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Abstract
The discrete membrane model is a Gaussian random interface whose inverse covariance is
given by the discrete biharmonic operator on a graph. In literature almost all works have
considered the field as indexed over Zd , and this enabled one to study the model using
methods from partial differential equations. In this article we would like to investigate the
dependence of the membrane model on a different geometry, namely trees. The covariance
is expressed via a random walk representation which was first determined by Vanderbei in
(Ann Probab 12:311–314, 1984). We exploit this representation onm-regular trees and show
that the infinite volume limit on the infinite tree exists when m ≥ 3. Further we determine
the behavior of the maximum under the infinite and finite volume measures.
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1 Introduction

The main object of study in this article is the membrane model (MM), also known as discrete
bilaplacian or biharmonicmodel.As a random interface, theMMcanbedefined as a collection
of Gaussian heights indexed over a graph. In this article, we will study the MM on regular
trees. Let Tm be an m-regular infinite tree, that is, a rooted tree with the root having m-
children and each of the children thereafter having m − 1 children. With abuse of notation
we will denote the vertex set of Tm by Tm itself. Then the MM is defined to be a Gaussian
field ϕ = (ϕx )x∈Tm , whose distribution is determined by the probability measure on R

Tm

with density

P�(dϕ):= 1

Z�

exp

⎛
⎝−1

2

∑
x∈Tm

(�ϕx )
2

⎞
⎠∏

x∈�

dϕx

∏
x∈Tm \�

δ0(dϕx ). (1.1)

Here � ⊂ Tm is a finite subset, � is the discrete Laplacian defined by

� fx :=� f (x):=
∑
y∼x

1

m
( f (y) − f (x)), f : Tm → R, x ∈ Tm, (1.2)

where y ∼ x means that y is a neighbor of x , dϕx is the Lebesgue measure on R, δ0 is
the Dirac measure at 0, and Z� is a normalising constant. We are imposing zero boundary
conditions i.e. almost surely ϕx = 0 for all x ∈ Tm \�, but the definition holds for more
general boundary conditions.

Themembranemodelwas introduced and studiedmostly in the case� ⊂ Z
d . For example,

the existence of an infinite volume measure for d ≥ 5 was proved in [16] and later the model
and its properties were studied in details in [13]. The point process convergence of extremes
on Zd for d ≥ 5 was dealt with in [7]. The case of d = 4 is related to log-correlated models
and the limit of the extremes was derived in [17]. Finally the scaling limit of the maximum
in lower dimensions follows from the scaling limit of the model which was obtained by [6]
in d = 1 and by [8] in d = 2, 3.

The discrete Gaussian free field (DGFF) is a well studied example of a discrete interface
model and has connections to other stochastic processes, such as branching randomwalk and
cover times.Most of these connections arise due to the fact that the covariance of the DGFF is
the Green’s function of the simple random walk. This is not the case for the MM, essentially
because the biharmonic operator does not satisfy a maximum principle. This also depends
heavily on the boundary conditions: closed formulas for the bilaplacian covariance matrix
have been found [10, 11, 13], however they do not apply to our choice of boundary values.
On the square lattice one can rely on other techniques, namely discrete PDEs, to prove results
in the bilaplacian case. However as soon as one goes beyond Zd approximations of boundary
value problems are less straightforward, and our work is prompted from this aspect. We will
use a probabilistic solution of the Dirichlet problem for the bilaplacian [19] to investigate the
membranemodel indexed on regular trees.We restrict our study to regular trees because these
graphs have many features which are different from Z

d . One of the most striking contrasts
is that the number of vertices in the n-th generation is comparable to the size of the graph up
to the n-th generation. From Vanderbei’s representation, it is clear that the boundary plays a
prominent role in the behavior of the covariance structure. We will use this representation to
derive the maximum of the field under the infinite and finite volume measures. In the next
section we describe our set-up and also state the main results, followed by a discussion on
future directions.
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2 Main Results

2.1 TheModel

For any two vertices x, y ∈ Tm , we denote d(x, y) to be the graph distance between x and y.
Then the Laplacian, whose definition was given in (1.2), can also be viewed as the following
matrix:

�(x, y) =

⎧⎪⎨
⎪⎩

−1 if x = y,
1
m if d(x, y) = 1,

0 otherwise.

(2.1)

We write �2 for its iteration, i.e., �2 fx :=�(� f (x)) and define �2
� to be the matrix

(�2(x, y))x,y∈�.

Lemma 1 TheGibbsmeasureP� onR� with 0-boundary conditions outside� given by (1.1)
exists for any finite subset �. It is the centered Gaussian field on � with covariance matrix
(�2

�)−1.

Proof We first prove that �2 is symmetric and positive definite, i.e., for any function f :
Tm → R which vanishes outside a finite subset and which is not identically zero

∑
x,y∈Tm

f (x)�2(x, y) f (y) > 0. (2.2)

From (2.1) it is clear that� is symmetric, and hence�2 is so. Let g = � f and to prove (2.2)
we observe that

∑
x,y∈Tm

f (x)�2(x, y) f (y) =
∑
x∈Tm

f (x)�g(x) = 1

m

∑
x∈Tm

f (x)
∑
y∼x

(g(y) − g(x))

= 1

m

∑
x∈Tm

g(x)
∑
y∼x

( f (y) − f (x)) =
∑
x∈Tm

g(x)g(x) > 0.

Also, one can show using summation by parts that if ϕ : Tm → R vanishes outside � then
∑
x∈Tm

(�ϕx )
2 =

∑
x∈Tm

ϕx�
2ϕx .

The proof is now complete by using Proposition 13.13 of [9]. ��

2.2 Main Results

We denote the root of the tree by o. We will consider m ≥ 3. In the case when m = 2 the
tree is isomorphic to Z and the MM on Z has been studied in the literature, see for instance
[5, 6]. For any n ∈ N, we define

Vn :={x ∈ Tm : d(o, x) ≤ n}.
Let ϕ = (ϕx )x∈Tm be the membrane model on Tm with zero boundary conditions outside Vn .
In this case, we denote the corresponding measure PVn by Pn . Also we denote the covariance
function for this model by Gn , that is, Gn(x, y):=En[ϕxϕy]. Let (Sk)k≥0 be the simple
random walk on Tm . We write Px for the canonical law of the simple random walk starting
at x . The following theorem proves the existence of the infinite volume limit.

123
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Theorem 2 The measures Pn converge weakly to a measure P, which is the law of a Gaussian
process (ϕx )x∈Tm with covariance function G given by

G(x, y):=E[ϕxϕy] = Ex

[ ∞∑
k=0

(k + 1)1[Sk=y]

]
=

∞∑
k=0

(k + 1)Px (Sk = y).

We will see later (in Lemma 9) that for any x ∈ Tm

G(x, x) = G(o, o) = (m − 1)((m − 1)2 + 1)

(m − 2)3
.

We define two sequences as follows

bn :=
√
G(o, o)

[√
2 log N − log log N + log (4π)

2
√
2 log N

]
, an :=G(o, o)b−1

n ,

where N :=|Vn |. We have

N = 1 +
n∑

k=1

m(m − 1)k−1 = m(m − 1)n − 2

m − 2
. (2.3)

Our main result in this paper concerns the scaling limit of the maximum of the field, namely
the Gumbel convergence of the rescaled maximum.

Theorem 3 For any θ ∈ R

lim
n→∞P

(
maxx∈Vn ϕx − bn

an
≤ θ

)
= exp(−e−θ ).

We show in the following result that up to the first order the constants do not change for
the extremes and when we look at the expected maximum under the finite volume, it still
converges to

√
G(o, o), after appropriate scaling. The same result can be proved under the

infinite volume measure, so we stick to the finite volume case, the infinite volume situation
being completely analogous.

Theorem 4 For m ≥ 3,

lim
n→∞

En
[
maxx∈Vn ϕx

]
√
2 log N

= √
G(o, o).

In case of the finite volume field we show that the maximum field normalised to have vari-
ance one converges in distribution to the Gumbel distribution. We define Bn :=bn/

√
G(o, o)

and An :=B−1
n .

Theorem 5 Let ψx = ϕx/
√
Gn(x, x) for x ∈ Vn. Then for any θ ∈ R and m ≥ 14 we have

that

lim
n→∞Pn

(
maxx∈Vn ψx − Bn

An
≤ θ

)
= exp(−e−θ ).

Remark 6 In exposing our results we keep all the constants depending on m explicit. We
emphasize that m ≥ 14 is just the bound that our approach yields, while presumably the
result holds for all m ≥ 3.
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2.3 Discussion

• Our result is heuristicallymotivated by the fast decayof correlations of theDGFFona tree.
As we shall see in Lemma 9 correlations decay exponentially in the distance between
points, which suggests a strong decoupling and a behavior of the rescaled maximum
similar to that of independent and identically distributed Gaussians.

• In Theorem 3, the scaling constants show that the correlation structure can be ignored
for the extremes and the behaviour is similar to that of i.i.d. centered Gaussian random
variables with variance G(o, o). In the finite volume case, we rescaled the field to have
variance one and hence the behaviour remains the same as that of the i.i.d. case. An
interesting open problem is whether this behavior is retained for the finite volume field
divided by

√
G(o, o). This convergence is by no means trivial to obtain as the finite

volume variance convergence to G(·, ·) is not uniform, in particular the error depends
on the distance to the leaves. Moreover, since the size of the boundary of a finite tree is
non-negligible with respect to the total size we cannot claim that extremes are achieved
in the bulk and not near the boundary.

• For scaling extremeswe use a comparison theoremof [12] that is based on Stein’smethod.
There are many different approaches to the question of convergence of extremes using
Stein’s method, one notable instance being [2]. Compared to their method the advantage
of [12] is that it does not require to control the conditional expectation of the field that
emerges from the spatial Markov property. While for other interfaces, like the DGFF,
the harmonic extension has a closed form in terms of random walk probabilities, the
biharmonic extension is more subtle to bound, and [12] allow one to bypass this step.

