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High-Throughput Analysis of Potato
Vitality

Elisa Atza and Neil Budko

Abstract Vitality is a fundamental trait for the development of a plant. It is known
to depend on various factors, such as climate, soil, and the plant’s genetics, but the
progressive depletion of soil nutrients make it a priority for the industry to pinpoint
which of the controllable qualities of a seed have the biggest impact on vitality. This
work describes techniques applied in a high-throughput phenotyping project, the
first of this magnitude for a complex plant, the potato (solanum tuberosum). We also
present the results of an analysis of associations between the chemical composition
of the seed potatoes and field performance, solving the arising underdetermined
linear systems by means of PLS regression. We show that some but not all of the
chemical data is strongly associated to vitality.

1 Introduction

A potato plant is vital if it manifests in a large canopy and exhibits homogeneous
growth in the early stages of its development. Potato seed producers as well as
farmers have noticed that potato seeds of the same cultivar perform differently in the
same conditions depending on the field in which the seed tubers have been produced.

A cultivar, or variety, is described as a set of plants for which specific charac-
teristics are reliably passed on to the offspring. Uniform growth facilitates farming
thus high variability in the growth of a variety is undesirable.

In collaboration with potato seed producers HZPC and Averis seeds, we aim
to quantify the contribution of non genetic factors to the plant development.
Specifically, we investigate the link between the chemical and biological properties
of a tuber, and the vitality of the sprouting plant. Identifying relevant markers would
allow for a screening of tubers prior to planting; allowing for higher yields and
customised offers to the clients. There is no standard way to relate such a broad
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variety of interdependent data regarding a tuber to the measured development of the
plant.

In order to model this problem we study six different cultivars, and for each
cultivar we measure 30 different tubers, which are genetically identical, but have
either been produced in different locations or have received a specific treatment.
These 30 different tubers we call batches, so that in total we study 180 different
batches belonging to 6 varieties.

For the experiment, data was collected from the studied tubers before and after
planting over several consecutive years. Our industrial partner, HZPC, is responsible
for the collection of most of the tuber data, as well as for the planting process.
Aerial pictures are collected for the field experiment in different European locations
by a commercial drone operator, which provides us with orthophotos of the fields
according to industrial standard. We then process these aerial pictures ourselves in
order to quantify vitality from expressed traits of the plant, a process referred to as
phenotyping.

We will shortly present the procedure used to extract canopy coverage in the
field from drone images, and then discuss the first associations resulting from linear
regression performed considering the different data sets as independent variables.

2 Linear Regression with PLS

We predict vitality parameters Y ∈ R
180, from different tuber data X ∈ R

180×p, by
investigating the presence of a linear dependence:

Y = Xβ + ε. (1)

2.1 Response

The experiment fields are planted according to a randomized block design, so that
four replicates of the 180 batches are distributed on separate non-adjacent parts of
the field. The first step in the processing of aerial pictures is to delimit the regions,
called plots, where each batch is planted.

For each field we choose one image dated around 35–40 days after planting to
find these boundaries. At this point in their development, plants within one plot form
a continuous canopy and simultaneously have not grown enough to bridge the gap to
the next plot. Thus, looking for gaps in the vegetation at this stage almost coincides
with looking for plot boundaries.

We use both physical markers on the field and manual input to determine the
region of interest in the drone image, then algorithmically look for gaps inside this
region. Knowing the number of plots and the number of columns (ridges) in each
portion of the field, our algorithm determines the most likely plot boundaries.
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Fig. 1 Plot boundaries are detected in the middle image, these boundaries are then used on other
photos after time alignment. Each plot is subdivided in four columns, called ridges

After having determined and visually inspected the plot boundaries found on this
date, we use physical marks present on the field to align all photos of the same field,
such that the boundaries found can be used both before and after the reference date,
when canopies’ growth makes it harder to distinguish plots, or when dealing with
delayed sprouting and small canopies. An example is given in Fig. 1.

Given the resolution of the orthophotos, we look at four vitality measurements
per plot, namely we quantify the mean canopy coverage in each ridge. In this way
we obtain 16 canopy measurements (four ridges times four plots) for each of the
180 batches on any of the r measurement dates, i.e. our response Y ∈ R

2880×r .
The mean ridge canopy data must be corrected for possible smooth spatial

variations across the field due to large-scale inhomogeneities in soil properties and
other factors influencing the growth of plants.

