirected: the way the algorithm is built up, the links have no di-
rection defined. (iii) Invariant under affine transformations of the series 
data: the visibility criterion is invariant under rescaling horizontal and 
vertical axes and under horizontal and vertical translations. 

Here we take the annual amount of maritime accidents from 2011 to 
2020 as an example to illustrate the VG algorithm. 

In Fig. 5, the information is shown as vertical bars sorted by time, 
with heights denoting the number of maritime accidents and dashed 
lines showing the visibility between data points. In the lower half of 
Fig. 5, the nodes correspond to the same sequence of time series data, 
and an edge links two nodes if they are visible to each other. When any 
two visible data are connected to build a visibility graph network, some 
information for the original data is lost. On the other hand, the related 
visible graph inherits several critical characteristics of the actual time 
series. Furthermore, the time series’ temporal characteristics and un-
derlying mechanisms may be analyzed using complex network theory. 

3.3. Topological properties of VG 

As stated previously, the visibility graph method is a fast calculation 
method of changing time series into complex networks, which can 
describe the characteristics of maritime accidents time series. Then 
paper abstracts some local topological properties of VG to show the 
direct link with neighbor nodes, including degree and cluster coefficient. 
And global properties have been introduced to take into account the 

effect on all nodes in the network, including average degree, degree 
distribution, cumulative degree distribution, average clustering coeffi-
cient, network diameter and average path length (Watts and Strogatz, 
1998; Albert et al., 1999; Assenov et al., 2008). 

The degree is an essential concept in a complex network. In a com-
plex network, the degree of a node is the number of edges incident on 
that node, which is also described as node degree. In this research, a 
large node degree represents a ship accident after a long time of silence 
in the maritime traffic system. Then the average degree can be defined as 
follows. 

k =
1
N

∑N

i=1
ki, (2)  

where ki is the degree of node i, k is the average degree of a complex 
network, N is the number of the node. 

The probability of node degree ki is denoted as p(k), and the com-
plementary cumulative distribution function is stated as follows: 

p(ki > X) =
∑n

i
p(ki) (3) 

The clustering coefficient is the degree of aggregation of nodes, and 
the average clustering coefficient is the average value of the local clus-
tering coefficient for all nodes in the network. The definition of clus-
tering coefficient and average clustering coefficient are as follows. 

Ci =
Ei

C2
ki

, (4)  

C =
1
N

∑N

i=1
Ci, (5) 

Fig. 5. An example of the VG algorithm.  
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where Ci is the clustering coefficient of node i, Ei is the actual number of 
edges node i’s ki neighbor nodes, C2

ki 
is the number of all possible edges. 

C is the average network clustering coefficient. 
Let dij denote the shortest distance between node i and node j. As-

sume that dij = 0 if node j cannot be reached from node i. Network 
diameter is given by: 

D = max
1⩽i<j⩽N

dij, (6) 

Then, the average path length L is: 

L =
1

C2
N

∑

1⩽i<j⩽N
dij (7) 

The two properties of large clustering coefficients and small path 
lengths are collectively known as the ‘small-world’, and a network with 
this property is called a small-world network. In this research, ‘small- 
world’ represent the accidents often occur after long time silence. 

4. Analysis results 

4.1. Complex network for overall maritime accidents 

The gathered maritime accidents are converted into the inter-event 
time series from the original occurrence time sequences to ensure that 
the time series is statistically significant to uncover the temporal aspects 
and change patterns of maritime accidents. The sequence of maritime 
accidents is indicated as {t1, t2,⋯tN}, where N is the number of maritime 
accidents in the time series. After that, the sequential inter-event times 
are calculated as the time differences Δt = {t2 − t1, t3 − t2,⋯tN − tN− 1}. 
Time differences time series for the maritime accidents from 2011 to 
2020 is shown in Fig. 6. 