• The main contribution of the article is the analysis of the covariance structure for a
membrane model on the tree. We are not aware of any prior work which deals with
the bilaplacian model on graphs beyond Z

d , whilst there is an extensive literature on
the discrete Gaussian free field on general graphs. We exploit the representation of the
solution of a biharmonic Dirichlet problem in terms of the random walk on the graph. In
the bulk the behaviour is easy to derive and is close to that of

Gn(x, y):=Ex

[
τ0−1∑
k=0

(k + 1)1[Sk=y]

]
,

where τ0 is the first exit time from a bounded subgraph (see Sect. 3). Around the boundary
additional effects arising out of boundary excursions kick in, in particular we will use
the successive excursion times of the randomwalk and the local time of the randomwalk
between two consecutive visits to the complement of a set. Control of such observables on
general graphs will open up avenues for further interesting studies in the area of random
interfaces.

• Although we consider regular trees we believe that our results can be extended to rooted
treeswhere the same scaling limit for themaximumwill hold. The case ofGalton–Watson
tree will be more challenging due to the randomness of the offspring distribution, but
would be an intriguing direction to extend the study of random interfaces to random
graphs.

Structure of the article In Sect. 3 we recall the random walk representation for the solution
of the biharmonic Dirichlet problem for a general graph and also rewrite the formula in our
set-up. In Sect. 4 we show that the infinite volume membrane measure exists and provide
a proof of Theorem 2. In Sect. 5 we prove Theorem 3 providing a limit for the expected
maximum under the finite volume measure. In Sect. 6 we use the estimates to determine the
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fluctuations of the extremes in the infinite volume and prove Theorem 4. In Sect. 7 we show
the fluctuations of the maximum under the finite volume measure. Section 8 is devoted to the
proof of Lemma 15 which is related to finer estimates on the covariance of the model.
Notation In the following C is a generic constant which may depend on m and may change
in each appearance within the same equation.

3 A RandomWalk Representation for the Covariance Function

In this section we shall revisit the randomwalk representation for the covariance functionGn .
From the definition of the model it follows that Gn satisfies the following Dirichlet problem:
for x ∈ Vn {

�2Gn(x, y) = δx (y), if y ∈ Vn
Gn(x, y) = 0, if y ∈ V c

n .
(3.1)

If one considers the Dirichlet problem above but with −� replacing �2 then the solution is
the well-known expected local time of the simple random walk on the graph [18, Chapter 1].
In our set-up such a general easy formulation is not available. In particular, to the best of the
authors’ knowledge one cannot relate the covariance of the MM to a stochastic process. The
solution is then given by a weighted local times and an expression involving the boundary
excursion times of the randomwalk. The boundary effects aremore profound in themembrane
model and this is documented in the existing works on Zd ( [8, 14, 15, 17]).

3.1 Intermezzo: RandomWalk Representation on General Graphs

In this subsectionwediscuss the probabilistic solution of theDirichlet problem for the discrete
biharmonic operator obtained by [19], whose set-up is much more general in that it considers
general graphs and not only trees. We recall it here for completeness. Let G be a connected
graph and let � ⊂ G be a finite subgraph. With a slight abuse we will confound the graph G
resp.�with its vertex set, but this should not cause any confusion. Let ρ be a strictly positive
measure on the discrete state space G and for all x, y ∈ G, q(x, y) be a positive symmetric
transition function such that

∑
y∈G

q(x, y)ρ(y) = 1.

Let P = (p(x, y))x,y∈G be a transition matrix such that

p(x, y) = q(x, y)ρ(y).

Let (Sk)k≥1 be a random walk on G, defined on a probability space (�,F), with transition
matrix P making the random walk symmetric. Now the Laplacian operator acting on a
function f : G → R is defined as

(� f )(x) =
∑
y∼x

p(x, y)( f (y) − f (x)).

The one-step transition operator P is defined as

(P f )(x) = Ex [ f (S1)] =
∑
y∼x

p(x, y) f (y).

123
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Then

� = P − I ,

where I is the identity operator.We say that f is a solution to the non-homogeneous Dirichlet
problem for the bilaplacian if f satisfies the following:

{
�2 f (y) = ψ(y), if y ∈ �

f (y) = φ(y), if y ∈ ∂2�,
(3.2)

where ∂k� is defined by

∂k�:={z ∈ �c : d(z,�) ≤ k}, k ≥ 1 (3.3)

and where ψ, φ are graph functions representing the input datum resp. boundary datum. We
want to obtain a probabilistic solution of the problem (3.2). We define τi to be the (i + 1)-th
visit time to �c by the random walk Sk . Formally,

τi := inf{k > τi−1 : Sk ∈ �c}, τ−1:= − 1. (3.4)

Note that τ0 is the first exit time from �. We will keep two assumptions throughout the
Section:

(i) � ∪ ∂1� is finite;
(ii) Ex

[
τ 20

]
< ∞ for all x ∈ G.

Let

L2(G, ρ) =
{
f

∣∣∣∣∣ f : G → R such that
∑
x∈G

f (x)2ρ(x) < ∞
}

and the inner-product in L2(G, ρ) be defined as follows: for f , g ∈ L2(G, ρ)

〈 f , g〉G :=
∑
x∈G

f (x)g(x)ρ(x).

One can show that P is a self-adjoint operator on L2(G, ρ). Hence � is also self-adjoint. We
define ⎧⎪⎨

⎪⎩
M−1:=1

Mj :=
j∏

i=0
(τi − τi−1 − 1), j ≥ 0.

Next we define an operator acting onA = { f | f : �c → R }. The operator Q acting onA is
defined as

(Q f )(x) = Ex
[
(τ1 − 1) f

(
Sτ1

)]
, x ∈ �c. (3.5)

Observe that, if x ∈ (� ∪ ∂1�)c, then Q f (x) = 0 for all f ∈ A. Therefore

Range(Q) ⊂ {
g
∣∣g : �c → R and g(x) = 0,∀x /∈ ∂1�

} ⊂ A.

Since ∂1� is finite, one can show with the help of (ii) that (Q f )(x) is bounded. It can be
shown that the operator Q is positive semi-definite on L2(�c, ρ) (see [19]). Therefore Q can
be diagonalized and can be written as

Q =
∑
λ

λ�λ

123
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where the sum is over all the eigenvalues of Q and �λ are the projection operators onto
the eigenspace corresponding to the eigenvalue λ. Observing the range of the Q-operator in
(3.6) and the fact that ∂1� is finite, we can say that the operator Q is compact and Range(Q)

is finite-dimensional. Therefore, the spectrum of Q is finite. Also, as Q is positive semi-
definite, we conclude that all the eigenvalues are non-negative. A probabilistic solution of
the problem (3.2) is given in [19].

Theorem 7 ([19, Theorem 4]) Let (ηt )t≥0 be a Poisson process with parameter 1 which is
independent of the random walk (Sk). Then the solution of (3.2) is given by

f (x) = lim
t→∞Ex

⎡
⎣

ηt∑
j=0

(−1) j M j−1

⎡
⎣(τ j − τ j−1)φ(Sτ j ) +

τ j−1∑
k=τ j−1

(k − τ j−1)ψ(Sk)

⎤
⎦
⎤
⎦ .

(3.6)

Alternatively, the above solution can be written in terms of the eigenvalues of Q and the
corresponding projection operators as follows

f (x) = Ex
[
φ
(
Sτ0

)]+
∑
λ

1

1 + λ
Ex
[
τ0�λ(I − P̃)φ(Sτ0)

]

+ Ex

[
τ0−1∑
k=0

(k + 1)ψ(Sk)

]
−
∑
λ

1

1 + λ
Ex
[
τ0�λh

(
Sτ0

)]
, (3.7)

where P̃ f (z):=Ez[ f (Sτ1)] is the operator acting on functions defined on ∂1� and

h(z) = Ez

[
τ1−1∑
k=0

kψ(Sk)

]
, z ∈ �c.

Note that (3.7) is a re-writing of the solution (3.6) which is a by-product of Vanderbei’s proof.

Remark 8 Without the presence of η the series describing the covariances might not be
absolutely summable on every graph, as discussed in an example in [19]. However in our
case, that is for regular trees where we have exponential decay of correlations for ϕ, one can
show that ηt does not play any role and can in fact be avoided altogether. Also note that since
{τi − τi−1 : i ≥ 1} need not be i.i.d. the terms involving excursion times to �c in (3.6) must
be dealt carefully.

We also note that the representation (3.7) is not directly stated as a theorem in [19] but if
one goes through the proof of Theorem 4 in [19] then it follows immediately.

3.2 Back to Regular Trees

In our set-up, Vn consists in the first n generations of the regular tree. Note that Vn ∪ ∂1Vn is
finite. It follows from Lemma 11 that Ex [τ 20 ] < ∞ for all x ∈ Tm with m ≥ 3, so that (i)-(ii)
are satisfied. It can be easily proved using the theory of electrical networks that the simple
random walk on Tm is transient for all m ≥ 3. Using the solution (3.6) we have the random
walk representation of Gn(x, y) as follows:

Gn(x, y) = lim
t→∞Ex

⎡
⎣

ηt∑
j=0

(−1) j M j−1

τ j−1∑
k=τ j−1

(k − τ j−1)1[Sk=y]

⎤
⎦ . (3.8)

123



Maximum of the Membrane Model... Page 9 of 32    25 

We have used φ(z) = 0 and ψ(z) = 1[z=y] in equation (3.6).
We write Gn(x, y) as

Gn(x, y) = Gn(x, y) − En(x, y), (3.9)

where

Gn(x, y):=Ex

[
τ0−1∑
k=0

(k + 1)1[Sk=y]

]
,

En(x, y):= lim
t→∞Ex

⎡
⎣

ηt∑
j=1

(−1) j−1Mj−1

τ j−1∑
k=τ j−1

(k − τ j−1)1[Sk=y]

⎤
⎦ . (3.10)

Note thatGn(x, y) = Ex,y

[∑τ0−1
k=0

∑τ ′
0−1

�=0 1[Sk=S′
�]
]
where Sk and S′

� are two independent

simple random walks starting from x and y respectively, and τ0 and τ ′
0 are their first visit

times to V c
n respectively. Gn(x, y) plays crucial role in the study of the membrane model: in

the Zd case, it was shown in [13] that Gn and Gn are close in the bulk of the domain. We will
also see here that En(x, y) plays a role of the error term. We observe from (3.9) and (3.7)
that

En(x, y) = Ex

[
τ0
∑
λ

1

1 + λ
�λh(Sτ0)

]
, (3.11)

where h(z) = Ez

[
τ1−1∑
k=0

k 1[Sk=y]

]
for z ∈ V c

n .