For each measurement date j = 1, . . . , r we model the spatial variations in each
column Y(j) as

Y(j) = X1β1 + ε1, ε1 ∼ N(0, σ 2I ), (2)

where β1 = [c1, c2, c3, c4]T ∈ R
p1 , p1 = 4. The structure of the design matrix

X1 ∈ R
n×p1 , n = 2880, can be inferred from (3), which is the row-wise expression

of (2), and σ 2 is the field specific variance, which we estimate from the data.
For a single ridge i, i = 1, . . . , 2880, located at pixel coordinates 〈xi, yi〉 the

model in (2) translates to:

Yi = c1 + c2xi + c3yi + c4xiyi + εi, εi ∼ N(0, σ 2), (3)

For spatial correction we retain the field mean, but the global linear and bi-linear
spatial variations are removed:

Ycorr(j) = Y(j) − X1β̂1 + ĉ11 = ε̂1 + ĉ11. (4)

where β̂1 is the restricted maximum likelihood (REML) estimate of β1 and ε̂1 ∼
N(0, σ̂ 2I ), where σ̂ 2 is the REML estimate of σ 2.

After correction we consider the average growth performance of a batch over
multiple days and multiple repetitions reducing the size of our response to Y ∈
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R
180×1. This is then normalized to have zero mean and unit standard deviation and

is our response for the model in (1).

2.2 Predictors

Several aspects of the tubers are analyzed in the scope of the project with the goal
of obtaining an exhaustive description of the chemical and biological profile of
different batches of the same variety.

In this work we look at three tuber related datasets and we will compare their
performance as predictors of vitality:

• Fourier transform infrared (FTIR) spectroscopy: for each sample we obtain a
spectrum, i.e. a discretized curve, whose values are the absorbances of the sample
for given wavenumbers, in this case the matrix X is of size 180 × 2388.

• Hyperspectral imaging (HSI): each sample is photographed at l different wave-
lenghts resulting in l images of size w×h. This results in an array of size w×h×l.
The values of a pixel at different wavelengths form an array of length l. Averaging
these arrays over particular regions of the tuber we obtain spectra for known tuber
compartments, such as pith and cortex. In this case l = 288, thus we obtain for
each compartment a matrix of predictors X of size 180 × 288.

• X-Ray fluorescence (XRF): this technique gives us concentrations of 10 chemi-
cal elements in the samples, in this case the predictor matrix X has size 180×10.

Also for our predictors we apply a zero mean and unit standard deviation normal-
ization. Additionally, for the spectral data (FTIR, HSI) we explore normalization by
applying the Savitzky-Golay first polynomial derivative (SG1).

For two data sets (FTIR, and HSI) the linear model in (1) is highly underdeter-
mined. We use partial least squares (PLS) regression to solve the resulting system
of equations.

2.3 Method

PLS, also called projection to latent structures, is a dimensionality reduction
technique for which the explanatory and the dependent variables are both projected
on new components constructed to maximize the covariance between X and Y , see
[1] and [2]. The decomposition of both matrices X and Y is given by the following:

X = T P T + E, T = (t1, t2, . . . , tk), (5)

Y = UQT + F, U = (u1,u2, . . . ,uk). (6)
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Here, T ,U contain the k latent vectors as columns. Matrices P,Q, are the matrices
of loadings, E and F are the residuals.

The columns of the matrices T and U , the latent vectors, are constructed
iteratively by finding weights wi and ci for which ti = Xwi and ui = Yci with
the constraints that wT

i wi = 1, tTi ti = 1 and such that tTi ui , which is proportional
to the covariance of ti and ui , is maximal. Each subsequent column is constructed
to be orthogonal to the previous ones, and lastly the matrix T of latent vectors for
X is used to predict Y with ordinary least squares (OLS). The maximum number
of components of the matrix T is equal to the rank of X, at which point the PLS
estimator for the coefficients β will be equal to the minimum length least square
estimator, [3], which will have large variance for highly collinear spectroscopic
data, [4], thus choosing the number of components to be used is a critical point
in the application of this method.