In Fig. 6, the x-axis represents time, while the y-axis represents the 
time differences between maritime accident events. It is not difficult to 
see that the higher the vertical data point, the greater the time difference 
between two neighboring maritime accidents. This is a novel viewpoint 
on monitoring and evaluating the inter-event time series of maritime 
accidents, which differs from the previously understood time series of 
maritime accidents. Based on this time difference series, visibility graph 
have been conducted to analyze the characteristic of maritime accidents 
time series in the Yangtze River. In this research, all modeling and 
analysis were conducted in Gephi-0.9.2 on a laptop with the Windows 
10 operating system. 

A complex network of maritime accidents in ten years can be seen in 
Fig. 7. All the 3285 maritime accidents from a complex network with 

3285 nodes and 11,650 edges. In its structure, the created complex 
network inherits the temporal features of the time series. The node de-
gree characteristics reveal that the time series of maritime accidents 
display complicated and chaotic temporal dynamics. A time difference 
corresponding to a node with a very big degree indicates that there have 
been no maritime accidents for a long time. And a time difference point 
corresponding to a node with a low degree indicates continuous mari-
time accidents. Fig. 7 indicates maritime accidents over the past decade 
are separated by long periods of silence. 

As shown in Fig. 8, the degree distribution and cumulative proba-
bility distribution of node degree over the whole network have been 
examined. And the cumulative distribution of node degree has been 
visualized in a log-log plot to discover the law of degree distribution in 
the network. There is an approximate power-law distribution of the 
node degree distribution in VG network. As a result of the node distri-
bution analysis, the time difference series of maritime accidents trans-
forms into a scale-free network. According to the characteristic of a 
scale-free network, there are few hubs with a high degree in the mari-
time accidents time difference series network. In contrast, the majority 

Fig. 6. Time differences series for the maritime accidents from 2011 to 2020.  

Fig. 7. Complex network of maritime accidents in ten years.  
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of nodes have a low degree. Because the occurrence of maritime acci-
dents is intermittent, maritime accidents may occur continuously for a 
while and then enter a safe period. Table 5 displays network charac-
teristics such as the number of nodes, the number of edges, the average 
time difference, the average network degree, the average clustering 
coefficient, the network width, and the average path length. The char-
acteristic of a complex network for the yearly accident will be analyzed 
in Section 4.2. 

4.2. Topological changes for maritime accidents in various years 

Since the topology of these 10 networks differs, distinct time series 
from 2011 to 2020 exhibit different features. The node degree distri-
butions of the 10-year networks also followed a power-law distribution, 
as seen in Figs. 9 and 10. And it is approximated by a power-law dis-
tribution p(k)∝kλ, and the exponents of each power-law distribution 
were derived and presented in Table 6. In general, the exponent is 
positively associated with the number of maritime accidents. 

Complex networks for maritime accidents by year from 2011 to 2020 
have been constructed, maritime accidents with large time differences 
mostly occurred in February, March, September and October, which can 
be observed in Fig. 9. The node degree distribution of the entire accident 
has a steeper slope and thicker tail than that of each year because the 
exponent of the total accidents is marginally larger than the exponent of 
the node degree distribution in the network of each year. Furthermore, 
the fact that the exponents of 2012, 2013, and 2014 are similar suggests 
that these three years were more homogenous than others. Similarly, the 
exponents of 2018 and 2019 are close together. The occurrences of ac-
cidents may be impacted by a more complicated mix of elements, such as 
human and environmental factors, which may explain why the degree 
distribution of marine accidents network is diverse each year. 

The statistics of the ten networks are calculated and shown in 
Table 6. Because of the disturbance of the environment, management, 
and other factors, different networks show different characteristics. The 

average of the clustering coefficients is higher than 0.7, indicating that 
the networks are highly clustered. The largest network diameter in all 
ten networks is 8, indicating that each network’s diameter is small, even 
though the maximum number of maritime accidents is 478. Further-
more, the maximum average of the network’s shortest path lengths is 
3.0656, smaller than the network diameters. The research on these pa-
rameters is shown that the time series of maritime accidents in Yangtze 
River have ‘small-world’ characteristics (Watts and Strogatz, 1998). The 
small-world networks based on maritime accidents time series are 
characterized with self-organization and self-similarity features. All the 
networks have higher clustering coefficients yet smaller characteristic 
path lengths. 