4 Proof of Theorem 2

If the infinite volume limit exists then it is supposed to have the covariance function G. We
first show G(x, y) = ∑∞

k=0(k + 1)Px (Sk = y) can be computed in terms of d(x, y) for a
m-regular tree and that it has exponential decay in the distance d(x, y).

Lemma 9 We have for any x, y ∈ Tm that

G(x, y) = (d(x, y) + 1)m(m − 1)(m − 2) + 2(m − 1)

(m − 2)3(m − 1)d(x,y)
.

Proof We define the Green’s function of the simple random walk on Tm as the power series

�(x, y|z):=
∞∑
k=0

Px (Sk = y)zk, x, y ∈ Tm, z ∈ C.

From (author?) [20, Lemma 1.24] we have

�(x, y|z) = 2(m − 1)

m − 2 +√
m2 − 4(m − 1)z2

(
m −√

m2 − 4(m − 1)z2

2(m − 1)z

)d(x,y)

. (4.1)

We fix x, y ∈ Tm and write d = d(x, y), g(z):=�(x, y|z) for z ∈ C. Now observe that

G(x, y) = g′(1) + g(1).

123
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From (4.1) we get

log(g(z)) = log(2(m − 1)) − log
(
m − 2 +

√
m2 − 4(m − 1)z2

)

+ d log
(
m −

√
m2 − 4(m − 1)z2

)
− d log(2(m − 1)) − d log z.

So taking a derivative we have

g′(z)
g(z)

= 8(m − 1)z

2
(
m − 2 +√

m2 − 4(m − 1)z2
)√

m2 − 4(m − 1)z2

+ 8d(m − 1)z

2
(
m −√

m2 − 4(m − 1)z2
)√

m2 − 4(m − 1)z2
− d

z

and hence evaluation at z = 1 gives

g′(1)
g(1)

= 2(m − 1)

(m − 2)2
+ 2d(m − 1)

m − 2
− d = 2(m − 1) + dm(m − 2)

(m − 2)2
.

Also

g(1) = 1

(m − 2)(m − 1)d−1 . (4.2)

Now we obtain

G(x, y) = g′(1) + g(1) = g(1)

(
g′(1)
g(1)

+ 1

)

= 2(m − 1) + dm(m − 2) + (m − 2)2

(m − 2)3(m − 1)d−1 = (d + 1)m(m − 2) + 2

(m − 2)3(m − 1)d−1 .

��
The behavior of G depends crucially on the graph distance d(x, y) between two points x and
y on the tree. We would need an estimate on the number of points (x, y) which are at a fixed
distance k. The following lemma gives a bound on this.

Lemma 10 Let

Ck :=|{(x, y) ∈ Vn × Vn : d(x, y) = k}|.
Then

Ck ≤ C(m − 1)n+� k
2 �,

where C is a constant which depends on m.

Proof Let e(x):=d(o, x) and for any � > 0 define

∂0V�:={x ∈ Vn : e(x) = �}.
In other words, ∂0V� is the set of all leaf-vertices in V�. Let us now fix any vertex in ∂0Vn−�

and count the number of y’s in Vn such that d(x, y) = k. Notice that for any x ∈ Tm \{o}, we
have e(y) = e(x)±1 for all y with x ∼ y. Moreover, e(y) = e(x)−1 holds for only one such
y and e(y) = e(x) + 1 holds for remaining (m − 1) many such y. In other words, from any
x ∈ Tm \{o} there is only one way to move closer to o and (m−1)way to move farther away
from o. Now let us first consider the case when k ≤ n. If 0 ≤ � < k, then for any x ∈ ∂0Vn−�
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Fig. 1 Case 0 ≤ � < k ≤ n for the proof of Lemma 10. If d(x, y) = k, in order to reach y from x one must
move to their least common ancestor in �(k − �)/2� steps and from there move to y in k − �(k − �)/2� steps.
The 3−ary tree is partially drawn for simplicity

the number of vertices in Vn which are at a distance k from x is (m − 1)�(k−�)/2�+�. This
is because the unique path of length k from x to some vertex in Vn must consists of first
�(k − l)/2� steps moving closer to o and the remaining steps moving in any of the (m − 1)
available directions. The situation is explained graphically in Figure 1. On the other hand if
� ≥ k, then for any x ∈ ∂0Vn−� the number of vertices in Vn which are at a distance k from
x is m(m − 1)k−1. Also, note that for any j ≥ 1 there are m(m − 1) j−1 vertices in ∂0Vj .
Therefore in this case

Ck =
k−1∑
�=0

m(m − 1)n−�−1(m − 1)� k−�
2 �+�

+
n−1∑
�=k

m(m − 1)n−�−1m(m − 1)k−1 + m(m − 1)k−1

= m(m − 1)n+� k
2 �−1

k−1∑
�=0

(m − 1)−� �
2 � + m2(m − 1)n−2

n−k−1∑
�=0

(m − 1)−� + m(m − 1)k−1

≤ C(m − 1)n+� k
2 �.

Nowwe consider the case when k > n. In this case for any x ∈ ∂0Vn−� the maximum number
of vertices which are at a distance k from x is (m − 1)�(k−�)/2�+� (here we are over-counting
and for k > 2n − � this number is 0). Therefore

Ck ≤
n∑

�=0

m(m − 1)n−�−1(m − 1)�
k−�
2 �+�

= m(m − 1)n−1+� k
2 �

n∑
�=0

(m − 1)−� �
2 � ≤ C(m − 1)n+� k

2 �.

��
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Our final lemma before the proof of Theorem 2 gives an estimate on the second moment
of the exit time.

Lemma 11 For any x ∈ Vn

Ex [τ 20 ] ≤ Cd(x, ∂1Vn)
2. (4.3)

Proof Observe that Ex

[∑
z∈Vn

∑τ0−1
�=0 �1[S�=z]

]
= Ex [τ0(τ0 − 1)/2] which implies

Ex
[
τ 20
] ≤ 2Ex

⎡
⎣∑
z∈Vn

τ0−1∑
�=0

�1[S�=z]

⎤
⎦

≤ 2
∑
z∈Vn

G(x, z).

By using Lemma 9 we get

Ex
[
τ 20
] ≤ C

∑
z∈Vn

d(x, z)(m − 1)−d(x,z) = C
2n∑
k=0

∑
z:d(x,z)=k

k(m − 1)−k .

Now suppose � = d(0, x). With arguments similar to the proof of Lemma 10, we have

|{z : d(x, z) = k}| ≤
{
m(m − 1)k if 0 ≤ k ≤ n − �

(m − 1)
k
2+ n−�

2 if n − � + 1 ≤ k ≤ n + �.

Hence we have

Ex [τ 20 ] ≤ C
n−�∑
k=0

m(m − 1)kk(m − 1)−k + C
n+�∑

k=n−�+1

(m − 1)
k
2+ n−�

2 k(m − 1)−k

≤ C
n−�∑
k=0

k +
2�∑
k=1

(k + n − �)(m − 1)−
k
2 ≤ C(n − �)2 ≤ Cd(x, ∂1Vn)

2.

��
Proof of Theorem 2 Since the random walk on Tm starting from vertex x is transient, τ0 is
finite almost surely and τ0 ≥ n − d(o, x) for all n ≥ 1. Therefore τ0 increases to ∞ as
n → ∞. Hence as an immediate conclusion {Gn(x, y)}n≥1 is an increasing sequence. By
monotone convergence theorem we have

lim
n→∞Gn(x, y) = Ex

( ∞∑
k=0

(k + 1)1[Sk=y]

)
.

We now show that |En(x, y)| → 0 as n tends to infinity so that we have

lim
n→∞Gn(x, y) = Ex

( ∞∑
k=0

(k + 1)1[Sk=y]

)
.

As the measures under consideration are Gaussian, this will complete the proof. Recall

the representation of En(x, y) from (3.11) with h(z) = Ez

[
τ1−1∑
k=0

k 1[Sk=y]

]
. Since Q has
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eigenvalues λ it can be seen that
(

1
I+Q

)
= ∑

λ
1

1+λ
�λ. So we can rewrite (3.11) as

En(x, y) = Ex

[
τ0

(
1

I + Q

)
h(Sτ0)

]

= Ex

⎡
⎣∑
z∈V c

n

τ0 1[Sτ0=z]
(

1

I + Q

)
h(z)

⎤
⎦ =

∑
z∈V c

n

Ex

[
τ0 1[Sτ0=z]

]( 1

I + Q

)
h(z).