As is usual we split our data in train and test set, in order to find the appropriate
number of PLS components, we train models with an increasing number of
components up to a preset maximum and at each iteration we use k-fold stratified
cross validation, k = 10, to evaluate the mean squared error, MSE. We choose then
the number of components for which the mean of the k MSEs was minimal. Then
we train a model with the optimal number of components, which we evaluate on the
test set using the coefficient of determination, R2, and MSE.

This splitting and training is repeated multiple times, the scores R2 and MSE are
stored in the vectors R2, and MSE respectively, so that we can test the robustness
of our model by making sure that the empirical standard deviations of the vectors
σ(R2) and σ(MSE) have a sufficiently small value.

For the XRF dataset we estimate the regression coefficients with OLS.

3 Results

All data in Tables 1, 2, 3, and 4 is displayed in ascending order with respect to
the mean R2. The regression scores are presented for each field and for each year
separately. In the case of spectroscopic data we present the results obtained for
different normalizations of the tuber data on separate lines.

From our analysis we notice a strong association of the FTIR data set to vitality,
regardless of the applied normalization, our evaluation parameters stay consistent
for each field.

The regression on FTIR and HSI spectra shows that the prediction performance
is influenced by the field in which the vitality has been measured. Furthermore we
see that XRF as a stand-alone dataset is not a sufficiently good predictor of vitality,
and that the subdivision of hyperspectral data in separate tuber compartments does
not offer a substantial difference in performance.
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Table 1 Regression on HSP data for year 2

Field Part Normal. # comp μ(R2) σ (R2) μ(MSE) σ (MSE)

C pith STD 38 0.27 0.05 0.27 0.02

C pith SG1 39 0.27 0.05 0.27 0.02

C cortex SG1 39 0.30 0.04 0.26 0.01

C cortex STD 39 0.30 0.04 0.26 0.01

B pith STD 33 0.38 0.06 0.39 0.04

B pith SG1 37 0.38 0.06 0.39 0.04

B cortex SG1 39 0.38 0.06 0.38 0.04

B cortex STD 39 0.38 0.06 0.38 0.04

A pith SG1 37 0.44 0.08 0.40 0.06

A pith STD 38 0.44 0.08 0.40 0.05

A cortex STD 39 0.48 0.06 0.38 0.05

A cortex SG1 39 0.48 0.06 0.38 0.05

Table 2 Regression on XRF
data for both years

Field Year μ(R2) σ (R2) μ(MSE) σ (MSE)

C 2 0.21 0.03 0.32 0.04

B 2 0.24 0.05 0.37 0.03

C 1 0.33 0.04 0.36 0.01

A 2 0.33 0.04 0.32 0.02

B 1 0.42 0.02 0.39 0.03

A 1 0.44 0.01 0.31 0.02

Table 3 Regression on FTIR data for year 1

Field Normal. # comp. μ(R2) σ (R2) μ(MSE) σ (MSE)

C STD 28 0.67 0.02 0.17 0.01

C SG1 30 0.67 0.02 0.17 0.01

B STD 19 0.81 0.01 0.12 0.01

B SG1 21 0.81 0.01 0.12 0.01

A STD 30 0.84 0.02 0.09 0.01

A SG1 29 0.84 0.02 0.09 0.01

Table 4 Regression on FTIR data for year 2

Field Normal. # comp. μ(R2) σ (R2) μ(MSE) σ (MSE)

C SG1 14 0.62 0.02 0.14 0.01

C STD 14 0.62 0.03 0.14 0.01

B SG1 22 0.80 0.01 0.13 0.01

B STD 22 0.80 0.01 0.13 0.01

A STD 23 0.84 0.02 0.11 0.01

A SG1 24 0.84 0.02 0.11 0.01
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4 Conclusions and Further Research

FTIR data is the best performing, and most consistent in predictive power over
different years. Ongoing research suggests that a more tailored analysis of HSI
data could improve its predictive performance. Furthermore, the strong link between
prediction performance and field of measurement, as well as the fitness of non-linear
models for regression on chemical datasets should be investigated.
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