4.3. Characteristic of accidents time series in different jurisdictions 

The inter-event time series of marine incidents is based, as previously 
said, on the combined data of all concerned jurisdictions over the course 
of ten years. The overall and annual network characteristics are pro-
duced by combining maritime incidents that occur in different juris-
dictions. Each jurisdiction’s inter-event time distribution was also 
examined to estimate the micro level of the temporal dynamic phe-
nomena of maritime accidents because the temporal dynamics of the 
overall and annual data can be shown through complex networks. The 
existence of the complex network’s features at the level of specific ju-
risdictions, in particular, needs to be confirmed. In this section, the 
maritime accidents time series in 22 jurisdictions have been analyzed. 
Complex networks for the first 5 jurisdictions in the number of maritime 
accidents is shown in Fig. 11. The results show that the fluctuation of the 
accidents time difference in Nantong and Taicang are substantial. It 
means that the time series patterns in different jurisdictions are 
different. And the accident time series pattern at different times showed 
different characteristics. For example, in Nanjing and Taizhou, the ac-
cidents time series pattern has been changed from homogeneous 
(2011–2014) form to heterogeneous (2015–2020). This shows that the 
safety level is improving. 

Degree distribution and cumulative probability distribution of node 
degree in 22 jurisdictions can be seen in Fig. 12. The degree distribution 
of maritime accidents in different jurisdictions is also power-law dis-
tribution, which has heavy-tailed forms (Gomes et al., 2000). It shows 
that the behind mechanism of maritime accidents time series pattern is 
the accident occurred intensively, and then long periods of silence. So at 
the macro and micro levels, the maritime accidents time series are not 
random, and all have a universal property of scale-free. 

Properties of complex networks for maritime accidents in 22 juris-
dictions are shown in Table 7. As shown in Table 7. The average of the 
clustering coefficients indicates that the networks are also highly 

Fig. 8. Degree distribution and cumulative probability distribution of node degree for whole maritime accidents.  

Table 5 
Properties of complex network for the whole maritime accidents in ten 
years.  

Property Value 

The number of node/N 3285 
The number of edge/E 11,650 
The average of time difference/Δt 27.1626 h 
The average of degree/k 7.095 
The average of clustering coefficient/C 0.783 
The network diameter/D 10 
The average path length/L 5.0297  
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clustered in 22 jurisdictions. The network diameter of the eventful ju-
risdictions of accidents is higher than in other areas. It indicates the time 
series in the eventful jurisdictions of accidents have ‘small-world’ 
characteristics. Additionally, their slope indicates a more chaotic dy-
namic with a lower exponent, but higher values for the exponent of the 
degree distribution suggest a system that is relatively stable and pre-
dictable, with the exponent increasing these qualities. And they are 
basically in the lower reaches of the Yangtze River. But in Luzhou and 
Yibin, the complex network with less self-organization and self- 

similarity characteristics, the number of accidents is very small 
because they are located in the upper reaches of the Yangtze River. This 
phenomenon can be seen in Fig. 13. 

5. Discussion 

It is well known that theoretical analysis of maritime accidents has 
often been recommended. However, the dynamic and temporal char-
acteristics of the time series of maritime accidents remain unclear and 

Fig. 9. Complex networks for maritime accidents from 2011 to 2020.  

Fig. 10. Degree distribution and cumulative probability distribution of node degree for the yearly maritime accidents.  
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Table 6 
Properties of complex network for the yearly maritime accidents.  

Year N E Δt k C D L λ 

2011 412 1362  21.664  6.628  0.784 8  3.9649  2.9191 
2012 478 1652  18.912  6.927  0.777 8  4.1215  3.0444 
2013 441 1534  20.358  6.973  0.792 8  4.0955  3.0593 
2014 366 1265  24.327  6.923  0.781 7  3.6572  3.0656 
2015 324 1153  27.608  7.139  0.779 7  3.5394  2.9872 
2016 463 1647  19.468  7.130  0.785 8  3.8096  3.0229 
2017 305 1021  29.173  6.717  0.783 7  3.5698  3.0121 
2018 200 634  44.282  6.372  0.767 7  3.5093  2.8148 
2019 172 505  51.255  5.906  0.777 6  3.3693  2.8122 
2020 124 499  71.338  5.301  0.784 6  2.9452  2.7158 
Total 3285 11,650  27.162  7.095  0.783 10  5.0297  3.5495  

Fig. 11. Complex networks for the first 5 jurisdictions in the number of maritime accidents.  