By Cauchy-Schwarz inequality and the fact that ‖ (I + Q)−1 ‖ ≤ 1 we get

En(x, y)
2 ≤

∑
z∈V c

n

(
Ex

[
τ0 1[Sτ0=z]

])2 ∑
z∈V c

n

h(z)2

=
∑

z∈∂1Vn

(
Ex

[
τ0 1[Sτ0=z]

])2 ∑
z∈∂1Vn

h(z)2

≤
∑

z∈∂1Vn

Ex [τ 20 ]Px (Sτ0 = z)
∑

z∈∂1Vn

G(z, y)2

≤ Ex [τ 20 ]
∑

z∈∂1Vn

G(z, y)2. (4.4)

Now we obtain a bound for the second factor in (4.4). We have for y ∈ ∂0V�

∑
z∈∂1Vn

G(z, y)2 ≤ C
n+�+1∑

k=n−�+1

∑
z:d(z,y)=k

k2(m − 1)−2k ≤ C
n+�+1∑

k=n−�+1

m(m − 1)k−1k2(m − 1)−2k

≤ C
2�∑
k=1

(k + n − �)2(m − 1)−(k+n−�) ≤ C(n − �)2(m − 1)−(n−�).

Thus we have
∑

z∈∂1Vn

G(z, y)2 ≤ Cd(y, ∂1Vn)
2(m − 1)−d(y,∂1Vn). (4.5)

Plugging in the bounds (4.3), (4.5) in (4.4) we obtain

En(x, y)
2 ≤ Cd(x, ∂1Vn)

2d(y, ∂1Vn)
2(m − 1)−d(y,∂1Vn).

From symmetry we can conclude

En(x, y)
2 ≤ Cd(x, ∂1Vn)

2d(y, ∂1Vn)
2 min{(m − 1)−d(x,∂1Vn), (m − 1)−d(y,∂1Vn)}. (4.6)

It follows from (4.6) that |En(x, y)| → 0 as n → ∞. ��

An alternative proof of (4.6) using the maximum principle for harmonic functions is
provided in Appendix A.

5 Proof of Theorem 3

In this section we prove Theorem 3.
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Proof of Theorem 3 For any x ∈ Tm , we define ψx :=ϕx/
√
G(o, o). Then for each x , ψx is a

standard Gaussian random variable. Recall that for any n

Bn = bn√
G(o, o)

= √
2 log N − log log N + log (4π)

2
√
2 log N

, An = B−1
n .

We set

un(θ):=Anθ + Bn, θ ∈ R .

Let θ ∈ R be fixed and define

Wn :=
∑
x∈Vn

1[ψx>un(θ)], λn :=E[Wn] =
∑
x∈Vn

P(ψx > un(θ)).

Let Poi(λ) denote a Poisson random variable with parameter λ. We shall use a Binomial-to-
Poisson approximation by [12]. By Theorem 3.1 of [12] we get

dTV (Wn, Poi(λn)) ≤ 1 − e−λn

λn

⎡
⎣∑
x∈Vn

P(ψx > un(θ))2

+
∑

x,y∈Vn ,x �=y

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) |
⎤
⎦ , (5.1)

where dTV is the total variation distance. We want to prove that dTV (Wn, Poi(λn)) goes to
zero as n tends to infinity. Once we prove it, we will have

|P(Wn = 0) − e−λn | → 0.

But

P(Wn = 0) = P

(
max
x∈Vn

ψx ≤ un(θ)

)
= P

(
maxx∈Vn ϕx − bn

an
≤ θ

)
.

Using Mill’s ratio

(
1 − 1

t2

)
e− t2

2√
2π t

≤ P (N (0, 1) > t) ≤ e− t2
2√

2π t
t > 0,

one can show that λn = NP(ψo > un(θ)) converges to e−θ as n tends to infinity. Hence the
proof will be complete.

We now obtain bounds for the terms in (5.1) to prove that dTV (Wn, Poi(λn)) goes to zero
as n tends to infinity.

Another use of Mill’s ratio gives

1 − e−λn

λn

∑
x∈Vn

P(ψx > un(θ))2 → 0.

Now we give a bound on the other term in (5.1). Let x, y ∈ Vn with d(x, y) = k ≥ 1 and
define rk :=Cov(ψx , ψy). From Lemma 9 it follows that rk depends only on k, not on x or
y, and moreover 0 < rk < 1 for all k ≥ 1. Now from Lemma 3.4 of [12] we obtain the
following bounds:

0 ≤ Cov
(
1[ψx>un(θ)],1[ψy>un(θ)]

) ≤ CN
− 2

1+rk (5.2)
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0 ≤ Cov
(
1[ψx>un(θ)],1[ψy>un(θ)]

) ≤ Crk N
−2 log N e2rk log N . (5.3)

We fix δ such that 0 ≤ δ < (1 − r1)/(1 + r1). We have

In : = 1 − e−λn

λn

∑
x,y∈Vn ,x �=y

∣∣Cov (1[ψx>un(θ)],1[ψy>un(θ)]
)∣∣

≤ C
2n∑
k=1

∑
x,y∈Vn , d(x,y)=k

Cov
(
1[ψx>un(θ)],1[ψy>un(θ)]

)
.

Now we use the bounds (5.2), (5.3) and get the following bound for the above term:

In ≤ C
�2nδ�∑
k=1

CkN
− 2

1+rk + C
2n∑

�2nδ�+1

CkN
−2 log Ne2rk log N

≤ C
�2nδ�∑
k=1

(m − 1)n+� k
2 �N− 2

1+rk + C
2n∑

k=�2nδ�+1

(m − 1)n+� k
2 �k(m − 1)−k N−2 log Ne2r�2nδ� log N

≤ C(m − 1)
n+nδ− 2n

1+r1 + Cn3(m − 1)−n+2nr�2nδ� .

Note that in the second inequality we have used Lemma 10 and the fact that rk is decreasing
in k with rk ≤ Ck(m − 1)−k , which follows from Lemma 9. Now observe that by definition
1 + δ < 2/(1 + r1) and r�2nδ� < 1/2 for large enough n. Thus In goes to 0 as n tends to
infinity and we conclude dTV (Wn, Poi(λn)) goes to zero as n tends to infinity. ��

6 Proof of Theorem 4

In this section we prove Theorem 4. We use the following

Lemma 12 For any x ∈ Vn one has Gn(x, x) ≤ G(o, o).

Proof The proof can be readily adapted from that of (author?) [4, Corollary 3.2] which is
carried out for Zd . ��
The following lemma gives a bound on Ex [τ0] in terms of the distance of the point x from
the boundary.

Lemma 13 For x ∈ Vn

Ex [τ0] ≤ C1(m)d(x, ∂1Vn), (6.1)

where

C1(m) = (m − 1)
3
2

(m − 2)(
√
m − 1 − 1)

+ m

m − 2
. (6.2)

Proof Using (4.2) we have

Ex [τ0] = Ex

⎡
⎣∑

y∈Vn

τ0−1∑
�=0

1[S�=y]

⎤
⎦ ≤

∑
y∈Vn

Ex

[ ∞∑
�=0

1[S�=y]

]

=
∑
y∈Vn

1

(m − 2)(m − 1)d(x,y)−1
.
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Suppose d(o, x) = k. Then similarly to the proof of Lemma 10 we argue that

|{y ∈ Vn : d(x, y) = �}| =

⎧⎪⎨
⎪⎩

m(m − 1)�−1, if 1 ≤ � ≤ n − k

(m − 1)� l−n+k
2 �+(n−k), if n − k < � ≤ n + k

0, if � > n + k

.

Therefore splitting the sum according to the distance d(x, y) we get,

Ex [τ0] = m − 1

m − 2

∑
y∈Vn

(m − 1)−d(x,y)

≤ m − 1

m − 2

⎡
⎣1 +

n−k∑
�=1

∑
y∈Vn :d(x,y)=�

(m − 1)−� +
n+k∑

�=n−k+1

∑
y∈Vn :d(x,y)=�

(m − 1)−�

⎤
⎦

= m − 1

m − 2

⎡
⎣1 +

n−k∑
�=1

m(m − 1)�−1(m − 1)−� +
n+k∑

�=n−k+1

(m − 1)�
�−n+k

2 �+(n−k)
(m − 1)−�

⎤
⎦ .

As � �−n+k
2 � ≤ �

2 − n−k
2 , we have

Ex [τ0] ≤ m − 1

m − 2

[
1 + m

m − 1
(n − k) +

n+k∑
�=n−k+1

(m − 1)
�
2− n−k

2 +n−k−�

]

= m − 1

m − 2

[
1 + m

m − 1
(n − k) +

2k∑
�=1

(m − 1)−
�
2

]

= m − 1

m − 2

[
1 + m

m − 1
(n − k) + (m − 1)−

1
2
1 − (m − 1)−k

1 − (m − 1)− 1
2

]

≤
(

(m − 1)
3
2

(m − 2)(
√
m − 1 − 1)

+ m

m − 2

)
d(x, ∂1Vn).

��
The following bound will also be useful.

Lemma 14 For any z ∈ ∂1Vn

Ez

[
τ1−1∑
k=0

k 1[Sk=y]

]
≤ C2(m)d(y, ∂1Vn)(m − 1)−d(y,∂1Vn),

where

C2(m) =
(
2(m − 1)2

(m − 2)3
+ m(m − 1)

(m − 2)2

)
. (6.3)

Proof We have

Ez

[
τ1−1∑
k=0

k 1[Sk=y]

]
≤ Ez

[ ∞∑
k=0

k 1[Sk=y]

]

= 2(m − 1) + d(z, y)m(m − 2)

(m − 2)3(m − 1)d(z,y)−1
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≤
(
2(m − 1)2

(m − 2)3
+ m(m − 1)

(m − 2)2

)
d(y, ∂1Vn)(m − 1)−d(y,∂1Vn).

��
We now proceed to prove Theorem 4.

Proof of Theorem 4 Firstweprove anupper bound for the expectedmaximumusing a standard
trick. Using Jensen’s inequality and Lemma 12 we have for any β > 0

En

[
max
x∈Vn

ϕx

]
≤ 1

β
log

⎛
⎝En

⎡
⎣∑
x∈Vn

eβϕx

⎤
⎦
⎞
⎠ = 1

β
log

⎛
⎝∑

x∈Vn
e

β2

2 Gn(x,x)

⎞
⎠

≤ 1

β
log

⎛
⎝∑

x∈Vn
e

β2

2 G(o,o)

⎞
⎠ = β

2
G(o, o) + 1

β
log N .