Fig. 12. Degree distribution and cumulative probability distribution of node degree in 22 jurisdictions.  
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cannot easily be uncovered by analytical representations. Complex 
network theory has been applied to examine the characteristics of the 
maritime accidents time series and the mechanisms underlying the 
maritime accidents in the Yangtze River to address this gap. Mapping 
time series into a complex network with VG algorithm, temporal char-
acters, and dynamics of inter-event time series of maritime accidents has 
been revealed through the analysis and discussion of maritime accident 
data. All degree distributions of the time series networks, followed by 
power law, demonstrate that the inter-event time series of maritime 
accidents in the Yangtze River are scale-free. Practical insights into 
maritime accidents and safety management are also proposed with the 
analysis of the time series via complex network theory. The complex 
network theory provides three main discussions for maritime accident 
management: (i) A rethinking of the maritime accidents time series 
pattern; (ii) Maritime safety performance based on the network 

properties; (iii) An enrichment of the maritime accident prediction and 
safety barrier generation.  

(i) A rethinking of the maritime accidents time series pattern 

Learning from maritime accidents is to interpret and assess their risk 
implications and to transform ship accident data into risk-informed in-
terventions, safety improvements, and increased awareness. Conven-
tional wisdoms are mainly divided into two aspects. Some researchers 
believe that maritime accidents are without any pattern and are 
completely random time series. Others believe that maritime accidents 
are regular and follow a certain periodicity. However, this research has 
led to some new conclusions. As the previous experimental results 
pointed out, the maritime accidents time series has a heavy-tailed dis-
tribution, indicating that maritime accidents have scale-free and small- 

Table 7 
Properties of complex networks for maritime accidents of 22 jurisdictions.  

Jurisdictions N E Δt k C D L λ 

Nanjing 350 1288 235.122 6.981  0.782 8  3.984  3.1095 
Nantong 346 1145 252.0696 6.638  0.785 7  3.74  2.4591 
Zhenjiang 253 1009 336.0849 7.792  0.78 7  3.525  3.0474 
Taicang 198 736 395.1408 6.911  0.795 7  3.601  3.0457 
Taizhou 191 636 467.6167 7.067  0.797 7  3.498  3.0034 
Chongqing 189 765 402.1376 7.018  0.783 7  3.225  2.9395 
Huangshi 179 743 419.0048 7.144  0.791 6  3.267  3.0724 
Yichang 157 553 561.3141 7.090  0.789 6  3.145  3.0456 
Zhangjiagang 156 537 559.1613 6.929  0.787 5  3.084  2.8349 
Wuhu 155 531 566.9156 6.896  0.799 6  3.145  2.9345 
Yangzhou 151 414 595.4315 5.671  0.778 6  3.094  2.7724 
Wuhan 141 512 650.5075 7.642  0.785 6  2.862  2.9453 
Jiujiang 126 429 678.872 6.864  0.799 6  3.077  2.9583 
Jiangyin 102 302 853.5743 5.98  0.774 5  2.993  2.8493 
Yueyang 101 329 856.11 6.58  0.763 6  3.077  2.9583 
Jingzhou 89 275 957.6477 6.25  0.781 6  2.848  2.7924 
Anqing 88 270 998.8621 6.207  0.791 5  2.983  2.8423 
Changzhou 88 297 982.3793 6.828  0.781 6  2.762  2.6934 
Changshu 84 225 1053.12 5.422  0.767 5  2.973  2.7452 
Sanxia 28 77 3129.667 5.704  0.773 4  2.134  2.6034 
Yibin 6 8 6775.2 3.2  0.767 2  1.2  2.6253 
Luzhou 5 4 4577 2  0.778 2  1.333  2.6945  

Fig. 13. Relationship between the network diameter and the average of clustering coefficient.  
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world characteristics. Some of these sudden accidents may lead to a 
sharp drop in local traffic safety management in a short time. Therefore, 
traffic managers need to clearly understand the complex dynamics and 
non-linear characteristics of maritime accident time series so that they 
can develop preventive measures for maritime accidents based on the 
chaos in the historical information.  