Optimizing over β we obtain

En

[
max
x∈Vn

ϕx

]
≤ √

2G(o, o) log N .

Thus

lim sup
n→∞

En
[
maxx∈Vn ϕx

]
√
2 log N

≤ √
G(o, o). (6.4)

Next we prove the lower bound for the limes inferior.We use a Gaussian comparison inequal-
ity on an appropriate set of vertices. For this we need a lower bound on Gn(x, x) for x in an
appropriate subset of Vn . Using (3.9) we write

Gn(x, y) = G(x, y) − En(x, y) − En(x, y), (6.5)

where

En(x, y):=Ex

⎡
⎣

∞∑
k=τ0

(k + 1)1[Sk=y]

⎤
⎦ .

Our target is to obtain a bound for En(x, y). We have using Lemma 13, Lemma 14 and (4.1)
with z = 1

En(x, y) = Ex

[
ESτ0

[ ∞∑
k=0

k 1[Sk=y]

]]
+ Ex

[
(τ0 + 1)ESτ0

[ ∞∑
k=0

1[Sk=y]

]]

≤ C2(m)d(y, ∂1Vn)(m − 1)−d(y,∂1Vn) + m − 1

m − 2
(m − 1)−d(y,∂1Vn)Ex [τ0 + 1]

≤ C2(m)d(y, ∂1Vn)(m − 1)−d(y,∂1Vn) + m − 1

m − 2

× (1 + C1(m)d(x, ∂1Vn)) (m − 1)−d(y,∂1Vn). (6.6)

To prove the bound for the limes inferior we define a subset Un of Vn as follows. For each
z ∈ ∂0Vn−2�log n� = {x ∈ Vn : d(o, x) = n−2�log n�}, choose exactly one yz ∈ ∂0Vn−�log n�
such that d(z, yz) = �log n�. Then define

Un :={yz : z ∈ ∂0Vn−2�log n�}.
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Note that Un ⊂ ∂0Vn−�log n� but |Un | = |∂0Vn−2�log n�| = m(m − 1)n−2�log n�−1. Also from
the definition ofUn it follows that for any x, y ∈ Un , d(x, y) ≥ 2� log n� and for any x ∈ Un ,
d(x, ∂1Vn) = �log n� + 1. Now using the crude bound for En(x, y) in (4.6) we have that for
any x, y ∈ Un

En(x, y) ≤ C0(m)(log n)2(m − 1)− log n,

where C0(m) is a constant dependent on m only. Also from (6.6) we have for x ∈ Un

En(x, x) ≤ C2(m) log n(m − 1)− log n + m − 1

m − 2
(1 + C1(m) log n) (m − 1)− log n

≤ m − 1

m − 2
(1 + C1(m) + C2(m)) log n(m − 1)− log n .

Using these bounds we get from (6.5) that for any y ∈ Un

Gn(y, y) ≥ G(o, o) − m − 1

m − 2
(1 + C1(m) + C2(m)) log n(m − 1)− log n

− C0(m)(log n)2(m − 1)− log n . (6.7)

Also from Lemma 9 we have for y, y′ ∈ Un

G(y, y′) ≤ C3(m) log n(m − 1)−2 log n

and hence

Gn(y, y
′) ≤ G(y, y′) + |En(y, y

′)|
≤ C3(m) log n(m − 1)−2 log n + C0(m)(log n)2(m − 1)− log n . (6.8)

Now using (6.7) and (6.8) we have for y, y′ ∈ Un

En
[
(ϕy − ϕy′)2

] = Gn(y, y) + Gn(y
′, y′) − 2Gn(y, y

′)

≥ 2

[
G(o, o) − m − 1

m − 2
(1 + C1(m) + C2(m)) log n(m − 1)− log n

−C3(m) log n(m − 1)−2 log n − C0(m)(log n)2(m − 1)− log n] . (6.9)

We define

γ (n,m):=
[
G(o, o) − m − 1

m − 2
(1 + C1(m) + C2(m)) log n(m − 1)− log n

−C3(m) log n(m − 1)−2 log n − C0(m)(log n)2(m − 1)− log n] .
Note that γ (n,m) → G(o, o) as n → ∞. Suppose n is large enough so that γ (n,m) > 0. Let
(ξx )x∈Un be i.i.d. centeredGaussian randomvariables with variance γ (n,m). Then from (6.9)
we have

En
[
(ϕx − ϕy)

2] ≥ E
[
(ξx − ξy)

2] .
Therefore by the Sudakov-Fernique inequality [1, Theorem 2. 2. 3] we have

En

[
max
x∈Un

ϕx

]
≥ E

[
max
x∈Un

ξx

]
.
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As Un ⊂ Vn , we get

lim inf
n→∞

En
[
maxx∈Vn ϕx

]
√
2 log N

≥ lim inf
n→∞

En
[
maxx∈Un ξx

]
√
2 log |Un |

√
log |Un |
log N

.

But

log |Un |
log N

= n − 2 log n

n
n→∞→ 1.

Therefore

lim inf
n→∞

En
[
maxx∈Vn ϕx

]
√
2 log N

≥ √
G(o, o). (6.10)

So the result follows now combining the lower bound (6.10) with the upper bound (6.4). ��

7 Proof of Theorem 5

In this sectionweproveTheorem5.Before proving,we state two estimateswhich are crucially
used in the proof. Recall the crucial error term in the Vanderbei’s representation (3.10)

En(x, y) = lim
t→∞Ex

⎡
⎣

ηt∑
j=1

(−1) j−1Mj−1

τ j−1∑
k=τ j−1

(k − τ j−1)1[Sk=y]

⎤
⎦ .

Previously in (4.6) we showed that

En(x, y) ≤ Cd(x, ∂1Vn)d(y, ∂1Vn)min{(m − 1)−
1
2 d(x,∂1Vn), (m − 1)−

1
2 d(y,∂1Vn)}.

This bound does not say anything about the dependency of the error on d(x, y). We improve
the bound to get a dependence on the distance between the two points and this is crucial for
our proof.

Lemma 15 Let x, y ∈ Vn. For m ≥ 5 and any 0 ≤ J0 < ∞ we have

|En(x, y)| ≤ J0(2J0 + 1)4J0+234J
2
0

(
4(m − 1)

m − 2

)2J0+1 m − 1

m − 2
d2J0+1(m − 1)−d(x,y)

+ C1(m)C2(m)(
1 − C1(m)

m

) d(x, ∂1Vn)d(y, ∂1Vn)(m − 1)−max{d(x,∂1Vn),d(y,∂1Vn)}
(
C1(m)

m

)J0
,

(7.1)

where C1(m) and C2(m) are constants defined in (6.2) and (6.3) respectively.

As the proof requires some lengthy computations we devote Sect. 8 to it. Note that when
we take J0 = 0, the above bound improves (4.6) and we understand the constants better as
well. In the proof of Theorem 5 we shall use J0 = 0 and J0 = log(d(x, y)).

We know that Gn(x, x) → G(o, o) but we do not know if this convergence is uniform
as the error term depends on the distance of x from the boundary. However we see that for
m ≥ 10 we can bound Gn(x, x) uniformly from below.
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Lemma 16 For m ≥ 10 there is a positive constant C3(m) which converges to 1 as m → ∞
such that

inf
x∈Vn

Gn(x, x) ≥ C3(m). (7.2)

Proof Note that Gn(x, x) ≥ 1. Taking J0 = 0 in (7.1) we get for m ≥ 5

|En(x, x)| ≤ C1(m)C2(m)(
1 − C1(m)

m

) d(x, ∂1Vn)
2(m − 1)−d(x,∂1Vn) ≤ C1(m)C2(m)

(m − 1)
(
1 − C1(m)

m

) .

Therefore

Gn(x, x) ≥ 1 − C1(m)C2(m)

(m − 1)
(
1 − C1(m)

m

)=:C3(m).

But by definition of C1(m) and C2(m) in (6.2) and (6.3) respectively, it follows

lim
m→∞

C1(m)C2(m)

(m − 1)
(
1 − C1(m)

m

)=0.

One can observe that the function m �→ C3(m) is an increasing function for m ≥ 5 and for
m = 9 and 10 we compute that C3(9) = −0.06 and C3(10) = 0.2. Hence for m ≥ 10 we
have Gn(x, x) ≥ C3(m) > 0. ��

We now prove Theorem 5. In the proof we again use the comparison theorem of [12].

Proof of Theorem 5 We set

un(θ):=Anθ + Bn, θ ∈ R .

From the proof of Theorem 3 we observe that in this case it suffices to prove
∑

x,y∈Vn ,x �=y

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) | → 0 (7.3)

for all θ .
We define Rn(x, y):=En[ψxψy]. First we obtain a bound for |Rn(x, y)|. By using

Lemma 9, Lemma 15 and (7.2) we obtain

|Rn(x, y)| = |Gn(x, y)|√
Gn(x, x)Gn(y, y)

≤ 1

C3(m)
[G(x, y) + |En(x, y)|]

≤ 1

C3(m)

[
(d(x, y) + 1)m(m − 1)(m − 2) − 2(m − 1)

(m − 2)3(m − 1)d(x,y)

+J0(2J0 + 1)4J0+234J
2
0

(
4(m − 1)

m − 2

)2J0+1 m − 1

m − 2
d(x, y)2J0+1(m − 1)−d(x,y)

+ C1(m)C2(m)(
1 − C1(m)

m

) d(x, ∂1Vn)d(y, ∂1Vn)(m − 1)−max{d(x,∂1Vn ),d(y,∂1Vn )}
(
C1(m)

m

)J0
⎤
⎦ ,

(7.4)
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where 0 ≤ J0 < ∞. Taking J0 = 0 in (7.4) we observe that for all distinct x, y ∈ Vn

|Rn(x, y)| ≤ 1

C3(m)

⎡
⎣2m(m − 1)(m − 2) − 2(m − 1)

(m − 2)3(m − 1)
+ C1(m)C2(m)

(m − 1)
(
1 − C1(m)

m

)
⎤
⎦ . (7.5)

It is easy to check that the function

m �→ 1

C3(m)

⎡
⎣2m(m − 1)(m − 2) − 2(m − 1)

(m − 2)3(m − 1)
+ C1(m)C2(m)

(m − 1)
(
1 − C1(m)

m

)
⎤
⎦

is decreasing for m ≥ 10. For m = 13 and 14 we evaluate the above expression as 1.13 and
0.89 respectively. Therefore we conclude that for all distinct x, y ∈ Vn and for m ≥ 14

|Rn(x, y)| ≤ η (7.6)

for some fixed η with 0 < η < 1. We are now ready to prove (7.3). Let θ ∈ R be fixed. We
will use the following bounds which are obtained from Lemma 3.4 of [12].

Lemma 17 For x, y ∈ Vn the following hold.

(1) If 0 ≤ Rn(x, y) < 1,

0 ≤ Cov
(
1[ψx>un(θ)],1[ψy>un(θ)]

) ≤ CN− 2
1+Rn (x,y) . (7.7)

(2) If 0 ≤ Rn(x, y) ≤ 1,

0 ≤ Cov
(
1[ψx>un(θ)],1[ψy>un(θ)]

) ≤ CRn(x, y)N
−2 log Ne2Rn(x,y) log N . (7.8)

(3) If −1 ≤ Rn(x, y) < 0,

0 ≥ Cov
(
1[ψx>un(θ)],1[ψy>un(θ)]

) ≥ −CN−2. (7.9)

(4) If −1 ≤ Rn(x, y) ≤ 0,

0 ≥ Cov
(
1[ψx>un(θ)],1[ψy>un(θ)]

) ≥ −C |Rn(x, y)|N−2 log N . (7.10)

We write∑
x,y∈Vn ,x �=y

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) |

=
∑

x,y∈Vn ,x �=y

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) |1[0≤Rn(x,y)≤1]

+
∑

x,y∈Vn ,x �=y

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) |1[−1≤Rn(x,y)<0] =:T1 + T2.

We show that both T1 and T2 go to zero as n tends to infinity. First we consider T1. Let us
choose ε such that 0 < ε < (1 − η)/(1 + η) < 1, where η is the same as in (7.6). We now
split T1 as

T1 =
2n∑
k=1

∑
x,y∈Vn ,d(x,y)=k

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) |1[0≤Rn(x,y)≤1]

=
�nε�∑
k=1

∑
x,y∈Vn ,d(x,y)=k

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) |1[0≤Rn(x,y)≤1]
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+
2n∑

k=�nε�+1

∑
x,y∈Vn ,d(x,y)=k

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) |1[0≤Rn(x,y)≤1] . (7.11)

Using bound (7.7)with (7.6) and Lemma 10we observe that the first term of (7.11) is bounded
by

C
�nε�∑
k=1

(m − 1)n+� k
2 �N− 2

1+η ≤ C(m − 1)n+� nε
2 �− 2n

1+η

which goes to zero as n tends to infinity by the choice of ε.
For the second term in (7.11) we use the bound (7.8) together with the bound (7.4) with

J0 = log(d(x, y)). We get that the second term is bounded by

2n∑
k=�nε�+1

∑
x,y∈Vn ,d(x,y)=k

C Rn(x, y)N
−2 log Ne2Rn(x,y) log N

≤ C
2n∑

k=�nε�+1

(m − 1)n+� k
2 �N−2 log N

(
C

k

(m − 1)k
+ Bk

)
exp

[
2 log N

(
C

k

(m − 1)k
+ Bk

)]
,

where

Bk := log k(2 log k + 1)4 log k+234(log k)
2
(
4(m − 1)

m − 2

)2 log k+1 m − 1

m − 2
k2 log k+1(m − 1)−k

+ C

(
C1(m)

m

)log k

.

We now use the following fact for Bk whose proof is given in the end of this section.

Claim 18 For large n and for all k ≥ �nε�
Bk ≤ B�nε�.

Using the above claim we get that the second term of (7.11) is bounded by

Cn

( �nε�
(m − 1)�nε� + B�nε�

)
exp

[
Cn

( �nε�
(m − 1)�nε� + B�nε�

)]
.

Note that to show that the above bound goes to zero as n tends to infinity it is enough to prove
nB�nε� → 0 as n → ∞. We have

nB�nε� = exp
[
log n + log log �nε� + (4 log �nε� + 2) log(2 log �nε� + 1)

+(4(log �nε�)2) log 3
+(2 log �nε� + 1) log

(
4(m − 1)

m − 2

)
+ log(

m − 1

m − 2
) + (2 log �nε� + 1) log �nε�

−�nε� log(m − 1)
]

+ exp

[
log n + logC + log �nε� log

(
C1(m)

m

)]
n→∞→ 0.

Here the magnitude of m is used to get that

exp

[
log n + logC + log �nε� log

(
C1(m)

m

)]
n→∞→ 0. (7.12)
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We observe that the function m �→ log(C1(m)/m) is a decreasing function and moreover
that log(C1(9)/9) = −1.08. Hence (7.12) holds for all m ≥ 9. Thus we proved that T1 → 0
as n → ∞.

Next we consider T2. For T2 we use the bounds (7.9), (7.10) together with the bound (7.4)
with J0 = log(d(x, y)) to get

T2 =
2n∑
k=1

∑
x,y∈Vn ,d(x,y)=k

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) |1[−1≤Rn(x,y)<0]

=
n−1∑
k=1

∑
x,y∈Vn ,d(x,y)=k

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) |1[−1≤Rn(x,y)<0]

+
2n∑
k=n

∑
x,y∈Vn ,d(x,y)=k

|Cov (1[ψx>un(θ)],1[ψy>un(θ)]
) |1[−1≤Rn(x,y)<0]

≤ C
n−1∑
k=1

(m − 1)n+� k
2 �−2n + C

2n∑
k=n

(m − 1)n+� k
2 �−2nn

(
C

k

(m − 1)k
+ Bk

)
.

Clearly, the first part in the above bound goes to zero as n tends to infinity. For the second
part we use the fact that Bk ≤ Bn for all k ≥ n for large n which can be proved similarly as
the Claim 18. Then we get that the second part is bounded by Cn( n

(m−1)n + Bn) which can
be shown to go to zero as n → ∞ similarly as in the case of T1. Thus T2 → 0 as n → ∞.
This completes the proof of (7.3). ��

We now prove Claim 18.

Proof of Claim 18 We define for t ≥ 0

F(t):= log t(2 log t + 1)4 log t+234(log t)
2
(
4(m − 1)

m − 2

)2 log t+1 m − 1

m − 2
t2 log t+1(m − 1)−t

+ C

(
C1(m)

m

)log t

= exp
[
log log t + (4 log t + 2) log(2 log t + 1) + (4(log t)2) log 3

+(2 log t + 1) log

(
4(m − 1)

m − 2

)
+ log(

m − 1

m − 2
) + (2 log t + 1) log t − t log(m − 1)

]

+ exp

[
logC + log t log

(
C1(m)

m

)]
.

Then

F ′(t) = exp
[
log log t + (4 log t + 2) log(2 log t + 1) + (4(log t)2) log 3

+(2 log t + 1) log

(
4(m − 1)

m − 2

)
+ log(

m − 1

m − 2
) + (2 log t + 1) log t − t log(m − 1)

]

[
1

t log t
+ 4

t
log(2 log t + 1) + 2(4 log t + 2)

t(2 log t + 1)
+ 8 log 3 log t

t
+ 2

t
log

(
4(m − 1)

m − 2

)

+2 log t

t
+ 2 log t + 1

t
− log(m − 1)

]

+ exp

[
logC + log t log

(
C1(m)

m

)][
1

t
log

(
C1(m)

m

)]
.
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This shows that F ′(t) < 0 for all t ≥ t0 for some t0. Hence F is decreasing on [t0,∞).
Therefore F(k) = Bk ≤ F(�nε�) = B�nε� for all k ≥ �nε� for large n. ��

8 Finer Estimate on the Error and Proof of Lemma 15

In this section we will derive a finer estimate on the error En(x, y) which was crucially used
to prove Theorem 5. We look at each individual term of the series which appears in En(x, y)
and find a better bound than what we have before.

Proof of Lemma 15 Recall from (3.10)

En(x, y) = lim
t→∞Ex

⎡
⎣

ηt∑
j=1

(−1) j−1Mj−1

τ j−1∑
k=τ j−1

(k − τ j−1)1[Sk=y]

⎤
⎦ .

Now conditioning on ηt we get

|En(x, y)| =
∣∣∣∣∣∣
lim
t→∞

∞∑
�=0

e−t t
�

�!
�∑

j=1

(−1) j−1Ex

⎡
⎣Mj−1

τ j−1∑
k=τ j−1

(k − τ j−1)1[Sk=y]

⎤
⎦
∣∣∣∣∣∣

≤ lim
t→∞

∞∑
�=0

e−t t
�

�!
�∑

j=1

a j , (8.1)

where

a j :=Ex

⎡
⎣Mj−1

τ j−1∑
k=τ j−1

(k − τ j−1)1[Sk=y]

⎤
⎦ , j ≥ 1.

We now obtain bounds for a j . First we bound each of the a j ’s in terms of the distance of x
and y from the boundary of Vn and then we bound the a j ’s in terms of the distance d(x, y).

Claim 19 For all j ≥ 1 the following two estimates hold.