(ii) Maritime safety performance based on the network properties 

From the view of the complex network, the topological properties of 
the network can be used to evaluate the robustness and vulnerability of 
the system and to monitor and identify critical nodes. Therefore, by 
subjecting historical maritime accidents data to complex network 
analysis, the characteristics of maritime accidents time series can be 
mined and some network topological properties can be introduced into 
maritime traffic safety assessments and used to evaluate the current 
safety situation. In Figs. 10 and 12, the node degree and degree distri-
butions show that the maritime accidents time series shows a heavy- 
tailed distribution in different years and in different jurisdictions, 
which indicates that the accident time series is not random but has a 
scale-free character. In addition, according to the clustering coefficients 
and network diameters, it can be seen that the maritime accidents time 
series network has small-world characteristics and appears to be 
geographically distributed, with the lower reaches showing distinctly 
different network characteristics from the upper reaches of the Yangtze 
River.  

(iii) Maritime accident prediction and safety barrier generation 

The maritime supervision personnel cannot completely control the 
growth routes of the marine accident management system due to the 
system’s structure. As a result, a complexity science viewpoint motivates 
the exploration of adaptive, incremental ways to forecast the abrupt 
swings and chaos in marine accident time series, which may be useful for 
addressing uncertainties and shifting conditions in metro construction. 
However, the inability to predict maritime accidents and proactively 
build up safety barriers for them is hampered by the absence of data on 
marine accidents. To address this issue, real-time monitoring of the 
water area using IT infrastructures and support entails gathering and 
prioritizing data on maritime accidents, analyzing and evaluating their 
intricate systemic implications, and converting this data into risk- 
informed interventions, safety enhancements, and awareness. 

6. Conclusions 

To enhance the visualization of traffic accident time series and their 
characterization, a visibility graph has been introduced to indicate the 
dynamics of the time difference of maritime accidents time series in the 
Yangtze River. The characteristics of maritime accidents time series are 
analyzed from the perspective of complex networks, and statistical 
analysis is given on the characteristic properties of these networks. The 
degree distribution, clustering coefficients, and network diameters of 
the complex networks constructed from maritime accidents time series 
in different states show certain patterns of variation, providing a visual 
perspective for studying traffic safety. 

The maritime accidents time series is a complex system—this 
research analyses maritime accidents time series from macro and micro 
aspects. On the one hand, different accident time series networks appear 
to have different structures, generating chaos in the time series that are 
not entirely random or follow a specific pattern. On the other hand, the 
accident time series network is a scale-free network, where nodes with a 
large degree represent long periods without accidents, followed by 
outbreaks of accidents. 

The method used in this research enables the analysis of the 
dynamical characteristics of the time series between maritime accidents 
from a new perspective. It uses it as a reference for improving maritime 

traffic safety. Although the visibility graph can analyze the fluctuation 
and chaotic characteristics in the time series of maritime accidents, it 
does not predict the occurrence of accidents. Therefore, safety moni-
toring should be enhanced in practical traffic management and mini-
mized risks based on data analysis. 

Nonetheless, there are several drawbacks to this study. This study 
used all maritime accident data in the Yangtze River and did not 
consider specific vessel types or accident types. In the subsequent 
research, factors such as different types of vessels and different types of 
accidents will be deemed to explore the accident time series character-
istics further. In addition, the data used in this research are all inland 
river accident data, and it remains to be further verified whether open 
water maritime accidents follow the pattern found in this research. 
Therefore, there is a need to collect maritime accidents data from the sea 
and to verify whether these data also have the characteristics of a long- 
tailed distribution. 
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