(a) Bound in terms of distance from boundary.

a j ≤ C1(m)C2(m)d(x, ∂1Vn)d(y, ∂1Vn)(m − 1)−d(y,∂1Vn)
(
C1(m)

m

) j−1

. (8.2)

(b) Bound in terms of d(x, y).

a j ≤ (2 j + 1)4 j+234 j
2
(
4(m − 1)

m − 2

)2 j+1 m − 1

m − 2
(d(x, y))2 j+1(m − 1)−d(x,y). (8.3)

To obtain a finer estimate on |En(x, y)| let us fix J0 ∈ [0,∞) with the notion that when
J0 = 0, the sum

∑J0
j=1 is 0. Using the bounds (8.2) and (8.3) we have

�∑
j=1

a j ≤
∞∑
j=1

a j =
J0∑
j=1

a j +
∞∑

j=J0+1

a j

≤
J0∑
j=1

(2 j + 1)4 j+234 j
2
(
4(m − 1)

m − 2

)2 j+1 m − 1

m − 2
(d(x, y))2 j+1(m − 1)−d(x,y)
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+
∞∑

j=J0+1

C1(m)C2(m)d(x, ∂1Vn)d(y, ∂1Vn)(m − 1)−d(y,∂1Vn)
(
C1(m)

m

) j−1

≤ J0(2J0 + 1)4J0+234J
2
0

(
4(m − 1)

m − 2

)2J0+1 m − 1

m − 2
(d(x, y))2J0+1(m − 1)−d(x,y)

+ C1(m)C2(m)

(
1 − C1(m)

m

)−1

d(x, ∂1Vn)d(y, ∂1Vn)(m − 1)−d(y,∂1Vn)
(
C1(m)

m

)J0
.

Here we have used the fact that C1(m)/m < 1 for m ≥ 5. Indeed, one can observe that the
function m �→ C1(m)/m is a decreasing function and for m = 4 and 5 we compute that
C1(4)/4 = 1.39 and C1(5)/5 = 0.87.

Now from (8.1) it follows that

|En(x, y)| ≤ J0(2J0 + 1)4J0+234J
2
0

(
4(m − 1)

m − 2

)2J0+1 m − 1

m − 2
(d(x, y))2J0+1(m − 1)−d(x,y)

+ C1(m)C2(m)

(
1 − C1(m)

m

)−1

d(x, ∂1Vn)d(y, ∂1Vn)(m − 1)−d(y,∂1Vn )
(
C1(m)

m

)J0
.

From symmetry we conclude that (7.1) holds. We are now left to prove Claim 19.

Proof of Claim 19 First we prove part (a). The proof involves the successive use of the strong
Markov property. We have

a j = Ex

⎡
⎣Mj−1

τ j−1∑
k=τ j−1

(k − τ j−1)1[Sk=y]

⎤
⎦

= Ex

⎡
⎣τ0ESτ0

⎡
⎣

j−1∏
i=1

(τi − τi−1 − 1)

τ j−1∑
k=τ j−1

(k − τ j−1)1[Sk=y]

⎤
⎦
⎤
⎦

= Ex

⎡
⎣τ0ESτ0

⎡
⎣(τ1 − 1)ESτ1

⎡
⎣

j−2∏
i=1

(τi − τi−1 − 1)

τ j−1−1∑
k=τ j−2

(k − τ j−2)1[Sk=y]

⎤
⎦
⎤
⎦
⎤
⎦ .

Iteratively using the strong Markov property we obtain

a j = Ex

⎡
⎢⎢⎢⎢⎢⎣

τ0 ESτ0

[
(τ1 − 1)ESτ1

[
(τ1 − 1)ESτ1

[
(τ1 − 1) . . .ESτ1

[
(τ1 − 1)ESτ1

[
τ1−1∑
k=0

k 1[Sk=y]

]]]]]

︸ ︷︷ ︸
j− many expectations

⎤
⎥⎥⎥⎥⎥⎦

.

(8.4)

Note that for any z ∈ ∂1Vn

Ez [τ1 − 1] = [
Ez[τ1 − 1|S1 ∈ Vn]Pz(S1 ∈ Vn) + Ez[τ1 − 1|S1 ∈ V c

n ]Pz(S1 ∈ V c
n )
]

= 1

m
Ez[τ1 − 1|S1 ∈ Vn]

(6.1)≤ C1(m)

m
.

This together with Lemma 14 and Lemma 13 gives the bound (8.2). ��

Part (b)
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We obtain a bound for a j in terms of the distance between x and y. Let pk(z, w) =
Pz[Sk = w] be the k-step transition probability. We show it in two steps. First we show

a j ≤
∞∑
k=0

k2 j+1 pk(x, y) (8.5)

and then we express
∞∑
k=0

k2 j+1 pk(x, y) in terms of the derivatives of g(z) = �(x, y|z) =
∑∞

k=0 Px [Sk = y] zk . We explicitly compute these derivatives in Sect. 8.1.
We have from (8.4) that

a j = Ex

⎡
⎢⎢⎢⎢⎢⎣

τ0 ESτ0

[
(τ1 − 1)ESτ1

[
(τ1 − 1)ESτ1

[
(τ1 − 1) . . .ESτ1

[
(τ1 − 1)ESτ1

[
τ1−1∑
k=0

k 1[Sk=y]

]]]]]

︸ ︷︷ ︸
j− many expectations

⎤
⎥⎥⎥⎥⎥⎦

=
∑

z1, ..., z j∈∂1Vn

Ex

[
τ0 1[Sτ0=z1] Ez1

[
(τ1 − 1)1[Sτ1=z2] . . .Ez j−1

[
(τ1 − 1)1[Sτ1=z j ] Ez j

[
τ1−1∑
k=0

k 1[Sk=y]

]]]]

≤
∑

z1, ..., z j∈∂1Vn

∞∑
�0=0

�0 p�0 (z j , y)Ex

[
τ0 1[Sτ0=z1] Ez1

[
(τ1 − 1)1[Sτ1=z2] . . .Ez j−1

[
(τ1 − 1)1[Sτ1=z j ]

]]]

≤
∑

z1, ..., z j∈∂1Vn

∞∑
�0=0

�0 p�0 (z j , y)
∞∑

�1=0

�1 p�1 (z j , z j−1) . . .

∞∑
� j=0

� j p� j (x, z1)

≤
∞∑

�0, �1, ... � j=0

�0�1 . . . � j p�0+�1+...+� j (x, y)

=
∞∑
k=0

k∑
�1=0

k−�1∑
�2=0

. . .

k−(�1+...+� j−1)∑
� j=0

(k − (�1 + . . . + � j ))�1 . . . � j pk (x, y) ≤
∞∑
k=0

k2 j+1 pk (x, y).

We now use the bound on the derivatives of g from (8.7) in (8.5) to obtain a bound for a j

in terms of d(x, y). For that we first write k� in terms of
∏i0

i=0(k − i), i0 = 0, 1, . . . , � − 1.
We observe that

k2 = k(k − 1) + k,

k3 = k (k(k − 1) + k) =
2∏

i=0

(k − i) + (2 + 1)
1∏

i=0

(k − i) + k,

k4 = k

(
2∏

i=0

(k − i) + 3
1∏

i=0

(k − i) + k

)

=
3∏

i=0

(k − i) + (3 + 3)
2∏

i=0

(k − i) + (2 × 3 + 1)
1∏

i=0

(k − i) + k.

In general we have that for any k, � ≥ 1

k� = α
(�)
�−1

�−1∏
i=0

(k − i) + α
(�)
�−2

�−2∏
i=0

(k − i) + · · · + α
(�)
1

1∏
i=0

(k − i) + α
(�)
0 k,
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where the coefficients α
(�)
i for all � ≥ 1 and i = 0, 1, . . . , � − 1 are given recursively as

follows

α
(�)
0 = α

(�)
�−1 = 1,

α
(�)
i = (i + 1)α(�−1)

i + α
(�−1)
i−1 , 1 ≤ i ≤ � − 2.

It follows that for all � ≥ 1 and i = 0, 1, . . . , � − 1

α
(�)
i ≤ �! ≤ ��. (8.6)

Now from (8.5) we have

a j ≤
∞∑
k=0

k2 j+1 pk(x, y)

=
∞∑
k=0

pk(x, y)

⎡
⎣α

(2 j+1)
2 j

2 j∏
i=0

(k − i) + α
(2 j+1)
2 j−1

2 j−1∏
i=0

(k − i) + · · · + α
(2 j+1)
1

1∏
i=0

(k − i) + α
(2 j+1)
0 k

⎤
⎦

= α
(2 j+1)
2 j g(2 j+1)(1) + α

(2 j+1)
2 j−1 g(2 j)(1) + · · · + α

(2 j+1)
1 g(2)(1) + α

(2 j+1)
0 g(1)(1).

Now using (8.6) and (8.7) we obtain

a j ≤ (2 j + 1)(2 j + 1)2 j+13(2 j)2 (2 j)2 j
(
4(m − 1)

m − 2

)2 j+1 m − 1

m − 2
(d(x, y))2 j+1(m − 1)−d(x,y)

≤ (2 j + 1)4 j+234 j
2
(
4(m − 1)

m − 2

)2 j+1 m − 1

m − 2
(d(x, y))2 j+1(m − 1)−d(x,y).

��

8.1 Bound on the Higher Derivatives of 0(x, y|z)

In this section we obtain bound for the higher derivatives of the function g(z) = �(x, y|z)
evaluated at the point z = 1. Recall from (4.1) that for x, y ∈ Tm

g(z) = �(x, y|z) = 2(m − 1)

m − 2 +√
m2 − 4(m − 1)z2

(
m −√

m2 − 4(m − 1)z2

2(m − 1)z

)d(x,y)

, z ∈ C.

We prove the following bound.

Lemma 20 Let x, y ∈ Tm and d = d(x, y). Then for k ≥ 1

g(k)(1) ≤ 3(k−1)2(k − 1)k−1
(
4(m − 1)

m − 2

)k m − 1

m − 2
dk(m − 1)−d , (8.7)

and

g(1) = m − 1

m − 2
(m − 1)−d .

Proof We write ρ(z):=√m2 − 4(m − 1)z2. Then

g(z) = 2(m − 1)

m − 2 + ρ(z)

(
m − ρ(z)
2(m − 1)z

)d

. (8.8)
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We have

g(1) = m − 1

m − 2
(m − 1)−d .

Taking logarithms on both sides of (8.8) and then differentiating we get

g′(z)
g(z)

= 4(m − 1)z
(m − 2 + ρ(z))ρ(z)

+ d4(m − 1)z
(m − ρ(z))ρ(z)

− d

z

=:h(z).

Note that here we have used ρ′(z) = −(4(m − 1)z)/ρ(z). So we have

g′(z) = g(z)h(z).

To obtain bounds for the derivatives of g we first bound h and its derivatives evaluated at
z = 1. We have

h(1) = 4(m − 1)

2(m − 2)2
+ d4(m − 1)

2(m − 2)
− d ≤ 4(m − 1)

m − 2
d.

Differentiating h we get

h′(z) = 4(m − 1)

(m − 2 + ρ(z))ρ(z)

[
1 − zρ′(z)

m − 2 + ρ(z)
− zρ′(z)

ρ(z)

]

+ d4(m − 1)

(m − ρ(z))ρ(z)

[
1 + zρ′(z)

m − ρ(z)
− zρ′(z)

ρ(z)

]
− d

z2
.

Note that ρ(1) = m − 2 and ρ′(1) = −(4(m − 1))/(m − 2). Using these values we have

h′(1) = 4(m − 1)

2(m − 2)2

[
1 + 4(m − 1)

2(m − 2)2
+ 4(m − 1)

(m − 2)2

]

+ d4(m − 1)

2(m − 2)

[
1 − 4(m − 1)

2(m − 2)
+ 4(m − 1)

(m − 2)2

]
− d

≤ 3
4(m − 1)

m − 2

[
4(m − 1)

2(m − 2)2
+ d4(m − 1)

2(m − 2)

]

≤ 3

(
4(m − 1)

m − 2

)2

d. (8.9)

To obtain a bound on h
′′
(1) we write h′(z) as

h′(z) = 4(m − 1)

(m − 2 + ρ(z))ρ(z)
+ (4(m − 1))2z2

(m − 2 + ρ(z))2ρ(z)2
+ (4(m − 1))2z2

(m − 2 + ρ(z))ρ(z)3

+ d4(m − 1)

(m − ρ(z))ρ(z)
− d(4(m − 1))2z2

(m − ρ(z))2ρ(z)2
+ d(4(m − 1))2z2

(m − ρ(z))ρ(z)3
− d

z2
.

Now differentiating with respect to z we obtain

h
′′
(z) = 4(m − 1)

(m − 2 + ρ(z))ρ(z)

[
4(m − 1)z

(m − 2 + ρ(z))ρ(z)
+ 4(m − 1)z

ρ(z)2

]

+ (4(m − 1))2

(m − 2 + ρ(z))2ρ(z)2

[
2z + 2(4(m − 1))z3

(m − 2 + ρ(z))ρ(z)
+ 2(4(m − 1))z3

ρ(z)2

]

+ (4(m − 1))2

(m − 2 + ρ(z))ρ(z)3

[
2z + (4(m − 1))z3

(m − 2 + ρ(z))ρ(z)
+ 3(4(m − 1))z3

ρ(z)2

]
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+ d4(m − 1)

(m − ρ(z))ρ(z)

[
− 4(m − 1)z

(m − ρ(z))ρ(z)
+ 4(m − 1)z

ρ(z)2

]

− d(4(m − 1))2

(m − ρ(z))2ρ(z)2

[
2z − 2(4(m − 1))z3

(m − ρ(z))ρ(z)
+ 2(4(m − 1))z3

ρ(z)2

]

+ d(4(m − 1))2

(m − ρ(z))ρ(z)3

[
2z − 4(m − 1)z3

(m − ρ(z))ρ(z)
+ 3(4(m − 1))z3

ρ(z)2

]
+ 2d

z3
.

Putting z = 1 we have

h
′′
(1) = 4(m − 1)

2(m − 2)2

[
4(m − 1)

2(m − 2)2
+ 4(m − 1)

(m − 2)2

]

+ (4(m − 1))2

4(m − 2)4

[
2 + 2(4(m − 1))

2(m − 2)2
+ 2(4(m − 1))

(m − 2)2

]

+ (4(m − 1))2

2(m − 2)4

[
2 + (4(m − 1))

2(m − 2)2
+ 3(4(m − 1))

(m − 2)2

]

+ d4(m − 1)

2(m − 2)

[
−4(m − 1)

2(m − 2)
+ 4(m − 1)

(m − 2)2

]

− d(4(m − 1))2

4(m − 2)2

[
2 − 2(4(m − 1))

2(m − 2)
+ 2(4(m − 1))

(m − 2)2

]

+ d(4(m − 1))2

2(m − 2)3

[
2 − 4(m − 1)

2(m − 2)
+ 3(4(m − 1))

(m − 2)2

]
+ 2d.

We observe that the term inside the square bracket in each summand is bounded by (9(4(m−
1)))/(m − 2) and the other terms are the same as the summands in h′(1) except for the last
term. So we conclude using (8.9) that

h
′′
(1) ≤ 9 · 3

(
4(m − 1)

m − 2

)3

d ≤ 9 · 4
(
4(m − 1)

m − 2

)3

d.

In a similar way we can write h(k)(1) so that the term inside the square bracket in each
summand is bounded by (3(2k − 1)(4(m − 1)))/(m − 2) and the other terms are the same
as the summands in h(k−1)(1) except the last term. Hence we conclude that

h(k)(1) ≤ 3k(1 · 3 · 5 · · · (2k − 1))

(
4(m − 1)

m − 2

)(k+1)

d

≤ 3kkk
(
4(m − 1)

m − 2

)(k+1)

d,

where we obtain the second inequality by using the relation between the arithmetic and the
geometric mean. We now prove (8.7) by the method of induction. We have

g(1)(1) = g(1)h(1) ≤ m − 1

m − 2
(m − 1)−d 4(m − 1)

m − 2
d.

Assume that (8.7) holds true for k = 1, . . . , � − 1. Now we have

g(�)(1) = (gh)(�−1)(1) =
�−1∑
k=0

(
� − 1
k

)
g(�−1−k)(1)h(k)(1)

≤
�−2∑
k=0

(
� − 1
k

)[
3(�−1−k−1)2 (� − 1 − k − 1)�−1−k−1

(
4(m − 1)

m − 2

)�−1−k m − 1

m − 2
d�−1−k
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(m − 1)−d
]
3kkk

(
4(m − 1)

m − 2

)(k+1)

d + m − 1

m − 2
d(m − 1)−d3�−1(� − 1)�−1

(
4(m − 1)

m − 2

)�

d

≤
[
3(�−2)2 (� − 1)�−1

(
4(m − 1)

m − 2

)� m − 1

m − 2
d�(m − 1)−d

]
�−1∑
k=0

(
� − 1
k

)

=
[
3(�−2)2 (� − 1)�−1

(
4(m − 1)

m − 2

)� m − 1

m − 2
d�(m − 1)−d

]
2�−1

≤ 3(�−1)2 (� − 1)�−1
(
4(m − 1)

m − 2

)� m − 1

m − 2
d�(m − 1)−d .

Therefore by induction (8.7) holds for all k ≥ 1. ��
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Appendix A: An Alternative Argument for (4.6)

After the revision of the paper it was pointed out to us by an anonymous referee that an
alternative proof can be carried out to quantitatively estimate the error one commits by
replacing Gn by G. This proof gives a bound comparable to (4.6) for points that are far away
from the boundary. For completeness we would like to outline this proof here.

Proof The proof is based on a double application of the maximum principle for harmonic
functions [3, Theorem 1.37]. Fix y ∈ Vn . We define the function Hy(·) as

Vn → R

x �→ Gn(x, y) − G(x, y).

We then set

a:= sup
x∈V c

n−1

∣∣Hy(x)
∣∣ .
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We have that {∣∣�Hy(x)
∣∣ ≤ 2a x ∈ V c

n

�(�Hy)(x) = 0 x ∈ Vn

so that �Hy(·) is harmonic in Vn . We can invoke the the maximum principle to say that
max
x∈Vn

∣∣�Hy(x)
∣∣ ≤ 2a. Now consider the function

f (x):=a + 2am

m − 2
d(x, ∂1Vn).

It is clear that f (x) = a on V c
n , and moreover that for x �= o

� f (x) = 2a

m − 2
[(m − 1) (d(x, ∂1Vn) − 1) + (d(x, ∂1Vn) + 1) − md(x, ∂1Vn)]

= 2a

m − 2
(2 − m) = −2a

while for x = o we have � f (x) = −2am/(m − 2) ≤ −2a. So the function

Hy(·) − f (·)
is subharmonic in Vn and again by the maximum principle

max
x∈Vn

|H(·) − f (·)| = max
x∈Vn+1\Vn

Hy(·) − f (·) ≤ 0

since
∣∣Hy(x)

∣∣ ≤ a = f (x) by the definition of a for x ∈ Vn+1 \ Vn . Running the same
argument for − f rather than f we finally obtain that |Hn(x)| ≤ f (x) in Vn .

This implies that for x ∈ Vn

|Hn(x)| = |Gn(x, y) − G(x, y)| ≤ a (1 + C(m)d(x, ∂1Vn))

≤ C ′(m)d(x, ∂1Vn) sup
x ′∈V c

n−1

∣∣G(x ′, y)
∣∣

≤ C ′(m)d(x, ∂1Vn)d(y, ∂1Vn)

(m − 1)d(y, ∂1Vn)
.

Being our argument symmetric in x and y, we can conclude our result. ��
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